

1 **Title:**

2 Lipid metabolism links nutrient-exercise timing to insulin sensitivity in men classified  
3 as overweight or obese.

4

5 **Authors:**

6 Edinburgh, R.M.<sup>1</sup>, Bradley, H.E.<sup>2</sup>, Abdullah, N-F.<sup>2,3</sup>, Robinson, S.L.<sup>2</sup>, Chrzanowski-  
7 Smith, O.J.<sup>1</sup>, Walhin, J-P.<sup>1</sup>, Joannis S.<sup>2</sup>, Manolopoulos, K.N.<sup>4</sup>, Philp, A.<sup>5</sup>, Hengist,  
8 A.<sup>1</sup>, Chabowski, A.<sup>6</sup>, Brodsky, F.M.<sup>7</sup> Koumanov, F.<sup>1</sup>, Betts, J.A.<sup>1</sup>, Thompson, D.<sup>1</sup>,  
9 Wallis, G. A.<sup>2</sup>, Gonzalez, J.T.<sup>1,8</sup>

10

11 **Author Contributions:**

12 RME, GAW and JTG designed the research; RME, HEB, N-FA, SLR, OJCS, JPW,  
13 KM, AH, JB, GAW and JTG conducted the research, RME, HEB, N-FA, SLR, FK,  
14 SJ, AP, AC, FMB and JTG analyzed the data, RME, N-FA and JTG performed the  
15 statistical analysis, RME, GAW and JTG primarily wrote the paper, GAW was  
16 responsible for the acute study and JTG was responsible for the training study and  
17 all authors read and approved the final version of the manuscript.

18

19 **Author Affiliations:**

20 <sup>1</sup>Department for Health, University of Bath, Bath, United Kingdom

21 <sup>2</sup>School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham,  
22 Birmingham, United Kingdom

23 <sup>3</sup>Department of Health Sciences, Faculty of Sport Sciences and Coaching, Universiti  
24 Pendidikan Sultan Idris, Perak, Malaysia.

25 <sup>4</sup>Institute of Metabolism and Systems Research, University of Birmingham,  
26 Birmingham, United Kingdom

27 <sup>5</sup>Diabetes & Metabolism Division, Garvan Institute of Medical Research, Sydney,  
28 New South Wales, Australia.

29 <sup>6</sup>Department of Physiology, Medical University of Bialystok, Bialystok, Poland

30 <sup>7</sup>Division of Biosciences, University College London, London, United Kingdom.

31 <sup>8</sup>Lead contact.

32

33 **Address for Correspondence:**

34 Dr Javier T. Gonzalez,

35 Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom

36 Tel: 0(+44) 1225 38 5518; E-mail: [J.T.Gonzalez@bath.ac.uk](mailto:J.T.Gonzalez@bath.ac.uk); Twitter:  
37 @Gonzalez\_JT

38

39 Dr Gareth A. Wallis,

40 School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham,  
41 Edgbaston, B15 2TT, UK.

42 Tel: +44(0) 121 414 4129; Email: [G.A.Wallis@bham.ac.uk](mailto:G.A.Wallis@bham.ac.uk); Twitter: @Gareth\_Wallis

43

44 **Name and address for reprint requests:**

45 Dr Javier T. Gonzalez,

46 Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom

47 Tel: 0(+44) 1225 38 5518; E-mail: [J.T.Gonzalez@bath.ac.uk](mailto:J.T.Gonzalez@bath.ac.uk); Twitter:  
48 @Gonzalez\_JT

49

50 **Trial Registrations:** <https://clinicaltrials.gov/> (Numbers: NCT02744183;  
51 NCT02397304)

52

53 **Running Title:** Breakfast, exercise and metabolic health

54

55 **Keywords:** Exercise; Glucose; Insulin sensitivity; Nutrition; Metabolism

56

57 **FUNDING**

58 This study was supported by The Physiological Society (UK) and the Allen  
59 Foundation Inc. (USA), N-FA was supported by a PhD Scholarship from the Ministry

60 of Education, Malaysia. FK is funded by the Medical Research Council  
61 (MR/P002927/1). FMB is funded by the Medical Research Council (MR/S008144/1).

62 **Abstract**

63 **Context:** Pre-exercise nutrient availability alters acute metabolic responses to  
64 exercise, which could modulate training responsiveness. We hypothesised that in  
65 men with overweight/obesity, acute exercise before *versus* after nutrient ingestion  
66 would increase whole-body and intramuscular lipid utilization, translating into greater  
67 increases in oral glucose insulin sensitivity over 6-weeks of training.

68 **Design and Participants:** We showed in men with overweight/obesity (mean $\pm$ SD  
69 for BMI:  $30.2\pm3.5 \text{ kg}\cdot\text{m}^{-2}$  for acute, crossover study,  $30.9\pm4.5 \text{ kg}\cdot\text{m}^{-2}$  for randomized,  
70 controlled, training study) a single exercise bout before *versus* after nutrient  
71 provision increased lipid utilisation at the whole-body level, but also in both type I  
72 ( $p<0.01$ ) and type II muscle fibres ( $p=0.02$ ). We then used a 6-week training  
73 intervention to show sustained, 2-fold increases in lipid utilisation with exercise  
74 before *versus* after nutrient provision ( $p<0.01$ ).

75 **Main Outcome Measures:** Postprandial glycemia was not differentially affected by  
76 exercise training before vs after nutrient provision ( $p>0.05$ ), yet plasma was reduced  
77 with exercise training before, but not after nutrient provision ( $p=0.03$ ), resulting in  
78 increased oral glucose insulin sensitivity when training was performed before *versus*  
79 after nutrient provision ( $25\pm38 \text{ vs } -21\pm32 \text{ mL}\cdot\text{min}^{-1}\cdot\text{m}^{-2}$ ;  $p=0.01$ ) and this was  
80 associated with increased lipid utilisation during exercise ( $r=0.50$ ,  $p=0.02$ ). Regular  
81 exercise prior to nutrient provision augmented remodelling of skeletal muscle  
82 phospholipids and protein content of the glucose transport protein GLUT4 ( $p<0.05$ ).

83 **Conclusions:** Experiments investigating exercise training and metabolic health  
84 should consider nutrient-exercise timing, and exercise performed before *versus* after  
85 nutrient intake (i.e., in the fasted state) may exert beneficial effects on lipid utilisation  
86 and reduce postprandial insulinemia.

87 **Précis**

88 Exercise in the fasted- *versus* fed-state increased intramuscular and whole-body  
89 lipid use, translating into increased muscle adaptation and insulin sensitivity when  
90 regularly performed over 6 weeks.

91 **INTRODUCTION**

92 Postprandial hyperinsulinemia and associated peripheral insulin resistance are key  
93 drivers of metabolic diseases, such as type 2 diabetes (T2D) and cardiovascular  
94 disease (1-3). Obesity and a sedentary lifestyle are independently associated with  
95 changes in skeletal muscle that can reduce insulin sensitivity (4,5) and increase  
96 hyperinsulinemia, contributing to elevated cardiovascular disease risk (2). Therefore,  
97 increasing insulin sensitivity and reducing postprandial insulinemia are important  
98 targets for interventions to reduce the risk of metabolic disease.

99

100 Regular exercise training represents a potent strategy to increase peripheral insulin  
101 sensitivity and to reduce postprandial insulinemia (6). The beneficial effects of  
102 exercise on oral glucose tolerance and insulin sensitivity can be attributed to both an  
103 'acute phase' (during and straight after each bout of exercise performed) and the  
104 more enduring molecular adaptations that accrue in response to regular exercise  
105 (7). A single bout of endurance-type exercise activates contractile pathways in  
106 exercising muscle, which (independently of insulin) translocate the glucose  
107 transporter, GLUT4, to the plasma membrane and T-tubules to facilitate increased  
108 transmembrane glucose transport (8-10). The mechanisms that underlie the  
109 exercise-training induced increases in oral glucose insulin sensitivity include an  
110 increase in the total amount of time spent in the 'acute phase' (7), but also other  
111 adaptations that occur, such as changes in body composition (e.g. increased fat-free  
112 mass and reduced adiposity), an increased mitochondrial oxidative capacity (11),  
113 adaptations relating to glucose transport and insulin signaling pathways (12), and  
114 alterations to the lipid composition of skeletal muscle (13,14).

115

116 Despite the potential for exercise to increase whole-body and peripheral insulin  
117 sensitivity, there can be substantial variability in the insulin sensitizing effects of fully-  
118 supervised exercise training programs (15). Crucially, this inter-individual variability  
119 for postprandial insulinemia following exercise training has also been shown to be  
120 greater than that of a control group (15), which demonstrates that some of this

121 variability to exercise is true inter-individual variability (16). Nutritional status and  
122 thus the availability of metabolic substrates alters metabolism during and following  
123 exercise (17-20). Carbohydrate feeding before and during exercise suppresses  
124 whole-body and skeletal muscle lipid utilization (21,22) and blunts the skeletal  
125 muscle mRNA expression of genes involved in exercise-adaptation for many hours  
126 post-exercise (23-25). This raises the possibility that nutrient-exercise interactions  
127 may regulate adaptive responses to exercise and thereby contribute to the apparent  
128 individual variability in exercise responsiveness *via* skeletal muscle adaptation  
129 and/or pathways relating to substrate metabolism.

130

131 Emerging data in lean, healthy men suggests that nutrient provision affects adaptive  
132 responses to exercise training (26,27). However, feeding and fasting may exert  
133 different physiological responses in people who are overweight or obese compared  
134 to lean individuals, for example, extended morning fasting *versus* daily breakfast  
135 consumption upregulates the expression of genes involved in lipid turnover in  
136 adipose tissue in lean, but not in obese humans (28). Therefore, in order to fully  
137 understand the potential for nutrient-exercise timings to alter metabolism, exercise-  
138 adaptations and metabolic health in individuals at increased risk of metabolic  
139 disease, there is a need to study the most relevant populations, such as individuals  
140 classified as overweight or obese (29). It is currently unknown whether nutrient  
141 provision before *versus* after exercise affects adaptations to exercise training in  
142 these populations.

143

144 To this end, the aim of the present work was to assess the acute and chronic effects  
145 of manipulating nutrient-exercise timing on lipid metabolism, skeletal muscle  
146 adaptations, and oral glucose insulin sensitivity in men with overweight or obesity.  
147 We hypothesized that nutrient-exercise interactions would affect the acute metabolic  
148 responses to exercise, with increased whole-body and intramuscular lipid utilization  
149 with exercise before *versus* after nutrient provision. We also hypothesized that these  
150 acute responses to exercise before *versus* after nutrient provision would result in

151 greater training-induced increases in oral glucose insulin sensitivity in men classified  
152 as overweight or obese.

153 **MATERIALS AND METHODS**

154 **Ethical Approval**

155 This project comprised two experiments. We first assessed the acute metabolic and  
156 mRNA responses to manipulating nutrient-exercise timing (**Acute Study**), followed  
157 by a 6-week randomized controlled trial to assess the longer-term (i.e. training)  
158 adaptations in response to nutrient-exercise timing (**Training Study**). All participants  
159 provided informed written consent prior to participation. Potential participants were  
160 excluded if they had any condition, or were taking any medication, known to alter  
161 any of the outcome measures. The studies were registered at <https://clinicaltrials.gov>  
162 (NCT02397304 and NCT02744183, respectively). Protocols were approved by the  
163 National Health Service Research Ethics Committee (15/WM/0128 & 16/SW/0260,  
164 respectively) and experiments were conducted in accordance with the Declaration  
165 of Helsinki.

166

167 **Acute Study**

168 In the **Acute Study**, 12 sedentary, men classified as overweight or obese were  
169 recruited from the Birmingham region of the UK. The main exclusion criteria included  
170 being regularly physically active, having hypertension or possible (undiagnosed)  
171 T2D. Participant characteristics are shown in **Table 1**.

172

173 This was a randomised cross-over study where on one visit (breakfast-exercise or  
174 BR-EX), a standardised breakfast (cornflake cereal with skimmed milk, wholemeal  
175 toast, sunflower spread and strawberry jam) was consumed upon arrival at the  
176 laboratory (and following 48 h of diet control). The breakfast provided 25% of  
177 estimated daily energy requirements [calculated as resting metabolic rate (RMR)  
178 multiplied by a physical activity factor of 1.53 (30)] and was 65% carbohydrate, 20%  
179 fat and 15% protein. After a 90-min period of rest, 60 min of cycling exercise was  
180 then performed at 65% peak oxygen uptake ( $\dot{V}O_2$  peak). Expired gas samples were  
181 collected at 25-30 min and 55-60 min of exercise to determine whole-body substrate  
182 utilisation rates. Blood was sampled in the overnight-fasted state, at 45 min post

183 breakfast and immediately before exercise was performed (90 min post breakfast),  
184 every 30 min during exercise and at 60 min intervals during a 3-h post-exercise  
185 recovery. In a subset of participants ( $n=8$ ) *vastus lateralis* muscle was sampled pre-  
186 and immediately post-exercise to assess fiber-type specific intramuscular  
187 triglyceride (IMTG) and mixed-muscle glycogen utilization. A third muscle sample  
188 (taken at 3 h post-exercise) was used to assess the intramuscular gene expression  
189 (mRNA) responses to exercise ( $n=7$ ). On the other visit (exercise-breakfast or EX-  
190 BR) the participants completed the same protocol, but the breakfast was consumed  
191 immediately after the post-exercise muscle sample. The primary outcome for the  
192 **Acute Study** was intramuscular lipid utilisation during exercise performed before  
193 *versus* after nutrient ingestion.

194

195 **Training Study**

196 To assess longer-term adaptive (i.e. training) responses to altering nutrient-exercise  
197 timing (**Training Study**) we recruited 30, overweight and obese, sedentary men  
198 (self-reported non-exercisers) from the Bath region of the UK (**Table 1**). This was a  
199 single-blind, randomized, controlled trial, with participants allocated to a no-exercise  
200 control group (CON;  $n=9$ ) a breakfast before exercise group (BR-EX;  $n=12$ ) or an  
201 exercise before breakfast group (EX-BR;  $n=9$ ) for 6-weeks (**Figure 1**). The exercise  
202 was supervised moderate-intensity cycling (Monark Exercise AB, Vansbro, Sweden)  
203 performed 3 times per week, starting at 50% peak power output [PPO] (weeks 1-3)  
204 and increasing to 55% PPO (weeks 4-6). The duration of the exercise sessions  
205 progressed from 30- (week 1) to 40- (week 2) to 50-min (weeks 3-6). All sessions  
206 were supervised at the University of Bath. During every one of the 336 exercise  
207 training sessions, 1-min expired gas samples were collected every 10 min to assess  
208 substrate utilization and heart rate (Polar Electro Oy, Kempele, Finland) and ratings  
209 of perceived exertion (31) were recorded.

210

211 Participants ate their evening meal before 2000 h the evening prior to any exercise  
212 sessions. Participants in BR-EX were given a drink in an opaque bottle made from

213 1.3 g carbohydrate·kg body mass<sup>-1</sup> maltodextrin (MyProtein, Northwich, UK) with  
214 vanilla flavoring (20% carbohydrate solution) for consumption 2-h before exercise.  
215 They were asked not to eat or drink anything else (except water *ad libitum*) in this  
216 period and confirmed they had consumed the drink before exercising. After exercise,  
217 they were provided a taste matched placebo (water and vanilla flavoring) to consume  
218 2-h after exercise and were asked not to consume anything else during this period.  
219 Participants in EX-BR were given the same drinks, but with the order of the drinks  
220 reversed. Participants in CON were given the same drinks for three days per week  
221 during the intervention, with the carbohydrate drink as breakfast (0800-0900 h) and  
222 the placebo for consumption with their lunch (1100-1300 h). These participants were  
223 asked not to consume anything else between the drinks. There were no other diet  
224 controls in the intervention. Blinding of the groups was deemed successful, because  
225 at exit interview, 25 participants (83%) revealed they could not detect a difference  
226 between the carbohydrate and placebo drinks or could not identify which contained  
227 carbohydrate. Five participants determined which drink had carbohydrate (CON  $n=1$ ,  
228 BR-EX  $n=2$ , EX-BR  $n=1$ ), but this is within the proportion that could do so at random.  
229

230 Pre- and post-intervention, an oral glucose tolerance test (OGTT), a *vastus lateralis*  
231 muscle sample (fasting, rested state) and an exercise test (to assess  $\dot{V}O_2$  peak and  
232 the capacity for lipid utilization during exercise in the fasted-state) were undertaken.  
233 Post-intervention tests were between 24 h to 48 h (for muscle sampling) and 48 h to  
234 72 h (for OGTT) after the last exercise training session, to reduce any residual effects  
235 of the last exercise bout performed on these measurements. The primary outcome  
236 for the **Training Study** was the pre- to post-intervention change in the glycaemic  
237 and insulinemic responses to the OGTT, which were also used to derive an index of  
238 oral glucose insulin sensitivity (as described subsequently).

239

#### 240 **Pre-trial standardizations**

241 For both studies, the participants were asked to maintain their normal physical  
242 activity behaviors and to abstain from alcoholic and caffeinated drinks for 24 h prior

243 to all main laboratory trials. Food intake ceased at 2000 h  $\pm$  1 h on the evening before  
244 testing and participants fasted overnight (minimum of 10 h). For all trials, participants  
245 arrived at the laboratory at 0800  $\pm$  1 h, with the exact time replicated for subsequent  
246 trials. For the **Acute Study**, participants were provided with a standardized weight  
247 maintaining diet (50% carbohydrate, 35% fat, 15% protein) based on their estimated  
248 energy requirements (RMR multiplied by the physical activity factor of 1.53 as stated  
249 previously) for consumption for 48 h prior to main trials. For the **Training Study**, they  
250 recorded the composition of their evening meal on the day before a pre-intervention  
251 trial and replicated this meal for the post-intervention trial, in line with guidelines for  
252 testing postprandial glycemic control (32). We have shown that this protocol  
253 produces fasting muscle and liver glycogen and fasting intramuscular lipid  
254 concentrations that are consistent across trial days (33).

255

### 256 **Anthropometry**

257 Stature was measured to the nearest 0.1 cm using a stadiometer (Seca Ltd,  
258 Birmingham, UK). Body mass was measured to the nearest 0.1 kg using electronic  
259 weighing scales (**Acute Study**: Ohaus Champ II Scales, USA; **Training Study**:  
260 BC543 Monitor, Tanita, Japan). Waist and hip circumferences were measured to the  
261 nearest 0.1 cm and according to the World Health Organization guidelines.

262

### 263 **Exercise tests**

264 Participants completed exercise tests on an electronically-braked ergometer. In the  
265 **Acute Study**, the starting intensity was 35 W, and this was increased by 35 W every  
266 3 min until volitional exhaustion. In the **Training Study**, the starting intensity for the  
267 exercise test was 50 W which was increased by 25 W every 3 min. Heart rate (Polar  
268 Electro Oy, Kempele, Finland) and continuous breath-by-breath measurements  
269 were recorded (**Acute Study**: Oxycon Pro, Jaeger, Wurzburg, Germany; **Training**  
270 **Study**: TrueOne2400, ParvoMedics, Sandy, USA). Volume and gas analyzers were  
271 calibrated using a 3-L calibration syringe (Hans Rudolph, Kansas City, USA) and a  
272 calibration gas (16.04% O<sub>2</sub>, 5.06% CO<sub>2</sub>; BOC Industrial Gases, Linde AG,

273 Germany). Peak power output (PPO) was calculated as the work rate of the final  
274 completed stage, plus the fraction of time in the final non-completed stage, multiplied  
275 by the W increment.  $\dot{V}O_2$  peak was the highest measured  $\dot{V}O_2$  over a 30 s period,  
276 using methods and attainment criteria previously reported (34).

277

278 **Blood sampling and analysis**

279 In the **Acute Study**, 10 mL blood was sampled from an antecubital forearm vein and  
280 6 mL was dispensed into ethylenediaminetetraacetic acid-coated tubes (BD, Oxford,  
281 UK) and centrifuged (4°C at 3500 rpm) for 15 min (Heraeus Biofuge Primo R, Kendro  
282 Laboratory Products Plc., UK). Resultant plasma was dispensed into 0.5 mL aliquots  
283 and frozen at -20°C, before longer-term storage at -80°C. A proportion of the sample  
284 (4 mL) was allowed to clot in a plain vacutainer prior to centrifugation, for serum.  
285 Samples were analyzed for plasma glucose, glycerol and NEFA using an ILAB 650  
286 Clinical Chemistry Analyzer (Instrumentation Laboratory, Warrington, UK). Serum  
287 insulin concentrations were measured with an ELISA kit (Invitrogen; Cat#KAQ1251)  
288 and Biotek ELx800 analyzer (Biotek Instruments, Vermont, USA).

289

290 In the **Training Study**, prior to blood sampling participants placed their dominant  
291 hand into a heated-air box set to 55°C. After 15 min of rest, a catheter was placed  
292 (retrograde) into a dorsal hand vein and 10-mL of arterialized blood was drawn for a  
293 baseline sample in the overnight-fasted state (35). Then a 75-g OGTT was  
294 completed and arterialized blood sampled every 15 min for 2 h and processed (as  
295 detailed above) for plasma. Plasma glucose (intra-assay CV: 2.50%), glycerol,  
296 triglyceride (glycerol-blanked), and total- HDL- and LDL-cholesterol concentrations  
297 were measured using an automated analyzer (Daytona; Randox Lab, Crumlin, UK).  
298 Plasma insulin (Mercodia AB; reference #10-1113-01) and C-peptide (Sigma  
299 Aldrich; reference #EZHCP-20K) concentrations were measured using commercially  
300 available ELISA kits (intra-assay CV for insulin: 3.86% and for C-peptide: 4.26%).  
301 Non-esterified fatty acid (NEFA) concentrations were assessed via an enzymatic  
302 colorimetric kit (WAKO Diagnostics; references #999-34691/#991-34891; intra-

303 assay CV: 7.95%). All analysis was done in batch and for a given participant all  
304 samples were included on the same plate.

305

### 306 **Muscle sampling**

307 All *vastus lateralis* skeletal muscle samples were collected under local anaesthesia  
308 (~ 5 mL 1% lidocaine, Hameln Pharmaceuticals Ltd., Brockworth, UK) and from a 3-  
309 6-mm incision at the anterior aspect of the thigh using a 5-mm Bergstrom biopsy  
310 needle technique adapted for suction. For the **Acute Study**, samples were collected  
311 pre- and immediately post-exercise and at 3 h post-exercise. To enable the analysis  
312 of the IMTG content ~ 15-20 mg of each sample was embedded in Tissue-Tek OCT  
313 (Sigma Aldrich, Dorset, UK) on cork disc and frozen in liquid nitrogen cooled  
314 isopentane, before being transferred into an aluminium cryotube and stored at -80°C.  
315 Remaining muscle (for glycogen and gene expression analysis) was frozen in liquid  
316 nitrogen and stored at -80°C. For the **Training Study**, samples were collected pre-  
317 and post-intervention with participants in a fasted, resting state, with both samples  
318 collected from their dominant leg. Muscle was extracted from the needle and frozen  
319 in liquid nitrogen, before storage at -80 °C. Frozen wet muscle (80-100 mg) was  
320 freeze-dried and powdered, with visible blood and connective tissue removed. Ice  
321 cold lysis buffer (50 mM Tris [pH 7.4], 150 mM NaCl, 0.5% Sodium deoxycholate;  
322 0.1% SDS and 0.1% NP-40) with protease and phosphatase inhibitors was added.  
323 Samples were homogenized with a dounce homogenizer, before a 60 min incubation  
324 (4°C with rotation) and 10 min centrifugation (4°C and 20,000 g). The protein content  
325 of the resultant supernatant was measured using a bicinchoninic acid assay.

326

### 327 **Intramuscular triglyceride (Acute Study)**

328 The muscle mounted in Tissue-Tek was cut into 5 µm thick transverse sections with  
329 a cryostat at -25°C (Bright 5040, Bright Instrument Company; Huntingdon, England)  
330 and collected onto an uncoated glass slide and frozen immediately after sectioning.  
331 Each slide had 4 samples for a participant (pre- and post-exercise both trials) to  
332 decrease variation in staining intensity between muscle sections and slides were

333 prepared and analyzed for each participant. For analysis, cryosections were  
334 removed from the freezer and fixed immediately in 3.7% formaldehyde for 60 min.  
335 Slides were then rinsed with distilled water (3 x 30 s) and treated for 5 min with 0.5%  
336 Triton-X100 in phosphate-buffered solution (PBS; 137 mmol·L<sup>-1</sup> sodium chloride, 3  
337 mmol·L<sup>-1</sup> potassium chloride, 8 mmol·L<sup>-1</sup> sodium phosphate dibasic, 3 mmol·L<sup>-1</sup>  
338 potassium phosphate monobasic). The slides were washed (3 x 5 min in PBS) and  
339 incubated for 2 h at room temperature with anti-myosin heavy chain I antibody  
340 (MHCI; mouse IgM, Developmental Studies Hybridoma Bank: reference #A4.480)  
341 and anti-dystrophin antibody (mouse IgG2b, Sigma Aldrich: reference #D8168) in  
342 5% goat serum diluted in PBS (1:1 PBS dilution). This was followed by washes in  
343 PBS (3 x 5 min), after which conjugated secondary antibodies [goat anti mouse  
344 (GAM) IgM conjugated to AlexaFluor 633 for MHCI; Thermo Fisher: reference  
345 #A21046; and GAM IgG2b conjugated to AlexaFluor 594 for dystrophin; Thermo  
346 Fisher: reference #A21145] were added and incubated at room temperature (30 min)  
347 followed by washes in PBS. Then, muscle sections were incubated in BODIPY  
348 493/503 solution (Thermo Fisher: reference #D3922) for 20 min at room temperature  
349 in a dark room before washes (2 x 3 min in PBS). Stained sections were embedded  
350 in Mowiol 4-88 mounting medium (Fluka: reference #81381) and covered with a  
351 coverslip. Slides were left to dry overnight at room temperature before analysis by  
352 confocal microscope in duplicate (DMIRE2, Leica Microsystems; 40x oil objective;  
353 1.25 NA). An argon laser 488 nm was used to excite BODIPY-493/503 (emission  
354 510-652 nm), while a helium-neon 594 nm and 633 nm laser line were used to excite  
355 Alexa Fluor 594 (dystrophin, emission 6680698 nm) and AlexaFluor 633 (MHCI,  
356 emission 698-808 nm), respectively. Images were scanned in projection of 4 lines in  
357 1024x1025 pixels format. Quantification of the lipid droplets was performed using  
358 Image J software and the intramuscular triglyceride (IMTG) content of each sample  
359 was calculated as the percent area of bodipy staining of the total fiber area ([BODIPY  
360 stained area [um<sup>2</sup>] / area of muscle [um<sup>2</sup>]\*100).

361

362 **Muscle glycogen (Acute Study)**

363 Muscle glycogen concentrations were measured using a method described  
364 previously (36). Briefly, 10-15 mg of frozen tissue was powdered and transferred into  
365 a glass tube pre-cooled on dry ice. Thereafter, the samples were hydrolyzed by  
366 adding a 500  $\mu$ l of 2M HCL and then incubated for 2 h at 95 °C. After cooling to room  
367 temperature, 500 $\mu$ l 2M NaOH was added. Samples were centrifuged and the  
368 supernatant was analyzed for glucose concentrations using an ILAB 650 Clinical  
369 Chemistry Analyzer (Instrumentation Laboratory, Warrington, UK).

370

371 **Gene expression (Acute Study)**

372 The mRNA expression of 34 metabolic genes was analyzed using a custom RT2  
373 Profiler PCR Array (Qiagen, USA). First, RNA was extracted from 20-40 mg of  
374 powdered muscle tissue using Tri reagent (1 mL, Sigma Aldrich, UK, T9424). After  
375 addition of chloroform (200  $\mu$ L, Acros organics 268320025), tubes were incubated  
376 at room temperature for 5 min and centrifuged for 10 min (4 °C at 12 000 g). The  
377 RNA phase was mixed with an equal volume of ice cold 70% ethanol and RNA was  
378 purified on Reliaprep spin columns (Promega, USA, Z6111) as per manufacturer's  
379 instructions. The LVis function of the FLUOstar Omega microplate reader was used  
380 to measure RNA concentrations to ensure all samples for each participant had the  
381 same amount of RNA (184 ng - 400 ng) and samples were reverse transcribed to  
382 cDNA using the RT2 First Strand kit (Qiagen, UK, 330401). Quantitative RT-PCR  
383 analysis was performed using custom designed 384-well RT2 PCR Profiler Arrays  
384 (Qiagen) and RT2 SYBR Green Mastermix (Qiagen) on a CFX384 Real-Time PCR  
385 Detection system (BioRad). 2.8 ng cDNA was added to each well. All primers that  
386 were used are commercially available (**Table 2**). The absence of genomic DNA, the  
387 efficiency of reverse-transcription and the efficiency of the PCR assay were  
388 assessed for each sample and conformed to manufacturer's limits. Relative mRNA  
389 expression was determined via the  $2^{-\Delta\Delta CT}$  method (37). Housekeeper genes ( $\beta$ actin  
390 [Refseq# NM\_001101]; ribosomal protein lateral stalk subunit P0 [Refseq#  
391 NM\_001002] and  $\beta$ -2-microglobulin [Refseq# NM\_004048] were internal controls.

392

393 **Western blotting (Training Study)**

394 For western blots, 40 µg of protein was loaded for each sample and separated via  
395 sodium dodecyl sulfate polyacrylamide gel electrophoresis on Tris-glycine SDS-  
396 polyacrylamide gels (15% for OXPHOS and CPT-1, 10% CD36 and GLUT4 and 8%  
397 for AMPK, CHC22, CHC17, Akt and AS160). Gels were electro-blotted (semi-dry  
398 transfer) onto a nitrocellulose membrane and were then washed in Tris-buffered  
399 saline (0.09% NaCl, 100 mM Tris-HCl pH 7.4) with 0.1% Tween 20 (TBS-T) and  
400 incubated for 30 min in a blocking solution (5% non-fat milk in TBS-T). Membranes  
401 were incubated overnight at 4 °C with primary antibodies against OXPHOS (Abcam:  
402 reference #ab110411), CPT-1 (Abcam: reference #ab134988), CD36 (Abcam:  
403 reference #ab133625), GLUT4 [self-raised rabbit polyclonal antibody against the C-  
404 terminus of GLUT4 (38)], CHC22 [SHL-KS, affinity purified self-raised rabbit  
405 polyclonal against the CHC22 C-terminus cross-absorbed against the CHC17 C-  
406 terminus (39)], CHC17 [TD.1 self-raised mouse monoclonal against CHC17 terminal  
407 domain (40)] AMPK $\alpha$  (Cell Signalling Technologies: reference #2532), Akt (Cell  
408 Signaling Technologies: reference #3063), AS160 (Millipore: reference #07-741). It  
409 should be noted that the AMPK $\alpha$  antibody recognises both  $\alpha$ 1 and AMPK $\alpha$ 2 isoforms  
410 of the catalytic subunit and does not detect the regulatory AMPK $\beta$  or AMPK $\gamma$  subunits  
411 (41). Following incubation with the primary antibodies, the membranes were washed  
412 in TBS-T and incubated for 60 min in a 1:4000 dilution of anti-species IgG  
413 horseradish peroxidase-conjugated secondary antibodies in the aforementioned  
414 blocking solution. After further washes, membranes were incubated in an enhanced  
415 chemiluminescence reagent and visualized (EpiChemi II Darkroom, UVP, Upland,  
416 USA). The band densities were quantified using Image Studio Lite software (Version  
417 5.2; LI-COR, Nebraska, USA) and were normalized to either GAPDH (Proteintech:  
418 reference #60004-1-Ig) or Actin (Sigma Aldrich: reference #A2066), before the pre-  
419 to post-intervention change was calculated. Pre- and post-intervention samples from  
420 any given participant were included on the same gel. Citrate synthase activity was  
421 measured using a commercially available assay (Abcam: reference #ab119692).

422

423 **Phospholipid composition (Training Study)**

424 Samples were freeze-dried, powdered under liquid nitrogen, and transferred into  
425 glass tubes containing 2 ml of methanol and butylated hydroxytoluene (0.01%) and  
426 heptadecanoic acid (as an internal standard), followed by the addition of 4 mL of  
427 chloroform and 1.5 mL of water, before lipids were extracted. The lipid containing  
428 fraction was transferred into thin-layer chromatography (TLC; Kieselgel 60, 0.22 mm,  
429 Merck, Darmstadt, Germany) silica plates and lipids were separated by TLC with a  
430 heptane: isopropyl ether: acetic acid (60:40:3, vol/vol/vol) resolving solution. Lipid  
431 bands were made visible by spraying the plates with a 0.2% solution of 3'7'-  
432 dichlorofluorescin in methanol and recognized under ultraviolet light using standards  
433 on the plates. Then the gel bands containing phospholipids were scraped off the  
434 plates, transferred into screw cap tubes and transmethylated with BF3/methanol.  
435 The fatty acid methyl esters (FAMEs) were then dissolved in hexane and analyzed  
436 by GLC. A Hewlett-Packard 5890 Series II gas chromatograph with Varian CP-SIL  
437 capillary column (100 m, internal diameter of 0.25 mm) and flame-ionization detector  
438 were used. In accordance with the retention times of standards, the individual long-  
439 chain fatty acids quantification was performed. The content of phospholipids was  
440 estimated as the sum of the total fatty acid species and expressed in nanomoles per  
441 milligram of dry mass (42,43).

442

443 **Energy expenditure and intake (Training Study)**

444 Average daily energy expenditure was calculated as the sum of the resting metabolic  
445 rate (RMR), diet-induced thermogenesis (10% of self-reported daily energy intake)  
446 and physical activity energy expenditure (PAEE). To assess RMR, participants  
447 rested in a semi-supine position for 15 min before 4 x 5-min expired air samples  
448 were collected (44). The participants were provided with the mouthpiece 1 min prior  
449 to sample collections (as a stabilization period) which were collected into a 200-L  
450 Douglas bag (Hans Rudolph, Kansas City, USA) via falconia tubing (Baxter,  
451 Woodhouse and Taylor Ltd, Macclesfield, UK). Concurrent measures of inspired air  
452 were also made to correct for changes in the ambient O<sub>2</sub> and CO<sub>2</sub> concentrations.

453 Expired O<sub>2</sub> and CO<sub>2</sub> concentrations were measured in a volume of each sample  
454 using paramagnetic and infrared transducers (Mini HF 5200, Servomex Group Ltd.,  
455 Crowborough, UK). The sensor was calibrated with low (0% O<sub>2</sub> and 0% CO<sub>2</sub>) and  
456 high (16.04% O<sub>2</sub>, 5.06% CO<sub>2</sub>) calibration gases (BOC Industrial Gases, Munich,  
457 Germany). Substrate utilization rates were then calculated via stoichiometric  
458 equations (45,46). Energy expenditure was calculated assuming that fatty acids,  
459 glucose and glycogen provide 40.81 kJ·g<sup>-1</sup>, 15.64 kJ·g<sup>-1</sup> and 17.36 kJ·g<sup>-1</sup> of energy,  
460 respectively. To measure free-living PAEE, participants wore an Actiheart<sup>TM</sup> monitor  
461 over 7 days (Cambridge Neurotechnology, Papworth, UK). This monitor integrates  
462 accelerometry and heart rate signals and has been validated as a measure of energy  
463 expenditure (47-49). Energy expenditure and heart rate values from rest and  
464 exercise were entered in the Actiheart<sup>TM</sup> software for an individually calibrated  
465 model. Participants were also asked to keep a written record of their food and fluid  
466 intake for 4 days over a typical 7-day period (including a weekend day) pre- and  
467 during the last week of the intervention. Weighing scales were provided to increase  
468 the accuracy of records. Records were analyzed using Nutritics software (Nutritics  
469 Ltd., Dublin, Ireland). The macronutrient composition of each food was taken from  
470 the manufacturer's labels, but if this was not possible (e.g. fresh products) foods  
471 were analyzed via the software database or comparable brands were used to  
472 provide the relevant information, and this was kept constant across records.

473

#### 474 **Statistics**

475 In the **Acute Study**, the sample size was based upon data demonstrating an  
476 attenuation of intramuscular lipid utilization during exercise with carbohydrate intake  
477 before and during exercise with an effect size of  $d = 1.5$ . (22) We aimed to recruit 12  
478 participants assuming at least 8 participants would complete the study with biopsies  
479 to provide >90% power with  $\alpha$  set at 0.05. In the **Training Study**, a sample size  
480 estimation was completed using data from a training study in healthy, lean men (26).  
481 In that study, a change in the plasma glucose AUC for an oral glucose tolerance test  
482 (OGTT) of  $-65 \pm 53$  mmol·min·L<sup>-1</sup> was shown in an EX-BR group *versus*  $+21 \pm 47$

483 mmol·min·L<sup>-1</sup> for a CON group. With a set at 0.05, 9 participants were required for a  
484 >90% chance of detecting this effect. We therefore recruited 30 participants to  
485 account for the possibility of an unequal allocation of participants across three  
486 groups when using a stratified randomization schedule. Participants were allocated  
487 to the CON ( $n=9$ ), BR-EX ( $n=12$ ) or EX-BR ( $n=9$ ) groups using this schedule, which  
488 was generated by JPW and included a factor for Physical Activity Level (PAL) and  
489 the time-averaged glucose AUC for the baseline OGTT which was assessed using  
490 a Freestyle Freedom Lite Glucose Meter. This was to ensure an even distribution of  
491 less (PAL <1.65) and more active (PAL >1.65) participants and participants with  
492 glucose AUC values above or below 8 mmol·L<sup>-1</sup>.

493

494 Data are presented as means  $\pm$  95% confidence intervals (CI), except for participant  
495 characteristics (which are mean  $\pm$  SD). A Shapiro-Wilk test was performed to test for  
496 normal distribution and if this was not obtained, non-parametric tests (e.g. Wilcoxon  
497 matched-pairs signed rank tests) were employed. In the **Acute Study**, differences  
498 between groups were assessed with paired *t*-tests or a two-way repeated measures  
499 ANOVA (for variables dependent on time). In the **Training Study**, one-way ANOVAs  
500 were used to assess differences between groups at baseline and two-way mixed-  
501 design ANOVAs were used to assess differences between groups in response to the  
502 intervention (group  $\times$  time). If interaction effects were identified, independent *t*-tests  
503 were used to locate variance, with Holm-Bonferroni step-wise adjustments made.  
504 Correlations between variables were explored using Pearson *r* or Spearman *R* for  
505 normal or non-normal distributions, respectively. A significance level of  $p<0.05$  was  
506 always used. The area under the concentration-time curve (AUC) was calculated via  
507 the trapezoid rule and divided by the duration of an observation period of interest for  
508 a time-averaged summary value. Plasma glucose and insulin concentrations were  
509 used to assess oral glucose insulin sensitivity (the OGIS index) as per instructions  
510 provided at; <http://webmet.pd.cnr.it/ogis/> (50). Statistical analyses were completed  
511 on IBM SPSS statistics V 22 for windows (except for the Holm-Bonferroni  
512 adjustments which were completed on Microsoft Excel) and Graph Pad Prism 7 was

513 used to prepare the figures. As we were unable to collect data from all participants  
514 for all measured outcomes the  $n$  are always displayed in all figure and table captions.

515 **RESULTS**

516 **Exercise before nutrient ingestion increases whole-body and skeletal muscle**  
517 **lipid utilization but does not differentially modulate muscle gene expression**

518 In the **Acute Study**, exercising before *versus* after nutrient provision increased the  
519 acute plasma glucose and serum insulin responses to food consumption (**Figure 2A**  
520 and **2B**). The plasma glucose AUC was 6.70 [6.00 to 7.39] mmol·L<sup>-1</sup>·330 min<sup>-1</sup> with  
521 exercise before nutrient provision *versus* 5.91 [5.33 to 6.50] mmol·L<sup>-1</sup>·330 min<sup>-1</sup> with  
522 exercise after nutrient provision ( $p<0.01$ ). The serum insulin AUC was 86.9 [48.5 to  
523 125.2] pmol·L<sup>-1</sup>·330 min<sup>-1</sup> with exercise before nutrient provision *versus* 55.3 [31.2  
524 to 79.3] pmol·L<sup>-1</sup>·330 min<sup>-1</sup> with exercise after nutrient provision ( $p<0.01$ ). Exercise  
525 performed before *versus* after nutrient provision resulted in higher glycerol and non-  
526 esterified fatty acid (NEFA) concentrations during the exercise (**Figure 2C** and **2D**).  
527

528 Nutrient provision before exercise potently altered whole-body metabolism, resulting  
529 in an increase in whole-body carbohydrate utilization (**Figure 2E**) and a decrease in  
530 whole-body lipid utilization (**Figure 2F**). In skeletal muscle, glycogen utilization  
531 during exercise (time effect,  $p<0.01$ ) was independent of nutrient-exercise timing  
532 (time x trial interaction effect  $p=0.12$ ; **Figure 2G**). However, the type I muscle fibre  
533 intramuscular triglyceride (IMTG) content was only reduced with exercise performed  
534 before nutrient provision (time x trial interaction:  $p=0.02$ ; **Figure 2H and 2J**). A  
535 similar pattern was observed for the type II muscle fibre IMTG content (time x trial  
536 interaction:  $p=0.04$ ; **Figure 2I and 2J**), although the reduction with exercise before  
537 nutrient provision did not achieve statistical significance after post-hoc corrections.  
538 Nonetheless, clear differences (both  $p<0.05$ ) in the net changes in the IMTG content  
539 were observed in both fibre types with exercise before *versus* after nutrient provision  
540 (for type I: -3.44 [-1.61 to -5.26]% *versus* 1.44 [-1.46 to 4.34] % area covered by lipid  
541 staining and type II: -1.89 {-0.16 to -3.61} % *versus* 1.83 [0.50 to 3.17] % area covered  
542 by lipid staining for exercise before *versus* after nutrient provision, respectively).  
543

544 Of the 34 selected genes that are implicated in metabolic adaptations to exercise,  
545 only 8 genes were altered by exercise, whereby *IRS-1* and *FATP1* were decreased  
546 post-exercise compared to baseline ( $p<0.05$ ) and *IRS-2*, *PDK4*, *PGC1 $\alpha$* , *FATP4* and  
547 *ACSL1* were increased post-exercise compared to baseline (all  $p<0.05$ ). However,  
548 only *PPAR $\delta$*  was differentially expressed by nutrient-exercise timing and was higher  
549 with breakfast before *versus* after exercise ( $p<0.05$ ; **Figure 3**).

550

551 **Exercise training before nutrient provision leads to sustained increases in**  
552 **lipid utilization**

553 In the **Training Study** the compliance to the training was 100%, as all sessions were  
554 completed as prescribed. The average exercise intensity was  $62 \pm 5\%$   $\dot{V}O_2$  peak in  
555 BR-EX and  $62 \pm 4\%$   $\dot{V}O_2$  peak in EX-BR ( $p=0.98$ ) and the heart rate (HR) response  
556 and average rating of perceived exertion (RPE) to the exercise training were  $140 \pm$   
557  $13$  *versus*  $134 \pm 8$  beats·min $^{-1}$  in BR-EX *versus* EX-BR ( $p=0.18$ ) and  $13 \pm 1$  au *versus*  
558  $13 \pm 1$  au (6-20 rating scale) in BR-EX *versus* EX-BR; ( $p=0.54$ ), respectively.

559

560 In the **Training Study** rates of whole-body lipid utilization were around 2-fold higher  
561 with exercise before *versus* after nutrient provision and this difference between the  
562 conditions was sustained throughout the whole 6-week intervention (**Figure 4A**). As  
563 a consequence, regular exercise before (*versus* after) nutrient provision increased  
564 cumulative whole-body lipid utilization (during exercise) over a 6-week intervention,  
565 from 799 kcal [530 to 1069] in BR-EX to 1666 kcal [1260 to 2072] in EX-BR ( $p<0.01$ ).  
566 This was accompanied by a decrease in rates of whole-body carbohydrate utilization  
567 during exercise (**Figure 5A**), as reflected by a decrease in the respiratory exchange  
568 ratio (group effect,  $p<0.01$ ; **Figure 5B**). However, cumulative energy expenditure  
569 throughout the exercise intervention did not differ with exercise performed before  
570 *versus* after nutrient provision (**Figure 5C**; 7207 [6739 to 7676] kcal in BR-EX *versus*  
571 6951 [6267 to 7635] kcal in EX-BR;  $p=0.48$ ).

572

573 **Exercise training before *versus* after nutrient provision increases an index of**  
574 **oral glucose insulin sensitivity**

575 The oral glucose tolerance test-derived estimate of peripheral insulin sensitivity (the  
576 OGIS index;  $p=0.26$ ), postprandial glycaemia ( $p=0.80$ ) and postprandial insulinemia  
577 ( $p=0.30$ ) were similar between groups pre-intervention (**Table 3**). The intervention-  
578 induced changes in postprandial glycaemia (time  $\times$  group interaction,  $p=0.54$ ; **Figure**  
579 **4B**) and fasting blood lipid profiles were unaffected by nutrient-exercise timing (pre-  
580 and post-intervention data are shown in **Tables 3 and 4**). However, exercise training  
581 before, but not after nutrient intake reduced postprandial insulinemia (time  $\times$  group  
582 interaction  $p=0.03$ ; **Figure 4C**). Exercise training before *versus* after nutrient  
583 provision also increased the OGIS index (time  $\times$  group interaction  $p=0.03$ ; **Figure**  
584 **4D** with pre- and post-intervention data in **Table 3**). The plasma C-peptide-to-insulin  
585 ratio was not differentially altered by nutrient-exercise timing (time  $\times$  group  
586 interaction,  $p=0.12$ ; **Figure 4E**). The change in the OGIS index in response to  
587 exercise training was positively and moderately correlated with cumulative lipid  
588 utilization during exercise throughout the intervention (**Figure 4F**) but not with  
589 cumulative energy expenditure (**Figure 5C**).

590 **Nutrient-exercise timing does not differentially alter body composition or**  
591 **oxidative capacity**

592 Exercise before *versus* after nutrient provision resulted in comparable changes in  
593 body mass (time x group interaction,  $p=0.97$ ; **Figure 6A**), a marker of central  
594 adiposity (the waist to hip ratio; time x group interaction,  $p=0.17$ , **Figure 6B**), and  
595 the peak capacity for whole-body lipid utilization (time x group interaction,  $p=0.14$ ;  
596 **Figure 6C**). Exercise training increased  $\dot{V}O_2$  peak by  $\sim 3$   $mL \cdot kg^{-1} \cdot min^{-1}$  relative to a  
597 no-exercise control (CON) group (time x group interaction,  $p=0.01$ ) but the  
598 magnitude of this increase in cardiorespiratory fitness was unaffected by nutrient  
599 exercise timing ( $p=0.54$  with breakfast-exercise *versus* exercise-breakfast). Self-  
600 reported daily energy intake was unaffected by exercise or nutrient-exercise timing  
601 (time x group interaction,  $p=0.38$ ; **Table 5**), and although daily energy expenditure  
602 was increased in the exercise groups *versus* control group (time x group interaction,  
603  $p=0.01$ ; **Table 5**), this increase was unaffected by nutrient-exercise timing ( $p=0.38$ ).

604 **Exercise training before nutrient provision increases phospholipid remodeling**

605 There was a significant effect on global skeletal muscle remodeling with exercise  
606 before *versus* after nutrient ingestion as quantified by the sum of changes in the fatty  
607 acid content of all phospholipid species ( $p=0.01$ ; **Figure 7A**). Nutrient provision prior  
608 to exercise prevented this exercise-induced increase in skeletal muscle phospholipid  
609 remodeling as the sum of changes was not different to a non-exercise control group  
610 ( $p=0.41$ ). No clear time x group interaction effects were determined for any of the  
611 measured fatty acid species, except for the proportion of 18:0, which increased with  
612 exercise before nutrient provision compared to the control group (**Table 6**). The  
613 change in the overall saturated fatty acid content of skeletal muscle phospholipids  
614 was moderately and positively correlated with changes in postprandial insulinemia  
615 and the relationship was robust to the exclusion of any single data point (**Figure 7B**).  
616

617 **Exercise training before nutrient provision augments intramuscular  
618 adaptations**

619 Skeletal muscle AMPK protein levels increased ~3-fold with exercise training  
620 performed before- but not after-nutrient provision *versus* a no-exercise control group  
621 (**Figure 8A**). However, these increases did not translate into differential changes in  
622 proteins including CD36 and CPT-1 which are involved in fatty acid transport in  
623 skeletal muscle [both  $p>0.05$ ; data available online (51)], or markers of mitochondrial  
624 oxidative capacity, including the protein levels of the OXPHOS complexes [all  
625  $p>0.05$ ; data available online (51)] or citrate synthase activity (change from baseline:  
626  $-2.1 \mu\text{mol}\cdot\text{min}^{-1}\cdot\text{mg of protein}^{-1}$  [-12.9 to 8.7] in CON,  $7.6 \mu\text{mol}\cdot\text{min}^{-1}\cdot\text{mg of protein}^{-1}$   
627 [-1.2 to 16.4] in BR-EX and  $6.5 \mu\text{mol}\cdot\text{min}^{-1}\cdot\text{mg of protein}^{-1}$  [0.2 to 12.8] in EX-BR;  
628  $p>0.05$ ). There were also no differential changes in the content of insulin signaling  
629 proteins such as Akt2 or AS160 in response to nutrient-exercise timing ( $p>0.05$ ;  
630 **Figure 8B**). However, there was a ~2-fold increase in skeletal muscle GLUT4 protein  
631 levels with exercise training performed before ( $p=0.04$ ), but not after nutrient  
632 provision ( $p=0.58$ ) *versus* a non-exercise control group (**Figure 8A**). There was also  
633 an increase in the protein levels of the CHC22 clathrin isoform and its associated

634 adaptor protein (GGA2) relative to the CHC17 clathrin isoform, with exercise before  
635 *versus* after nutrient provision (both  $p<0.05$ ; **Figure 8B**). When we examined the  
636 CHC22 isoform alone [data not shown but available online (51)]we noted baseline  
637 differences which may have confounded the interpretation of these fold-changes due  
638 to regression to the mean. We thus present the CHC22/CHC17 ratio (**Figure 8B**) to  
639 reflect GLUT4-associated clathrin-mediated membrane traffic relative to total  
640 clathrin-mediated membrane traffic.

641

## 642 **DISCUSSION**

643 This is the first study to investigate the effect of nutrient-exercise interactions on key  
644 aspects of metabolic health in people classified as overweight or obese. We found  
645 that a single exercise bout performed before, but not after, nutrient provision  
646 increased whole body and skeletal muscle lipid utilization. We then used a 6-week  
647 training program to reveal sustained, 2-fold increases in lipid utilization that were  
648 maintained throughout 6 weeks of exercise training performed before *versus* after  
649 nutrient provision. An oral glucose tolerance test-derived estimate of peripheral  
650 insulin sensitivity (the OGIS index) increased with exercise training before *versus*  
651 after nutrient provision and this was associated with increased lipid utilization during  
652 the exercise training intervention. Exercise training prior to nutrient provision also  
653 augmented remodeling of phospholipids and increased the levels of energy sensing  
654 (i.e. AMPK) and glucose transport proteins (i.e. GLUT4) in exercised skeletal  
655 muscle. These results indicate that nutrient-exercise timing modulates training  
656 responsiveness in overweight men and link lipid utilization during exercise to  
657 exercise-training-induced changes in aspects of metabolic health.

658

659 First, we showed that a single bout of exercise performed before *versus* after nutrient  
660 intake increased whole-body lipid utilization. A blunting of intramuscular triglyceride  
661 (IMTG) utilization has been shown in type I fibers of lean, healthy men in response  
662 to carbohydrate ingestion before and during exercise, compared to exercise in the  
663 fasted-state (22). Here, we demonstrated for the first time that exercise before

664 *versus* after breakfast consumption increases net IMTG utilization in men classified  
665 as overweight or obese. Whilst the authors do acknowledge that absolute IMTG  
666 content may have been underestimated due to the analytical procedures used to  
667 estimate IMTG (i.e. use of Triton-X100 detergent, overnight drying of mounting  
668 medium), all samples were treated consistently. We also showed that net skeletal  
669 muscle glycogen utilization and acute skeletal muscle mRNA responses were largely  
670 unaffected by the same exercise performed before *versus* after breakfast. This is  
671 important, because muscle glycogen availability can alter muscle adaptations to  
672 training (27). Lower muscle glycogen concentrations are therefore unlikely to have  
673 driven the training responses we observed in the training study with the present  
674 method of nutrient-exercise timing.

675

676 Altering substrate availability can also drive adaptive responses to exercise partly by  
677 modulating acute mRNA expression in exercised skeletal muscle (52). However, in  
678 the present study, only one measured gene was differentially expressed in response  
679 to exercise before *versus* after nutrient provision. Specifically, we observed less of  
680 an exercise-induced increase in skeletal muscle *PPARδ* expression with exercise  
681 before *versus* after nutrient provision, which is surprising given that *PPARδ* has been  
682 implicated in adaptations relating to oxidative capacity and lipid utilization (53).  
683 However, previous research has also shown no differential increase in *PPARδ*  
684 expression in skeletal muscle when exercise was performed with carbohydrate  
685 consumption before and during exercise *versus* in the fasted state (54). The different  
686 response observed in the present study might be because we assessed the effect  
687 of nutrient-exercise timing (i.e. nutrient provision before *versus* after exercise) rather  
688 than the omission *versus* ingestion of nutrients. This suggests that inferences cannot  
689 necessarily be extrapolated from studies assessing the effects of nutrient ingestion  
690 *versus* nutrient omission, to inform responses to models of nutrient-exercise *timing*.

691

692 In the training study, we then showed that the acute increases in whole-body lipid  
693 utilization during a single bout of exercise performed before *versus* after nutrient

694 intake were sustained throughout 6-weeks of exercise training. Moreover, only  
695 exercise training performed before nutrient intake reduced postprandial insulinemia  
696 and increased the oral glucose tolerance test-derived estimate of peripheral insulin  
697 sensitivity (i.e. the OGIS index). As the plasma C-peptide-to-insulin ratio was not  
698 differentially altered by nutrient-exercise timing, the reduction in postprandial  
699 insulinemia with exercise performed before *versus* after nutrient ingestion is likely to  
700 be due to a reduction in insulin secretion rather than an increase in hepatic insulin  
701 extraction (55). It should also be noted that difference between the exercise groups  
702 for the change in the OGIS index was also broadly equivalent to the difference  
703 between individuals classified as having a healthy phenotype compared to  
704 individuals with impaired glucose tolerance (56).

705

706 Exercise training before *versus* after nutrient provision also resulted in augmented  
707 phospholipid remodeling in skeletal muscle. Moreover, the change in the saturated  
708 fatty acid content of skeletal muscle phospholipids with exercise correlated with the  
709 change in postprandial insulinemia. This supports prior observations that a higher  
710 proportion of saturated fatty acids in skeletal muscle phospholipids negatively  
711 correlates with insulin sensitivity (57). Single-leg exercise training has been used to  
712 show increased polyunsaturated fatty acid content of skeletal muscle phospholipids  
713 in an exercised *versus* non-exercised leg (58). Since that change was independent  
714 of dietary intake, the reduction in the saturated fatty content of phospholipids was  
715 likely due to a preferential upregulation of saturated fatty acid oxidation as a result  
716 of the higher energy expenditure (59,60). However, because this previous work  
717 involved changes in energy expenditure across experimental conditions, the role of  
718 lipid utilization independent of energy expenditure on phospholipid remodeling could  
719 not be explored. Here, we showed that skeletal muscle remodeling was increased  
720 with exercise performed before *versus* after nutrient provision, presumably due to  
721 increased lipid utilization in that condition.

722

723 AMPK is also nutrient sensitive and contributes to regulation of fatty acid utilization  
724 (61), mitochondrial biogenesis (62) and the expression of proteins involved in  
725 skeletal muscle glucose uptake, including GLUT4 and AS160 (63-65), which are key  
726 players in whole-body insulin sensitivity (66). We observed greater increases in the  
727 protein content of AMPK in skeletal muscle with exercise training before *versus* after  
728 nutrient intake. The increase in the GLUT4 content of skeletal muscle we observed  
729 with exercise before nutrient provision may be explained by this heightened AMPK  
730 response and, in turn, may have contributed to increases in the OGIS index following  
731 exercise training before *versus* after nutrient provision (67). Skeletal muscle AMPK  
732 can be activated by increased fatty acid availability, independent of muscle glycogen  
733 and AMP concentrations (68). Muscle glycogen utilization can modulate AMPK and  
734 GLUT4 mRNA expression with different exercise models (66). However, since we  
735 observed no difference in muscle glycogen utilization with altered nutrient-exercising  
736 timing in the acute study, the change in the GLUT4 content with exercise training  
737 before *versus* after breakfast is likely to be attributable to repeated increases in fatty  
738 acid availability, potentially through increases in the skeletal muscle AMPK content.  
739 The AMPK antibody we used detects both isoforms of the catalytic subunits of AMPK  
740 (AMPK $\alpha$ 1 and  $\alpha$ 2). In human skeletal muscle, three different complexes have been  
741 described [ $\alpha$ 2 $\beta$ 2 $\gamma$ 1,  $\alpha$ 2 $\beta$ 2 $\gamma$ 3, and  $\alpha$ 1 $\beta$ 2 $\gamma$ 1; (69)] and our antibody therefore captured  
742 all complexes. Accordingly, we cannot speculate whether a specific heterotrimeric  
743 AMPK complex is predominately contributing to the increase in AMPK content that  
744 we report. As such, the effect of nutrient-exercise timing on AMPK activation  
745 warrants continued investigation.

746  
747 The correct targeting and sequestration of GLUT4 into its intracellular insulin-  
748 responsive compartments is also important for insulin sensitivity in skeletal muscle  
749 (70,71). Clathrin heavy chain isoform 22 (CHC22) plays a specialized role in  
750 regulating GLUT4 sequestration in human skeletal muscle (72), protecting GLUT4  
751 from degradation (73) and making it more available for insulin-stimulated release.  
752 We showed an increase in CHC22 protein levels in exercised muscle (relative to the

753 exercise effects on CHC17 protein levels) with exercise before *versus* after nutrient  
754 provision. As the cognate clathrin CHC17 plays a widespread membrane traffic role  
755 in many tissues, CHC17 levels provide a benchmark for general membrane traffic  
756 changes compared to those in the GLUT4 pathway (74). The relative increase in  
757 CHC22 levels we observed thus suggests that exercise before nutrient provision not  
758 only augments GLUT4 protein levels, but potentially also the machinery necessary  
759 for the appropriate sequestration and targeting of GLUT4 to its insulin-responsive  
760 compartment. This may lead to improved GLUT4 translocation and contribute to the  
761 increases in the OGIS index we observed with exercise training before *versus* after  
762 nutrient intake. However, the CHC22 results reported here should be interpreted  
763 cautiously due to the relatively small sample size and variability in the individual  
764 CHC22 responses. Further work is therefore needed to investigate nutrient-exercise  
765 interactions and their effect on CHC22 levels. In addition, the remodeling of skeletal  
766 muscle phospholipids could have contributed to the ability of GLUT4 to fuse to the  
767 muscle-plasma membrane via less rigid arrays of phospholipid molecules in plasma  
768 membranes (75).

769

770 The greater increase in AMPK content we observed with exercise before nutrient  
771 provision did not further augment measured markers of mitochondrial biogenesis in  
772 skeletal muscle in response to exercise training in overweight men. This is in contrast  
773 to prior work demonstrating that carbohydrate ingestion before and during exercise  
774 suppresses exercise-induced increases in the content of proteins in skeletal muscle  
775 involved in fatty acid transport and oxidation (26). This further highlights that the  
776 model of nutrient-exercise timing that we employed (breakfast consumption before  
777 *versus* after exercise) might be distinct from other types of nutrient timing. Although  
778 changes in skeletal muscle mitochondrial content and/or oxidative capacity may be  
779 involved in regulating insulin sensitivity (76), the lack of differential response with  
780 exercise before *versus* after nutrition provision in this study suggests that these  
781 factors are unlikely to explain the changes in the OGIS index with the current model  
782 of nutrient-exercise timing employed (i.e. exercise before *versus* after breakfast). It

783 is also interesting that the intramuscular adaptations and changes in the OGIS index  
784 that we observed occurred in the presence of similar changes in body composition,  
785 self-reported daily dietary intake and total daily energy expenditure with altered  
786 nutrient-exercise timing. Notwithstanding other factors that may have contributed to  
787 the increases in oral glucose insulin sensitivity with exercise before *versus* after  
788 nutrient ingestion, this highlights lipid metabolism as a potentially important  
789 mechanism explaining the improvement in OGIS with regular exercise performed  
790 before *versus* after breakfast.

791

792 It should also be noted that the responses observed for OGIS were an interaction  
793 between groups, and thus the response to exercise before nutrient provision is an  
794 increase relative to the non-exercise control group and the exercise after nutrient  
795 intake group. Accordingly, these data may be specific to high-carbohydrate provision  
796 and although this is typical of breakfasts in developed countries, it remains to be  
797 seen whether lower-carbohydrate meals produce similar effects. Potential limitations  
798 in our work also include the absence of a non-exercise fasting group, which would  
799 have allowed us to explore the role of extended morning fasting *per se* in the training  
800 study. However, our prior work has already shown that extended morning fasting in  
801 an absence of exercise may impair insulin sensitivity and increase postprandial  
802 insulinemia in obese humans (77).

803

804 To summarize, the present data are the first to show that exercise training before  
805 *versus* after carbohydrate (i.e. breakfast) consumption affects responsiveness to  
806 exercise training in men classified as overweight or obese, including greater  
807 remodeling of skeletal muscle phospholipids, adaptations of proteins involved in  
808 nutrient sensing and glucose transport in skeletal muscle, and increases in and index  
809 of oral glucose insulin sensitivity. These data suggest that exercising in a fasted state  
810 can augment the adaptive response to exercise, without the need to increase the  
811 volume, intensity, or perception of effort of exercise. These responses may be linked  
812 to the acute increases in lipid utilization during every bout of exercise performed in

813 the fasted- *versus* the fed-state (a difference that is sustained throughout a period of  
814 training over 6-weeks). These findings therefore have implications for future  
815 research and clinical practice. For example, exercise training studies should account  
816 for nutrient-exercise timing if aspects of metabolic control are an outcome measure.  
817 Secondly, to increase lipid utilization and oral glucose insulin sensitivity with training,  
818 endurance-type exercise should be performed before *versus* after nutrient intake  
819 (i.e. in the fasted state).

820

## 821 ADDITIONAL INFORMATION

822

### 823 Data Availability

824 Raw data are available as online supporting information  
825 (<https://researchportal.bath.ac.uk/en/datasets/>).

826

### 827 Competing interests

828 None of the authors declare any conflicts of interest in relation to this work.

829

### 830 Acknowledgments

831 The authors thank Russell Davies, Esther Punter, Emily Fallon, Josh Dominy and  
832 Lauren Davey for assisting and supervising some of the exercise training sessions,  
833 Marine Camus for technical advice on Western blotting and Laura Wood for assisting  
834 with Western blotting. We also thank all those who participated in the studies for their  
835 time and commitment.

836 **REFERENCES**

- 837 1. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of  
838 insulin on peripheral and splanchnic glucose metabolism in noninsulin-  
839 dependent (type II) diabetes mellitus. *Journal of Clinical Investigation*.  
840 1985;76(1):149-155.
- 841 2. Reaven GM. Role of insulin resistance in human disease. *Diabetes*.  
842 1988;37(12):1595-1607.
- 843 3. Tricò D, Natali A, Arslanian S, Mari A, Ferrannini E. Identification,  
844 pathophysiology, and clinical implications of primary insulin hypersecretion  
845 in nondiabetic adults and adolescents. *JCI Insight*. 2018;3(24):Epub: doi:  
846 10.1172/jci.insight.124912.
- 847 4. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The  
848 disease burden associated with overweight and obesity. *JAMA*.  
849 1999;282(16):1523-1529.
- 850 5. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in  
851 subcutaneous versus visceral depots is associated with insulin sensitivity.  
852 *The Journal of Clinical Endocrinology & Metabolism*. 2011;96(11):E1756-  
853 E1760.
- 854 6. Borghouts L, Keizer H. Exercise and insulin sensitivity: a review.  
855 *International Journal of Sports Medicine*. 2000;21(1):1-12.
- 856 7. Sylow L, Richter EA. Current advances in our understanding of exercise as  
857 medicine in metabolic disease. *Current Opinion in Physiology*. 2019;Epub:  
858 <https://doi.org/10.1016/j.cophys.2019.04.008>.
- 859 8. Lund S, Pryor PR, Ostergaard S, Schmitz O, Pedersen O, Holman GD.  
860 Evidence against protein kinase B as a mediator of contraction-induced  
861 glucose transport and GLUT4 translocation in rat skeletal muscle. *FEBS  
862 Lett.* 1998;425(3):472-474.
- 863 9. Geiger PC, Han DH, Wright DC, Holloszy JO. How muscle insulin sensitivity  
864 is regulated: testing of a hypothesis. *Am J Physiol Endocrinol Metab*.  
865 2006;291(6):E1258-1263.
- 866 10. Hansen PA, Wang W, Marshall BA, Holloszy JO, Mueckler M. Dissociation  
867 of GLUT4 translocation and insulin-stimulated glucose transport in  
868 transgenic mice overexpressing GLUT1 in skeletal muscle. *J Biol Chem*.  
869 1998;273(29):18173-18179.
- 870 11. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance  
871 exercise and their metabolic consequences. *Journal of Applied Physiology*.  
872 1984;56(4):831-838.
- 873 12. O'Gorman DJ, Karlsson HK, McQuaid S, Yousif O, Rahman Y, Gasparro D,  
874 Glund S, Chibalin AV, Zierath JR, Nolan JJ. Exercise training increases  
875 insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in  
876 patients with type 2 diabetes. *Diabetologia*. 2006;49(12):2983-2992.
- 877 13. Andersson A, Sjödin A, Olsson R, Vessby B. Effects of physical exercise on  
878 phospholipid fatty acid composition in skeletal muscle. *American Journal of  
879 Physiology-Endocrinology and Metabolism*. 1998;274(3):432-438.

880 14. Helge JW, Dela F. Effect of training on muscle triacylglycerol and structural  
881 lipids: a relation to insulin sensitivity? *Diabetes*. 2003;52(8):1881-1887.

882 15. de Lannoy L, Clarke J, Stotz PJ, Ross R. Effects of intensity and amount of  
883 exercise on measures of insulin and glucose: Analysis of inter-individual  
884 variability. *PLoS one*. 2017;12(5):e0177095.

885 16. Atkinson G, Batterham AM. True and false interindividual differences in the  
886 physiological response to an intervention. *Experimental physiology*.  
887 2015;100(6):577-588.

888 17. Chen Y-C, Travers RL, Walhin J-P, Gonzalez JT, Koumanov F, Betts JA,  
889 Thompson D. Feeding influences adipose tissue responses to exercise in  
890 overweight men. *American Journal of Physiology-Endocrinology and  
891 Metabolism*. 2017;313(1):84-93.

892 18. Edinburgh RM, Hengist A, Smith HA, Travers RL, Koumanov F, Betts JA,  
893 Thompson D, Walhin J-P, Wallis GA, Hamilton DL, Stevenson EJ, Tipton  
894 KD, Gonzalez J. Pre-Exercise Breakfast Ingestion versus Extended  
895 Overnight Fasting Increases Postprandial Glucose Flux after Exercise in  
896 Healthy Men. *American Journal of Physiology-Endocrinology and  
897 Metabolism*. 2018;315(5):1062-1074.

898 19. Gonzalez JT, Veasey RC, Rumbold PL, Stevenson EJ. Breakfast and  
899 exercise contingently affect postprandial metabolism and energy balance in  
900 physically active males. *British Journal of Nutrition*. 2013;110(4):721-732.

901 20. Wallis GA, Gonzalez JT. Is exercise best served on an empty stomach?  
902 *Proc Nutr Soc*. 2019;78(1):110-117.

903 21. Edinburgh RM, Hengist A, Smith HA, Travers RL, Koumanov F, Betts JA,  
904 Thompson D, Walhin JP, Wallis GA, Hamilton DL, Stevenson EJ, Tipton KD,  
905 Gonzalez JT. Pre-exercise breakfast ingestion versus extended overnight  
906 fasting increases postprandial glucose flux after exercise in healthy men.  
907 2018;Accepted-ahead-of-print.

908 22. De Bock K, Richter EA, Russell A, Eijnde BO, Derave W, Ramaekers M,  
909 Koninckx E, Leger B, Verhaeghe J, Hespel P. Exercise in the fasted state  
910 facilitates fibre type-specific intramyocellular lipid breakdown and stimulates  
911 glycogen resynthesis in humans. *The Journal of Physiology*.  
912 2005;564(2):649-660.

913 23. Cluberton LJ, McGee SL, Murphy RM, Hargreaves M. Effect of  
914 carbohydrate ingestion on exercise-induced alterations in metabolic gene  
915 expression. *Journal of Applied Physiology*. 2005;99(4):1359-1363.

916 24. Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P.  
917 Glucose ingestion during exercise blunts exercise-induced gene expression  
918 of skeletal muscle fat oxidative genes. *American Journal of Physiology-  
919 Endocrinology and Metabolism*. 2005;289(6):1023-1029.

920 25. Stocks B, Dent JR, Ogden HB, Zemp M, Philp A. Postexercise skeletal  
921 muscle signaling responses to moderate-to high-intensity steady-state  
922 exercise in the fed or fasted state. *American Journal of Physiology-  
923 Endocrinology and Metabolism*. 2018;316(2):230-238.

924 26. Van Proeyen K, Szlufcik K, Nielens H, Pelgrim K, Deldicque L, Hesselink M,  
925 Van Veldhoven PP, Hespel P. Training in the fasted state improves glucose  
926 tolerance during fat-rich diet. *The Journal of Physiology*. 2010;588(21):4289-  
927 4302.

928 27. Burke LM, Hawley JA. Swifter, higher, stronger: What's on the menu?  
929 *Science*. 2018;362(6416):781-787.

930 28. Gonzalez JT, Richardson JD, Chowdhury EA, Koumanov F, Holman GD,  
931 Cooper S, Thompson D, Tsintzas K, Betts JA. Molecular adaptations of  
932 adipose tissue to 6 weeks of morning fasting vs. daily breakfast  
933 consumption in lean and obese adults. *The Journal of Physiology*.  
934 2018;596(4):609-622.

935 29. Wallis GA, Gonzalez JT. Is exercise best served on an empty stomach?  
936 *Proceedings of the Nutrition Society*. 2018;78(1):110-117.

937 30. FAO. Human energy requirements. Report of a Joint FAO/WHO/UNU  
938 Expert Consultation, Rome, 17-24 October 2001.  
939 <http://wwwfaoorg/3/y5686e/y5686e07htm#bm073>. 2004.

940 31. Borg G. Perceived exertion: a note on 'history' and methods. *Medicine and*  
941 *Science in Sports and Exercise*. 1973;5(2):90-93.

942 32. Brouns F, Bjorck I, Frayn K, Gibbs A, Lang V, Slama G, Wolever T.  
943 Glycaemic index methodology. *Nutrition Research Reviews*.  
944 2005;18(1):145-171.

945 33. Gonzalez JT, Fuchs CJ, Smith FE, Thelwall PE, Taylor R, Stevenson EJ,  
946 Trenell MI, Cermak NM, Van Loon LJ. Ingestion of glucose or sucrose  
947 prevents liver but not muscle glycogen depletion during prolonged  
948 endurance-type exercise in trained cyclists. *American Journal of Physiology-  
949 Endocrinology and Metabolism*. 2015;309(12):1032-1039.

950 34. Fletcher G, Eves FF, Glover EI, Robinson SL, Vernooij CA, Thompson JL,  
951 Wallis GA. Dietary intake is independently associated with the maximal  
952 capacity for fat oxidation during exercise. *Am J Clin Nutr*. 2017;105(4):864-  
953 872.

954 35. Edinburgh R, Hengist A, Smith HA, Betts JA, Thompson D, Walhin J-P,  
955 Gonzalez JT. Prior exercise alters the difference between arterialised and  
956 venous glycaemia: implications for blood sampling procedures. *British  
957 Journal of Nutrition*. 2017;117(10):1414-1421.

958 36. Passonneau J, Lauderdale V. A comparison of three methods of glycogen  
959 measurement in tissues. *Analytical Biochemistry*. 1974;60(2):405-412.

960 37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using  
961 real-time quantitative PCR and the 2-  $\Delta\Delta CT$  method. *methods*.  
962 2001;25(4):402-408.

963 38. Satoh S, Nishimura H, Clark AE, Kozka IJ, Vannucci SJ, Simpson IA, Quon  
964 MJ, Cushman SW, Holman GD. Use of bismannose photolabel to elucidate  
965 insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells.  
966 Evidence that exocytosis is a critical site of hormone action. *Journal of  
967 Biological Chemistry*. 1993;268(24):17820-17829.

968 39. Hoshino S, Sakamoto K, Vassilopoulos S, Camus SM, Griffin CA, Esk C,  
969 Torres JA, Ohkoshi N, Ishii A, Tamaoka A. The CHC22 clathrin-GLUT4  
970 transport pathway contributes to skeletal muscle regeneration. *PLoS one*.  
971 2013;8(10):e77787.

972 40. Nähke IS, Heuser J, Lupas A, Stock J, Turck CW, Brodsky FM. Folding and  
973 trimerization of clathrin subunits at the triskelion hub. *Cell*. 1992;68(5):899-  
974 910.

975 41. Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M,  
976 Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L.  
977 AMPK in skeletal muscle function and metabolism. *FASEB J*.  
978 2018;32(4):1741-1777.

979 42. Mikłosz A, Chabowski A, Zendzian-Piotrowska M, Gorski J. Effects of  
980 hyperthyroidism on lipid content and composition in oxidative and glycolytic  
981 muscles in rats. *J Physiol Pharmacol*. 2012;63:403-410.

982 43. Mikłosz A, Łukaszuk B, Zendzian-Piotrowska M, Kurek K, Chabowski A. The  
983 effects of AS160 modulation on fatty acid transporters expression and lipid  
984 profile in L6 myotubes. *Cellular Physiology and Biochemistry*.  
985 2016;38(1):267-282.

986 44. Compher C, Frankenfield D, Keim N, Roth-Yousey L, Group EAW. Best  
987 practice methods to apply to measurement of resting metabolic rate in  
988 adults: a systematic review. *Journal of the American Dietetic Association*.  
989 2006;106(6):881-903.

990 45. Frayn K. Calculation of substrate oxidation rates in vivo from gaseous  
991 exchange. *Journal of Applied Physiology*. 1983;55(2):628-634.

992 46. Jeukendrup A, Wallis G. Measurement of substrate oxidation during  
993 exercise by means of gas exchange measurements. *International Journal of  
994 Sports Medicine*. 2005;26(1):28-37.

995 47. Thompson D, Batterham AM, Bock S, Robson C, Stokes K. Assessment of  
996 low-to-moderate intensity physical activity thermogenesis in young adults  
997 using synchronized heart rate and accelerometry with branched-equation  
998 modeling. *The Journal of Nutrition*. 2006;136(4):1037-1042.

999 48. Villars C, Bergouignan A, Dugas J, Antoun E, Schoeller DA, Roth H,  
1000 Maingon A-C, Lefai E, Blanc S, Simon C. Validity of combining heart rate  
1001 and uniaxial acceleration to measure free-living physical activity energy  
1002 expenditure in young men. *Journal of applied physiology*.  
1003 2012;113(11):1763-1771.

1004 49. Brage S, Westgate K, Franks PW, Stegle O, Wright A, Ekelund U, Wareham  
1005 NJ. Estimation of free-living energy expenditure by heart rate and movement  
1006 sensing: a doubly-labelled water study. *PLoS one*. 2015;10(9):Epub:  
1007 <https://doi.org/10.1371/journal.pone.0137206>.

1008 50. Mari A, Pacini G, Brazzale AR, Ahrén B. Comparative evaluation of simple  
1009 insulin sensitivity methods based on the oral glucose tolerance test.  
1010 *Diabetologia*. 2005;48(4):748-751.

1011 51. Edinburgh R, Bradley H, Abdullah N, Robinson S, Chrzanowski-Smith O,  
1012 Walhin J, Joanisse S, Manolopoulos K, Philp A, Hengist A, Chabowski A,

1013 Brodsky F, Koumanov F, Betts J, Thompson D, Wallis G, Gonzalez J.  
1014 Dataset for "Lipid metabolism links nutrient-exercise timing to insulin  
1015 sensitivity in overweight men". *University of Bath Research Data Archive*  
1016 <https://doi.org/10.15125/BATH-00672>. 2019.

1017 52. Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL.  
1018 Repeated transient mRNA bursts precede increases in transcriptional and  
1019 mitochondrial proteins during training in human skeletal muscle. *The Journal*  
1020 *of Physiology*. 2010;588(23):4795-4810.

1021 53. Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and  
1022 metabolism by peroxisome proliferator-activated receptor  $\delta$ .  
1023 *Pharmacological Reviews*. 2009;61(3):373-393.

1024 54. Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of metabolic  
1025 transcriptional co-activators and transcription factors with acute exercise.  
1026 *The FASEB journal*. 2005;19(8):986-988.

1027 55. Polonsky KS, Rubenstein AH. C-peptide as a measure of the secretion and  
1028 hepatic extraction of insulin: pitfalls and limitations. *Diabetes*.  
1029 1984;33(5):486-494.

1030 56. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for  
1031 assessing insulin sensitivity from the oral glucose tolerance test. *Diabetes*  
1032 *Care*. 2001;24(3):539-548.

1033 57. Vessby B, Tengblad S, Lithell H. Insulin sensitivity is related to the fatty acid  
1034 composition of serum lipids and skeletal muscle phospholipids in 70-year-  
1035 old men. *Diabetologia*. 1994;37(10):1044-1050.

1036 58. Helge JW, Wu BJ, Willer M, Daugaard JR, Storlien LH, Kiens B. Training  
1037 affects muscle phospholipid fatty acid composition in humans. *Journal of*  
1038 *Applied Physiology*. 2001;90(2):670-677.

1039 59. Bergouignan A, Trudel G, Simon C, Chopard A, Schoeller DA, Momken I,  
1040 Votruba SB, Desage M, Burdge GC, Gauquelin-Koch G. Physical inactivity  
1041 differentially alters dietary oleate and palmitate trafficking. *Diabetes*.  
1042 2009;58(2):367-376.

1043 60. Lefai E, Blanc S, Momken I, Antoun E, Chery I, Zaharieva A, Gabert L,  
1044 Bergouignan A, Simon C. Exercise training improves fat metabolism  
1045 independent of total energy expenditure in sedentary overweight men, but  
1046 does not restore lean metabolic phenotype. *International Journal Of Obesity*.  
1047 2017;41(1):1728-1736.

1048 61. Handschin C, Spiegelman BM. Peroxisome Proliferator-Activated Receptor  
1049  $\gamma$  Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism.  
1050 *Endocrine Reviews*. 2006;27(7):728-735.

1051 62. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy  
1052 A, Cinti S, Lowell B, Scarpulla RC. Mechanisms controlling mitochondrial  
1053 biogenesis and respiration through the thermogenic coactivator PGC-1. *Cell*.  
1054 1999;98(1):115-124.

1055 63. Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, Holloszy  
1056 JO. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of

1057 1058      AMPK and Ca<sup>2+</sup>. *American Journal of Physiology-Endocrinology and*  
1059 1060      *Metabolism*. 2002;282(5):1008-1013.

1061 64. Frøsig C, Jørgensen SB, Hardie DG, Richter EA, Wojtaszewski JF. 5'-AMP-  
1062      activated protein kinase activity and protein expression are regulated by  
1063      endurance training in human skeletal muscle. *American Journal of*  
1064      *Physiology-Endocrinology and Metabolism*. 2004;286(3):411-417.

1065 65. Friedrichsen M, Mortensen B, Pehmøller C, Birk JB, Wojtaszewski JF.  
1066      Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake  
1067      and insulin sensitivity. *Molecular and Cellular Endocrinology*.  
1068      2013;366(2):204-214.

1069 66. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose  
1070      uptake. *Physiological Reviews*. 2013;93(3):993-1017.

1071 67. Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J. Improvement of  
1072      Insulin Action in Diabetic Transgenic Mice Selectively Overexpressing  
1073      GLUT4 in Skeletal Muscle. *Diabetes*. 1996;45(1):23-27.

1074 68. Watt MJ, Steinberg GR, Chen ZP, Kemp BE, Febbraio MA. Fatty acids  
1075      stimulate AMPK-activated protein kinase and enhance fatty acid oxidation in  
1076      L6 myotubes. *Journal of Physiology*. 2006;574(1):139-147.

1077 69. Wojtaszewski JF, Birk JB, Frøsig C, Holten M, Pilegaard H, Dela F. 5'AMP  
1078      activated protein kinase expression in human skeletal muscle: effects of  
1079      strength training and type 2 diabetes. *J Physiol*. 2005;564(Pt 2):563-573.

1080 70. Hansen PA, Nolte LA, Chen MM, Holloszy JO. Increased GLUT-4  
1081      translocation mediates enhanced insulin sensitivity of muscle glucose  
1082      transport after exercise. *Journal of Applied Physiology*. 1998;85(4):1218-  
1083      1222.

1084 71. Fisher JS, Gao J, Han D-H, Holloszy JO, Nolte LA. Activation of AMP kinase  
1085      enhances sensitivity of muscle glucose transport to insulin. *American*  
1086      *Journal of Physiology-Endocrinology and Metabolism*. 2002;282(1):E18-  
1087      E23.

1088 72. Vassilopoulos S, Esk C, Hoshino S, Funke BH, Chen C-Y, Plocik AM,  
1089      Wright WE, Kucherlapati R, Brodsky FM. A role for the CHC22 clathrin  
1090      heavy-chain isoform in human glucose metabolism. *Science*.  
1091      2009;324(5931):1192-1196.

1092 73. Fumagalli M, Camus SM, Diekmann Y, Burke A, Camus MD, Norman PJ,  
1093      Joseph AP, Abi-Rache L, Benazzo A, Rasteiro R, Mathieson I, Topf M,  
1094      Parham P, Thomas MG, Brodsky FM. Genetic diversity of CHC22 clathrin  
1095      impacts its function in glucose metabolism. *eLife*. 2019;8.

1096 74. Dannhauser PN, Camus SM, Sakamoto K, Sadacca LA, Torres JA, Camus  
1097      MD, Briant K, Vassilopoulos S, Rothnie A, Smith CJ, Brodsky FM. CHC22  
1098      and CHC17 clathrins have distinct biochemical properties and display  
1099      differential regulation and function. *The Journal of biological chemistry*.  
1100      2017;292(51):20834-20844.

75. Weijers R. Lipid composition of cell membranes and its relevance in type 2  
diabetes mellitus. *Current diabetes reviews*. 2012;8(5):390-400.

1101 76. Apostolopoulou M, Strassburger K, Herder C, Knebel B, Kotzka J,  
1102 Szendroedi J, Roden M. Metabolic flexibility and oxidative capacity  
1103 independently associate with insulin sensitivity in individuals with newly  
1104 diagnosed type 2 diabetes. *Diabetologia*. 2016;59(10):2203-2207.  
1105 77. Chowdhury EA, Richardson JD, Holman GD, Tsintzas K, Thompson D,  
1106 Betts JA. The causal role of breakfast in energy balance and health: a  
1107 randomized controlled trial in obese adults. *The American Journal of Clinical  
1108 Nutrition*. 2016;103(3):747-756.  
1109

**Table 1.** Participant characteristics

|                                                                             | <b>Study 1</b> | <b>Study 2 - Training Study</b> |             |              | <b>p-value<br/>(Training<br/>study)</b> |
|-----------------------------------------------------------------------------|----------------|---------------------------------|-------------|--------------|-----------------------------------------|
|                                                                             |                | <b>Acute Study</b>              | <b>CON</b>  | <b>BR-EX</b> |                                         |
| <i>n</i>                                                                    | 12             | 9                               | 12          | 9            |                                         |
| Body Mass (kg)                                                              | 95.1 (13.6)    | 101.1 (19.5)                    | 95.2 (12.4) | 98.0 (18.8)  | 0.73                                    |
| BMI (kg·m <sup>-2</sup> )                                                   | 30.2 (3.5)     | 31.8 (5.8)                      | 30.3 (3.9)  | 30.8 (4.1)   | 0.75                                    |
| Waist Circumference (cm)                                                    | 105.7 (11.6)   | 107.7 (14.8)                    | 103.9 (8.9) | 104.7 (11.6) | 0.63                                    |
| Hip Circumference (cm)                                                      | 110.9 (6.5)    | 110.8 (8.4)                     | 111.4 (7.1) | 111.6 (8.5)  | 0.32                                    |
| Waist-to-Hip Ratio                                                          | 0.95 (0.08)    | 0.97 (0.06)                     | 0.93 (0.04) | 0.94 (0.05)  | 0.31                                    |
| ̇V <sub>O</sub> <sub>2</sub> peak (ml·kg <sup>-1</sup> ·min <sup>-1</sup> ) | 29.1 (5.3)     | 32.6 (7.7)                      | 34.3 (5.6)  | 32.4 (4.0)   | 0.71                                    |
| PPO (W)                                                                     | 156 (39)       | 204 (47)                        | 208 (26)    | 203 (22)     | 0.73                                    |
| Physical Activity Level                                                     | -              | 1.71 (0.16)                     | 1.68 (0.16) | 1.68 (0.11)  | 0.90                                    |

Data are means (SD) for men classified as overweight or obese. BMI = Body Mass Index; ̇V<sub>O</sub><sub>2</sub>peak = peak oxygen uptake; PPO = peak power output; CON = control; BR-EX = breakfast-exercise; EX-BR = exercise-breakfast.

1111

**Table 2.** List of genes analyzed for mRNA expression

| Gene            | Qiagen catalogue number | Refseq#      |
|-----------------|-------------------------|--------------|
| <i>CD36</i>     | Cat#PPH01356A           | NM_000072    |
| <i>SLC27A1</i>  | Cat#PPH17902A           | NM_198580    |
| <i>SLC27A4</i>  | Cat#PPH00471A           | NM_005094    |
| <i>FABP3</i>    | Cat#PPH02460C           | NM_004102    |
| <i>FABP4</i>    | Cat#PPH02382F           | NM_001442    |
| <i>ACSL1</i>    | Cat#PPH19272A           | NM_001995    |
| <i>ACSL6</i>    | Cat#PPH08013A           | NM_001009185 |
| <i>CPT1B</i>    | Cat#PPH20905B           | NM_001145134 |
| <i>CPT2</i>     | Cat#PPH15572A           | NM_000098    |
| <i>ACACA</i>    | Cat#PPH02316A           | NM_000664    |
| <i>ACACB</i>    | Cat#PPH02301A           | NM_001093    |
| <i>MLYCD</i>    | Cat#PPH12795A           | NM_012213    |
| <i>HADHA</i>    | Cat#PPH10000B           | NM_000182    |
| <i>GPAM</i>     | Cat#PPH06361A           | NM_001244949 |
| <i>DGAT1</i>    | Cat#PPH23420F           | NM_012079    |
| <i>PNPLA2</i>   | Cat#PPH11403B           | NM_020376    |
| <i>LIPE</i>     | Cat#PPH02383A           | NM_005357    |
| <i>PDK4</i>     | Cat#PPH07615A           | NM_002612    |
| <i>PDK2</i>     | Cat#PPH00810A           | NM_001199898 |
| <i>GYG1</i>     | Cat#PPH13614A           | NM_001184720 |
| <i>GYS1</i>     | Cat#PPH00988C           | NM_001161587 |
| <i>PRKAA1</i>   | Cat#PPH00043B           | NM_206907    |
| <i>PRKAA2</i>   | Cat#PPH15207A           | NM_006252    |
| <i>PRKAB2</i>   | Cat#PPH09415B           | NM_005399    |
| <i>PRKAG1</i>   | Cat#PPH07190A           | NM_001206709 |
| <i>PPARGC1A</i> | Cat#PPH00461F           | NM_013261    |
| <i>PPARA</i>    | Cat#PPH01281B           | NM_001001928 |
| <i>PPARD</i>    | Cat#PPH00455A           | NM_001171818 |
| <i>UCP3</i>     | Cat#PPH06066A           | NM_003356    |
| <i>IL6</i>      | Cat#PPH00560C           | NM_000600    |
| <i>SLC2A4</i>   | Cat#PPH02326A           | NM_001042    |
| <i>IRS1</i>     | Cat#PPH02328A           | NM_005544    |
| <i>IRS2</i>     | Cat#PPH02297A           | NM_003749    |
| <i>AKT2</i>     | Cat#PPH00289F           | NM_001243027 |

1112

1113

**Table 3.** Postprandial plasma metabolite concentrations for the control (CON;  $n=9$ ), breakfast-exercise (BR-EX;  $n=12$ ) and exercise-breakfast (EX-BR;  $n=9$ ) groups.

|                                                     | Pre-intervention | Post-intervention | $p$ -value<br>(within-group<br>change) |
|-----------------------------------------------------|------------------|-------------------|----------------------------------------|
| CON glucose AUC (mmol·L <sup>-1</sup> )             | 8.20 (1.36)      | 8.43 (0.89)       | 0.69                                   |
| BR-EX glucose AUC (mmol·L <sup>-1</sup> )           | 8.26 (0.90)      | 8.34 (1.35)       | 0.78                                   |
| EX-BR glucose AUC (mmol·L <sup>-1</sup> )           | 8.52 (1.05)      | 8.14 (1.03)       | 0.27                                   |
| CON insulin AUC (pmol·L <sup>-1</sup> )             | 385 (221)        | 514 (382)         | 0.08                                   |
| BR-EX insulin AUC (pmol·L <sup>-1</sup> )           | 268 (109)        | 303 (135)         | 0.16                                   |
| EX-BR insulin AUC (pmol·L <sup>-1</sup> )           | 458 (441)        | 355 (254)         | 0.21                                   |
| CON C-peptide AUC (ng·mL <sup>-1</sup> )            | 6.59 (2.57)      | 7.32 (3.11)       | 0.18                                   |
| BR-EX C-peptide AUC (ng·mL <sup>-1</sup> )          | 5.25 (1.72)      | 5.54 (1.87)       | 0.34                                   |
| EX-BR C-peptide AUC (ng·mL <sup>-1</sup> )          | 6.81 (4.40)      | 6.03 (3.45)       | 0.28                                   |
| CON NEFA AUC (mmol·L <sup>-1</sup> )                | 0.17 (0.07)      | 0.19 (0.07)       | 0.52                                   |
| BR-EX NEFA AUC (mmol·L <sup>-1</sup> )              | 0.20 (0.08)      | 0.16 (0.06)       | 0.08                                   |
| EX-BR NEFA AUC (mmol·L <sup>-1</sup> )              | 0.14 (0.03)      | 0.13 (0.04)       | 0.48                                   |
| CON OGIS (mL·min <sup>-1</sup> ·m <sup>-2</sup> )   | 401 (39)         | 372 (63)          | 0.19                                   |
| BR-EX OGIS (mL·min <sup>-1</sup> ·m <sup>-2</sup> ) | 403 (31)         | 380 (34)          | 0.06                                   |
| EX-BR OGIS (mL·min <sup>-1</sup> ·m <sup>-2</sup> ) | 374 (56)         | 399 (42)          | 0.08                                   |

Data are means and (SD). Abbreviations: NEFA = non-esterified fatty acid, OGIS = oral glucose insulin sensitivity, AUC = time-averaged area under the curve for the OGTT (120 min).

**Table 4.** Fasting plasma metabolite concentrations for the control (CON;  $n=9$ ), breakfast-exercise (BR-EX;  $n=12$ ) and exercise-breakfast (EX-BR;  $n=9$ ) groups.

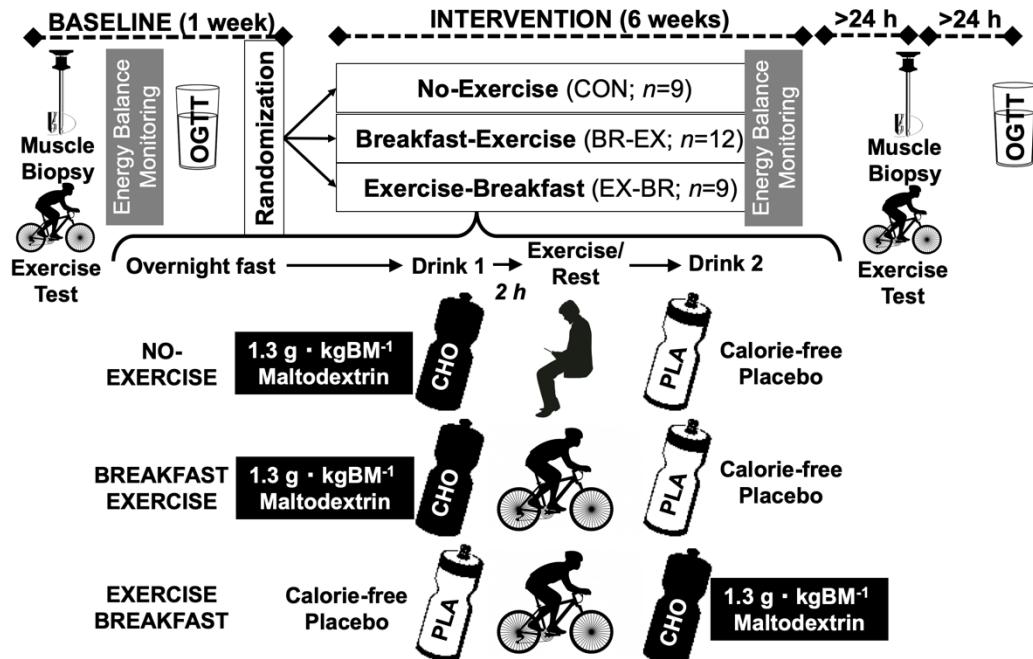
|                                                           | Pre-intervention | Post-intervention | $\Delta$ from pre-intervention | time x group interaction |
|-----------------------------------------------------------|------------------|-------------------|--------------------------------|--------------------------|
| CON glucose ( $\text{mmol}\cdot\text{L}^{-1}$ )           | 5.39 (0.49)      | 5.57 (0.66)       | 0.17 (-0.32, 0.66)             | $F=1.413$<br>$p=0.26$    |
| BR-EX glucose ( $\text{mmol}\cdot\text{L}^{-1}$ )         | 5.48 (0.33)      | 5.60 (0.47)       | 0.12 (-0.30, 0.54)             |                          |
| EX-BR glucose ( $\text{mmol}\cdot\text{L}^{-1}$ )         | 5.72 (0.71)      | 5.46 (0.72)       | -0.27 (-0.67, 0.13)            |                          |
| CON insulin ( $\text{pmol}\cdot\text{L}^{-1}$ )           | 95 (121)         | 81 (63)           | -14 (-7, 8)                    | $F=0.327$<br>$p=0.72$    |
| BR-EX insulin ( $\text{pmol}\cdot\text{L}^{-1}$ )         | 43 (23)          | 43 (24)           | 0 (-14, 15)                    |                          |
| EX-BR insulin ( $\text{pmol}\cdot\text{L}^{-1}$ )         | 49 (43)          | 47 (35)           | -2 (-20, 14)                   |                          |
| CON HOMA-IR (au)                                          | 0.35 (0.04)      | 0.34 (0.03)       | -0.01 (-0.02, 0.00)            | $F=0.458$<br>$p=0.40$    |
| BR-EX HOMA-IR (au)                                        | 0.37 (0.03)      | 0.37 (0.04)       | 0.00 (-0.01, 0.01)             |                          |
| EX-BR HOMA-IR (au)                                        | 0.37 (0.04)      | 0.37 (0.04)       | 0.01 (-0.02, 0.04)             |                          |
| CON NEFA ( $\text{mmol}\cdot\text{L}^{-1}$ )              | 0.36 (0.16)      | 0.39 (0.11)       | 0.03 (-0.10, 0.15)             | $F=1.021$<br>$p=0.37$    |
| BR-EX NEFA ( $\text{mmol}\cdot\text{L}^{-1}$ )            | 0.44 (0.15)      | 0.39 (0.10)       | -0.05 (-0.11, 0.15)            |                          |
| EX-BR NEFA ( $\text{mmol}\cdot\text{L}^{-1}$ )            | 0.34 (0.09)      | 0.32 (0.10)       | -0.02 (-0.09, 0.05)            |                          |
| CON TAG ( $\text{mmol}\cdot\text{L}^{-1}$ )               | 1.59 (0.77)      | 2.05 (0.70)       | 0.46 (-0.06, 0.98)             | $F=5.967$<br>$p<0.01$    |
| BR-EX TAG ( $\text{mmol}\cdot\text{L}^{-1}$ )             | 1.34 (0.84)      | 1.11 (0.42)       | -0.24 (-0.55, 0.76) a          |                          |
| EX-BR TAG ( $\text{mmol}\cdot\text{L}^{-1}$ )             | 1.10 (0.31)      | 0.88 (0.36)       | -0.22 (-0.41, -0.03) b         |                          |
| CON cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ )       | 4.41 (1.23)      | 4.59 (1.36)       | 0.19 (-0.74, 1.12)             | $F=1.707$<br>$p=0.20$    |
| BR-EX cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ )     | 3.77 (1.34)      | 3.72 (1.21)       | -0.05 (-0.41, 0.30)            |                          |
| EX-BR cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ )     | 3.74 (0.82)      | 3.24 (0.92)       | -0.51 (-0.95, -0.07)           |                          |
| CON HDL cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ )   | 0.84 (0.17)      | 0.86 (0.20)       | 0.02 (-0.14, 0.18)             | $F=1.634$<br>$p=0.21$    |
| BR-EX HDL cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ ) | 0.82 (0.31)      | 0.84 (0.33)       | 0.02 (-0.05, 0.10)             |                          |
| EX-BR HDL cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ ) | 0.90 (0.23)      | 0.81 (0.26)       | -0.09 (-0.19, 0.01)            |                          |
| CON LDL cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ )   | 3.36 (1.33)      | 3.56 (1.36)       | 0.20 (-0.50, 0.89)             | $F=2.110$<br>$p=0.14$    |
| BR-EX LDL cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ ) | 2.71 (0.97)      | 2.70 (0.99)       | -0.01 (-0.31, 0.28)            |                          |
| EX-BR LDL cholesterol ( $\text{mmol}\cdot\text{L}^{-1}$ ) | 2.72 (0.57)      | 2.31 (0.58)       | -0.41 (-0.80, -0.02)           |                          |

Data are means and (SD) except for change scores which are means and (95% CI). Abbreviations: HOMA-IR = the homeostatic model of insulin resistance, NEFA = non-esterified fatty acid, TAG = triglyceride, HDL = high density lipoprotein, LDL = low density lipoprotein. (a) = difference in change from pre- to post-intervention for CON versus BR-EX and (b) CON versus EX-BR with  $p<0.05$ .

**Table 5.** Components of daily energy intake and daily energy expenditure pre- and post-intervention for the control (CON; n=9 [except for PAEE where n=8]), breakfast before exercise (BR-EX; n=12 [except for PAEE where n=10]) and exercise before breakfast (EX-BR; n=9) groups.

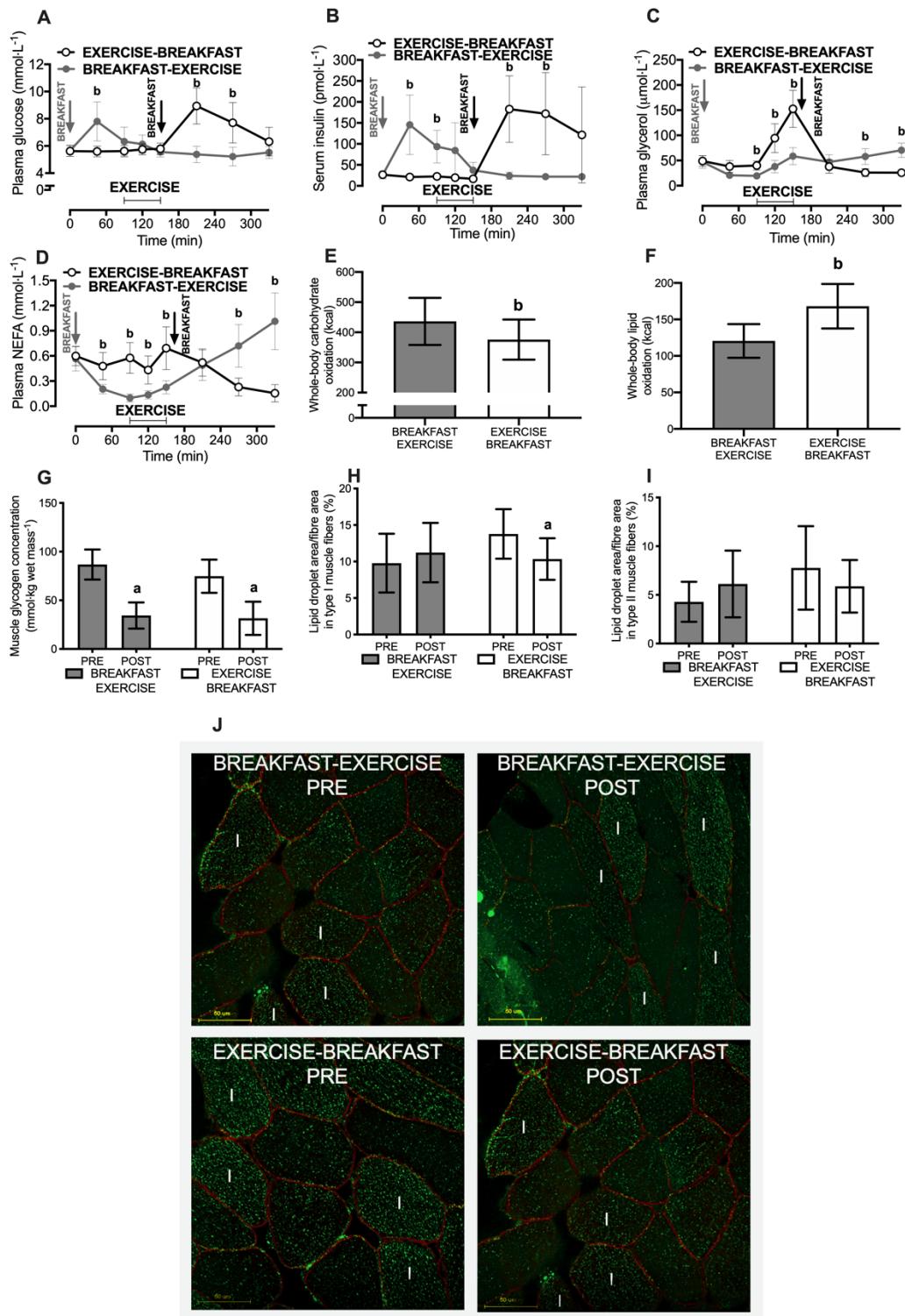
|                                          | Pre-intervention | Post-intervention | Δ from pre-intervention | time x group interaction |
|------------------------------------------|------------------|-------------------|-------------------------|--------------------------|
| CON CHO intake (kcal·d <sup>-1</sup> )   | 1180 (357)       | 1424 (600)        | 244 (-29, 517)          |                          |
| BR-EX CHO intake (kcal·d <sup>-1</sup> ) | 1171 (317)       | 1272 (220)        | 101 (-51, 252)          | F=0.977<br>p=0.39        |
| EX-BR CHO intake (kcal·d <sup>-1</sup> ) | 1133 (307)       | 1214 (234)        | 81 (-91, 252)           |                          |
| CON FAT intake (kcal·d <sup>-1</sup> )   | 1148 (326)       | 1045 (311)        | -104 (-257, 49)         |                          |
| BR-EX FAT intake (kcal·d <sup>-1</sup> ) | 1132 (307)       | 1091 (238)        | -41 (-156, 75)          | F=0.347<br>p=0.71        |
| EX-BR FAT intake (kcal·d <sup>-1</sup> ) | 987 (320)        | 882 (172)         | -105 (-289, 79)         |                          |
| CON PRO intake (kcal·d <sup>-1</sup> )   | 429 (97)         | 376 (89)          | -52 (-89, 15)           |                          |
| BR-EX PRO intake (kcal·d <sup>-1</sup> ) | 511 (122)        | 446 (59)          | -65 (-118, -11)         | F=1.517<br>p=0.24        |
| EX-BR PRO intake (kcal·d <sup>-1</sup> ) | 406 (97)         | 399 (117)         | -7 (-75, 62)            |                          |
| CON ALC intake (kcal·d <sup>-1</sup> )   | 72 (95)          | 75 (154)          | 3 (-145, 152)           |                          |
| BR-EX ALC intake (kcal·d <sup>-1</sup> ) | 111 (118)        | 69 (72)           | -42, (-101, 17)         | F=1.115<br>p=0.34        |
| EX-BR ALC intake (kcal·d <sup>-1</sup> ) | 185 (168)        | 90 (131)          | -94 (-191, 2)           |                          |
| CON RMR (kcal·d <sup>-1</sup> )          | 1997 (225)       | 2021 (232)        | 24 (-56, 104)           |                          |
| BR-EX RMR (kcal·d <sup>-1</sup> )        | 1964 (167)       | 2074 (208)        | 110 (45, 174)           | F=1.791<br>p=0.19        |
| EX-BR RMR (kcal·d <sup>-1</sup> )        | 1899 (228)       | 1967 (194)        | 68 (-13, 148)           |                          |
| CON TEF (kcal·d <sup>-1</sup> )          | 283 (61)         | 292 (85)          | 9 (-29, 48)             |                          |
| BR-EX TEF (kcal·d <sup>-1</sup> )        | 292 (50)         | 288 (42)          | -4 (-19, 10)            | F=0.982<br>p=0.38        |
| EX-BR TEF (kcal·d <sup>-1</sup> )        | 271 (55)         | 258 (44)          | -13 (-29, 4)            |                          |
| CON PAEE (kcal·d <sup>-1</sup> )         | 1144 (298)       | 1077 (327)        | -67 (-215, 81)          |                          |
| BR-EX PAEE (kcal·d <sup>-1</sup> )       | 986 (264)        | 1190 (343)        | 204 (56, 352) a         | F=7.044<br>p<0.01        |
| EX-BR PAEE (kcal·d <sup>-1</sup> )       | 1006 (147)       | 1357 (324)        | 351 (126, 576) b        |                          |

Data are means and (SD) except for change scores which are means and (95% CI). Abbreviations: CHO = carbohydrate, PRO = protein, ALC = alcohol, RMR = resting metabolic rate, TEF = thermic effect of feeding, PAEE = physical activity energy expenditure. (a) = difference in change from pre- to post-intervention for CON versus BR-EX and (b) CON versus EX-BR with p<0.05.


**Table 6.** Skeletal muscle phospholipid composition in the control (CON;  $n=6$ ), breakfast-exercise (BR-EX;  $n=8$ ) and exercise-breakfast (EX-BR;  $n=5$ ) groups.

|                            | Pre-intervention | Post-intervention | time x group interaction |
|----------------------------|------------------|-------------------|--------------------------|
| CON 14:0 (% of total)      | 1.3 (0.5)        | 1.0 (0.3)         |                          |
| BR-EX 14:0 (% of total)    | 0.8 (0.1)        | 0.7 (0.1)         | $F=0.493$<br>$p=0.62$    |
| EX-BR 14:0 (% of total)    | 0.8 (0.4)        | 0.7 (0.1)         |                          |
| CON 16:0 (% of total)      | 24.8 (2.3)       | 24.3 (1.0)        |                          |
| BR-EX 16:0 (% of total)    | 22.4 (0.6)       | 21.7 (1.2)        | $F=1.537$<br>$p=0.25$    |
| EX-BR 16:0 (% of total)    | 19.5 (1.5)       | 17.9 (1.4)        |                          |
| CON 18:0 (% of total)      | 14.2 (0.3)       | 14.2 (0.5)        |                          |
| BR-EX 18:0 (% of total)    | 14.6 (0.4)       | 15.2 (0.6)        | $F=7.205$<br>$p<0.01$    |
| EX-BR 18:0 (% of total)    | 11.9 (0.8)       | 13.0 (0.8) b      |                          |
| CON 20:0 (% of total)      | 0.13 (0.05)      | 0.09 (0.02)       |                          |
| BR-EX 20:0 (% of total)    | 0.08 (0.02)      | 0.08 (0.04)       | $F=1.141$<br>$p=0.34$    |
| EX-BR 20:0 (% of total)    | 0.10 (0.04)      | 0.10 (0.07)       |                          |
| CON 22:0 (% of total)      | 0.21 (0.07)      | 0.20 (0.02)       |                          |
| BR-EX 22:0 (% of total)    | 0.20 (0.04)      | 0.19 (0.04)       | $F=0.666$<br>$p=0.53$    |
| EX-BR 22:0 (% of total)    | 0.20 (0.05)      | 0.23 (0.10)       |                          |
| CON 24:0 (% of total)      | 0.15 (0.07)      | 0.14 (0.04)       |                          |
| BR-EX 24:0 (% of total)    | 0.12 (0.08)      | 0.11 (0.06)       | $F=0.108$<br>$p=0.90$    |
| EX-BR 24:0 (% of total)    | 0.16 (0.08)      | 0.13 (0.06)       |                          |
| CON 16:1 (% of total)      | 0.82 (0.34)      | 0.70 (0.19)       |                          |
| BR-EX 16:1 (% of total)    | 0.66 (0.12)      | 0.75 (0.26)       | $F=1.254$<br>$p=0.31$    |
| EX-BR 16:1 (% of total)    | 0.66 (0.15)      | 0.62 (0.17)       |                          |
| CON 18:1n9c (% of total)   | 7.9 (3.0)        | 7.1 (1.5)         |                          |
| BR-EX 18:1n9c (% of total) | 6.3 (0.6)        | 6.8 (0.6)         | $F=2.970$<br>$p=0.08$    |
| EX-BR 18:1n9c (% of total) | 6.6 (1.3)        | 6.6 (0.9)         |                          |
| CON 18:2n6c (% of total)   | 33.6 (5.0)       | 34.5 (4.1)        |                          |

|                            |             |             |                   |
|----------------------------|-------------|-------------|-------------------|
| BR-EX 18:2n6c (% of total) | 37.2 (2.2)  | 37.7 (2.5)  | F=0.250           |
| EX-BR 18:2n6c (% of total) | 29.2 (3.3)  | 30.5 (0.8)  | p=0.78            |
| CON C18n3 (% of total)     | 0.23 (0.06) | 0.21 (0.05) |                   |
| BR-EX C18n3 (% of total)   | 0.25 (0.05) | 0.29 (0.04) | F=1.842<br>p=0.19 |
| EX-BR C18n3 (% of total)   | 0.22 (0.03) | 0.26 (0.02) |                   |
| CON 20:4n6 (% of total)    | 14.4 (0.8)  | 15.0 (1.8)  |                   |
| BR-EX 20:4n6 (% of total)  | 14.9 (1.8)  | 14.0 (1.4)  | F=1.862<br>p=0.19 |
| EX-BR 20:4n6 (% of total)  | 11.9 (1.3)  | 11.0 (1.7)  |                   |
| CON 20:5n3 (% of total)    | 0.66 (0.21) | 0.71 (0.18) |                   |
| BR-EX 20:5n3 (% of total)  | 0.71 (0.12) | 0.73 (0.12) | F=0.245<br>p=0.79 |
| EX-BR 20:5n3 (% of total)  | 0.64 (0.18) | 0.69 (0.18) |                   |
| CON 22:6n3 (% of total)    | 1.5 (0.4)   | 1.6 (0.5)   |                   |
| BR-EX 22:6n3 (% of total)  | 1.6 (0.2)   | 1.6 (0.2)   | F=0.077<br>p=0.93 |
| EX-BR 22:6n3 (% of total)  | 1.3 (0.5)   | 1.4 (0.3)   |                   |
| CON 24:1 (% of total)      | 0.13 (0.08) | 0.13 (0.05) |                   |
| BR-EX 24:1 (% of total)    | 0.10 (0.03) | 0.10 (0.04) | F=0.021<br>p=0.98 |
| EX-BR 24:1 (% of total)    | 0.14 (0.09) | 0.13 (0.08) |                   |


Data are means and (SD). (b) = difference in change from pre- to post-intervention for CON versus EX-BR.

1117 **Figures**

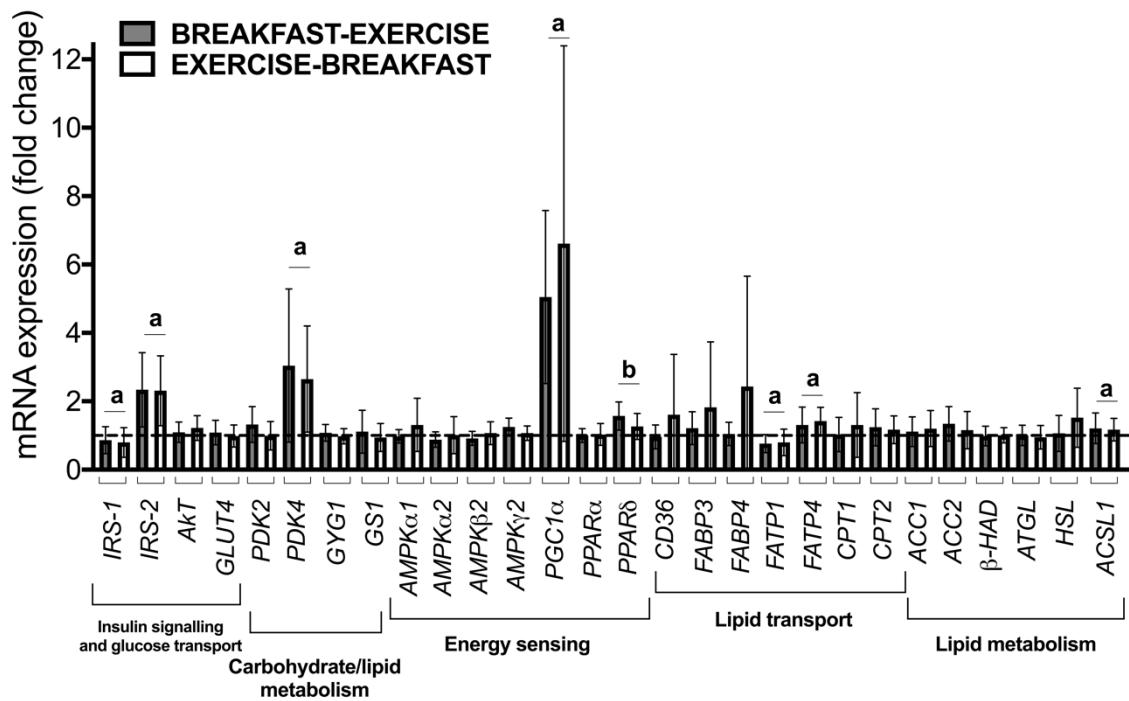


1118  
1119

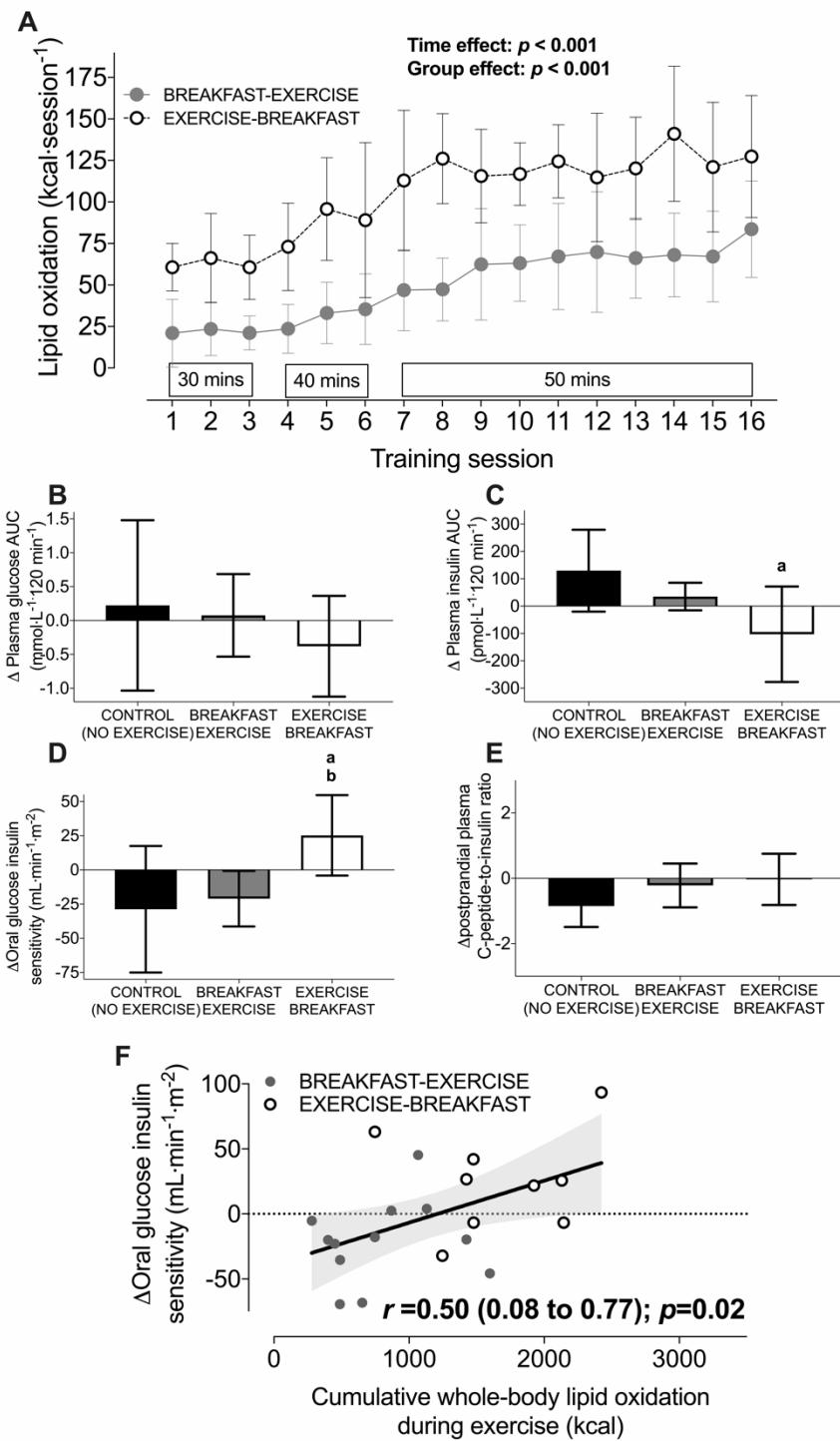
**Figure 1.** Protocol schematic for the training study.



1120


1121

1122


1123

**Figure 2.** Plasma glucose (**A**), serum insulin (**B**), plasma glycerol (**C**) and plasma NEFA (**D**) concentrations and whole-body carbohydrate (**E**) and fat (**F**) utilization rates. Muscle was sampled pre- and immediately post-exercise (*vastus lateralis*) to

1124 assess mixed-muscle glycogen (**G**) and fiber-type specific intramuscular lipid (IMTG)  
1125 utilization (**H & I**). Panel **J** is representative images from IMTG staining where IMTG  
1126 (stained green) in combination with dystrophin (to identify the cell border and stained  
1127 red) is shown from skeletal muscle samples of a representative participant for the  
1128 breakfast-exercise and exercise-breakfast trials. White I shows type 1 fibers and all  
1129 other fibers are assumed to be type II. Yellow bars are scale (50  $\mu$ m). All data are  
1130 presented as means  $\pm$  95% CI. For panels **A-F**  $n=12$  men classified as overweight  
1131 or obese, for panels **G, H and I**  $n=9$ . <sup>a</sup>difference between PRE versus POST  
1132 exercise; <sup>b</sup>difference between BREAKFAST-EXERCISE versus EXERCISE-  
1133 BREAKFAST ( $p < 0.05$ ).



1134  
1135 **Figure 3.** Skeletal muscle mRNA expression responses to a single bout of exercise  
1136 before *versus* after nutrient provision (in the form of breakfast) in overweight men.  
1137 *n*=8. Muscle was sample pre- and at 3 h post-exercise (*vastus lateralis*) to assess  
1138 the intramuscular gene expression responses to exercise. <sup>a</sup>effect of exercise; <sup>b</sup>  
1139 difference between BREAKFAST-EXERCISE *versus* EXERCISE-BREAKFAST (*p* <  
1140 0.05).

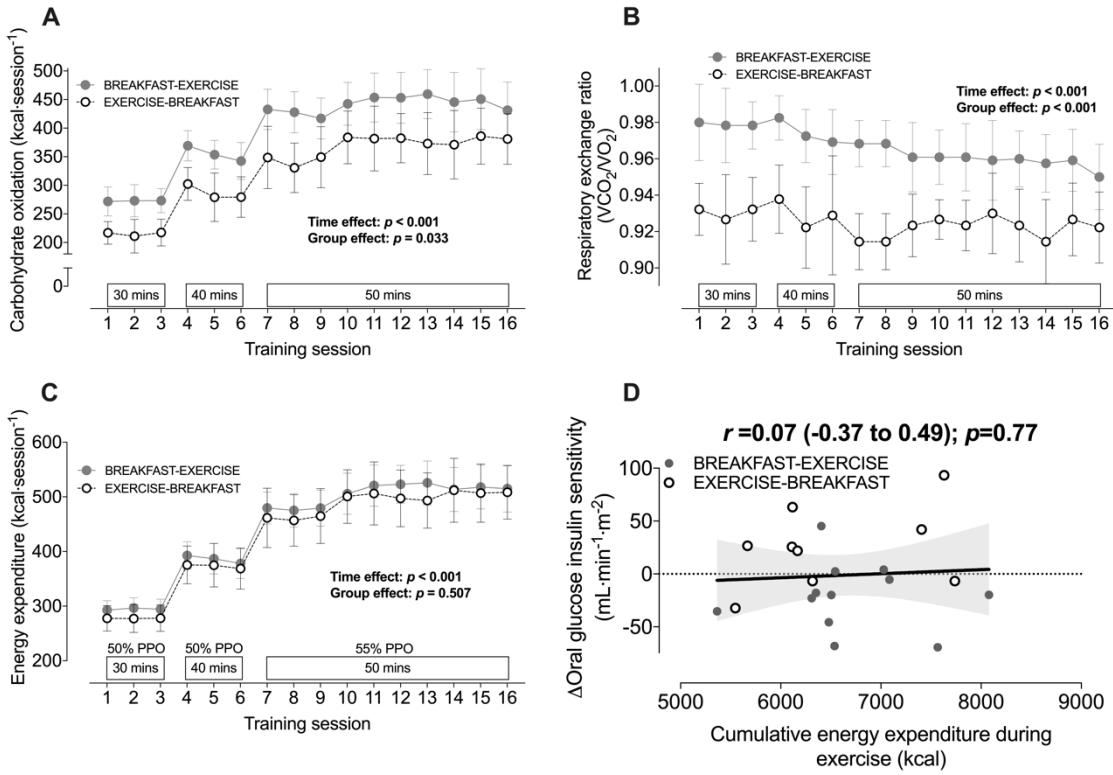


1141

1142

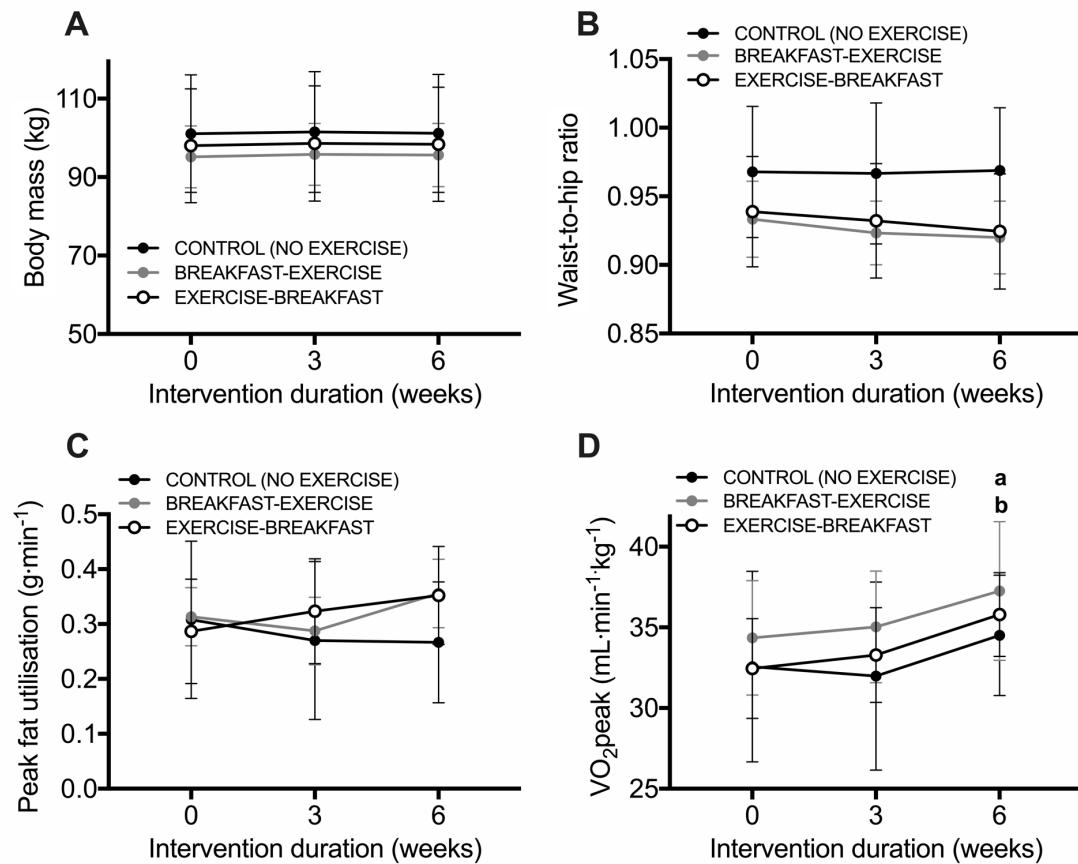
1143

1144

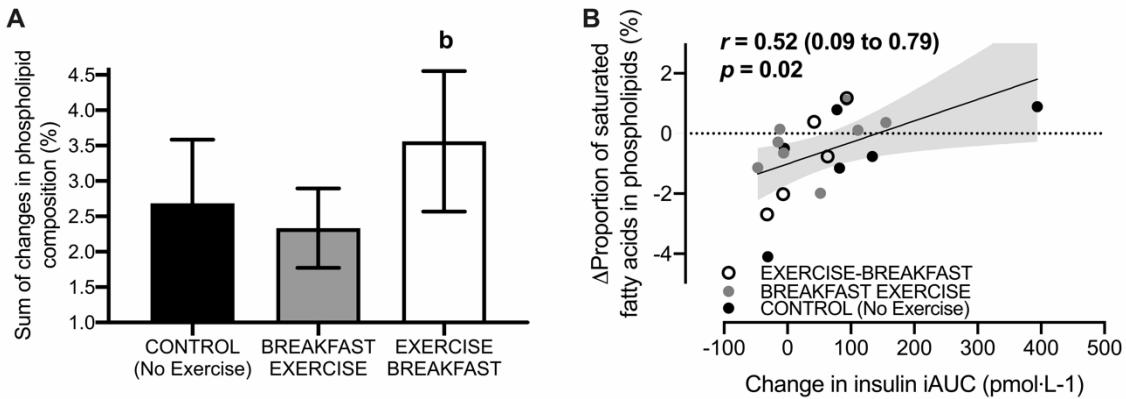

1145

1146

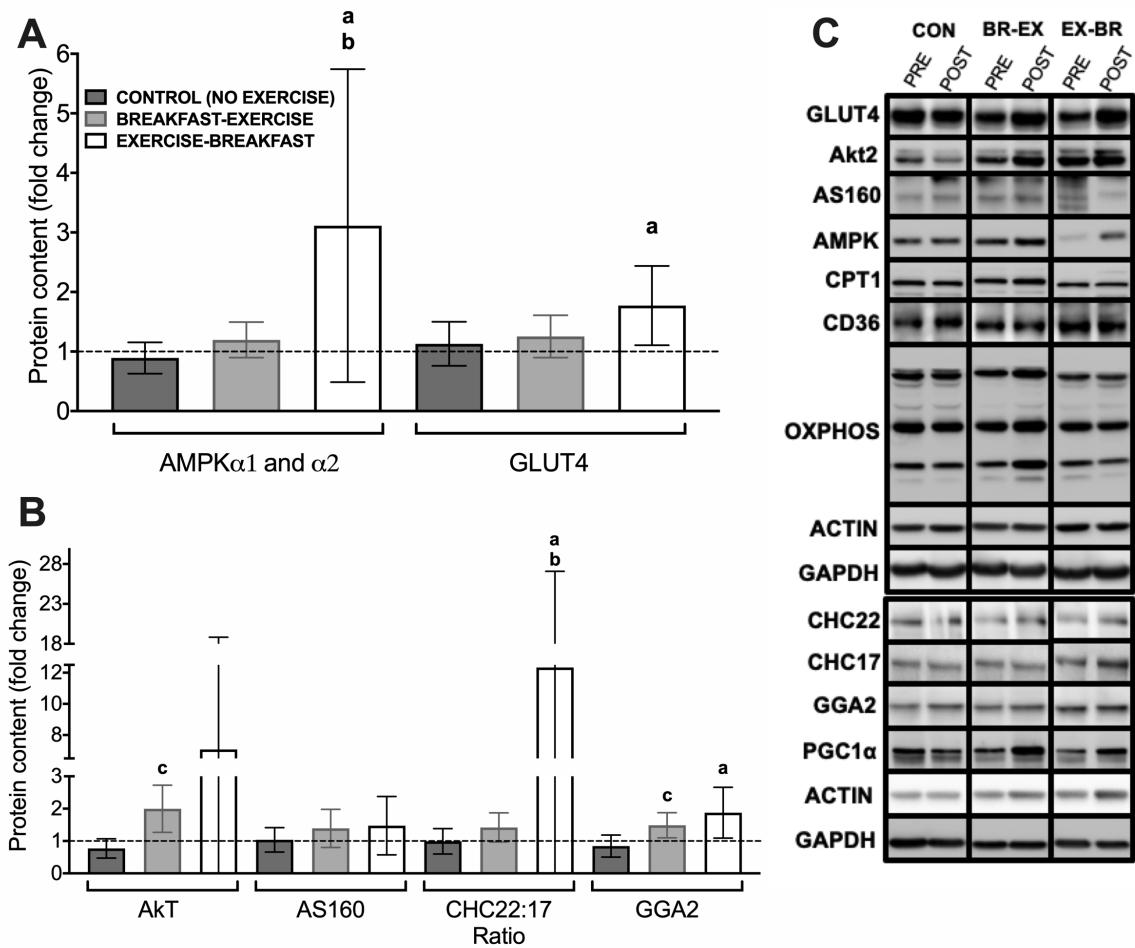
**Figure 4.** Whole-body lipid utilization during every exercise session in a 6-week training intervention (A), the change in the plasma glucose AUC (B), the change in the plasma insulin AUC (C), the change in the oral glucose insulin sensitivity index (OGIS; D) and the change in the postprandial plasma C-peptide: insulin ratio (E) in control (no-exercise), breakfast-exercise and exercise-breakfast groups. Panel F


1147 shows the Pearson correlation between changes in the OGIS index and cumulative  
1148 lipid utilization throughout the exercise training intervention. All data are presented  
1149 as means  $\pm$  95% CI. For control  $n = 9$ , for breakfast-exercise  $n = 12$  and for exercise-  
1150 breakfast  $n = 9$  men classified as overweight or obese. The shaded grey area  
1151 represents the 95% confidence bands for the regression line. <sup>a</sup>difference between  
1152 CONTROL versus EXERCISE-BREAKFAST; <sup>b</sup>difference between BREAKFAST-  
1153 EXERCISE versus EXERCISE-BREAKFAST ( $p < 0.05$ ).

1154




1155


1156 **Figure 5.** Energy expenditure (A), the respiratory exchange ratio (B) and whole-  
1157 body carbohydrate utilisation rates (C) during every exercise session in a 6-week  
1158 training intervention and a Pearson correlation between cumulative energy  
1159 expenditure throughout the exercise training intervention with the changes in oral  
1160 glucose insulin sensitivity (the OGIS index) with exercise before versus after nutrient  
1161 intake (D). All data are presented as means  $\pm$  95% CI. For control  $n = 9$ , for breakfast-  
1162 exercise  $n = 12$  and for exercise-breakfast  $n = 9$  men classified as overweight or  
1163 obese. The shaded grey area represents the 95% confidence bands for the  
1164 regression line.



1165  
1166 **Figure 6.** Body mass (A), the waist-to-hip ratio (B), whole-body oxidative capacity  
1167 (VO<sub>2</sub>peak; C) and peak fat utilization rates during an incremental exercise test (D)  
1168 at baseline, week 3 and week 6 of an intervention in control (no-exercise), breakfast-  
1169 exercise and exercise-breakfast groups. All data are presented as means  $\pm$  95% CI.  
1170 For control  $n = 9$ , for breakfast-exercise  $n = 12$  and for exercise-breakfast  $n = 9$  men  
1171 classified as overweight or obese <sup>a</sup>difference between CONTROL versus  
1172 BREAKFAST-EXERCISE; <sup>b</sup>difference between CONTROL versus EXERCISE-  
1173 BREAKFAST ( $p < 0.05$ ).



1174  
1175 **Figure 7.** Pre-to-post intervention changes in the sum of all changes in the fatty acid  
1176 content of phospholipid species (A) and a Pearson correlation between postprandial  
1177 insulinemia with the change in the proportion of saturated fatty acids in skeletal  
1178 muscle phospholipids (B). All data are presented as means  $\pm$  95% CI. For control  $n$   
1179 = 6, for breakfast-exercise  $n$  = 9 and for exercise-breakfast  $n$  = 5 men classified as  
1180 overweight or obese. The shaded area represents the 95% confidence bands for the  
1181 regression line. <sup>b</sup>difference between BREAKFAST-EXERCISE versus EXERCISE-  
1182 BREAKFAST ( $p < 0.05$ ).



1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194

**Figure 8.** Pre-to-post intervention changes in the levels of energy-sensing proteins and proteins involved in insulin-sensitive GLUT4 trafficking in skeletal muscle (**A** and **B**). Representative immunoblots are shown (**C**) for each protein (including those reported in text but not shown in this figure) from the same representative participant as well as the loading controls used. All data are presented as means  $\pm$  95% CI and the dotted horizontal line represents the baseline (pre-intervention) values. For control  $n = 6$ , for breakfast-exercise  $n = 9$  and for exercise-breakfast  $n = 5$  men classified as overweight or obese. <sup>a</sup>difference between CONTROL versus EXERCISE-BREAKFAST; <sup>b</sup>difference between BREAKFAST-EXERCISE versus EXERCISE-BREAKFAST; <sup>c</sup>difference between CONTROL versus BREAKFAST-EXERCISE ( $p < 0.05$ ).