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Abstract 

 

Gaining a systematic molecular understanding of tissue physiology in health and disease will 

require the ability to rapidly profile the abundances of many genes at high resolution over large 

tissue volumes. Many current methods of imaging transcriptomics are based on single-molecule 

fluorescent in situ hybridization, with barcodes to allow multiplexing across genes. These 

approaches have serious limitations with respect to (i) the number of genes that can be studied and 

(ii) imaging time, due to the need for high-resolution to resolve individual signals. Here, we show 

that both challenges can be overcome by introducing an approach that leverages the biological fact 

that gene expression is often structured across both cells and tissue organization. We develop 

Composite In Situ Imaging (CISI), that combines this biological insight with algorithmic advances 

in compressed sensing to achieve greater efficiency. We demonstrate that CISI accurately recovers 

the spatial abundance of each of 37 individual genes in the mouse primary motor cortex (MOp) 

from 10 composite measurements and without the need for spot-level resolution. CISI achieves 

the current scale of multiplexing with an order of magnitude greater efficiency, and can be 

leveraged in combination with existing methods to multiplex far beyond current scales. 
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Tissue and organ function rely on the organization of cells and molecules in specific spatial 

structures. In order to understand these structures and how they relate to tissue function in health 

and disease, we would ideally be able to rapidly profile gene expression over large tissue volumes. 

To this end, in recent years multiple molecular assays have been developed that can image from a 

dozen to ~100 individual proteins (Angelo et al., 2014; Goltsev et al., 2018; Keren et al., 2018) or 

RNAs (Chen et al., 2015; Choi et al., 2018; Codeluppi et al., 2018; Shah et al., 2016, 2017; Wang 

et al., 2018a, 2018b) in a sample at single-cell resolution. 

 

The most commonly used, highly multiplexed methods for imaging RNA are based on single-

molecule fluorescence in situ hybridization (smFISH) (Raj et al., 2008), with rounds of staining 

and stripping, and a variety of barcoding strategies to increase multiplexing (Chen et al., 2015; 

Choi et al., 2018; Codeluppi et al., 2018; Shah et al., 2016, 2017; Wang et al., 2018a, 2018b). In 

“linear” barcoding strategies (e.g., osmFISH (Codeluppi et al., 2018) or in situ HCR (Choi et al., 

2018)), each color in each round corresponds to one gene. The number of genes G that can be 

measured with c colors and r rounds is thus G = cr. In “combinatorial” strategies, such as 

MERFISH (Chen et al., 2015; Wang et al., 2018a) or Seq-FISH (Shah et al., 2016, 2017), gene 

identity is encoded by a sequence of colors over multiple rounds – that is, many genes may share 

a given color in a given round, but each gene is encoded by a unique sequence of colors across the 

rounds. The number of genes G that can be measured with c colors and r rounds is thus G = cr — 

ignoring additional rounds needed for error correction. (The number of colors available is typically 

3 or 4.) 
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Multiplex methods have provided an unprecedented tool for tissue biology and histopathology, but 

they typically measure fewer than 1% of genes, necessitate choosing a gene-expression signature, 

and can require a week or more to collect these data in a single tissue section. Ideally, it would be 

possible to quickly generate data on thousands of gene abundance levels in large tissue volumes, 

perhaps even entire organs. 

 

Notably, existing barcoding methods ignore prior knowledge or biological principles: each spot is 

decoded independently, without using any ‘local’ information (such as gene-expression 

information at nearby spots). This choice leads to two fundamental limitations on scalability. First, 

both linear and combinatorial quantification requires imaging at high magnification (up to 100x) 

so that individual RNA molecules appear as bright, well-separated spots, so that their individual 

identities can be decoded from the hybridization images. High-resolution image acquisition over 

large volumes is a major time bottleneck. Second, there are limitations on the number of genes. In 

linear barcoding, it is not feasible to substantially increase the number G of genes assayed, because 

the number of rounds of imaging scales with G (100-fold more genes requires 100-fold more 

rounds) and with combinatorial barcoding, increases are limited by optical crowding (spatial 

overlap between fluorescent spots), because the number of spots scales with G. Recent efforts to 

ameliorate this latter issue with sparser combinatorial barcodes increase the number of rounds of 

hybridization and, so far, result in a relatively high rate of false positives (Eng et al., 2019).  

 

We reasoned that a biology-informed strategy could be more efficient, by incorporating knowledge 

about the principles of gene expression patterns. Because many genes are co-regulated, 

measurements of one gene give information about the likely abundances of others. In such cases, 
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one might infer the expression of many individual genes from a much smaller number of composite 

measurements of gene abundance – mathematically defined as linear combinations of gene 

abundance levels –consisting of combined signal from multiple genes on the same channel. That 

is, instead of measuring the level of multiple genes but each of them separately (i.e., in one 

channel), we should use each channel to measure the composite (sum) abundances of multiple 

genes in each channel, and later be able to decompress and determine individual gene levels by 

leveraging the biological insights that genes are co-regulated in modules. We have previously 

published the theoretical foundations of this strategy, based on the mathematics of compressed 

sensing (Cleary et al., 2017), which describes how under-sampled composite data can be 

decompressed to recover structured, high-dimensional expression signals for individual genes. 

 

Here, we develop such a scheme, Composite In Situ Imaging (CISI), implement it in a lab method 

and computational algorithm, and show that it improves the current throughput of convenient 

linear barcoding methods by at least an order of magnitude. Our implementation of CISI consists 

of four steps (Fig. 1a).  

 

(1) Create a dictionary of gene-expression modules. To study the spatial expression pattern of G 

genes in tissue samples, we first obtain single-cell profiles (e.g., from single cell RNA-Seq 

(scRNA-Seq)) from comparable samples to identify co-expression patterns among the selected 

genes and to compute a dictionary consisting of M sparse gene-expression modules (i.e., each 

module is a sparse vector of nonnegative coefficients for the genes) such that the single-cell 

profiles can be well approximated by D-sparse linear combinations of the modules (i.e., involving 
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at most D non-zero weights) (Cleary et al., 2017). Below, we use D=3 and explain how it was 

chosen empirically.  

 

(2) Select composite measurements. We next select K composite measurements that enable 

accurate recovery of the chosen genes. Each composite measurement consists of probes for a 

subset of genes, corresponding to a linear combination of gene abundance. To select the 

compositions and numbers of measurements needed for accurate recovery, we simulate 

compressed sensing in the single-cell data: we first generate a random assignment of genes to 

measurements, simulate composite measurements as the sum of those genes’ abundances, and 

compute the recovered (decompressed) profiles. We use simulations to test parameters for (1) the 

total number of measurements K, (2) the maximum number of measurements in which each gene 

was included, (3) the individual genes for each measurement, and (4) the size M of the module 

dictionary and sparsity D of the linear combinations. To simplify laboratory implementation, we 

considered only measurement compositions consisting of binary weights, where each gene was 

either not included, or included in equal proportion. For each combination of design parameters 

(1) and (2), we generate many simulated compositions and compute the recovered profiles from 

each, and then select compositions that most accurately recover the original expression levels 

(Methods). 

 

(3) Generate image data. We then synthesize probes for each gene, and create composite probes 

for each composite measurement by mixing the probes according to the coefficients in the 

composite design. (Since the weights are binary, the probes for each gene included in a 

composition are mixed in equal proportions.) We hybridize the composite probes using the linear 
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barcoding approach: in each round, we label c composite probes with distinct colors. (For 

validation, we can include one or more additional cycles to directly measure a subset of individual 

genes.)  

 

(4) Computational inference of gene-expression in each cell. Finally, we infer the gene 

expression patterns in the image, using one of two approaches. In the first, the image is segmented 

into cells. In each segmented cell, we add up the intensity of each color in each round to get a 

vector y, corresponding to the composite measurements. We then solve a sparse optimization 

problem to estimate the gene module activities, w, and individual gene abundances, x=Uw, given 

the composite designs, A, and a gene module dictionary, U. (That is, we solve for w in y=AUw 

and then calculate x; this is the core optimization problem of compressed sensing). 

 

In an alternative approach, we analyze the image without cell segmentation or explicit spot 

detection by using a convolutional autoencoder to infer individual gene abundances at each pixel 

in the image. Specifically, we use a convolutional autoencoder to compute a low-dimensional, 

encoded representation of each image, and perform decompression in the encoded latent space 

(Fig. 1b, Methods). In the segmentation-free algorithm we developed for this purpose, we first 

train a convolutional encoder to represent each of the composite images in a lower-dimensional 

space. This effectively aggregates local pixel intensities according to data-driven features. At the 

same time, we train a decoder that can take these encoded representations as input, and then output 

images that match the originals. Next, for decompression, we take the K-channel encoded 

representation of each tissue section as input (each channel corresponding to one of the K 

composite images). For each node in the encoded representation of a given tissue section, we then 
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solve a sparse optimization problem to estimate gene module activities, and compute the encoded 

representation of the (unobserved) image for each individual gene (i.e., we decompress the 

encoded representation from K to G channels). We then decode the encoded representation of each 

unobserved gene, outputting G individual images. During this optimization we include in the loss 

function the error between the re-composed individual genes and the original composites at both 

the encoded and decoded layers (among other constraints and regularizations; Methods). 

 

CISI offers two important advantages. Like combinatorial barcoding, CISI requires exponentially 

fewer rounds r of hybridization than linear barcoding (rCISI = O(D ln(M)/c), rcombinatorial = 

ln(G)/ln(c), and rlinear = G/c; we estimate that, in practice, that the number of rounds with either 

method will be comparable, with rCISI/rcombinatorial typically between 1/3 and 3; Methods). But 

unlike combinatorial barcoding, CISI does not require spot-level resolution, and thus allows for 

faster imaging over large areas: whereas individual spots are often imaged between 60-100x 

magnification, CISI can be imaged from 10-40x, allowing for imaging that is 2.25-100 fold faster 

in two dimensional scanning. 

 

To demonstrate CISI in practice, we applied it in the mouse primary motor cortex (MOp). We 

analyzed a set of 31,516 previously published single-nucleus RNA-Seq (snRNA-Seq) profiles 

from MOp (https://biccn.org/data). We chose to study G = 37 genes, consisting of 30 genes that 

are markers of either broader (excitatory and inhibitory neurons, and various glial cells) or 

narrower (e.g., layer specific inhibitory neurons) subtypes (Supplementary Table 1, 

Supplementary Fig. 1), and 7 additional genes that were co-expressed with these markers. In the 

27,491 cells in which at least 1 of the 37 genes was detected, the effective number of genes 
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expressed (out of 37, using Shannon Diversity) per cell was 2.87. Given dropouts in snRNA-seq, 

this is likely an underestimate of true expression. 

 

We then learned a sparse modular representation of the expression of the 37 genes in the 27,491 

cells. For cells with only 1 or 2 of the genes expressed, we could trivially represent their expression 

with 1 or 2 parameters (corresponding to singleton gene modules). For cells with more genes 

expressed, it is more efficient to represent expression in terms of modules of co-expressed genes. 

We used our previously published method, Sparse Module Activity Factorization (SMAF (Cleary 

et al., 2017)), to identify a dictionary of M = 80 modules. The modules effectively consist of 1 to 

6 genes (2.66 on average; Supplementary Table 2), such that the expression of each of the 37 

genes in each of 27,491 cells can be represented with a linear combination of 3 or fewer modules 

with 94.3% correlation. This representation was good (88% correlation), even in cells with greater 

than 5 of 37 genes expressed (Supplementary Fig. 2a). On average, each cell was described by 

the activity of 1.72 modules, and most cells were very accurately described (correlation >95%) by 

just 1 or 2 modules (Supplementary Fig. 2b).  

 

We then used the simulation procedure described above to develop barcodes and composite 

measurements that would allow us to learn the modules in each cell (or small region of a tissue 

section), and subsequently approximate the 37 genes. As expected, performance improved with 

increasing numbers of measurements (criterion (1)), leveling off around 10 measurements 

(Supplementary Fig. 3a). The best compositions using each gene in a maximum of 2, 3, or 4 

measurements (criterion (2)) resulted in recovered profiles that were 78%, 84%, and 87% 

correlated with the original profiles (Supplementary Fig. 3b). We also considered scalability of 
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probe synthesis. In particular, the number of gene-composition combinations that we would need 

to synthesize when each gene was included in 2, 3, or 4 measurements was 74, 97, and 120, 

respectively. Balancing the performance of the different designs and the estimated costs, we 

selected the best performing set of 10 composite measurements, with each gene included in up to 

3 compositions (Supplementary Table 3). Using these parameters, we found that simulation 

refined performance from a median correlation of 76% to 84% with the best performing selection, 

with these compositions including between 6 and 13 genes (Supplementary Table 3). 

 

We synthesized, pooled, and successfully tested the 10 selected compositions. We designed probe 

pairs targeting multiple regions of each gene for fluorescent in situ hybridization with HCR 

amplification (HCR-FISH (Choi et al., 2018), Methods, Supplementary Table 4), where each 

oligonucleotide contains a gene targeting sequence and a barcode that determines the channel 

(color) of the HCR amplified signal. We assigned each of the 10 compositions to one of three 

colors, to be imaged during 3 1/3 rounds, pooling the assignment barcoded probes into the 10 

compositions. For each of the 10 compositions, we tested these pools by imaging each gene 

individually, along with the pool of probes for the composition. We simulated composite images 

by merging into a composition the images acquired individually for each gene. The real and 

simulated composite images agreed well visually (Fig. 2a), and had 90.1% correlation between 

integrated intensity values in segmented cells (on average, across the 10 compositions).  

 

Next, we generated a large imaging dataset, using our validated composite probe libraries, together 

with probes for individual genes measured and used only for later confirmation. In each tissue 

section comprising ~2,500-3,000 cells, we first imaged the 10 composite measurements over 3 1/3 
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rounds. Using the remaining two colors in the fourth round, and all three colors in a fifth round of 

imaging, we also directly measured each of up to five individual genes, for subsequent validation 

purposes. We repeated this in 8 tissue sections, picking different individual genes each time, such 

that in total we directly measured each of the 37 genes individually along with the compressed 

measurements (Supplementary Table 5). 

 

We decompressed the experimental data with our segmentation-based and segmentation-free 

algorithms, and evaluated the accuracy of our results in several ways. First, the decompressed 

images for several genes corresponded well to their known distinct and readily identifiable spatial 

expression patterns, available as reference images from the Allen Brain Atlas (Fig. 2c). For 

example, these included: Slc17a7, which is broadly expressed in excitatory neurons throughout 

MOp; Vip, a marker of a subtype of inhibitory neurons, which is expressed more frequently in 

layer 2/3; and Sst, a marker of another inhibitory neuron subtype, which is expressed more 

frequently in layer 5. 

 

Second, the decompressed images agreed well with the direct measurements of each gene made in 

the same section, for genes expressed in both rare and common cell types, and in cells of varying 

morphologies (Fig. 2c and Supplementary Fig. 4). The correlation between direct and recovered 

(decompressed) measurements based on integrated signal intensity in segmented cells was high, 

either when using recovered values from the segmentation-free autoencoding algorithm (83.6%) 

or when using decompression from segmented cells (88.4%). (We expected the autoencoding 

algorithm to perform slightly worse by this metric, since it is not optimized for the segmentation 
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masks.) Both are in line with the simulations used to design our measurements, which predicted a 

correlation of 84%. 

 

Notably, the segmentation-free autoencoder out-performs the segmentation-based algorithm for 

genes whose expression does not necessarily follow simple patterns (Supplementary Fig. 5). The 

segmentation-based approach omits regions of the image outside of successfully segmented cells, 

and can result in loss of morphological information, since the output typically consists of filled 

polygons with uniform intensity. Conversely, the autoencoding algorithm does not omit any 

regions, and retains morphology by data-driven convolutional features. As a result, while genes 

like Vtn have expression patterns easily captured by the filled polygons of segmented cells, others 

such as Flt1 and Parm1 are well-described by autoencoding, but not by segmentation (Fig. 2d, 

Supplementary Fig. 5). 

 

We analyzed cell-type composition of the autoencoding results, by segmenting cells post hoc (on 

decompressed images) and clustering the segmented cells based on the integrated intensity values 

across genes (Methods). Based on the markers in each cluster, neurons comprised about half of 

all (successfully segmented) cells: 33.3% of cells in 9 excitatory clusters, and 16.9% of cells in 6 

inhibitory clusters. In addition, we find 4 clusters of oligodendrocytes and oligodendrocyte 

precursor cells (16.8%), 3 clusters of astrocytes (12.8%), 3 clusters of microglia (9.1%), 2 clusters 

of smooth muscle cells (6.5%) and 2 clusters of endothelial cells (4.4%). These in situ results are 

comparable with the representation of these cell subsets in snRNA-seq, albeit somewhat enriched 

in glial and depleted in endothelial cells: 44.5% excitatory, 14.5% inhibitory, 8.9% 
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oligodendrocyte / OPC, 10.4% astrocyte, 4.6% microglia, 1.9% smooth muscle cells, and 15% 

endothelial. 

 

The points of inaccurate recovery were relatively predictable and consistent between the two 

algorithms, with some false positives for several genes, but few false negatives (Supplementary 

Fig. 6a). Eight genes had some false positive expression patterns in the recovered images that were 

absent from the direct measurements (Supplementary Table 6). In each case, the false positive 

signals co-occurred with a gene that had probes included in overlapping measurements. For 

instance, false positives for Hmha1 are found in cells that express Slc17a7 (Supplementary Fig. 

6c, left). Hmha1 is a member of two compositions, both of which also included Slc17a7, which is 

additionally included in a third composition. 

 

We developed a simple heuristic to address this, by reducing false positives at the expense of some 

false negatives. For the 104 pairs of co-measured genes (i.e., that co-occur in more than one 

composition) that were not correlated (<10%) in snRNA-Seq, we set the expression of one of the 

two genes to zero whenever they were co-expressed in recovered images (Methods). To select 

which gene to adjust, we calculate the correlation between the 10 composite measurements in a 

cell, and the pattern of measurements for each of the two genes (e.g., the binary vector indicating 

which measurements included the gene), and then adjust to zero the gene with the lower 

correlation. Applying this simple rule reduced false positives and improved the overall correlation 

from 83.6% to 88.6% with autoencoding, and from 88.4% to 91.6% with segmentation 

(Supplementary Fig. 6a,b). 
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Finally, using these adjusted values, we found that decompressed measurements are substantially 

less sparse than snRNA-Seq, while preserving the co-expression programs observed in snRNA-

Seq. As previously observed with osm-FISH (Codeluppi et al., 2018), the degree of sparsity is 

much greater in snRNA-Seq than in our decompressed measurements, with 2.87 genes detected 

on average in each cell in snRNA-Seq vs. 5.96 based on decompressed images (6.49 with 

segmentation) (Supplementary Fig. 7a). To compare co-expression patterns, we clustered cells 

in the (post hoc segmented) decompressed data (as discussed above) and in snRNA-Seq (using 

only the 37 genes), finding 29 and 28 clusters, respectively. Most clusters had expression 

signatures that were highly correlated with a counterpart in snRNA-Seq, and had identical sets of 

marker genes (i.e., the gene with the highest normalized expression in each cluster) 

(Supplementary Fig. 7b).  

 

In conclusion, CISI addresses the two key bottlenecks in imaging transcriptomics: increasing the 

number of genes studied per round of hybridization and decreasing the time needed to scan large 

tissue volumes per round. In the results here, we improved the multiplexing efficiency by 3.7-fold 

(by assaying 37 individual genes with 10 composite measurements) and reduced the imaging time 

by 6.25-fold (by using 40x vs. 100x magnification) compared to state-of-the-art methods that 

achieve a similar scale of multiplexing with osmFISH (Codeluppi et al., 2018). In principle, CISI 

could also be used to increase multiplexing with combinatorial labeling (with each combinatorial 

barcode corresponding to one composite), although high-magnification imaging would be needed 

to resolve (and decode) each individual spot, and fluorescence crowding would still pose a 

challenge. 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/743039doi: bioRxiv preprint 

https://doi.org/10.1101/743039
http://creativecommons.org/licenses/by-nc/4.0/


 15 

The results here point towards the possibility of greatly increased throughput in imaging 

transcriptomics. More broadly, CISI is in a class of methods that leverage algorithmic insights and 

biological structure to be more efficient in generating and interpreting data. Further applications 

in this class could increase multiplexed protein detection with antibodies, make single cell and 

single nucleus RNA-seq more efficient by sequencing small pools of cells, or efficiently study 

genetic perturbations by leveraging common outcomes across experiments. 
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Figures 

 

Figure 1. Composite In Situ Imaging (CISI)  

(a) Method overview. snRNA-Seq data (top left) is first analyzed (top right) to learn a dictionary 

of gene modules, simulate compressed sensing, and select measurement compositions to be used 
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in CISI experiments (bottom left). In a CISI experiment, in each color in each round of imaging, 

probes for every gene in a given composite measurement are hybridized simultaneously. The 

process is repeated for different compositions over several cycles of stripping and hybridization 

(bottom left). Finally, composite images are then decompressed computationally (bottom right) 

to recover individual images for each gene. (b) Segmentation-free decompression. Top: An 

autoencoder is first trained on the composite images, with each composite measurement 

corresponding to one channel. Bottom: Once the autoencoder is trained, the composite images are 

encoded (“Encoding”), then decompressed to approximate the encoded representation for the 

unobserved image of each individual gene (“Decompression”), and the pre-trained decoder is used 

to recover individual images for each gene (“Decoding”). 
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Figure 2. CISI recovers accurate spatial expression patterns from composite experiments 
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(a,b) Quantitative accuracy of the composite imaging. (a) A composite image of 12 genes 

(“Composition 2”) compared to a computational merge of 12 images for each individual gene 

(“Merged image”). 3 of the 12 individual gene images are shown for reference. Left: entire FOV; 

Right: zoomed in segment, as indicated. Scale bar: 500um. (b) The integrated signal intensity in 

each segmented cell (individual dots) in the composite image (x axis) and the merged image (y 

axis). Pearson’s r is noted in upper left corner. (c,d) Autoencodeer based decompression 

successfully recovers accurate spatial patterns of individual genes. (c) Agreement with canonical 

expression patterns. Spatial RNA expression for Vip (top), Sst (middle), Slc17a7 (bottom) by ISH 

(left; Allen Brain Atlas) and in the recovered images by the segmentation free algorithm (right). 

Scale bar: 500um. (d) Agreement with individual gene measurements on the same section. RNA 

images recovered by decompression with the segmentation free algorithm (magenta) and directly 

measured (green) in the same tissue section. White: images overlap exactly. Scale bar 500um. See 

also Supplementary Fig. 4 for additional genes. 
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Supplementary Figure 1. Marker gene expression in snRNA-seq clusters 

For each of 37 genes, shown is the distribution of expression (individual violin plots; y-axis) in 

each of 23 snRNA-Seq clusters (x axis). Marker genes for similar cell types are grouped together 

with the cell type labeled on top.  

 

 

Supplementary Figure 2. Analysis of modular factorization based on gene and module 

diversity 

Pearson correlation (y-axis) between the original expression levels of 37 genes in each cell and 

those approximated in those cells by Sparse Module Activity Factorization (SMAF). Contour plots 

depict the density of cells at each level of correlation with either a given number of genes expressed 

(a; x-axis) or a given number of gene modules by SMAF decomposition (b; x-axis). 
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Supplementary Figure 3. Evaluation of performance of simulated compositions 

Distribution of Pearson correlation between the original and recovered expression levels of 37 

genes in each cell (y axis) across simulation trials for different numbers of composite 

measurements (a), or for different measurement densities, set by the maximum number of 

measurements in which each gene was included (b). In (a) the maximum compositions per gene 

is 3, and in (b) the number of compositions is 10. Mini boxplots depict median (dots), inner 

quartiles (box), and 1.5x quartile range (whiskers). 
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Supplementary Figure 4. Autoencodeer based decompression successfully recovers accurate 

spatial patterns of individual genes compared to direct measurement on the same section.  

RNA images recovered by decompression with the segmentation free algorithm (magenta) and 

directly measured (green) in the same tissue section. White: images overlap exactly. Genes are 

grouped based on the section in which their direct measurements were made. Insets for all genes 

in a section show the same region, or an adjacent region if no cells for a given gene were present. 

Scale bar: 500um. 
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Supplementary Figure 5. Comparison of autoencoding and segmentation-based 

decompression 

Individual gene images recovered (magenta) using the autoencoding algorithm (left) or the 

segmentation based algorithm (right) are overlaid with direct measurement (green) of the genes in 

the same tissue sections (white: direct overlap). For segmentation-based decompression, the 
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decompressed signal for each gene is projected uniformly over each segmentation mask. Scale bar: 

500um. 
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Supplementary Figure 6. Evaluation of recovered signals before and after co-measurement 

adjustment 

(a,b) Adjustment improves recovered signals. Integrated signal intensity for each gene in each cell 

(individual dots) from direct measurements (x axis) and from estimates recovered by the 

autoencoder decompressed images (y axis) either before (a) and after (b) co-measurement 

correction. (c) Example correction. Segmented cell intensities before (left) and after (right) 

correction for two co-measured genes (Hmha1 and Slc17a7) that were not correlated in snRNA-

Seq. 

 

 

Supplementary Figure 7. Evaluation based on genes per cell and cell clusters 

(a) Distribution of expression diversity (effective number of genes per cell; y axis) in snRNA-Seq, 

or based on recovered expression levels using autoencoding or segmentation-based decompression 

(x axis). Mini boxplots depict median (dots), inner quartiles (box), and 1.5x quartile range 

(whiskers). (b) Correspondence (Pearson’s correlation of mean gene expression; color bar) 

between cell clusters from snRNA-Seq (rows) and those found from post hoc segmentation of 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/743039doi: bioRxiv preprint 

https://doi.org/10.1101/743039
http://creativecommons.org/licenses/by-nc/4.0/


 32 

images recovered using the autoencoding algorithm (columns). One marker gene for each cluster 

is indicated. 
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Methods 

Mice 

All mouse work was done with an adult C57B/L6 mouse according to IACUC procedures specified 

on protocol 0211-06-18. 

 

Analysis of single-nucleus RNA-Seq data 

We selected 37 cell type/layer-specific markers by analyzing snRNA-seq data sets released by 

BICCN (U19 Huang generated by Regev lab; 

http://data.nemoarchive.org/biccn/lab/regev/transcriptome/sncell/) for mouse primary motor 

cortex (M1 or MOp) and generated using the 10x single-cell 3′ protocol (V2). To align the reads, 

a custom reference was created by 10X Cell Ranger (v.2.0.1, 10X Genomics) using mouse genome 

and pre-mRNA annotation (Mus_musculus.GRCm38, release 84) according to the instructions 

provided on the 10X Genomics website (https://support.10xgenomics.com/single-cell-gene-

expression/software/release-notes/build#mm10_1.2.0). The default parameters were used to align 

reads, perform UMI counting, filter high quality nuclei and generate gene by nucleus count 

matrices. In total, ~30,000 nuclei passed QC metrics including (i) the number of unique genes 

detected in each cell (>200) and (ii) the percentage of reads that map to the mitochondrial genome 

(<10%), and featured in the further downstream analyses using the Seurat package (version 2.2.1).   

 

Compressed sensing simulations 

We use compressed sensing to recover sparse signals from composite measurements. In the basic 

formulation, we seek to recover sparse gene module activities, 𝑊 ∈ ℝ$	&	', and estimate 

unobserved gene abundances, 𝑈𝑊 = 𝑋+ ∈ ℝ,	&	' given observations 𝐴𝑈𝑊 = 𝑌 ∈ ℝ/	&	', a gene 
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module dictionary 𝑈 ∈ ℝ,	&	$, and measurement compositions 𝐴 ∈ ℝ/	&	,, where there are 𝑚 

composite measurements of 𝑔 genes in each of 𝑛 cells, and the dictionary consists of 𝑑 gene 

modules. 

 

Using the snRNA-Seq data above, and the 37 selected genes, we evaluated different composite 

designs by simulating composite measurements and recovering individual expression levels by 

sparse optimization (as previously described(Cleary et al., 2017); see also 

https://github.com/cleary-lab/CISI). Briefly, we first randomly selected training, validation and 

testing subsets, using 60%, 20%, and 20% of all cells for each respective group. In the training set, 

we calculated a dictionary, 𝑈 ∈ ℝ,	&	$, with 𝑑 = 80 modules of 𝑔 = 37 genes (and default SMAF 

parameters found on https://github.com/cleary-lab/CISI). A given simulation trial with 𝑚 

measurements consists of (i) randomly assigning genes to compositions, 𝐴; (ii) simulating noisy 

composite measurements in validation data, 𝑌 = 𝐴(𝑋 + 𝜖) (with a signal-to-noise ratio of 5); (iii) 

decoding sparse module activity levels, 𝑚𝑖𝑛=	‖𝑊‖?; 			𝑠. 𝑡.			
‖DEFG=‖

‖D‖
< 𝜆; (iv) estimating 

individual expression levels, 𝑋+ = 𝑈𝑊; and (v) calculating the correlation between the original and 

estimated levels, 𝑐𝑜𝑟𝑟 = 𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑋, 𝑋+). When evaluating different measurement designs in step 

(i), we varied the total number of measurements (from 8 to 12), and the maximum number of 

measurements in which each gene appeared (either 2, 3, or 4). Each gene was then randomly 

assigned to a randomly chosen number of measurements (up to the maximum). Final assignments 

resulting in either two or more genes being perfectly co-assigned or in large measurement 

imbalance (any gene appearing more than 4 times more frequently than any other gene) were 

excluded. We then iterated steps (i)-(v) 2,000 times, selected the 50 composition matrices resulting 

in the top correlations, and evaluated (steps (ii)-(v)) in testing data. The correlations in testing data 
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were then used to compare different numbers of measurements, and maximum assignments per 

gene (fig. S3). 

 

Selection of the final library 

Based on these comparisons (fig. S3), and considering the number of probes that would need to be 

synthesized in each scenario, we selected the composition with the highest performance in testing 

data among those with 10 measurements and a maximum of 3 assignments per gene. Each of the 

10 compositions was assigned to one of three colors, to be imaged during 3 1/3 rounds (table S2). 

 

Probe design and validation 

For each target mRNA, HCRv3.0 DNA probe sets of ~20 probe pairs each were ordered from 

Molecular Technologies. All HCR v3.0 reagents are now only available from Molecular 

Instruments, Inc. (molecularinstruments.com). Target binding site sequences can be found in table 

S4. 

 

Tissue preparation and brain extraction 

An adult C57B/L6 mouse was perfused with ice-cold PBS (10010023, ThermoFisher Scientific) 

prior to dissection of the brain. The brain was then extracted and flash frozen in liquid nitrogen. 

After OCT embedding, the brain was sectioned directly into an APTES coated 24-well glass 

bottom plate (82050-898, VWR). For coating, plates were coated with a 1:50 solution of APTES 

(440140, Sigma) in 100% Ethanol (V1016, DeconLabs) for 5 minutes followed by 3x washes with 

100% ethanol before drying. Tissues were fixed in 10% Formalin (100503-120, VWR) for 15 
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minutes and washed with PBS before overnight permeabilization with 70% ethanol. Tissues were 

re-hydrated with PBS prior to hybridization.  

 

In situ hybridization  

In situ HCR version 3.0 with split-initiator probe sets was performed using the protocol detailed 

in(Choi et al., 2018) with some slight adaptations. Probe sets for each individual target mRNA 

were diluted to the concentration specified in the protocol and organized into composite channels. 

A composite channel is comprised of a mix of probe sets for approximately 10 different target 

mRNAs, each with the same initiator. In total, 10 composite channels were created. Three 

composite channels can be hybridized per round of imaging. Thus, for the first round of 

hybridization, probe sets for three composite channels with distinct initiator sequences were added 

at once to each tissue.  

 

Probes were hybridized for approximately 8 hours in hybridization buffer and then tissues were 

washed 4 times with 30% wash buffer for 15 minutes each and 3 times with 5X SSCT for 5 minutes 

each (buffer compositions available from Molecular Instruments). Snap-cooled hairpins were 

added at a 1:500 diluted concentration and amplification was allowed to proceed for 8 hours. 

Excess hairpins were then washed off with 5X SSCT (15557044, ThermoFisher Scientific), with 

0.2% Tween-20 for three washes of 15 minutes each. Tissues were stained with DAPI (1:5,000 

TCA2412-5MG, VWR) immediately prior to imaging. After imaging, probes were stripped from 

tissues using 80% formamide at 37°C for 30 minutes. This entire process (hybridization, 

amplification, imaging, stripping) was repeated for up to five rounds of imaging (see table S5 for 

composites and individual targets imaged in each round). All DNA HCR amplifiers (hairpins), 
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hybridization buffers, wash buffers, and amplification buffers were ordered from Molecular 

Technologies. All HCR v3.0 reagents are now only available from Molecular Instruments, Inc. 

(molecularinstruments.com). 

 

Imaging  

Imaging was performed on a spinning disk confocal microscope (Yokogawa W1 on Nikon Eclipse 

Ti) equipped with a Nikon CFI APO LWD 40x/1.15 water immersion objective operating NIS-

elements AR software with Andor Zyla 4.2 sCMOS detector. DAPI fluorophores were excited 

with a 405nm laser, Alexa 488 HCR amplifiers were excited with a 488nm laser with 525/36 

emission filter (Semrock, 77074803), Alexa 546 HCR amplifiers were excited with a 561nm laser 

with a 582/15 emission filter (Semorck, FF01-582/15-25), and Alexa 647 HCR amplifiers were 

excited with a 640nm laser with a 705/72 emission filter (Semorck, 77074329).   

 

Image processing 

Before downstream analysis, we ran a series of image processing steps to normalize, stitch, align, 

and segment the images in each color, field of view, round, and tissue. We first took a maximum 

projection across the z-axis, and then used the DAPI channel to stitch the fields of view within 

each round of imaging (using ImageJ software(Abràmoff et al., 2004)). We applied the stitching 

coordinates from the DAPI channel to each of the other channels. We then smoothed the image 

for each channel using a median filter (with a width of 8 pixels). (If spot-level resolution is needed, 

this step may not be advised. Since we do not need this resolution, we use this step to make 

autoencoder reconstruction an easier task.) From each smoothed image, we aligned and subtracted 

background signal, obtained by imaging after stripping the final round of fluorescent probes. We 
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then adjusted brightness and contrast by rescaling according to upper and lower thresholds 

determined using auto-adjust in ImageJ. The same rescaling parameters for each channel 

(determined from the maximum upper threshold and minimum lower threshold) were applied to 

all tissues and rounds. After rescaling, we applied a flat field correction to each field of view, by 

normalizing (dividing) each pixel by the median smoothed pixel intensity across all images (with 

smoothing by a Gaussian filter with a width 1/8 of the image dimension). Each round of the flat 

field-corrected images in a given tissue was then aligned using ImageJ. These images were used 

in the remainder of downstream analysis. 

 

For segmentation, we used CellProfiler(McQuin et al., 2018), and calculated one image mask per 

nucleus in each tissue using DAPI in the first round. Each mask was then expanded by up to 10 

pixels (without overlapping a neighboring cell). Comparisons and decompression with segmented 

cells were done using the integrated image intensity in each expanded nucleus mask. 

 

Decompression of composite signals 

We developed two methods to decompress composite signal intensities into signals for individual 

genes.  

 

The first method, which we used primarily as a point of reference for validation statistics, is based 

on cell segmentation. Given the intensities of each composite measurement in each segmented cell, 

𝑌 ∈ ℝ/	&	', we solved a sparse optimization problem to decode sparse module activity levels, 

𝑚𝑖𝑛=∈ℝQ	R	S	‖𝑊‖?; 				𝑠. 𝑡.			
‖DEFG=‖

‖D‖
< 𝜆, before estimating individual expression levels, 𝑋+ =

𝑈𝑊, with the same method as in our simulations (above). 
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The second method we developed decompresses entire images using a convolutional autoencoder. 

In this approach, for a given set of 10-channel composite images, we first train a model to identify 

a reduced (encoded) representation of each image, which can then be decoded to recapitulate the 

original. During this training, we optimize the following loss function: 

Tlog(𝑌 + 𝜀) − log(𝑌+ + 𝜀)T? + 𝜆Z[&\]ℒZ[&\] + 𝜆_`ℒ_`, 

where 𝑌 is the original image, 𝑌+ is the decoded image, ℒZ[&\] is a loss on pixel density, ℒ_` is the 

total variation of 𝑌+, 𝜆Z[&\] and 𝜆_`  are hyperparameters, and 𝜀 is a small constant. ℒZ[&\] is 

calculated as the Poisson log-likelihood of the pixel density, which is computed as the Shannon 

Diversity across pixels, divided by the number of pixels, with prior density set by a parameter 

𝛿Z[&\]b . Convolutions in each layer of the network are computed across filters (or kernels), but not 

across the 10 composite channels. Hence, each of the 10 channels remains separated from the other 

channels throughout each layer of the network. However, only one set of convolutional weights is 

learned; these are shared across all channels. The number of parameters in the model is, thus, 

relatively small, and the autoencoder trained quickly on our data. As discussed below, 

hyperparameters, including the number of encoding and decoding layers, the number and size of 

filters, and pooling sizes are chosen by hyperparameter tuning on a small set of validation images. 

 

Using the trained autoencoder, we decompress composite images as follows. First, we encode each 

10-channel image to a reduced representation, 𝑌c ∈ ℝ?d	&	ef	&	gh	&	i, where 𝑤f and ℎc  are the reduced 

width and height (after pooling at each encoding layer), and 𝑓 is the number of convolutional 

filters. We then solve for sparse module activities, 𝑊h ∈ ℝ$	&	ef	&	gh	&	i, where 𝑑 is the number of 

modules in the dictionary (here, 80), and then estimate the encoded representation of each 
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individual (unobserved) gene, 𝑋c ∈ ℝmn	&	ef	&	gh	&	i. These representations are then run through the 

pre-trained decoder to produce an image for each gene, 𝑋+ ∈ ℝmn	&	e	&	g. 

 

Our loss function has components at both the encoding and decoding layers: 

ℒ = T𝑌c − 𝐴𝑈𝑊hTo
o
+ Tlog(𝑌 + 𝜀) − log(𝐴𝑋+ + 𝜀)T? + 𝜆Z[&\]ℒZ[&\] + 𝜆_`ℒ_` + 𝜆=ℒ=, 

where ℒ= is a loss on the density of 𝑊h , calculated as the Poisson log-likelihood of the Shannon 

diversity, with prior density set by parameter 𝛿=. We implemented our model in tensorflow, using 

the Adam optimizer. 

 

Hyperparameters and model architectures were chosen by hyperparameter tuning on a small set of 

validation images. The validation images consist of 4 of 36 patches from each of 3 images (i.e., 

from 3 tissue sections, each with 36 patches), for a total of 12 patches (equivalent in size to 1/3 of 

one image). Each patch includes signal from the 10 composite measurements, along with up to 5 

directly measured genes. In each validation trial, we select hyperparameters, train the autoencoder 

on the composite data, decompress all genes, and then calculate the trial score as the correlation 

between the subset of directly measured and recovered genes (this is done in post hoc segmented 

cells, when using the autoencoder). We selected the hyperparameters from the best performing 

trial, and used these to run our analysis on the full dataset. More details can be found at 

https://github.com/cleary-lab/CISI. 

 

We applied a heuristic correction to co-measured genes. We first identified 104 pairs of co-

measured genes (i.e., that co-occur in more than one composition) that were not correlated (<10%) 

in snRNA-Seq. For each pair, we set the expression of one of the two genes to zero whenever they 
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were co-expressed in recovered images. To select which gene to adjust, we calculate the correlation 

between the 10 composite measurements in a cell, and the pattern of measurements for each of the 

two genes (e.g., the binary vector indicating which measurements included the gene), and then 

adjust to zero the gene with the lower correlation. 

 

Plotting decompressed images 

The decompressed results for each gene vary in their relative signal intensities (as do direct 

measurements for each gene). When plotting merged validation images (as in fig. 2d and fig. S4), 

we normalize the signal for each gene to automatically adjust contrast and brightness. The specific 

parameters of this normalization can be found in the code demo of our online repository 

(https://github.com/cleary-lab/CISI/blob/master/getting_started/plot_decompressed_images.py). 

The signal plotted for direct measurements have been pre-processed according to the methods 

described above. 

 

Comparison of CISI and combinatorial barcoding 

We can approximate the number of imaging rounds in CISI, rCISI, relative to that in combinatorial 

barcoding methods, rcombinatorial, defined as rCISI/rcombinatorial, based on our results here, using 

simulation to extrapolate to larger scales, and by comparing with existing combinatorial methods. 

Here, we used 3 and a 1/3 rounds to measure 37 genes; the same could be achieved using 3-color 

combinatorial barcoding without error correction. More commonly, 4 or 5 rounds would be used 

to measure 37 genes and allow for error correction. At larger scales, simulations in our earlier work 

(Cleary et al., 2017) suggest that ~100 composite measurements would suffice to approximate the 

expression of 10,000 genes. This could be done in 33 and a 1/3 rounds of CISI. To date, the only 
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combinatorial method to scale to this level did so with 80 rounds of imaging(Eng et al., 2019). We 

therefore very roughly approximate that the required rounds of imaging with either approach will 

be comparable, and that rCISI/rcombinatorial will be in the range 1/3 to 3, allowing for improvements 

in combinatorial methods and the possibility of needing more rounds than anticipated with CISI. 
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