

Bellymount enables longitudinal, intravital imaging of abdominal organs and the gut microbiota in adult *Drosophila*

Leslie Ann Jaramillo Koyama^{1,2}, Andrés Aranda-Díaz³, Yu-Han Su¹,
Shruthi Balachandra¹, Judy Lisette Martin¹,
William B. Ludington⁴, Kerwyn Casey Huang^{3,5,6}, & Lucy Erin O'Brien¹

¹Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305

²Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305

³Department of Bioengineering, Stanford University, Stanford, CA 94305

⁴Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218

⁵Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305

⁶Chan Zuckerberg Biohub, San Francisco, CA 94158

*Correspondence: lucye@stanford.edu

1
2 **Cell- and tissue-level processes often occur across days or weeks, but few imaging**
3 **methods can capture such long timescales. Here we describe Bellymount, a simple,**
4 **non-invasive method for longitudinal imaging of the *Drosophila* abdomen at sub-cel-**
5 **lular resolution. Bellymounted flies remain live and intact, so the same individual**
6 **can be imaged serially to yield vivid time series of multi-day processes. This feature**
7 **opens the door to longitudinal studies of *Drosophila* internal organs in their native**
8 **context. Exploiting Bellymount's capabilities, we track intestinal stem cell lineages**
9 **and gut microbial colonization in single flies, revealing spatiotemporal dynamics un-**
10 **detectable by previously available methods.**

11
12 A major thrust of modern biology is leveraging advancements in live microscopy
13 to reveal how cellular and physiological processes unfold inside living organisms. For
14 adult metazoans, achieving this goal requires overcoming two imaging challenges: the
15 opacity of most mature animals to light, and the prolonged timescales of adult-associ-
16 ated processes such as ageing.

17 The adult vinegar fly, *Drosophila melanogaster*, has yielded foundational insights into
18 metazoan physiology¹⁻⁴. This invertebrate animal is also a powerful tool for probing hu-
19 man disease pathologies, with ~65% of human disease-causing genes having functional
20 homologs in the fly⁵. Current methods for imaging *Drosophila* abdominal organs, how-
21 ever, are limited in optical resolution, imaging duration, or both. Some newer ap-
22 proaches preserve animal viability but cannot visualize individual cells⁶⁻⁸. Other recent
23 advances enable high-resolution imaging but require opening the abdominal cuticle,
24 which leads to death of the fly⁹⁻¹².

25 Here we present Bellymount, a method for high-resolution imaging of the intact
26 *Drosophila* abdomen. Bellymount captures volumetric images of native abdominal

27 organs at spatial scales ranging from subcellular (<1 μ m) to multi-organ (>100 μ m). It
28 preserves organismal viability, thus enabling for the first time longitudinal studies of
29 *Drosophila* abdominal organs and cells. It is inexpensive to construct, simple to apply,
30 and compatible with diverse brightfield and fluorescence microscopes. Finally, Bel-
31 lymount is easily combined with *Drosophila*'s sophisticated tools for spatiotemporal ge-
32 netic manipulation, fluorescent labeling, and live reporter assays. Exploiting all these
33 features, we use Bellymount to perform longitudinal tracking of two multi-day pro-
34 cesses in the fly gastrointestinal tract, generation of intestinal stem cell lineages, and col-
35 onization of the gut by commensal bacteria. The resulting time series provide the first
36 direct views of spatial and temporal heterogeneities that underlie both events, and
37 demonstrate the capability of Bellymount to uncover new physiological dynamics of
38 cells, tissues, and organs *in vivo*.

39

40 The exterior cuticle of the adult fly, which is generally opaque, presents an obsta-
41 cle for light-based imaging of internal organs. Serendipitously, we noticed that the ven-
42 tral abdominal cuticle becomes transparent when affixed to a glass coverslip by the pol-
43 yvinyl acetate adhesive, Elmer's Clear School Glue (Fig. 1a). We named this procedure
44 'Bellymount'. Transparency of the glued cuticle enabled facile observation of organs
45 such as the midgut, crop, and female ovaries (Fig. 1c) in flies that were live and intact.
46 Bellymounted flies were readily removed from the coverslip, even hours after the glue
47 had dried (Supplemental Movie 1), and they typically remained viable. In a survival as-
48 say, 92% of flies were alive 24 hours after being glued and released (Supplemental Fig.
49 1).

50 The abdomen is the body's central location for digestive physiology and func-
51 tion. To explore the applicability of Bellymount for gastrointestinal studies, we used an
52 inexpensive, USB-pluggable microscope to record food ingestion and transit (Supple-
53 mental Movie 2). Bellymounted flies were provided 5% sucrose water that was colored

54 with Brilliant Blue FCF. Over 45 min, the ingested blue liquid filled successive compartments of the gastrointestinal tract, with rapid peristaltic contractions accompanying nutrient transit. The sharp resolution of these digestive events in time and space demonstrates the potential of Bellymount to investigate gastrointestinal function in real time.

58 We next assessed whether we could resolve cells in the midgut using confocal microscopy. Initially, midgut peristalsis and global body movement during image acquisition caused fluorescently labeled cells to appear duplicated (Fig. 1d, Supplemental 59 Movie 3). To overcome this issue, we designed a custom apparatus to apply anesthesia 60 via carbon dioxide (CO₂) exposure. The Bellymount apparatus comprises three parts: a 61 base to hold the coverslip with the glued fly, a screw-on lid, and a humidity chamber to 62 ensure that the fly does not desiccate during imaging (Fig. 1b, Supplemental Fig. 2). The 63 base and lid were 3D-printed at minimal cost (Methods). CO₂, delivered through an in- 64 let in the base, inhibited both midgut peristalsis and overall body movement. This effect 65 enabled acquisition of crisp images at subcellular resolution (Fig. 1d, Supplemental 66 Movie 3).

68 By gently compressing the abdomen of the glued fly during anesthesia (Fig. 1a), 69 we were able to view the whole abdomen at single-cell resolution. Using either confocal 70 or two-photon microscopy, we acquired volumetric tile scans that included portions of 71 nearly all female abdominal organs: midgut, crop, rectum, ovary, oviduct, uterus, tra- 72 chea, fat body, and Malpighian tubule, as well as circulating hemocytes (Fig. 1e, Supple- 73 mental Fig. 3, and Supplemental Movie 4). In the midgut, stem cells and various stages 74 of terminal progeny were easily distinguished when labeled with fate-specific fluores- 75 cent markers (Fig. 1f). In the ovary, egg chambers at various developmental stages were 76 apparent; within these chambers, nascent oocytes and their supporting cells were read- 77 ily identifiable (Fig. 1g and Supplemental Movie 5). Thus, Bellymount enables—for the 78 first time in adult *Drosophila*—observation of native abdominal organs at single-cell res- 79 olution, in animals that are live and intact.

81 The viability of flies after Bellymount raised the possibility of performing serial
82 Bellymount imaging on the same individuals for longitudinal studies. To investigate
83 this possibility, we evaluated the suitability of Bellymount for tracking cellular events in
84 single flies over multiple days. We focused on two types of cellular events, (1) divisions
85 of midgut intestinal stem cells (Fig. 2a-l), and (2) microbial colonization of the gastroin-
86 testinal tract (Fig. 2m-t). Both processes are conserved in vertebrates and have attracted
87 intense research interest, yet their real-time dynamics remain virtually unexplored due
88 to lack of methods for multi-day tracking in single flies.

89 The *Drosophila* midgut is physiologically equivalent to the vertebrate stomach
90 and small intestine. As in vertebrate intestine, stem cells in the fly midgut continuously
91 divide to replenish terminally differentiated epithelial cells that form the intestinal bar-
92 rier¹³. Although current live imaging methods capture single divisions¹², their timescales
93 are not sufficient to track multiple divisions of the same stem cell or to monitor differen-
94 tiation of cellular progeny.

95 To reveal a stem cell's division history, generating marked clones is the gold
96 standard¹⁴. Constitutive expression of a marker such as GFP is enabled in a small num-
97 ber of single stem cells, and progeny that arise from these labeled stem cells inherit
98 marker expression, enabling their identification. Over time, these progeny manifest as a
99 cluster of labeled cells, termed a clone, and the cellular composition of the clone repre-
100 sents the stem cell's 'lineage'.

101 Midgut stem cell clones traditionally have been analyzed in fixed samples. This
102 approach yields a static snapshot of a stem cell's lineage. However, it does not provide
103 the temporal history of when progeny were born, how quickly they differentiated, or
104 whether any progeny died. Such time-resolved information is crucial for a deep under-
105 standing of adult tissue homeostasis.

106 We asked whether the histories of single stem cell lineages could be tracked by
107 serial imaging using Bellymount. Stem cell lineages were labeled using MARCM

108 (Mosaic Analysis with a Repressible Cell Marker)¹⁵. Spontaneous recombination during
109 the first 4 days of adult life generated sporadic GFP-marked midgut stem cells, which
110 subsequently developed into GFP-marked, multicellular clones (Fig. 2b and Supple-
111 mental Fig. 4).

112 To test whether specific clones could be re-identified over time, we serially im-
113 aged 3 flies on 3 occasions over 6-7 days (Fig. 2a). In these individuals, 8 clones were re-
114 identifiable because they exhibited unique spatial patterns or distinctive shapes (Sup-
115 plemental Fig. 4). Other clones could not be tracked because they lacked distinguishing
116 morphological characteristics or disappeared from view due to slight displacements or
117 rolling of the midgut tube.

118 We investigated the longitudinal dynamics of these 8 stem cell lineages. First, we
119 determined how lineages grew or shrank by counting the number of clone cells per
120 timepoint (Fig. 2c). This analysis revealed diverse trajectories: 2 clones kept the same
121 number of cells, 3 clones added additional cells, and 3 clones not only added cells but
122 also lost them—events that could not have been detected in fixed tissues. Between
123 timepoints, rates of cell addition exhibited a 16-fold range of 0.25-4 cells per day. These
124 heterogenous dynamics carry implications for how stem cell lineages evolve. While
125 numbers of cells in our tracked clones resemble those reported in fixed tissue studies¹⁶⁻
126 ¹⁸, our longitudinal analysis with Bellymount revealed that clones with similar numbers
127 of cells can arise through highly distinct trajectories.

128 Next, we considered the rates at which cells differentiated into enterocytes. In the
129 fly midgut, a newborn stem cell daughter differentiates into a terminal enterocyte via an
130 intermediate state called an enteroblast. This process is characterized by increasing
131 ploidy; stem cells and new daughters are 2N, enteroblasts are 2-8N, and enterocytes are
132 8-64N¹⁸. Hence, nuclear volume provides an indicator of how far immature enterocytes
133 have progressed toward terminal differentiation (Supplemental Fig. 5).

134 Using nuclear volumes, we assessed differentiation rate for cells in three clones
135 from one midgut (Clones A, B, and C in Fly 3; shown in organ-level view in Fig. 2b and
136 Supplemental Fig. 5 and in zoomed view in Fig. 2d,g,j). These measurements indicated
137 that some stem cell progeny progressed to enteroblast or enterocyte states whereas oth-
138 ers did not (Fig. 2e,f,h,i,k,l). In specific cases, the data also provided more nuanced in-
139 formation: In Clones A and B, enterocytes were absent between days 0-4 but present at
140 day 6, suggesting that, in some cases, enterocyte differentiation proceeded rapidly once
141 initiated. In Clone C, the disappearance of an enterocyte between days 0 and 4 implied
142 either cell loss or de-differentiation.

143 Altogether, these clonal analyses provide the first direct views of how single
144 stem cell lineages develop. They show that dynamics of new cell addition and differen-
145 tiation vary widely, not only between different stem cell lineages^{17,19}, but also within the
146 same lineage at different times. The ability of Bellymount to track individual lineages
147 for prolonged times will facilitate future mechanistic studies of these dynamics.

148 We applied serial Bellymount imaging to examine a second dynamic process,
149 colonization of the gastrointestinal tract by commensal bacteria. While the human gut
150 microbiome comprises hundreds of bacterial species, the *Drosophila* gut microbiome
151 typically comprises only five²⁰. This relative simplicity, together with *Drosophila*'s ge-
152 netic tractability, has helped establish the fly as a powerful model for mechanistic study
153 of host-microbiome interactions.

154 The biogeography, or dynamic spatial distribution, of the gut microbiota along
155 the length of the gastrointestinal (GI) tract is known to impact host-microbiota interac-
156 tions and digestive physiology^{21,22}. However, the biogeography of the *Drosophila* gut is
157 largely mysterious because no existing methods can monitor gut bacteria throughout
158 the GI tracts of living flies.

159 We examined whether serial Bellymount imaging could provide a direct view of
160 gut microbial colonization. The prevalent and abundant gut commensal *Lactobacillus*

161 *plantarum* was tagged with mCherry²³ and fed to conventionally reared flies for 1 day.
162 The next day, flies were removed from *L. plantarum*-mCherry and, for the remainder of
163 the experiment, maintained on fresh food (Fig. 2m). Measurements of colony forming
164 units in a cohort of homogenized flies confirmed that levels of *L. plantarum* were high
165 immediately after the 1-day pulse, decreased over the next 3 days, and subsequently
166 plateaued, indicating stable colonization²³ (Fig. 2n).

167 We performed whole-abdomen volumetric imaging immediately (0 days), 2
168 days, and 4 days after the *L. plantarum* pulse (Fig. 2m, o, and r, respectively) to reveal
169 the bacteria's spatial distribution. At 0 days, *L. plantarum*-mCherry densely occupied the
170 lumens of both the crop, a proximal storage organ²⁴, and the midgut, with a filling frac-
171 tion of 51±15% (*n*=9). In the same individuals 4 days later, *L. plantarum*-mCherry was
172 sparse in both organs, with a filling fraction of 4.6±4.7% (*n*=5) (Fig. 2p,s). These observa-
173 tions were consistent with CFU measurements.

174 Beyond filling fraction, the three-dimensional patterns of *L. plantarum* exhibited
175 intriguing regional and temporal changes that could not have been detected in homoge-
176 nized flies. During colonization of the crop, *L. plantarum* localized to the crop wall,
177 where it frequently coalesced into prominent clumps (Figs. 2q,t; Supplemental Movie
178 6). By contrast, in the midgut *L. plantarum* remained in the lumen, where it formed
179 clumps in the proximal midgut while remaining dispersed as single cells in the distal
180 midgut (Fig. 2s,t; Supplemental Movies 7, 8). These differences are consistent with im-
181 paired bacterial viability after transit through the acidic environment of the middle
182 midgut²⁵. Altogether, this time-resolved analysis of *L. plantarum* colonization provides
183 the first insights into the dynamic regional biogeography of the *Drosophila* gut microbi-
184 ota.

185

186 In summary, Bellymount enables longitudinal studies in the *Drosophila* abdomen
187 through serial, micron-resolution imaging of flies that remain live and intact. Using Bel-
188 lymount, we observed real-time digestive transit, visualized the native arrangement of
189 abdominal organs, and resolved the organs' constituent cells and resident microbiota.
190 We applied serial Bellymount imaging to perform time-resolved tracking of midgut
191 stem cell lineage dynamics and gut bacterial colonization, two multi-day processes that
192 were previously inaccessible to live study. These experiments revealed previously un-
193 described heterogeneities in the spatial and temporal events that underlie midgut phys-
194 iology and host-microbiome interactions. The Bellymount platform, which is based on
195 Elmer's Glue and a simple, 3D-printed apparatus, is inexpensive to implement, versatile
196 in application, and compatible with a wide range of upright and inverted microscope
197 systems. These features will facilitate the use of Bellymount to study the real-time dy-
198 namics of the diverse cellular and physiological processes that occur over prolonged
199 timescales in adult animals.

200 **Methods**

201

202 ***Drosophila* stocks**

203 We obtained *hemolectinGal4; UAS-2xEGFP* (BL30140), *ubi-his2av::mRFP* (BL23650),
204 and *10xUAS-IVS-myrt::Eos* (*UAS-Eos*) (BL32226) from the Bloomington Stock Center.
205 *esgGal4* (112304) was obtained from the Kyoto *Drosophila* Genetic Resource Center. The
206 following stocks were gifts: *mexGal4* (Carl Thummel), *breathlessGal4*, *UAS-his2b::CFP*
207 (Yoshihiro Inoue), *ubi-his2avD::YFP* (Pavel Tomancak), and *GBE-Su(H)-GFP:nls* (Joaquin
208 de Navascues), *UAS-CD8-GFP*, *hs-flp*¹²; *tubGal4*; *FRT82*, *tubGal80* and *FRT82* (David
209 Bilder). The ‘fate sensor’ line (*esgGal4*, *UAS-his2b::CFP*, *GBE-Su(H)-GFP:nls*; *ubi-*
210 *his2av::mRFP*) was generated in a previous publication¹².

211

212 ***Drosophila* husbandry**

213 Flies and crosses were kept at 25 °C unless otherwise indicated. All experiments
214 were performed on adult females. Flies were raised on standard cornmeal molasses
215 media (water, molasses, cornmeal, agar, yeast, Tegosept, propionic acid). Unless otherwise
216 indicated, following eclosion, flies were kept on cornmeal molasses vials supplemented
217 with a pinch of powdered dry yeast (Red Star, Active Dry Yeast) with males for 4 days
218 prior to imaging.

219

220 **Fabrication of Bellymount apparatus and humidity chamber**

221 The Bellymount apparatus consists of a lid, base, and humidity chamber (Supple-
222 mental Fig. 2). The base and lid were 3D-printed using the online service Shapeways
223 (<https://shapeways.com>). Fabrication was performed with fine detail plastic (Visijet M3
224 Crystal UV curable plastic) and the basic “smooth” finish option.

225 To prevent the fly from desiccating during imaging, we attached a humidity
226 chamber to the underside of the apparatus base (Supplemental Fig. 2). Briefly, we
227 drilled a 3-mm outlet for CO₂ into the wall of a 35-mm petri dish (Olympus plastics,
228 #32-103), then adhered the chamber to a small groove on the underside of the base us-
229 ing dental wax (Surgident, #50092189). Lastly, we covered the bottom of the Petri dish
230 with trimmed paper towels moistened with H₂O.

231

232 **Animal preparation**

233 Flies were glued to the imaging coverslip (Fig. 1a) as follows: Flies were chilled
234 on ice in a microfuge tube for at least 1 h before gluing to anesthetize them. Next, we
235 painted a small rectangle of Clear Elmer's School glue (Amazon, B06WVDBR62)
236 roughly the size of the fly abdomen onto the center of a 40-mm coverslip (Fischer Scien-
237 tific, #NC0018778) using a Worm Pick (Genesee, #59-AWP [handle] and #59-32P6 [tips]).
238 After applying the glue, we quickly adhered flies to the coverslip.

239 Gluing the fly on its left ventrolateral surface provided optimal viewing of the
240 gastrointestinal tract (Fig. 1c). To achieve the desired positioning, each of the fly's two
241 most posterior legs were held with a pair of Dumont #5 forceps while laying the fly's
242 ventrolateral side onto the Elmer's glue. During gluing, care was taken to ensure none
243 of the legs were trapped between the abdomen and the coverslip. After positioning the
244 fly, we gently pressed the abdomen into the Elmer's glue using a paintbrush.

245 Maximizing contact with the coverslip maximized visibility of abdominal organs.
246 Therefore, we gently compressed the fly after gluing by placing a second, compressing
247 coverslip atop the fly (Fig. 1a). The compressing coverslip was a square coverslip
248 (Fischer Scientific, #12-541B) that had been broken in half. We found that 0.48 mm was
249 the optimal distance between the compressing coverslip and the primary coverslip to
250 ensure that the fly experienced compression without undue force. To position the com-
251 pressing coverslip, we placed two 0.48 mm-thick, adherent spacers (Millipore-Sigma,

252 #GBL620004-1EA) on either side of the fly and placed the compressing coverslip on top
253 of the spacers. After thus securing the fly, we nested the coverslip inside the base of the
254 apparatus and screwed on the lid.

255

256 **Anesthesia during Bellymount imaging**

257 To minimize voluntary and involuntary tissue movements, we applied CO₂ anes-
258 thesia during imaging. We delivered CO₂ using 2-mm inner diameter (ID) flexible, sili-
259 cone tubing attached to the inlet built into the base of the Bellymount apparatus (Fig. 1e,
260 Supplemental Fig. 2). To prevent desiccation of the fly, the tubing was connected to a
261 500-ml Pecon humidification bottle containing distilled water. The humidified CO₂ was
262 piped through a secondary regulator (Micromatic, #8011-15), which allowed fine control
263 of CO₂ flow during imaging. The secondary regulator was attached, in turn, to a pri-
264 mary regulator and CO₂ tank.

265

266 **Release of Bellymounted flies**

267 To release flies from the Bellymount apparatus after imaging, the compressing
268 coverslip and spacers were removed as a single unit and saved for future experiments.
269 The tip of a pair of Dumont #5 forceps was placed under the fly thorax to gently pry the
270 fly from the dried Elmer's glue (Supplemental Movie 1).

271 Occasionally, a layer of Elmer's glue remained on the fly's abdomen after it was
272 removed from the Bellymount apparatus. This layer could be peeled off easily by grab-
273 bing a free 'tab' of dried glue with a pair of forceps. If no free surface of dry glue was
274 present, the glue was rewetted with milliQ water using a small paintbrush. After allow-
275 ing the re-wetted glue to dry, a free tab of Elmer's glue would commonly present itself.
276 The glue was then peeled off with forceps as described above.

277

278 **Survival assay**

279 We measured the lifespans of flies glued to a coverslip and compressed (see **Animal preparation**), to test for potential effects of the Bellymount protocol on viability.
280 Flies were collected after eclosion and placed in molasses vials with powdered dry yeast
281 and males for four days before the experiment. Flies were then randomly split into two
282 groups (Bellymounted, $n=50$; control, $n=49$). Bellymounted flies were glued and com-
283 pressed as described above (see **Animal preparation**), except that flies were held at
284 room temperature in an empty pipette tip box with moistened paper towels rather than
285 in the imaging apparatus. After 1 h, flies were released from Bellymount as described
286 above (see **Release of Bellymounted flies**) and placed in a vial with 8-10 other experi-
287 mental flies and 3-4 males. The control group did not undergo any Bellymount proce-
288 dure and were maintained similarly as a control. We recorded the number of deceased
289 flies each day and flipped the remaining survivors onto fresh food. Flies were main-
290 tained at 25 °C over the 7-day course of the experiment.
291

292

293 **Microscopy**

294 We collected confocal images using four microscope systems: (1) an inverted
295 Zeiss LSM880 with Zen software and Airy scan mode (Fig. 2m,n and Supplemental
296 Figs. 3a, 6); (2) an inverted Zeiss LSM780 microscope with Zen software (Figs. 1h, 2o-q;
297 Supplemental Movies 5-8); (3) an upright Leica SP5 confocal (Figs. 1b,c,f,g, 2c,d,f,h; Sup-
298 plemental Figs. 3b, 4; Supplemental Movies 3, 4); and (4) an inverted Leica SP8 confocal
299 (Supplemental Fig. 5).

300 We acquired brightfield images using three microscope setups: (1) a Zeiss Dis-
301 covery V8 stereodissection microscope coupled with an iPhone 5S camera (Fig. 1a); (2) a
302 Leica stereodissection microscope coupled with an iPhone X (Supplemental Movie 1);
303 and (3) a digital, USB-pluggable microscope (Plugable.com, USB2-MICRO-250X Digital
304 Microscope) (Supplemental Movie 2).

305

306 **Determining visible regions of the midgut**

307 To determine which regions of the midgut are visualized by Bellymount imag-
308 ing, we used Eos, a photoconvertible fluorophore²⁶, to selectively mark visible regions
309 of the midgut. Four day-old flies (*mexGal4*, *Gal80^{ts}*; *ubi-his2av::mRFP* / *UAS-Eos*) were
310 glued and prepared as described above (see **Animal preparation**). Using 405-nm laser
311 light on a Zeiss LSM880 confocal, Eos protein was photoconverted from green to red
312 emission.

313 After photoconversion, flies were removed from the Bellymount apparatus as de-
314 scribed above (see **Release of Bellymounted flies**) and the midgut was examined *ex*
315 *vivo* to determine the photoconverted regions. An 8-well Secure-Seal spacer sticker
316 (ThermoFisher, #S24737) was used to form ‘wells’ on a microscope slide (Fischer Elec-
317 tronic Microscopy Sciences, #63720-05). After dissecting in Schneider’s Insect medium
318 (Sigma-Aldrich, #S0146), one midgut and 7 µL of Schneider’s medium were placed in
319 each well and topped with a coverslip (Fisher Scientific, #12-545-81). Midguts were im-
320 aged using an inverted Zeiss LSM 880 immediately after mounting.

321

322 **Time-lapse imaging of nutrient ingestion and midgut peristalsis**

323 To monitor ingestion and midgut peristalsis, we performed low-magnification
324 imaging of the fly abdomen while feeding dye. To easily identify the midgut for imag-
325 ing, we fed FCF Brilliant Blue dye prior to the imaging experiment. Briefly, 24 h prior to
326 imaging, flies were placed in a vial with blue-dyed yeast paste (10% FCF Brilliant Blue
327 Dye (Sigma-Aldrich, #80717) in water mixed with dry yeast) and male flies.

328 After feeding for 1 day, flies were mounted as described above (see **Animal**
329 **Preparation**). A cotton feeding wick was positioned in proximity to the fly’s proboscis
330 and glued to the coverslip using KWIK-SIL silicone glue (World Precision Instruments,
331 60002). The feeding wick was attached to 2-mm ID flexible silicone tubing connected to

332 a 10-mL syringe reservoir (Thermo Fischer Scientific, #03 377 23) filled with 10% FCF
333 Brilliant Blue Dye in 5% sucrose (Sigma-Aldrich, #84097) water. Once the feeding wick
334 had been properly placed and filled, the coverslip was gently placed into the apparatus
335 with the tubing and reservoir attached through the CO₂ outlet.

336 To image the fly, a USB pluggable microscope (Plugable.com, USB2-MICRO-
337 250X Digital Microscope) was positioned above the abdomen of the fly and images were
338 acquired every 0.5 s.

339

340 **Longitudinal imaging, tracking, and analysis of stem cell clones with MARCM**

341 The MARCM system¹⁵ was used to generate GFP-marked stem cell clones.
342 MARCM turns on permanent, heritable GFP expression specifically in mitotic cells,
343 when chromosomal recombination results in loss of GAL80^{ts} and consequent tubGAL4-
344 driven expression of UAS-GFP in one daughter. In the adult fly midgut, MARCM spe-
345 cifically labels stem cell lineages because stem cells are, with rare exceptions, the only
346 cells that undergo mitosis^{16,18,27}.

347 Crosses for MARCM labeling were maintained at 18 °C prior to eclosion and
348 shifted to 25 °C within the first 8 hours after eclosion. This temperature shift results in
349 spontaneous GFP labeling of a small fraction of midgut stem cells. Four days after 25 °C
350 temperature shift, we performed the first session of Bellymount imaging (day 0) (Fig.
351 2a). The sparseness of these spontaneous clones facilitated re-identification of clones
352 during subsequent imaging sessions (Fig. 2a). After each imaging session, flies were
353 placed in fresh vials (1 fly/vial) with powdered dry yeast and one male at 25 °C. Flies
354 were flipped to new vials each day.

355 We identified and analyzed MARCM clones by examining serial confocal sec-
356 tions. Only clones that could be tracked for three consecutive time points following day
357 0 imaging were analyzed. We identified clones that were suitable for tracking by com-
358 paring the clone's location relative to neighboring clones. Then, we mapped the clone

359 arrangement to images of the same individual taken at other time points to verify that
360 the clones were the same (Supplemental Fig. 4). In some cases, clones had a distinctive
361 shape that allowed them to be identified across imaging sessions.

362 MARCM clone size and development were analyzed using FIJI and Bitplane
363 Imaris v. 9.3.0. We inferred clone size by counting the number of contiguous cells in the
364 discrete clone labeled with the nuclear marker *ubi-his2av::mRFP* and by summing the
365 nuclear volumes of each cell within the clone. We computed nuclear volume using the
366 Imaris contour tool by creating a surface from the *ubi-his2av::mRFP*-labeled nucleus and
367 determining the enclosed volume.

368

369 **Preparation of fixed samples**

370 Fixed samples with labeled cell types were used to determine the relationship be-
371 tween nuclear volume and differentiation state (Supplemental Fig. 5) as a baseline for
372 analyses of differentiation rate (Fig. 2 e,f,h,i,k,l). Flies of genotype *esgGal4*, *UAS-*
373 *his2b::CFP*, *GBE-Su(H)-GFP:nls*; *ubi-his2av::mRFP* were fixed, immunostained, and
374 mounted as described previously²⁷. Primary antibody: mouse anti-Prospero (1:400,
375 DSHB, #MR1A), which stains enteroendocrine cells. Secondary antibody: Alexa Fluor
376 647-conjugated goat anti-mouse IgG (1:400, Thermo Fischer Scientific #A-21240). Sam-
377 ples were mounted in ProLong (LifeTechnologies). Stem cells, enteroblasts, and en-
378 terocytes were identified as described previously¹². Nuclear volume for each cell type
379 was assessed as described above (see **Longitudinal imaging, tracking, and analysis of**
380 **MARCM clones**).

381

382 ***L. plantarum* colonization**

383 For experiments with *L. plantarum*, flies were raised on standard cornmeal molas-
384 ses food. Beginning with *L. plantarum* feeding and for the duration of the experiment,

385 flies were shifted to cornmeal molasses food lacking Tegosept and supplemented with
386 10 μ g/mL chloramphenicol (Calbiochem 220551).

387 A wild fly isolate of *L. plantarum* was tagged with a plasmid encoding mCherry
388 and chloramphenicol resistance²³. This strain was grown overnight from a frozen stock
389 (25% glycerol) in 3 mL MRS medium (Difco™ Lactobacilli MRS Broth, BD #288110) con-
390 taining 10 μ g/mL chloramphenicol. We spun down 1.5 mL of the saturated culture at
391 2000 rpm for 5 min at 4 °C. Next, we resuspended the pellet in 200 μ L MRS + 10 μ g/mL
392 chloramphenicol and pipetted onto Whatman paper (Sigma-Aldrich, #WHA1002110) on
393 fresh cornmeal molasses media as described above. Ten females and 3 males were trans-
394 ferred to each vial, which were wrapped in aluminum foil to prevent photobleaching of
395 bacteria. Vials were placed at 29 °C for 24 h to induce rapid bacterial growth. After 24 h,
396 we removed flies either for imaging or for CFU measurements (see **CFU measure-
397 ments**). Flies that were kept for longitudinal imaging were placed in fresh vials at 25 °C
398 with one male and flipped each day onto fresh food.

399

400 **CFU measurements**

401 To quantify the bacterial load in flies, we used 3 flies per day kept in the same
402 conditions as flies used for Bellymount imaging. Flies were kept on ice for 2-4 h and
403 then washed with 70% ethanol three times and sterile PBS three times to remove exter-
404 nal bacteria. We homogenized flies individually in 1.5 mL microcentrifuge tubes con-
405 taining 100 μ L sterile PBS using a motorized pestle. Next, we diluted the homogenate 10
406 times 1:5 in sterile PBS and spotted 3 μ L onto MRS agar plates (1.5% agar) containing 10
407 μ g/mL chloramphenicol. We counted colonies after growing for 48 h at 30 °C.

408

409 **Analysis of *L. plantarum* filling fraction**

410 To quantify the bacterial density in the digestive tract following fly feeding, we
411 measured the filling fractions of the crop and midgut. Images were analyzed using

412 custom Matlab (R2018b) code. To calculate the filling fraction, the edge of the crop or
413 the midgut was identified from the bacterial signal. The filling fraction was calculated
414 as the pixel area occupied by cells ~5 μm into the organ in the z-direction using a manu-
415 ally selected intensity threshold to capture signal from bacteria.

416 **Author Contributions**

417 L.A.J.K., A.A.-D., J.L.M., W.B.L., K.C.H., and L.E.O. conceived the study; L.A.J.K., A.A.-
418 D., Y.H.S., S.B., and J.L.M. performed the research; L.A.J.K., A.A.-D., K.C.H., and L.E.O.
419 analyzed the data; and L.A.J.K., A.A.-D., K.C.H., and L.E.O. wrote the paper. All authors
420 provided input on the manuscript.

421 **Acknowledgements**

422 L.A.J.K was supported by 2T32GM00779038 and by Ruth L. Kirschstein Diversity Pre-
423 doctoral Fellowship 1F31GM123736-01. A.A.-D. was supported by a Howard Hughes
424 Medical Institute International Student Research Fellowship and a Stanford Bio-X
425 Bowes Fellowship. This work was supported by NIH DP5OD017851 (to W.B.L.), the Al-
426 len Discovery Center at Stanford on Systems Modeling of Infection (to K.C.H), NIH
427 RO1GM116000-01A1 (to L.E.O), and ACS RSG-17-167-01 DDC (to L.E.O.). K.C.H. is a
428 Chan Zuckerberg Biohub Investigator. Confocal microscopy was performed at the Stan-
429 ford Beckman Cell Sciences Imaging Facility (NIH S10RR02557401 and 1S10OD010580)
430 and the Stanford Shriram Cell Sciences Imaging Facility funded by the Beckman Center
431 and the Stanford School of Engineering, respectively. Initial CAD files were generated
432 and printed by Jerome T. Geronimo at Stanford's 3-Dimensional Printing & Rapid Pro-
433tototyping Facility. We are grateful to have obtained *Drosophila* stocks from David Bilder,
434 Carl Thummel, Yoshihiro Inoue, Pavel Tomancak, Joaquin de Navascues, the Kyoto
435 Stock Center (DGRC), and the Bloomington Drosophila Stock Center (NIH
436 P40OD018537). We thank Ihuicatl and Canciana for being highly cooperative Bel-
437 lymount subjects; Linda Jaramillo Koyama, Jeffrey Wesley Carlson, Katharine Ng, and
438 members of the Huang and O'Brien labs for helpful discussions; and Allen Spradling

439 Irene Miguel-Aliaga, Minx Fuller, and Jon-Michael Knapp for valuable comments on
440 the manuscript.

441

442 **References**

- 443 1. He, Y. & Jasper, H. Studying aging in *Drosophila*. *Methods* **68**, 129–133 (2014).
- 444 2. Losick, V. P., Morris, L. X., Fox, D. T. & Spradling, A. *Drosophila* stem cell
445 niches: a decade of discovery suggests a unified view of stem cell regulation. *Develop-
446 mental Cell* **21**, 159–171 (2011).
- 447 3. Hou, S. X. & Singh, S. R. Stem-cell-based tumorigenesis in adult *Drosophila*.
448 *Curr. Top. Dev. Biol.* **121**, 311–337 (2017).
- 449 4. Douglas, A. E. The *Drosophila* model for microbiome research. *Lab Anim* **47**, 157–
450 164 (2018).
- 451 5. Ugur, B., Chen, K. & Bellen, H. J. *Drosophila* tools and assays for the study of hu-
452 man diseases. *Dis Model Mech* **9**, 235–244 (2016).
- 453 6. Al, K. *et al.* Live imaging of a *Drosophila melanogaster* model of nephrolithiasis
454 with probiotic supplementation using CO₂ anesthesia and Micro-CT. *J. Urol.* **201**, e22–e23
455 (2019).
- 456 7. Poinapen, D. *et al.* Micro-CT imaging of live insects using carbon dioxide gas-in-
457 duced hypoxia as anesthetic with minimal impact on certain subsequent life history
458 traits. *BMC Zoology* **2**, 9 (2017).
- 459 8. Men, J. *et al.* Optogenetic cardiac control in *Drosophila* using red-light. in *BRAIN*
460 JW3A.33 (Optical Society of America, 2018).
- 461 9. Fichelson, P. *et al.* Live-imaging of single stem cells within their niche reveals that
462 a U3snoRNP component segregates asymmetrically and is required for self-renewal in
463 *Drosophila*. *Nature Cell Biology* **11**, 685–693 (2009).
- 464 10. Lenhart, K. F. & DiNardo, S. Somatic cell encystment promotes abscission in
465 germline stem cells following a regulated block in cytokinesis. *Developmental Cell* **34**,
466 192–205 (2015).
- 467 11. Morris, L. X. & Spradling, A. C. Long-term live imaging provides new insight
468 into stem cell regulation and germline-soma coordination in the *Drosophila* ovary. *De-
469 velopment* **138**, 2207–2215 (2011).
- 470 12. Martin, J. L. *et al.* Long-term live imaging of the *Drosophila* adult midgut reveals
471 real-time dynamics of division, differentiation and loss. *eLife* **7**, e36248 (2018).
- 472 13. Apidianakis, Y., Tamamouna, V. & Teloni, S. Intestinal Stem Cells: A decade of

473 intensive research in *Drosophila* and the road ahead. *Advances in Insect ...* **52**, 139–178
474 (2017).

475 14. Hsu, Y.-C. & Fuchs, E. A family business: stem cell progeny join the niche to reg-
476 ulate homeostasis. *Nat Rev Mol Cell Biol* **13**, 103–114 (2012).

477 15. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of
478 gene function in neuronal morphogenesis. *Neuron* **22**, 451–461 (1999).

479 16. Liang, J., Balachandra, S., Ngo, S. & O'Brien, L. E. Feedback regulation of steady-
480 state epithelial turnover and organ size. *Nature* **548**, 588–591 (2017).

481 17. de Navascués, J. *et al.* *Drosophila* midgut homeostasis involves neutral competi-
482 tion between symmetrically dividing intestinal stem cells. *EMBO J* **31**, 2473–2485 (2012).

483 18. Ohlstein, B. & Spradling, A. The adult *Drosophila* posterior midgut is main-
484 tained by pluripotent stem cells. *Nature* **439**, 470–474 (2006).

485 19. Klein, A. M. & Simons, B. D. Universal patterns of stem cell fate in cycling adult
486 tissues. *Development* **138**, 3103–3111 (2011).

487 20. Wong, C. N. A., Ng, P. & Douglas, A. E. Low-diversity bacterial community in
488 the gut of the fruitfly *Drosophila melanogaster*. *Environmental Microbiology* **13**, 1889–
489 1900 (2011).

490 21. Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome:
491 Connecting spatial organization to function. *Cell Host Microbe* **21**, 433–442 (2017).

492 22. Willis, A. R. *et al.* *Shigella*-induced emergency granulopoiesis protects zebrafish
493 larvae from secondary infection. *mBio* **9**, e00933-18 (2018).

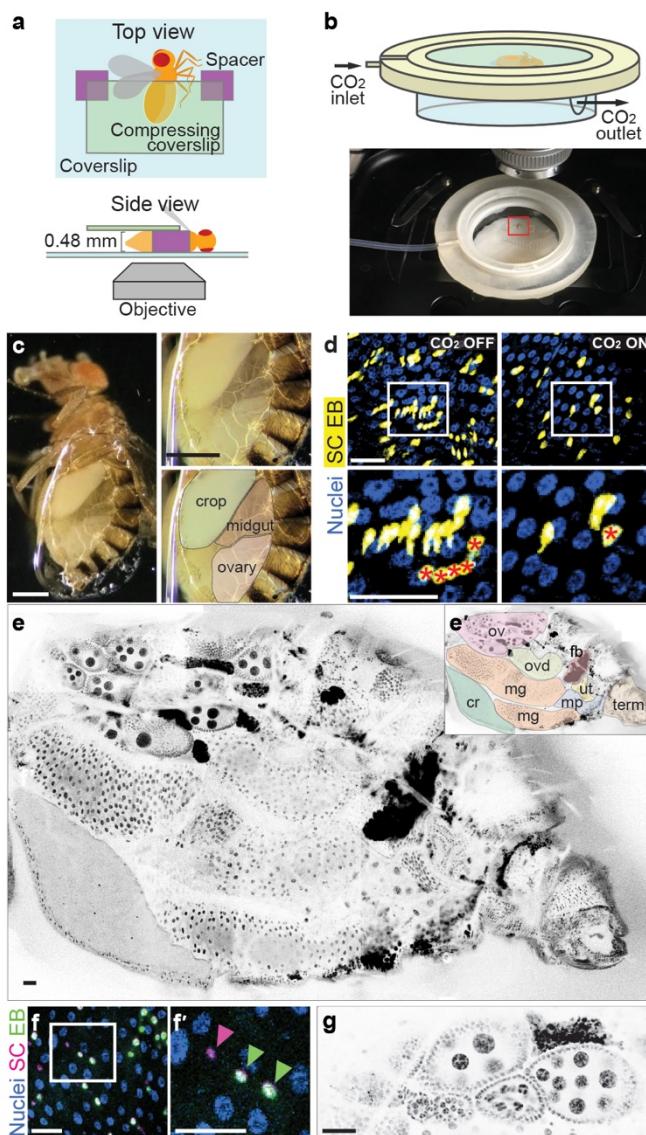
494 23. Obadia, B. *et al.* Probabilistic invasion underlies natural gut microbiome stability.
495 *Current Biology* **27**, 1999-2006.e8 (2017).

496 24. Stoffolano, J. G. & Haselton, A. T. The adult Dipteran crop: a unique and over-
497 looked organ. *Annu. Rev. Entomol.* **58**, 205–225 (2013).

498 25. Shanbhag, S. & Tripathi, S. Epithelial ultrastructure and cellular mechanisms of
499 acid and base transport in the *Drosophila* midgut. *J Exp Biol* **212**, 1731–1744 (2009).

500 26. Wiedenmann, J. *et al.* EosFP, a fluorescent marker protein with UV-inducible
501 green-to-red fluorescence conversion. *PNAS* **101**, 15905–15910 (2004).

502 27. O'Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell divi-
503 sion drive adaptive intestinal growth. *Cell* **147**, 603–614 (2011).


504

505

506

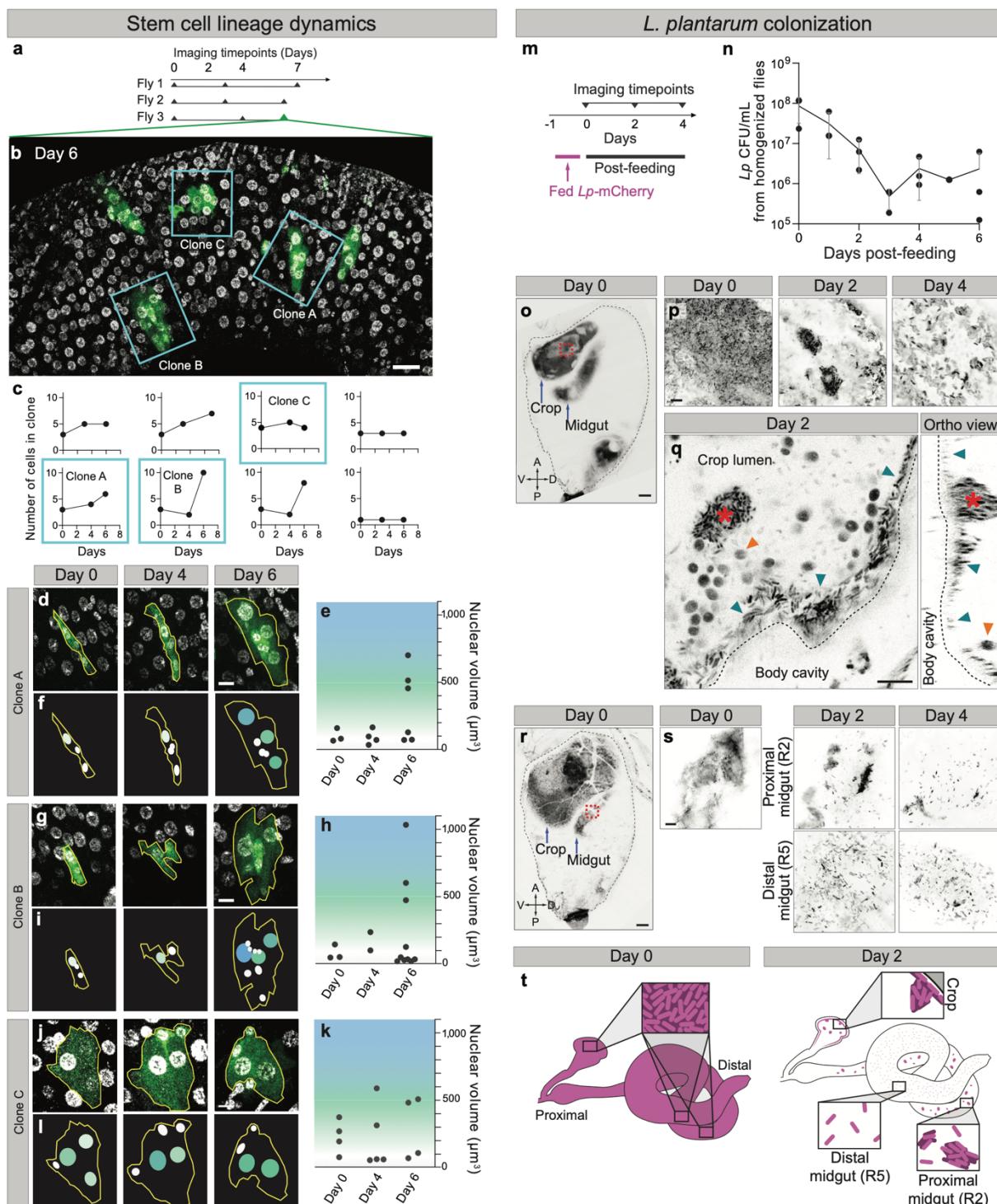
507 **Figures**

508

509

510 **Figure 1: Bellymount enables intravital imaging of abdominal organs in live adult**
511 ***Drosophila* at micron-resolution.**

512 a, Cartoon of Bellymounted fly. The cuticle of the ventrolateral abdomen is glued to the
513 coverslip. To maximize contact with the glue, gentle pressure is applied to the top of the
514 abdomen with a second, compressing coverslip atop two spacers.


515 b, Bellymount apparatus. *Top*, Schematic of 3D-printed apparatus. The coverslip with
516 the glued fly is nested inside. CO₂ flows through the apparatus via the indicated ports.

517 *Bottom*, Bellymount apparatus positioned for imaging on upright microscope. Red box
518 shows the position of the glued fly. See Supplemental Fig. 2.

519 c, Gluing causes the ventral cuticle to become light-transparent. *Left*, Adult female with
520 ventrolateral abdomen glued and compressed as in Fig. 1a. The edge of the glue patch
521 appears as a refractive oval line around the abdomen. *Right*, The crop, the midgut, and
522 an ovary are visible through the glued cuticle. See Supplemental Movie 2.

523 d, Carbon dioxide (CO₂) minimizes tissue movements for confocal fluorescence micros-
524 copy. *Left*, Without CO₂, tissue movements during z-stack acquisition resulted in multi-
525 ple representations of the same cells. *Right*, With CO₂, movements were inhibited, and
526 no multiple representations are present. In zoomed panels (bottom), red asterisks label
527 the identical cell in images taken without and with CO₂. Nuclei (His2av::mRFP) are
528 shown in blue; midgut stem cells and enteroblasts in yellow (LifeactGFP). See Supple-
529 mental Movie 3.

530 e-g, Intravital, micron-resolution imaging of multiple abdominal organs. e, Projection of
531 a tiled z-stack reveals arrangement of abdominal organs in a live, intact female. Nuclei
532 (His2av::mRFP) in inverted grayscale. e', Visible organs are: crop (cr), mg (midgut), ov
533 (ovary), ovd (oviduct), fb (fat body), ut (uterus), mp (Malligian tubules), term (termi-
534 nalia). f, Multichannel view of cell types in the midgut. Stem cells (SC, red nuclei) and
535 immature enteroblasts (EB, green-yellow nuclei) were dispersed among mature entero-
536 cytes (large blue nuclei). f', Zoomed region with nuclei of stem cell (pink arrowhead)
537 and two enteroblasts (green arrowheads). g, Detail of ovary shows egg chambers at dif-
538 ferent developmental stages. Nuclei (His2av::mRFP) in inverted grayscale. Panels d-g
539 are projections of confocal stacks. Genotype of flies in d: *esg>LifeActGFP; ubi-*
540 *his2av::mRFP*. Genotype of flies in e-g: *esg>his2b::CFP; GBE-Su(H)-GFP:nls; ubi-*
541 *his2av::mRFP*. All scale bars, 30 μ m.

Figure 2: Serial Bellymount imaging reveals longitudinal dynamics of midgut stem cells and gut bacteria.

545 a-j, Dynamics of midgut stem cell lineages:

546 a, Timepoints for serial imaging of GFP-marked stem cell clones. Clones arose

547 spontaneously in the first 4 days of adult life and were imaged 3 times over the subse-
548 quent 6-7 days. Day 0 designates the first imaging session.

549 b, Clones formed organ-level patterns that enable their re-identification across imaging
550 sessions. Blue boxes outline the midgut clones in Fly 3 that were tracked for the dura-
551 tion of the experiment. Green, GFP-labeled clones. Grayscale, nuclei (His2av::mRFP).
552 Scale bar, 30 μ m. See Supplemental Fig. 4.

553 c, Longitudinal dynamics of clone cell addition and loss. Cells were counted at each im-
554 aging timepoint for 8 clones from the 3 flies in (a).

555 d, g, j, Zoomed images of the tracked midgut clones in (b) at each timepoint. Scale bar,
556 10 μ m.

557 e, h, k, Longitudinal dynamics of clone cell differentiation as revealed by nuclear vol-
558 ume. Larger nuclear volumes (green to blue background) represented more advanced
559 stages of enteroblast-enterocyte differentiation, while stem cells had small nuclear vol-
560 umes (white background). Small nuclei are also a feature of enteroendocrine cells,
561 which cannot be distinguished from stem cells in this experiment. See Supplemental
562 Fig. 6.

563 f, i, l, Cartoons of clones in (d, g, j). Colors of nuclei in cartoons correspond to the col-
564 ored background for nuclear volumes plotted in (e, h, k).

565

566 m-t, Gut colonization by *L. plantarum*:

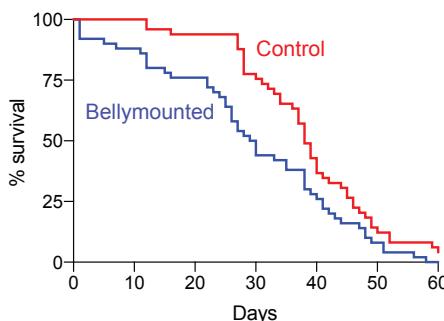
567 m, Time points for serial imaging of *L. plantarum* colonization. Flies were provided a 1-
568 day pulse of *L. plantarum*-mCherry. After *L. plantarum* removal, individual flies were
569 imaged 3 times over 4 days. Day 0 designates the first imaging session.

570 n, Colony forming units (CFUs) of *L. plantarum* over time. A cohort of flies was homoge-
571 nized at the indicated time points after the 1-day pulse of *L. plantarum*-mCherry. Levels
572 of *L. plantarum* were high immediately after the pulse, decreased over the next 3 days,
573 and then plateaued, indicating stable colonization. Each point represents CFUs from
574 one fly.

575 o-q, Longitudinal tracking of *L. plantarum* colonization in the crop. o, Single optical sec-
576 tion shows whole-abdomen tilescan at day 0 after feeding *L. plantarum*-mCherry (in-
577 verted greyscale). Red box indicates Day 0 zoomed-in region in (p). Scale bar, 30 μ m. p,
578 Single optical sections show spatial patterns of *L. plantarum*-mCherry in the same crop
579 on days 0, 2, 4. Inverted greyscale, *L. plantarum*. q, High-magnification optical section
580 (left) and orthoview (right) of crop from (p), Day 2. Bacteria accumulated at the edge of
581 the crop (blue arrows) and formed prominent clumps (red asterisk). Ingested yeast cells
582 (orange arrows) were also visible due to autofluorescence. See Supplemental Movie 6.

583 r-s, Longitudinal tracking of *L. plantarum* colonization in the midgut. r, Single optical

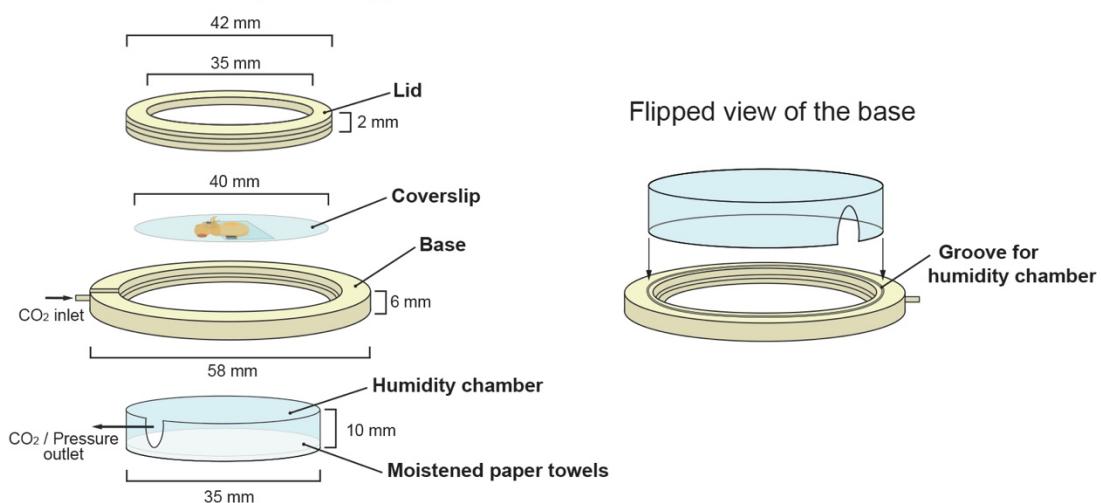
584 section shows whole-abdomen tilescan at day 0 after feeding *L. plantarum*-mCherry (in-
585 verted greyscale). Red box indicates Day 0 zoom region in (s). Scale bar, 30 μm . s, Single
586 optical sections show spatial patterns of *L. plantarum*-mCherry in the same midgut on
587 days 0, 2, 4. On day 0 only one region of the midgut was visible. On days 2, 4 two re-
588 gions of the midgut became visible. Distinct spatial patterns of bacterial colonization
589 characterized proximal and distal midgut regions. Inverted greyscale, *L. plantarum*. See
590 Supplemental Movies 7, 8.

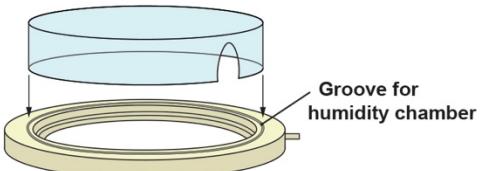

591 t, Heterogenous dynamics of bacterial colonization and dispersal in distinct regions of
592 the GI tract as revealed by longitudinal tracking. Individual regions of the GI tract in-
593 cluding the crop, proximal midgut, and distal midgut exhibited distinct spatial patterns
594 of bacterial localization that developed within an individual over time. Genotype for (b-
595 l): *UAS-CD8-GFP, hs-flp; tubGal4; FRT82, tubGal80/ubi-his2av::mRFP, FRT82*. Genotype
596 for (m-t): *ubi-his2avD::YFP*. Unless indicated, images are projections of confocal stacks.
597 All scale bars, 10 μm unless otherwise indicated.

598 **Supplemental Figures 1-6**

599

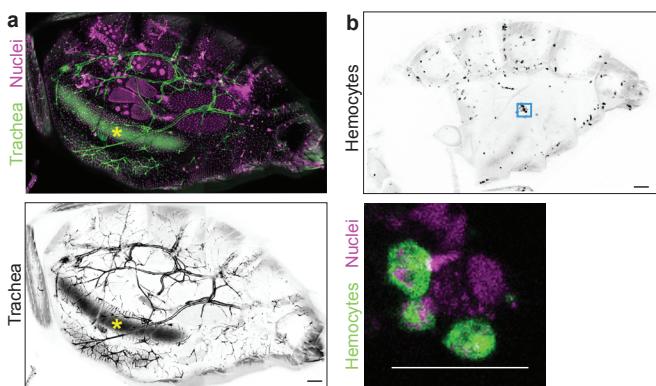
600


601


602 **Supplemental Figure 1: Longevity of animals after Bellymount.** Adult females (4 days
603 post-eclosion) were subjected to the Bellymount protocol (gluing and gentle compres-
604 sion) for 1 h and subsequently released. Lifespans of Bellymounted animals ($n=50$) were
605 compared to a control cohort of age- and sex-matched animals that were neither glued
606 nor compressed ($n=49$). One day after being released, 92% Bellymounted flies were
607 alive. If successive applications of the Bellymount protocol each have the same effect on
608 individual mortality, then population-level survival after three Bellymount protocols
609 would be $\sim 78\%$ ($0.92^3 = 0.78$). Genotype: *ubi-his2avD::YFP*.

610

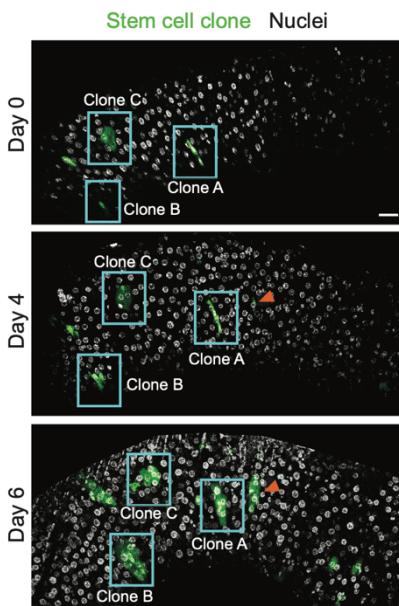
Exploded view of Bellymount apparatus


Flipped view of the base

611

612 **Supplemental Figure 2:** Exploded view of Bellymount apparatus. Isometric cartoon
613 shows the arrangement of individual components in the assembled apparatus. A 40-
614 mm coverslip with the glued, compressed fly is nested inside a custom base and se-
615 cured by screwing on the lid. Supplemental Files 1 and 2 are CAD files for 3D printing
616 of the lid and base. To prevent the fly from desiccating, a humidity chamber (35-mm pe-
617 tri dish containing H₂O-soaked Kimwipes) attaches to a groove in the underside of the
618 base.

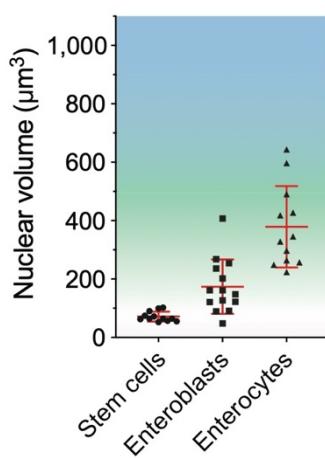
619



620

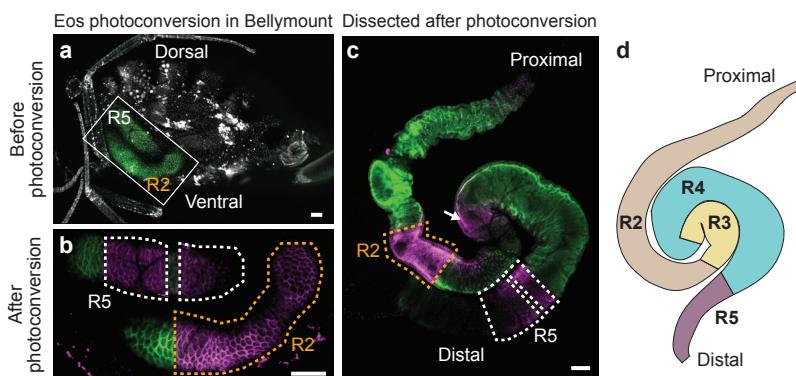
621 **Supplemental Figure 3: Abdominal trachea and hemocytes in Bellymounted animals.**

622 a, Abdominal tracheal network. Primary, secondary, and tertiary branches are visible
623 (*btl>GFP*; green in top panel, inverted grayscale in bottom panel). Magenta (top) shows
624 all nuclei (*ubi-his2av::mRFP*). Ingested food in the midgut lumen (yellow asterisk) has
625 autofluorescence in the green channel. Scale bar, 100 μ m. b, Abdominal hemocytes. Top,
626 Whole-abdomen distribution (*hml>GFP*; inverted grayscale). Bottom, Zoom-in of boxed
627 region in top panel shows single hemocytes (*hml>GFP*; green). Magenta shows all nuclei
628 (*ubi-his2av::mRFP*). Scale bars, 100 μ m (top) and 30 μ m (bottom). All images are z-stack
629 projections.


630

631

632 **Supplemental Figure 4: Persistent organ-level patterns enable re-identification of**
633 **midgut clones.** Wide-field view of Fly 3 midgut at each imaging timepoint (Fig. 1a).
634 GFP-labeled stem cell clones were visible as green multicellular clusters. Blue boxes out-
635 line trackable clones that were analyzed in detail (Fig. 2d-l). Some spontaneous clones
636 (orange arrowheads) developed over the duration of the experiment. Greyscale shows
637 all nuclei (ubi-his2av::mRFP). Scale bar, 30 μ m.


638

639

640 **Supplemental Figure 5: Enterocyte differentiation is characterized by increased nu-**
641 **clear volume.** Nuclear volumes were measured from 3D reconstructions of fixed mid-
642 guts that expressed cellular markers for successive stages of enterocyte differentiation:
643 stem (and stem-like) cells, immature enteroblasts, and mature enterocytes. Mean \pm S.D.
644 nuclear volumes: stem cells ($n=12$), $71.8 \pm 16.8 \mu\text{m}^3$; enteroblasts ($n=14$), $174.2 \pm 93.1 \mu\text{m}^3$;
645 enterocytes ($n=12$), $378.7 \pm 139.3 \mu\text{m}^3$. Genotype: *esg>his2b::CFP*, *GBE-Su(H)-GFP:nls*; *ubi-*
646 *his2av::mRFP*. Cell types were distinguished as follows: stem cells, RFP⁺ and CFP⁺; enter-
647 oblasts, RFP⁺, CFP⁺, and GFP⁺; enterocytes, RFP⁺ and polyplloid.

648

649

650 **Supplemental Figure 6: Proximal (R2) and distal (R5) midgut regions can be viewed**
651 **in Bellymount.** The photoconvertible protein Eos was used to determine which midgut
652 regions are visible in Bellymounted flies. Female flies with midgut-specific expression
653 of Eos (*mex>Eos*) were Bellymounted, and targeted areas were photoconverted by illu-
654 mination with 405-nm wavelength laser light. Before photoconversion (a), Eos appeared
655 as green fluorescence in the dorsal and ventral midgut loops (white box). After photo-
656 conversion (b), Eos appeared red (magenta pseudocolor) in the laser-targeted areas
657 (dotted outlines) and remained green in other areas. To determine which midgut re-
658 gions were photoconverted, flies were removed from Bellymount and their midguts
659 were dissected (c) and compared to the stereotyped anatomy of midgut regions R1-5
660 (d). This comparison showed that the photoconverted dorsal loop (white dotted out-
661 lines) was in R2 and the ventral loop (orange outline) was in R5. Weak photoconversion
662 was also visible in R4 (arrow), likely because of its proximity to R2 *in situ*. The same pat-
663 tern was observed in 100% (11/11) of photoconverted flies examined. All scale bars, 100
664 μm .

665 **Supplemental Movies**

666 **Supplemental Movie 1: Release of Bellymounted fly after imaging.** Gentle prying
667 with forceps removed a Bellymounted fly from Elmer's Glue on the imaging coverslip.
668 The fly was intact and immediately walked out of view.

669 **Supplemental Movie 2: Real-time nutrient ingestion, gastrointestinal transit, and in-**
670 **testinal peristalsis.** A Bellymounted fly was provided a cloth wick saturated with 5%
671 sucrose water colored by Brilliant Blue FCF. Over the 45-min imaging session, the in-
672 gested liquid filled the crop and successive compartments of the midgut. Rapid peristal-
673 tic contractions of the midgut tube were visible.

674 **Supplemental Movie 3: Carbon dioxide (CO₂) anesthesia inhibits tissue movement**
675 **during confocal imaging.** Time-lapse confocal imaging of the midgut in a Bel-
676 lymounted fly. Continuous imaging was performed while CO₂ flow to the Bellymount
677 apparatus was toggled on and off as indicated. With CO₂ off, tissue movement caused
678 cells to appear duplicated. With CO₂ on, tissue movement was inhibited and no dupli-
679 cations were observed. Red marks nuclei in all tissues (*ubi-his2av::mRFP*). Green marks
680 midgut stem cells and enteroblasts (*esgGal4>UAS-LifeAct-GFP*). Time intervals for CO₂
681 off and on were 15 min and 20 min, respectively. Each movie frame is a z-stack projec-
682 tion. Z-stacks were captured at 5-min intervals, and each required ~2 min to acquire 41
683 optical sections at intervals of 3 μ m. Total movie time is 3.4 h.

684 **Supplemental Movie 4: Native arrangement of female abdominal organs at high reso-**
685 **lution.** Animated z-stack of the tiled, whole-abdomen projection shown in Fig. 1f. Single
686 optical sections through Bellymounted female were taken at 3- μ m steps from the exte-
687 rior cuticle to an interior depth of 54 μ m. All nuclei are marked with His2av::mRFP (in-
688 verted grayscale). Scale is as indicated in Fig. 1f.

689 **Supplemental Movie 5: Volumetric image of developing egg chambers.** Three-dimen-
690 sional reconstruction of egg chambers in the ovary of a Bellymounted female. Nascent
691 oocytes and supporting nurse and follicles were readily identifiable. Labels indicate
692 eggs at different developmental stages, the surrounding fat body, and adjacent cuticle.
693 All nuclei are marked with His2av::mRFP (grayscale). Scale bar, 30 μ m.

694 **Supplemental Movie 6: Volumetric image of the crop lumen of a fly two days after**
695 **colonization with *L. plantarum*-mCherry.** 3D reconstruction of same field as in Fig. 2o
696 showing the *Drosophila* cuticle and crop imaged with Bellymount. *L. plantarum*-mCherry
697 cells were visible in clumps and lined the edge of the crop lumen. Circular yeast cells
698 were visible in the crop lumen. The external cuticle and body cavity between the cuticle
699 and crop were visible. Greyscale indicates *L. plantarum*-mCherry signal and autofluores-
700 cence from yeast cells and the external cuticle. Scale bar, 10 μ m.

701

702 **Supplemental Movie 7: Volumetric image of the proximal midgut of a fly two days**
703 **after colonization with *L. plantarum*-mCherry.** 3D reconstruction of the same field as
704 in Fig. 2q taken with Bellymount. The proximal midgut showed clumps of *L. plantarum*-
705 mCherry cells as well as free-floating bacteria within the lumen. Yellow dotted lines
706 mark the edge of the midgut lumen. Greyscale indicates *L. plantarum*-mCherry signal.
707 Scale bar, 15 μ m.

708 **Supplemental Movie 8: Volumetric image of the distal midgut of a fly two days after**
709 **colonization with *L. plantarum*-mCherry.** 3D reconstruction of the same field in Fig. 2q
710 taken with Bellymount. By contrast with the proximal midgut (Supplemental Movie 7),
711 the distal midgut showed only free-floating bacteria within the lumen. Yellow dotted
712 lines mark the edge of the midgut lumen. Greyscale indicates *L. plantarum*-mCherry sig-
713 nal. Scale bar, 15 μ m.