bioRxiv preprint doi: https://doi.org/10.1101/741777; this version posted August 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

aCC-BY-NC-ND 4.0 International license.

Sex and APOE genotype influence AD neuropathology but not epigenetic age across

diagnosis

Paula Duarte-Guterman®”, Amy M. Inkster”*", Arianne Y. Albert*, Cindy Barha®, Wendy P.

Robinson??, Liisa A.M. Galea’, on behalf of the Alzheimer’s Disease Neuroimaging Initiative®

1. Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of
British Columbia, Vancouver, BC, Canada

2. Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
3. BC Children’s Hospital Research Institute, Vancouver, BC, Canada

4. Women's Health Research Institute of British Columbia, Vancouver, BC, Canada

5. Djavad Mowafaghian Centre for Brain Health and Department of Physical Therapy,

University of British Columbia, Vancouver, BC, Canada

Address all correspondence and requests for reprints to:
L. A. M. Galea, PhD

Djavad Mowafaghian Centre for Brain Health

2215 Wesbrook Mall

Vancouver, British Columbia

V6T 173, Canada

E-mail: lgalea@psych.ubc.ca.

* Considered co-first authors.

® Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data but did
not participate in analysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


mailto:lgalea@psych.ubc.ca
https://doi.org/10.1101/741777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/741777; this version posted August 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

aCC-BY-NC-ND 4.0 International license.

Abstract

Introduction: Alzheimer’s disease (AD) disproportionately affects females. We determined
whether physiological biomarkers (neuroplasticity, immune, stress, epigenetic) explain why
females are more susceptible to AD than males using the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database.

Methods: Using the complete ADNI cohort, we analysed the effect of sex and APOE genotype
(number of &4 alleles) and sex and diagnosis (cognitively normal (CN), mild cognitive
impairment (MCI), AD) on (1) AD related endpoints: memory scores, executive function scores,
hippocampal volume, cerebrospinal fluid (CSF) amyloid beta, tau and p-tau; (2) markers of the
immune system (interleukins, C-reactive protein, and immunoglobulins), neuroplasticity
(intercellular adhesion molecule, ICAM1), and stress (cortisol); and (3) epigenetic age.

Results: Females had higher levels of tau and p-tau compared to males and increasing alleles of
APOE¢4 disproportionately increased tau and p-tau compared to males. Females had larger
hippocampal volume (corrected with intracranial volume) and better memory scores (that include
verbal memory) than males, regardless of APOE genotype and diagnosis. There were also sex
differences in biomarkers with females having higher levels of plasma C-reactive protein and
lower levels of CSF IL-8, IL-16, immunoglobulin A, and ICAM1. We did not observe an
association between sex, diagnosis, or APOE genotype and blood epigenetic age acceleration or
intrinsic epigenetic age acceleration.

Conclusion: In females tau pathology was increased but memory scores were higher and
corrected hippocampal volume were larger compared to males suggesting females have a reserve
against brain damage that delays either the onset of cognitive decline or diagnosis. In this ADNI

cohort more males than females were diagnosed with MCI but with no significant difference in
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AD diagnosis, although more females presented with AD, suggesting the progression from CN,
MCI to AD may be sex-specific. We found sex differences in immune biomarkers indicating that
the underlying physiology may participate in differential aging with and without a diagnosis of

AD or MCI between the sexes.

Keywords: Sex differences, inflammation, epigenetic age, hippocampus

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by severe
cognitive decline (Alzheimer’s Association, 2017). Modifiable risk factors associated with AD
include stress (Caruso et al., 2018), sociocultural or lifestyle factors (e.g., education, marital
status, exercise), and conditions (diabetes, obesity, and cardiovascular disease; Baumgart et al.,
2015; Nebel et al., 2018; Xu et al., 2015). Non-modifiable risk factors include age, biological
sex, and APOE genotype (Riedel et al., 2016). Females are more likely to be diagnosed with AD
in Europe and Asia, although this sex difference may depend in part on geographic location as
the sex difference is not always observed in studies from the United States (reviewed by Ferretti
et al., 2018; Mielke et al., 2014; Nebel et al., 2018). Nevertheless, regardless of prevalence,
females show greater neuropathology (brain atrophy, neurofibrillary tangles) and cognitive
decline with AD than males in both Europe and the United States (Ardekani et al., 2016; Barnes
et al., 2005; Holland et al., 2013; Hua et al., 2010; Irvine et al., 2012; Koran and Hohman, 2017;

Lin et al., 2015).
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The hippocampus is one of the first brain areas to show atrophy with AD (Apostolova et
al., 2006; Jack et al., 2000; Kidron et al., 1997) and hippocampal atrophy correlates with
cognitive decline (Petersen et al., 2000) and AD pathology (neurofibrillary tangles; Jack et al.,
2002). Previous studies using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) indicate
that females have greater atrophy rates and cognitive decline than males with AD (Holland et al.,
2013; Hua et al., 2010; Lin et al., 2015). However, there is limited research into the role of sex in
the possible mechanisms underlying AD. In addition, few studies have examined the interaction
of genetic polymorphisms and biological sex in AD. The &4 allele of the APOE gene is a well-
known genetic risk factor of AD (Corder et al., 1993) and is associated with accumulation of
amyloid beta protein (Ossenkoppele et al., 2015). In females between 65 and 75 years, one allele
of €4 increases the risk of AD by 4-fold relative to males, indicating that the APOE genotype
affects males and females differently (meta-analysis by Neu et al., 2017). Understanding why
females are at a higher risk and have a higher burden of the disease is important for the
development of tailored treatments based on sex and genetics.

Chronic inflammation is a hallmark of AD, as evidenced by increased expression of
proinflammatory cytokines in the brains of AD patients which can exacerbate AD pathology
(Heppner et al., 2015; Kinney et al., 2018; Swardfager et al., 2010). There are sex differences in
immune responses (Klein and Flanagan, 2016) which can affect neuroplasticity (Dantzer, 2018;
de Miranda et al., 2017) and interact with stress (Dantzer, 2018), but it is not known how these
may be related to sex differences in AD. Biomarkers are highly sought after to predict disease
onset and progression and to understand the possible underlying mechanisms of AD to develop

better treatments. Therefore, the first objective of this study was to investigate potential


https://doi.org/10.1101/741777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/741777; this version posted August 23, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

aCC-BY-NC-ND 4.0 International license.

physiological biomarkers (neuroplasticity, immune, stress) that may explain sex differences in
AD and in people at risk for AD using the ADNI database.

Aging biomarkers also include epigenetic alterations, and these have been associated with
a variety of pathologies and adverse health conditions, including normal cognitive aging and
neurodegenerative phenotypes such as AD (Hannum et al., 2013; Horvath, 2013; Levine et al.,
2015; Yokoyama et al., 2017). Recently, molecular biomarkers of aging known as “epigenetic
clocks” have been developed based on DNA methylation signatures (Hannum et al., 2013;
Horvath, 2013). Epigenetic age or “DNAmMAge” is a measure of the biological age of a sample
(cell or tissue), and can be calculated across a range of tissues and time points, providing an
accurate estimation of a sample’s chronological age based on the presence or absence of
methylation at the 5° carbon of informative CpG dinucleotides throughout the human genome
(Horvath, 2013). Positive deviations of epigenetic age from chronological age (positive
epigenetic age acceleration) reflect more rapid biological aging and have been associated with
numerous factors including smoking, obesity, Parkinson’s disease, Trisomy 21, and cancer (Gale
et al., 2018; Horvath, 2013; Horvath et al., 2015; Horvath and Ritz, 2015), while negative
deviations of epigenetic age from chronological age (negative epigenetic age acceleration) have
been associated with high life-expectancy populations and memory retention (Degerman et al.,
2017; McEwen et al., 2017). In AD, epigenetic age acceleration of the frontal cortex was
associated with amyloid load, neuritic plates, and cognitive decline (Levine et al., 2015). Intra-
individual DNA methylation profiles in peripheral tissue are correlated with the epigenetic
signature in the brain, likely due both to identical genetic background affecting DNAme, and
common signatures of epigenetic aging (Braun et al., 2019), thus it is reasonable to hypothesize

that epigenetic age acceleration may also be detectable in peripheral tissues such as blood in AD
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participants. In healthy individuals, aging males exhibit more positive epigenetic age
acceleration than females in blood and buccal tissue, and multiple brain regions (Horvath et al.,
2016); in AD and other diseases with a sex difference, it is possible that the underlying sex-
specific pathological mechanisms may be reflected in epigenetic age acceleration measures — for
example, in AD females could potentially have more positive epigenetic age acceleration than
males.

Our aims were to first examine sex differences in cognitive ability, volume of the
hippocampus, neuropathological markers of AD and the potential underlying physiological
mechanisms (neuroplasticity, immune, stress) and how these may be affected by APOE genotype
(number of &4 alleles), and secondly by dementia status (cognitively healthy (CN), mild
cognitive impairment (MCI), AD). Our third objective was to investigate epigenetic age in
peripheral tissue of CN, MCI and AD participants, and to study the relationship between sex,

APOE genotype, dementia status, and epigenetic age acceleration.

Methods
ADNI database

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cognitive
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145  impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see

146 www.adni-info.org. Data used in this article were downloaded on or before Jan 16, 2019.

147

148  Statistical Methods: Sex and APOE genotype and sex and diagnosis

149 We included all participants that had a baseline diagnosis in the ADNI database (total n =
150 1,460, n= 630 females, n=830 males). Data included in our analyses were: demographics (age,
151  years of education, and ethnicity), baseline diagnosis (cognitively normal, CN; early MCI,

152 EMCI; late MCI, LMCI; or AD), number of APOE &4 alleles (0, 1 or 2), ADNI executive

153  function Z-scores, ADNI memory Z-scores (using data from the ADNI neuropsychological

154  battery and validated in Crane et al., 2012; Gibbons et al., 2012), hippocampal volume (mm?®),
155  cerebrospinal fluid (CSF) amyloid beta (pg/ml), CSF tau (pg/ml), and CSF p-tau (pg/ml). The
156  executive function score included WAIS-R Digit Symbol Substitution, Digit Span Backwards,
157  Trails A and B, Category Fluency, and Clock Drawing (Gibbons et al., 2012). The composite
158  memory score included Rey Auditory Verbal Learning Test, AD Assessment Schedule -

159  Cognition, Mini-Mental State Examination, and Logical Memory data (Crane et al., 2012). A
160  small subset of participants also had inflammatory markers measured in CSF (N = 279), and

161  plasma (N = 527) listed in Table 2A. Hippocampal volume was divided by intracranial volume to
162  correct for differences in brain size, as sex differences in hippocampal volume are influence by
163 intracranial volume (Lotze et al., 2019; Tan et al., 2016) and is presented as a ratio.

164 We compared all available data for each study variable between the sexes using the

165  Wilcoxon rank sum test for continuous variables and Fisher’s exact test for categorical variables.
166  We used general linear models to determine the relationships between (1) sex and APOE

167  genotype or (2) sex and dementia diagnosis and cognitive ability, corrected hippocampal volume,
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and biomarkers. All models included age as a covariate. To test the main question, all models
initially included an interaction between sex and APOE genotype or sex and dementia diagnosis;
if this interaction was not significant, it was removed from the model to estimate the main effects
of sex and APOE genotype or diagnosis. Significance was based on the likelihood ratio test, and
all p-values for comparisons of sex and either APOE or diagnosis for all outcomes combined
were corrected for multiple testing using the Benjamini-Hochberg false discovery rate method
(Benjamini and Hochberg, 1995). All regression analyses were carried out in R v3.5.1 (R Core

Team 2018).

Statistical Methods: Epigenetic Age

We used DNAme data quantified with the lllumina Infinium HumanMethylationEPIC
BeadChip array (“EPIC” array) for 1905 blood samples from 640 unique ADNI participants
(n=284 females, n= 356 males; Vasanthakumar et al., 2017) with CN, MCI and AD diagnosis.
DNAme IDAT files were read into R v3.5.1 (R Core Team, 2018) using the ‘minfi” package, and
annotated with the most recent version of the EPIC manifest, the Infinium MethylationEPIC v1.0
B4 Manifest File, (available from https://support.illumina.com/downloads.html) (Aryee et al.,
2014; Fortin et al., 2017). We excluded 11 low quality samples from 9 unique participants from
further analyses on the basis of having a median methylated or unmethylated probe intensity
<10.5 (Aryee et al., 2014; Fortin et al., 2017), the remaining samples were background
normalized and dye-bias adjusted with normal exponential out-of-band (“noob’’) normalization
(Triche et al., 2013). DNAme data were converted to beta values and biological sex for all
samples was confirmed by clustering samples on all DNAme probes mapping to the X and Y

chromosomes. Beta values were calibrated to Horvath’s 21,368-probe training dataset, and
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epigenetic age was calculated using R code modified for compatibility with the EPIC array using
the 334/353 epigenetic clock probes present on the array from https://horvath.genetics.ucla.edu/
(Horvath, 2013; Teschendorff et al., 2013). The missing DNAme values at these CpG sites can
also be imputed based on the k-nearest neighbors method. We observed a very high correlation
between epigenetic age values calculated with the missing probes removed versus imputed with
k=10 (R=0.99, p<2.2e-16), in agreement with previous reports; we therefore chose to remove
missing probes (Fiorito et al., 2017; McEwen et al., 2018).

Prior to statistical analyses we removed all technical replicates. Epigenetic age
acceleration was calculated as the residual of epigenetic age regressed on chronological age and
technical/batch covariates, including the laboratory collection site at which blood samples were
drawn, and EPIC microarray chip and row. Intrinsic epigenetic age acceleration, a measure
designed to be independent of age-related changes in whole blood cell-type proportions, was
calculated as described in Chen et al. (Chen et al., 2016) as the residual of epigenetic age
regressed on chronological age, technical covariates of collection site, row, and chip, and the
proportions of six blood cell types (CD8T, CD4T, NK, B cells, monocytes, and granulocytes)
estimated from noob-normalized methylation data with the Houseman algorithm (Houseman et
al., 2012). For participants who contributed more than one blood DNAme sample within the 2-
year collection period, we determined that longitudinal data collected within the median 3.6-year
error of the epigenetic clock could not be meaningfully evaluated, and therefore calculated mean
epigenetic age acceleration measures per participant from all available time points and performed
all statistical analyses on these mean values.

Statistical analyses of epigenetic age acceleration were conducted using data from the

remaining 640 participants (see Table 2B). To determine if epigenetic age acceleration or
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214  intrinsic epigenetic age acceleration differed by sex, dementia diagnosis, or APOE genotype, we
215  used unbalanced two-way ANOVA designs. With CSF biomarker (amyloid beta, tau and p-tau)
216  data available from the ADNI repository for a smaller subset of participants with matched EPIC
217 DNAme data, (n=533, see Table 2C) we used linear regression to test whether APOEe4

218  genotype, amyloid beta, tau, p-tau, dementia diagnosis, or sex were significantly associated with
219  epigenetic age acceleration.

220

221  Results:

222 Demographic and biomarker information

223 Table 1 gives a summary of the variables for the overall data set (N=1460). Overall,

224  females were significantly younger and had fewer years of education than males (P<0.0001 for
225  both). There were more white males than white females in our sample and there were more non-
226 white females compared to non-white males (P<0.05). In terms of APOE genotype, there were
227 no sex differences in distribution of APOE genotype with 11% females and 12 % of males

228  possessing two alleles of APOEe4. In the overall data set, the proportion of participants in each
229  of the diagnosis categories was significantly different for females and males (P<0.05). There
230  were more females with a baseline diagnosis of AD compared to males (23.7% compared to

231 21.7%, unadjusted P = 0.41), although not significantly, and more females were cognitively

232 normal than males (26.7% compared to 20.8%, unadjusted P = 0.01). However, there were more
233 males with a diagnosis of late MCI (39.5% versus 32.5%, unadjusted P=0.007) and early MCI
234 (18.0% versus 17.1%, unadjusted P=0.74) compared to females, although not significantly.

235 Because not all data were available for each subject we created a summary table for the

236  participants: with CSF biomarkers (Table 2A; N=279), with whole blood EPIC DNAme data

10
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(Table 2B; N=640) and with matched EPIC data and measured CSF biomarkers (Table 2C;
N=533). Among those with measured CSF biomarkers, demographics were very similar as per
results from overall data set in Table 1(see legend of Table 2). For the data applicable to the
participants with available EPIC DNAme data (Table 2B) and participants with EPIC DNAme
data and CSF biomarkers (Table 2C), most of the demographics were similar to the entire data
set except the proportion of participants in each of the diagnosis categories was not significantly
different between females and males.

In the overall data set, females had a smaller uncorrected hippocampal volume but larger
corrected hippocampal volume, greater CSF amyloid beta, tau and p-tau, and higher memory
function z-scores than males (Table 1). Biomarkers in the CSF were measured in a subset of
participants (Table 2A). In this smaller cohort, females and males had similar levels of CSF
CRP, CD 40 antigen and IL-6 receptor. However, females had lower CSF cortisol, interleukin-3,
interleukin 8, interleukin-16, immunoglobulin A, and intercellular adhesion molecule compared

to males (Table 2A).

Sex and APOE genotype are associated with changes in memory, hippocampus volume, AD and
CSF inflammatory markers

Our first aim was to investigate whether sex and APOE genotype interact to influence
cognitive ability, volume of the hippocampus, and biomarkers of AD and inflammation. There
were significant interactions between sex and APOEe4 genotype for CSF tau, p-tau, and IL-16
(Table 3). Tau and p-tau levels were significantly higher in females with one or two alleles of
APOE¢g4 compared to males (Fig 1 A and B). Although CSF p-tau and tau levels also increase in

males with APOEe4 genotype, they do not rise to the same extent as in females. 1L-16 levels

11
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were significantly lower in females with no APOEe4 alleles compared to males, whereas levels
were similar between the sexes with one or two APOEe4 alleles (Fig 1 C and D).

Both sex and APOE genotype were independently (main effects of sex or APOE
genotype) associated with memory z-scores and corrected hippocampal volume (Table 3).
Females had higher memory z-scores and larger corrected hippocampal volume across all APOE
genotypes (Fig 1 E and F). Lower memory z-scores were associated with increasing number of
APOEc¢4 alleles in both sexes. Similarly, corrected hippocampus volume was significantly lower
with increasing number of APOEe4 alleles in both sexes. Increasing APOEe4 alleles was also
associated with lower executive function z-scores, lower amyloid beta, and lower C-reactive
protein (Table 3; Fig 1 G-1), however there was no additional association of these variables with

sex. Finally, results were similar for biomarkers in plasma (Supplementary Table S3).

Sex and diagnosis are associated with changes in memory, hippocampus volume, AD and CSF
inflammatory markers

We next tested whether sex and dementia status (CN, MCI, and AD) influenced cognitive
ability, corrected hippocampal volume, and CSF biomarkers of AD and inflammation. There
were no significant interactions between sex and diagnosis for any of the tested variables
(memory, executive function, corrected hippocampal volume, CSF tau, p-tau, amyloid beta, and
CSF and plasma inflammatory markers). However, overall both sex and diagnosis were
independently associated with memory z-scores, corrected hippocampal volume and CSF tau and
p-tau (Table 4). Females had higher memory scores, larger corrected hippocampus volume, and

higher tau and p-tau compared to males, irrespective of diagnosis. As expected, increasing

12
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severity of diagnosis was associated with lower memory and executive function scores, smaller
corrected hippocampus volume, and higher CSF tau and p-tau irrespective of sex (Fig 2 A-D).

We found that although females had higher CSF levels of interleukin 16 (IL-16), and
lower levels of interleukin 8 (IL-8), immunoglobulin A (IgA), and intercellular adhesion
molecule 1 (ICAML1), controlling for age, compared to males, there was no association between
these variables and diagnosis (Fig 2 E-H). Finally, there were associations between diagnosis and
executive function z-scores, and amyloid beta, controlling for age, but not between these
variables and sex (Fig 2 I and J).

The results for biomarkers and inflammatory markers in plasma were similar
(Supplementary Table S4), with the exception of a significant relationship between plasma C-
reactive protein (CRP) and sex (adjusted p=0.03), and also between plasma cortisol and baseline
diagnosis (adjusted P=0.01; Fig 2 K and L). Males have lower levels of CRP compared to
females and we observed a trend between diagnosis and CRP levels in plasma with lower CRP
levels in late MCI and AD (adjusted P=0.08). Plasma cortisol was lower in late MCI compared
to CN but higher in AD compared to CN. In summary, although we detected associations
between sex and diagnosis and various parameters, we did not find evidence for a clear sex and

diagnosis interaction.

Epigenetic age, sex, dementia diagnosis, and AD biomarkers

We investigated the hypothesis that sex and dementia diagnosis affect epigenetic age
acceleration in blood samples of ADNI participants (see Table 5).

Epigenetic age acceleration was not associated with sex, dementia diagnosis (CN, EMCI,

LMCI, and AD), or the interaction of sex and diagnosis after multiple test correction (Figure 3).
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Intrinsic epigenetic age acceleration was also not significantly associated with participant sex,
diagnosis, or their interaction term.

To assess the effect of sex and more broadly defined dementia-associated cognitive
impairment on epigenetic age acceleration, we compared epigenetic age acceleration between
participants with any form of clinically ascertained cognitive impairment (AD + LMCI + EMCI,
n=423, proportion female 41%) and those without (CN, n=217, proportion female 50%). By two-
way unbalanced ANOVA neither sex, dementia status, nor their interaction were significantly
associated with epigenetic age acceleration after correction for multiple comparisons.

Matched biochemical data including APOEe4 genotype and CSF concentrations of
amyloid beta, tau, and phosphorylated tau was available for a subset of participants with EPIC
DNAme data (n=533). Based on the hypothesis that epigenetic age acceleration may be more
strongly associated with concentrations of pathologically relevant compounds than with
diagnosis, we assessed the impact of sex, APOEe4 genotype, amyloid beta concentration, tau and
p-tau concentration on epigenetic age acceleration and intrinsic epigenetic age acceleration with
linear regression. None of these variables was significantly associated with epigenetic age
acceleration (Table 6, results for intrinsic epigenetic age acceleration not shown).

In addition to dementia diagnosis for all participants, we also had access to two
composite scores designed by ADNI collaborators to reflect executive function and memory;
these scores have been demonstrated to be independently predictive of the transition from mild
cognitive impairment to a formal diagnosis of Alzheimer’s disease (Gibbons et al. 2012, Gale et
al. 2013). By a two-way unbalanced ANOVA models investigating the effect of sex and memory
score on epigenetic age acceleration, neither sex (p=0.248), memory score (p=0.486), nor their

interaction (p=0.227) were associated with epigenetic age acceleration. In a similar model,
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neither sex (p=0.260), executive function (p=0.105), or the interaction term of sex and executive

function (p=0.153) were associated with epigenetic age acceleration.

Discussion

In the present study, we found that tau related pathology in the CSF was
disproportionately elevated by APOEe4 genotype in females compared to males. However,
diagnosis and APOE genotype were independently associated with reduced memory scores,
hippocampal volume (corrected by intracranial volume) and reduced CSF amyloid beta which
was similar in males and females. Furthermore, there were main effects of sex as females had
lower CSF cytokines (IL-8, IL-16, IL-18) and CSF and plasma immunoglobulins (IgA, IgE,
respectively) but higher plasma CRP and tau related pathology compared to males, regardless of
diagnosis and APOE genotype. Interestingly, females had larger corrected hippocampal volume
and better memory scores which may contribute to their delayed diagnosis (Sundermann et al.,
2017). Finally, we found no differences in epigenetic age acceleration by dementia diagnosis or
sex in this cohort of samples with available whole blood EPIC DNAme data. In this ADNI
cohort, slightly more females presented with a diagnosis of AD compared to males, whereas
significantly more males presented with a diagnosis of MCI supporting the prevalence observed
in bigger populations (Winblad et al., 2016; Mielke et al., 2014). Previous work has
demonstrated sex differences in rates of AD and symptoms of AD (reviewed in Ferretti et al.,
2018; Mielke et al., 2014; Nebel et al., 2018), and the current study also suggests that biomarkers
of AD may be different between males and females between genotypes, and this should be
considered in future studies and researchers should be cautioned to use sex as a biological

variable in all analyses.
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Females show greater tau neuropathology disproportionately affected by APOE genotype

In the present study, we found that females have significantly higher baseline tau and p-
tau levels in CSF than males and these are indicative of the formation of neurofibrillary tangles
and AD pathology (Blennow et al., 2015; Henriques et al., 2018). This is in agreement with a
recent ADNI study (Sundermann et al., 2018; but see an earlier ADNI study Holland et al.,
2013) and with animal models (Lewis et al., 2001). Intriguingly, we also found that levels of tau
and p-tau were disproportionately elevated with APOEe4 allele expression in females compared
to males. Previous studies indicate that females with the APOEe4 allele are at a greater risk for
developing AD than are males with this allele (Altmann et al., 2014), and sex differences in tau
and p-tau may be one underlying mechanism by which this occurs. In females (65-75 years of
age) one allele of €4 increases the risk of AD by 4-fold relative to males, indicating that genotype
may affect females differently (Neu et al., 2017). Levels of CSF tau are hypothesized to increase
after CSF amyloid beta declines and amyloid beta aggregates and deposits in the brain (Blennow
et al., 2015). However, in this study although we found sex differences in CSF tau and p-tau
levels, no significant differences were seen in CSF amyloid beta after controlling for age (see
below) indicating that the pathway may be different in females compared to males or that the
timeline of tau and amyloid beta deposition may not be consistent.

In this ADNI cohort, more females presented with a diagnosis of AD compared to males.
Although the ADNI cohort is relatively small, this result supports the prevalence observed in
bigger populations (Winblad et al., 2016). Together with the disproportionate effect of APOE
genotype on tau-related pathology it supports the idea that females have a higher burden of the

disease. On the other hand, more males presented with a diagnosis of MCI and this is in line with
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the research that males are more likely to be diagnosed with MCI compared to females (Mielke
et al., 2014). Females progress faster from MCI to AD (Lin et al., 2015) and sex differences in
tau related pathology found in the current study may be the underlying mechanism for this

accelerated transition.

Sex differences in hippocampal volume depend on correction for intracranial volume. Females

have better memory scores than males that may have been driven by verbal memory

In the present study, we found that increasing APOEe4 alleles and AD diagnosis was
associated with reduced corrected hippocampal volume, memory and executive function scores
consistent with past literature (Apostolova et al., 2006; Buckner, 2004; Ewers et al., 2012; Jack
et al., 2000; Li et al., 2016; Mungas et al., 2010; Petersen et al., 2000; Pievani et al., 2011; Shi et
al., 2014). Surprisingly, although females have higher levels of tau and p-tau, they presented
with larger corrected hippocampal volume and better memory and executive function scores than
males, regardless of diagnosis and APOE genotype. Previous studies have suggested that there
are sex differences in hippocampal volume, favoring males, but the sex differences depend on
whether hippocampal volume is corrected for by intracranial volume (Tan et al., 2016), a finding
that is supported by the current study. In a number of studies, including the present study, males
have a larger hippocampus without correcting for intracranial volume (Cavedo et al., 2018; Jack
et al., 2015; Murphy et al., 1996; Ritchie et al., 2018; Sohn et al., 2018; Sundermann et al., 2018;
Tan et al., 2016). However after correcting for intracranial volume, either the sex difference
disappears (Cavedo et al., 2018; Ritchie et al., 2018; Tan et al., 2016) or females have larger
corrected hippocampal volume (this study; Jack et al., 2015; Murphy et al., 1996; Sohn et al.,

2018; Sundermann et al., 2018). Regardless of hippocampal volume, volume loss is greater in
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aging females (Ardekani et al., 2016; Koran et al., 2017; Murphy et al., 1996) and in females
with one or two APOEge4 alleles (Fleisher et al., 2005). Although in the present study we did not
examine longitudinal data, we found that increasing APOEe4 alleles reduced corrected
hippocampal volume similarly in males and females. In contrast, when CN, MCI and AD
individuals were analysed separately in the ADNI database, APOEe4 was associated with a
smaller corrected hippocampal volume in CN males only, controlling for age and education
(Sundermann et al., 2018). In addition, also using the ADNI database, Koran et al. (2017) found
that females with low CSF amyloid beta had more hippocampal atrophy and faster decline in
memory and executive function than males and this sex difference was more pronounced in
APOE¢4 carriers. Therefore, sex and APOE genotype can interact to affect corrected
hippocampal volume reduction with age in certain subgroups and across time (e.g., in CN or
individuals with low CSF amyloid beta). Differences in results between studies are likely due to
differences in statistical analyses (e.g., analysing diagnosis groups separately, partitioning the
data based on amyloid beta levels, and differences in covariates included) and/or whether
longitudinal data analyses are included.

We found that in addition to larger corrected hippocampal volume, females also had
better composite memory scores (but not executive function scores) than males, regardless of
diagnosis and APOE genotype. Previous studies have found that females have better verbal
memory in cognitively normal individuals (Jack et al., 2015), and in MCI and AD ADNI cohorts
compared to males (Sundermann et al., 2018, 2016). Here we used the ADNI memory score
developed by Crane et al. (2012) to detect abnormal memory including language, attention, and
logical memory so it is possible that verbal memory may be driving the sex difference favouring

females in the present study. In contrast, Buckley et al.(2018) found no sex differences using a
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composite cognitive score that includes memory and executive function (Preclinical Alzheimer’s
Cognitive Composite score with semantic processing, PACC5) using ADNI and two other
cohorts. In this study using the current ADNI cohort, males were slightly more educated than
females, and although we did not use education as a covariate, one would expect education levels
would have positive effects on memory, suggesting that education is not a factor for the observed
sex difference in memory. Altogether, we found that in females tau pathology was increased but
memory scores, which included verbal memory, were higher and corrected hippocampal volume
were larger compared to males suggesting females have a reserve against brain damage that
delays either the onset of cognitive decline (Stern, 2002) or diagnosis (Sundermann et al., 2017).
However, once cognitive decline begins, females show higher rates of declines compared to
males (this was observed by Buckley et al., 2018; Holland et al., 2013; Hua et al., 2010 using the

ADNI database) perhaps because the underlying pathology is elevated in females.

AD affects amyloid beta similarly in both sexes

We found that AD diagnosis was associated with lower CSF amyloid beta, as expected,
and this was irrespective of sex, which indicates greater amyloid deposition with AD (Henriques
et al., 2018). These findings are consistent with data from studies in AD patients (Buckley et al.,
2018) and in cognitively normal individuals (Jack et al., 2015). Other studies have found using
PET that males have higher amyloid beta levels or lower amyloid beta burden compared to
females dependent on APOE genotype (Sundermann et al., 2018) or in cognitively normal adults
in the anterior cingulate (Cavedo et al., 2018). In this study, we used CSF amyloid beta data
which detects abnormal amyloid deposition earlier than amyloid beta by PET (reviewed in

Blennow et al., 2015). Thus, taken together, sex differences in amyloid beta may be detected in
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specific brain regions and later in the disease, although more research is needed investigating sex

differences in AD biomarkers.

Females have higher CRP levels but lower cytokine and immunoglobulin levels compared to

males

In this study, we investigated whether sex interacted with APOE genotype or dementia
diagnosis to influence inflammatory, neurotrophic and neuroplasticity markers. We found that
plasma CRP, a widely used inflammatory and cardiovascular marker (Koenig et al., 1999; Ridker
et al., 1998), was affected by sex and APOE genotype. Females, regardless of diagnosis or
APOE genotype, had significantly higher plasma CRP relative to males, consistent with findings
in healthy individuals (Khera et al., 2005). Higher levels of peripheral CRP may suggest higher
inflammation in females, which is associated with an increased risk in all-cause dementia
(Koyama et al., 2013). In contrast, APOEe4 genotype decreased circulating CRP levels,
consistent with previous research in large population studies (Hubacek et al., 2010; Yun et al.,
2015). Recent meta-analyses, without regard to sex, did not find differences in peripheral levels
of CRP in AD compared to control patients (Gong et al., 2016; Ng et al., 2018). However, in
patients with mild and moderate dementia only, CRP levels were lower compared to the healthy
control group (Gong et al., 2016). To our knowledge, no other study has examined sex
differences in CRP in relation to AD.

We also found that CSF IL-16 was affected by sex and APOE genotype. CSF IL-16
levels were lower in females with no APOEe4 alleles compared to males, but with increasing
number of &4 alleles, no sex differences were detected. IL-16 has been implicated in AD (Rosa et

al., 2006) and IL-16 levels decrease with disease severity (analysis without regard to sex; Motta
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et al., 2007). In this ADNI cohort, IL-16 levels were not affected by diagnosis but our results
suggest that APOE genotype can modulate levels in a sex-dependent way. We also found
biomarkers that were affected by sex but not diagnosis or APOE genotype for example, females
had lower CSF levels of ICAM1 compared to males, but there was no influence of APOE
genotype or diagnosis. Consistent with our findings, ICAML1 serum levels were lower in healthy
females compared to males (Ponthieux et al., 2003). ICAML1 is a type of adhesion molecule
associated with microvascular endothelial activation (Zenaro et al., 2017) and plasma ICAM1
levels (but not CSF levels; Nielsen et al 2007) were higher in patients with AD (Huang et al
2015; Nielsen et al 2007; Rentzos et al 2004). However, it is intriguing that females have lower
CSF levels of cytokines (IL-8, IL-16, IL-18), and immunoglobulins (IgE and IgA) but higher tau
pathology compared to males. Neuroinflammation is associated with AD but it can have both
beneficial and detrimental roles (Walters et al., 2016). Increased expression of pro-inflammatory
cytokines contributes to neuronal loss, while anti-inflammatory effects contribute to amyloid
beta clearance (Heneka et al., 2015). In AD mouse models, some pro-inflammatory mechanisms
reduced plaque pathology, while anti-inflammatory cytokines increased amyloid beta deposition
(Chakrabarty et al., 2012, 2011, 20104, 2010b; Ghosh et al., 2013; Shaftel et al., 2007). It has
been suggested that there are beneficial pro-inflammatory mechanisms and detrimental anti-
inflammatory mechanisms in AD (Heneka et al., 2015). It is possible that males and females
have varying levels of beneficial vs detrimental immune responses which can affect how the
disease progresses in each of the sexes but it is also important to remember that CSF levels may

not match levels in different regions of the brain.

Sex, AD and biochemical markers do not affect blood epigenetic age acceleration
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We did not observe an association between either sex or diagnosis and epigenetic age
acceleration or intrinsic epigenetic age acceleration. To our knowledge, no other study has
similarly probed epigenetic age acceleration in peripheral tissue in the presence of AD, or
whether epigenetic age acceleration in AD is associated with sex.

This study was partially undertaken to investigate whether epigenetic age acceleration
that has been associated with the AD brain is reflected in peripheral tissues. Levine et al. have
previously demonstrated increased epigenetic age acceleration in AD, however Levine’s study
was conducted on post-mortem prefrontal cortex tissue, and did not explicitly investigate the role
of sex in epigenetic age acceleration (Levine et al., 2015). While brain-blood methylation
profiles are reasonably correlated (r=0.86) (Braun et al., 2019), DNA methylation profiles of
peripheral tissues are imperfect representatives of the brain, and do not recapitulate all epigenetic
alterations with high fidelity. Thus, our findings do not contradict the finding of increased
epigenetic age acceleration in the presence of AD in the prefrontal cortex, but suggest that
accelerated epigenetic aging in AD is not a pan-tissue phenomenon. Our finding of a lack of
significant association between AD, biological sex, and epigenetic age acceleration in whole
blood DNA methylation profiles could suggest a tissue-specific dysregulation of an epigenetic
maintenance system, in which the brain epigenome is most strongly affected by AD (Levine et
al., 2015). The phenotype of patients affected by AD and global gene expression patterns of the
APOE protein, with high expression in brain, and low expression in whole blood (GTEXx Project,
2018) further support this hypothesis.

Intriguingly, epigenetic age was observed to be lower on average than chronological age
(see Table 5). Horvath’s epigenetic clock was trained on DNAme data from older versions of the

[llumina DNAme arrays with more limited genomic coverage; 19 of the CpG probes required to
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calculate epigenetic age via this method do not exist on the EPIC array. Two previous studies
investigated the application of Horvath’s epigenetic clock to EPIC data with conflicting results
(Dhingra et al., 2019; McEwen et al., 2018), the largest issue being chronic underestimation of
epigenetic age due to the positive linear regression coefficients associated with the missing
probes(Dhingra et al., 2019). Both imputing and removing the missing probes from the array
resulted in a chronic underprediction of epigenetic age with Horvath’s clock, suggesting that this
is likely an artefact of the array platform and probe-set rather than the method chosen to deal
with missing values, although it is possible that an adjustment factor could be devised to more
accurately apply Horvath’s clock to EPIC data. In future explorations of epigenetic age with
EPIC DNAme array data this should be considered, as there are other epigenetic age predictors
available that have been trained on EPIC data such as the PhenoAge and GrimAge clocks,
although these tools have limitations as well; for example, both PhenoAge and GrimAge were
trained only on blood DNAme data, as compared to the original pan-tissue epigenetic clock, and
therefore may have limited applicability and relevance in other tissues (Levine et al., 2018; Lu et

al., 2019).

Limitations

The ADNI cohort is not ethnically or socioeconomically diverse, being mostly composed
of white (only 12 individuals were not-white) and highly educated individuals (average 15.69
years of education). As incidence, prevalence, and age of onset of AD varies by ethnicity
(Hispanics, Fitten et al., 2014; Mayeda et al., 2016; African-Americans, Steenland et al., 2016)
and education (Sharp and Gatz, 2011), our conclusions may not apply to more ethnically and

socially diverse populations. In addition to sex, it is possible the underlying mechanisms of AD
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are different depending on ethnicity. Finally, the ADNI biomarker data set has a low sample size
(279 total), especially when taking into account diagnosis, sex and APOE genotype. Small
sample size is also a limitation of the epigenetic analyses presented. Even in the larger 640-
participant cohort, only 37 participants (5.78%) had an AD diagnosis, so statistical analyses were
underpowered to detect subtle differences by diagnosis group. Additionally other pathologies in
these participants, such as cancer, cardiovascular disease, smoking status, or obesity may have

influenced AD neuropathology, biomarkers and epigenomes and limited our interpretations.

Conclusion

As expected, more females presented with a diagnosis of AD whereas more males
presented with MCI diagnosis compared to the opposite sex. AD biomarkers (CSF tau and p-tau
but not amyloid beta) were disproportionately affected by APOE genotype in females compared
to males supporting the idea that females share a higher burden of the disease. Interestingly,
although females in this cohort had elevated AD biomarkers, they also had larger corrected
hippocampal volume and higher memory function scores compared to males, regardless of
APOE genotype and dementia diagnosis. Therefore, it is possible that females may have a
reserve that protects the brain from damage to delay cognitive decline or delay diagnosis.
Finally, we found that females had lower cytokine and immunoglobulin levels but higher CRP
levels compared to males. Together our work suggests that that the underlying physiology of

aging and AD may be sex-specific.
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Figure captions

Figure 1. A. CSF tau (pg/ml), B. CSF p-tau (pg/ml), C. CSF IL-16 (pg/ml), D. ADNI memory z-
scores, E. corrected hippocampal volume (hippocampal volume/intracranial volume), F. ADNI
executive function z-scores, G. CSF amyloid beta (pg/ml), and H. CSF C-reactive protein (CRP;

pg/ml) in ADNI participants by sex and number of APOEe4 alleles (0, 1, 2 alelles).

Figure 2. A. ADNI memory z-scores, B. corrected hippocampal volume (hippocampal volume/
intracranial volume), C. CSF tau (pg/ml), D. CSF p-tau (pg/ml), E. CSF IL-16 (pg/ml), F. CSF
IL-8 (pg/ml), G. CSF IgA (mg/ml), H. CSF Intercellular adhesion molecule (ICAM1; ng/ml), 1.
ADNI executive function z-scores, J. CSF amyloid beta (pg/ml), K. plasma C-reactive protein
(CRP; pg/ml), and L. plasma cortisol (ng/ml) in ADNI participants by sex and diagnosis (CN,
EMCI, LMCI, AD). CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI,

late mild cognitive impairment; AD, Alzheimer’s disease.

Figure 3. Universal epigenetic age acceleration does not differ statistically significantly by
participant sex or diagnosis (CN, EMCI, LMCI, AD) in this ADNI cohort. CN, cognitively
normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD,

Alzheimer’s disease.
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Table 1. Demographic and clinical information for all participants and subdivided by sex. Biomarkers for
AD are from cerebrospinal fluid. P-values after adjustlng for age are presented here for easier comparison
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Total Female Male P-value (adjusted
P-value
No. 1,460 No. 630 No. 830 for age)

Age
Mean (SD) 74.13 (£7.25) 73.15 (£7.28) 74.87 (£7.14) < 0.0001

Education (years)
Mean (SD) 15.83 (+2.88) 15.15 (+2.79) 16.34 (+2.85) < 0.0001

Ethnicity
White 1,352 (92.60%) 573 (90.95%) 779 (93.86%) 0.043
Not white 108 (7.40%) 57 (9.05%) 51 (6.14%)

Baseline diagnosis
CN 341 (23.4%) 168 (26.7%) 173 (20.8%) 0.013
EMCI 257 (17.6%) 108 (17.1%) 149 (18.0%)
LMCI 533 (36.5%) 205 (32.5%) 328 (39.5%)
AD 329 (22.5%) 149 (23.7%) 180 (21.7%)

APOEg4 allele number
0 702 (48.08%) 300 (47.62%) 402 (48.43%) 0.8
1 574 (39.32%) 252 (40.00%) 322 (38.80%)
2 170 (11.64%) 70 (11.11%) 100 (12.05%)
Missing 14 (0.96%) 8 (1.27%) 6 (0.72%)

Volume of hippocampus
Mean (SD) 6659.47 (+1176.42) 6446.71 (£1169.97) 6822.86 (+1155.87) < 0.0001
Missing 226 (15.48%) 94 (14.92%) 132 (15.90%)

Volume of hippocampus (corrected)
Mean (SD)  0.00436 (+0.00080) 0.00454 (£0.00082) 0.00423 (+£0.00076) <0.0001 <0.0001
Missing 226 (15.48%) 94 (14.92%) 132 (15.90%)

Amyloid Beta
Mean (SD) 830.97 (£358.04) 856.41 (+346.87) 812.44 (+365.16) 0.016 0.38
Missing 513 (35.14%) 231 (36.67%) 282 (33.98%)

Tau
Mean (SD) 294.38 (£137.27) 314.56 (£152.70) 279.70 (£122.91) 0.002 <0.0001
Missing 513 (35.14%) 231 (36.67%) 282 (33.98%)

PTau
Mean (SD) 28.89 (+15.31) 30.87 (£16.95) 27.44 (£13.83) 0.007 <0.0001
Missing 513 (35.14%) 231 (36.67%) 282 (33.98%)

Executive Function (ADNI_EF)
Mean (SD) 0.02 (+0.96) 0.06 (+0.97) -0.00 (+0.95) 0.20 <0.0001
Missing 311 (21.30%) 145 (23.02%) 166 (20.00%)

Memory (ADNI_MEM)
Mean (SD) 0.10 (+0.87) 0.21 (+0.94) 0.02 (x0.80) 0.0006 <0.0001
Missing 310 (21.23%) 145 (23.02%) 165 (19.88%)

P-values are from Wilcoxon rank sum tests for continuous variables and Fisher's exact tests for categorical variables. Missing
refers to number of individuals and the percent of the total cohort that had missing data for that variable
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Table 2. Demographic and clinical information for subset of ADNI data subdivided by sex. A. Participants with measured biomarkers in cerebrospinal fluid (CSF), B. Participants with available whole blood Illumina
HumanMethylationEPIC DNA methylation data, C. Participants with matched Illumina HumanMethylationEPIC DNA methylation array data and measured CSF biomarkers. In all three subdata sets, females were
significantly younger and had fewer years of education than males. In data set A (but not B and C), more females (24.0 % compared to 21.8%) were diagnosed with AD, more females were cognitively normal (26.5%
compared to 22.9%) and fewer females were diagnosed with late MCI compared to males (49.5% compared to 55.3%). In data set A, females had lower CSF cortisol, interleukin-3, interleukin 8, interleukin-16,
immunoglobulin A, and intercellular adhesion molecule compared to males. Empty cells indicate data not available.

A B C
Sex Sex Sex
Total Female Male Total Female Male Total Female Male
P-value P-value P-value
No. 279 No. 109 No. 170 No. 640 No. 284 No. 356 No. 533 No. 243 No. 290
Age
Mean (SD) 75.15 (£6.86) 73.75 (£6.69) 76.04 (£6.83) 0.007 75.63 (£7.68) 74.78 (¥8.03) 76.31 (x7.32) <0.0001 75.01 (+7.61) 74.31 (£8.10) 75.61 (£7.11) 0.0019
(tl)(l-l‘(l)’tleT(-l‘_\(/j %?%ﬁg;%@%i?ﬁé%%éSfﬁﬁgggévlhq? thisr version gosted Aiugust 23,d2i§)19. The copyr_igthitn hoé(rier for this'prrerzlr;r(ijrg a(1\</v2ii|cah was not
' %éﬁe?@%%%%%%&?—%m lic%@ge@%mow perpetuy s bgWHgH2.70) 1553 (+2.59) 16.75 (+2.68) <0.0001 16.24 (+2.64) 15.57 (+2.49) 16.83 (+2.64)  <0.0001
Ethnicity
White 267 (95.70%) 103 (94.50%) 164 (96.47%) 0.55 627 (97.97%) 279 (98.23 %) 348 (97.75%) 0.78 521 (97.75 %) 238 (97.94 %) 283 (97.94 %) 0.99
Not White' 12 (4.30%) 6 (5.50%) 6 (3.53%) 13 (2.03%) 5 (1.76%) 8 (2.25%) 12 (2.25 %) 5 (2.06 %) 7 (2.41 %)
Baseline diagnosis
CN 74 (26.5%)  35(32.1%) 39 (22.9%) 0.051 217 (33.9%) 109 (38.38%) 108 (30.34%) 0.11 171 (32.08 %) 88 (36.21 %) 83 (28.62 %) 0.19
EMCI n/a n/a n/a 186 (29.06%)  83(29.23%) 103 (28.93%) 173 (32.46 %) 79 (32.51 %) 94 (32.41 %)
LMCI 138 (49.5%) 44 (40.4%) 94 (55.3%) 200 (31.25%) 78 (27.46%) 122 (34.27%) 155 (29.08 %) 94 (38.68 %) 92 (31.72 %)
AD 67 (24.0%) 30 (27.5%) 37 (21.8%) 37 (5.78%) 14 (4.23 %) 23 (6.46%) 34 (6.38 %) 13 (5.35 %) 21 (7.24 %)
APOEg4 allele number
0 134 (48.03%) 51 (46.79%) 83 (48.82%) 0.78 369 (57.66 %) 169 (59.51%) 200 (56.18%) 0.37 313 (58.72 %) 146 (60.08 %) 167 (57.59 %) 0.45
1 109 (39.07%) 42 (38.53%) 67 (39.41%) 220 (34.38%) 97 (34.15%) 123 (34.55%) 173 (32.46%) 80 (32.92 %) 93 (32.07 %)
2 36 (12.90%) 16 (14.68%) 20 (11.76%) 51 (7.97%) 18 (6.34%) 33 (9.27%) 47 (8.82%) 17 (7.00%) 30 (10.34 %)
Cortisol (ng/mL)
Mean (SD) 16.05 (£6.04) 14.92 (+6.01) 16.78 (+5.96) 0.008
C reactive protein (ug/mL)
Mean (SD) -2.83 (+0.56) -2.77 (x0.64) -2.87 (£0.51) 0.23
CD40 antigen (ng/mL)
Mean (SD) -0.65 (+0.12) -0.66 (+0.10) -0.64 (+0.14) 0.12
Interleukin 16 (pg/mL)
Mean (SD) 0.91(20.18) 0.87 (x0.17)  0.94 (x0.19) 0.004
Interleukin 3 (ng/mL)
Mean (SD) -2.22 (x0.32) -2.28(x0.29) -2.17 (x0.34) 0.001
Interleukin 6 receptor (ng/mL)
Mean (SD) -0.01 (£0.15) -0.02 (£0.14) -0.00 (#0.15) 0.30
Interleukin 8 (pg/mL)
Mean (SD) 1.68 (£0.15) 1.64 (x0.11) 1.70(x0.16) 0.001
Intercellular adhesion molecule (ng/mL)
Mean (SD) 0.96 (+0.44) 0.83(x0.33)  1.04 (+0.48) 0.0001
Immunoglobulin A (mg/mL)
Mean (SD) -2.54 (+0.31) -2.68 (+0.26) -2.45(+0.31) < 0.0001
Executive Function Score
Mean (SD) 0.36 (£0.98)  0.38(£1.01)  0.34 (+0.95) 0.17
Memory Score
Mean (SD) 0.40 (x0.92) 0.57 (£1.01) 0.26 (£0.82) <0.0001
Amyloid Beta
Mean (SD) 1040.98 (£454.72)  1055.50 (+449.23) 1028.35 (+459.36) 0.18
Tau
Mean (SD) 289.80 (£124.68)  300.90 (£139.07)  280.13 (+109.82) 0.072
PTau
Mean (SD) 27.47 (£13.65) 28.25 (+£15.08) 26.78 (£12.24) 0.36

P-values are from Wilcoxon rank sum tests for continuous variables and Fisher's exact tests for categorical variables. tIncludes self-reported Black, Asian, American Indian/Alaskan, and >1 ethnicity.
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Table 3. Linear regression results for models with sex and APOE status. Only shown are the models with significant associations. All model summaries are available in Supplementary Table S1.

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU PTAU
Predictors Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) 1.63 1.12-2.14 2.05 1.47 -2.62 1458.67 1247.77 — 1669.57 0.00752 0.00709 — 0.00795 56.15 -30.03 — 142.34 4.75 -4.89 — 14.38
AGE (years) -0.02 -0.02 - -0.01 -0.02 -0.03 —-0.02 -6.19 -9.01 —-3.36 -0.00004 -0.0004 — -0.0003 2.68 1.54 —3.81 0.26 0.13-0.39
g?:];g;f - -0.17 -0.26 —-0.07 0.002 -0.03 -0.14 - 0.08 0.68 -29.77 -71.55 - 12.01 0.28 -0.00024  -0.00033 —-0.00016  <0.0001 -7.37 -31.43-16.70 -0.34 -3.03-235
APOE status (ref <0.0001 <0.0001 <0.0001 <0.0001
=0 alleles)
1 allele -0.45 -0.55--0.34 -0.3 -0.42--0.19 -240.23 -284.27 —-196.20 -0.00031 --0.0004 — -0.00022 104.14 77.21 —131.06 11.73 8.72 — 14.74
2 alleles -0.69 -0.85—--0.53 -0.46 -0.64 —-0.28 -455.95 -521.02 —-390.88 -0.00057 -0.00071 — --0.00044 178.88 137.45-220.31 19.81 15.18 —24.44
Interaction term 0.0008 0.001
Male:1 allele -49.76 -85.30 —-14.22 -5.58 -9.55--1.60
biORXi\(,j %reprint bdaleidaledesrg/10.1101/741777; this version posted August 23, 2019. The copyright holder for this preprint (which was not -101.56 -153.97 --49.16 -10.78 -16.64 —-4.92
certifie €Tl JCVIEW ca e R = ; o avara
YPEL i aCC-BY-NC-ND 4.0 Internationalbiténse. i k] 947 1224 947 947
R?/ adjusted R  0.106/0.103 0.058 /0.055 0.203/0.199 0.191/0.189 0.140/0.134 0.136/0.130
Table 3. Continued
C Reactive Protein ug/ml Interleukin 16 pg/ml Interleukin 8.1L 8.pg m L Immunoglobulin A mg/ml Intercellular Adhesion Molecule 1 ng/ml
Predictors Estimates o] adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates (¢]] adjusted p
(Intercept) -3.05 -3.79 - -2.32 0.35 0.10-0.59 1.38 1.18 -1.57 -2.82 -3.22--243 -0.19 -0.75-0.36
AGE (years) 0.01 -0.00 - 0.02 0.01 0.00-0.01 0 0.00-0.01 0 -0.00 - 0.01 0.01 0.01 -0.02
I!?:]Zg;f - -0.12 -0.26 - 0.01 0.15 0.12 0.06-0.18 0.1 0.05-0.15 0.01 0.21 0.14-0.29 <0.0001 0.18 0.07 -0.28 0.002
APOE status (ref 0.007 0.33 0.27 0.31
=0 alleles)
1 allele -0.19 -0.33 --0.05 0.08 0.01-0.16 0.04 -0.02-0.10 0.02 -0.05-0.10 0.09 -0.01 -0.20
2 alleles -0.31 -0.52--0.10 0.06 -0.04 - 0.16 0.01 -0.07-0.09 -0.09 -0.20-0.02 0.02 -0.13-0.18
Interaction term 0.02
Male:1 allele -0.13 -0.22 --0.03
Male:2 alleles -0.15 -0.28 —-0.02
Observations 279 279 279 279 279
R?/adjusted R  0.058/0.045 0.117/0.098 0.092/0.072 0.135/0.122 0.107/0.094
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certified by pe

Table 4. Linear regression results for models with sex and baseline diagnosis. Only shown are the models with significant associations. P-values are for overall tests and are FDR-adjusted. All model summaries are available in Supplementary Table S2.

Table 4. Continued

aCC-BY-NC-ND 4.0 International license.

Interleukin 16 pg/ml

Interleukin 8 pg/ml

Immunoglobulin A mg/ml

Intercellular Adhesion Molecule 1 ng/ml

Predictors Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) 0.42 0.18-0.65 1.4 1.20-1.59 -2.9 -3.29--2.50 -0.22 -0.77 - 0.33
AGE (years) 0.01 0.00-0.01 0 0.00-0.01 0 -0.00-0.01 0.01 0.01 -0.02
g‘;';(gf - 0.05 0.01 —0.10 0.06 0.05 0.01 —0.09 0.02 0.21 0.14 - 0.29 <0.0001 0.17 0.06 —0.27 0.006
Diagnosis (ref
-cN) 0.64 0.96 0.98 0.67
EMCI
LMCI 0.01 -0.04 -0.06 0.01 -0.03-0.05 0 -0.08 - 0.09 0.06 -0.06-0.18
AD -0.03 -0.08 -0.03 0.01 -0.04 - 0.06 -0.01 -0.11 -0.09 0.02 -0.12-0.16
Observations 279 279 279 279
2 .
R*/adjusted 4 48970075 0.059 / 0.045 0.123/0.111 0.101/0.088

RZ

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU PTAU

Predictors Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) 1.79 145-2.13 2.26 1.80-2.73 1161.57 944.04 - 1379.10 0.00747 0.00710 - 0.00785 154.16 70.57-237.75 15.72 6.36—25.09
AGE (years) -0.01 -0.01 —-0.00 -0.02 -0.03--0.01 -1.64 -4.52-1.24 -0.00003  -0.00004 — --0.00003 1.25 0.15-2.36 0.1 -0.02-0.23
Ill/;l]zl(gf - -0.16 -0.23--0.09  <0.0001 -0.04 -0.13 - 0.05 0.53 -26.62 -69.46 — 16.22 0.38 -0.00022 -0.00029 —-0.00015 <0.0001 -42.59 -59.05--26.13  <0.0001 -4.22 -6.06 —-2.38  <0.0001
E)lg?\ln)osw (ref <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

EMCI -0.5 -0.61 —-0.39 -0.42 -0.56 —-0.27 -85.2 -148.82 —-21.59 -0.00016 -0.00027 —-0.00005 37.85 13.41 - 62.30 4.22 1.48 - 6.96

LMCI -1.08 -1.16 —-1.00 -0.79 -0.90 — -0.67 -256.85 -315.81--197.89 -0.00073 -0.00083 —-0.00064 93.34 70.69 — 116.00 10.58 8.05-13.12

AD 184 -1.94--175 163 -1.76—-1.50 39048 -453.59--32737 -0.00106  -0.00116 —-0.00096 1436 701008 1581 13.10—18.53
Observations 1150 1149 947 1234 947 947

bioRxiv preprigfd L tééﬂoi.org/lO.llOl/Ml???; this version posted August 23, 2019. The copyright holder for this preprint (which was not
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Table 5. Results of epigenetic age and epigenetic age acceleration calculation for all DNAme analyses, for both the larger DNAme cohort and the subset of samples with
matched CSF biomarker data.

DNAme Cohort DNAme & CSF Biomarker Data Cohort
Sex Sex
Total No. 640 Fem;gi No. Ma;lgGNo. P-value Total No. 533 Fem;dlfg No. MangONo. P-value

Age

Mean (SD) 75.63 (£7.68) 74.78 (£8.03) 76.31 (£7.32) <0.0001 75.01 (£7.61) 74.31(%8.10) 75.61 (x7.11)  0.0019
Epigenetic Ag e (years)

Mean (SD) 69.92 (+8.06) 67.45 (£8.15) 70.11 (£7.79) <0.0001 68.47 (£8.17) 67.05(£8.33) 69.72 (+7.82) <0.0001
Epigenetic Age Acceleration (years)

Mean (SD) 0.025 (+4.22) -0.14 (£4.16) 0.16 (x4.26) 0.1 0.027 (+4.30) -0.18 (#4.23)  0.20 (4.35) 0.057
Intrinsic Age Acceleration (years)

Mean (SD) 0.026 (+4.11) -0.19 (£4.06) 0.20 (x4.15) 0.019 0.020 (+4.18)  -0.25(+4.14) 0.26 (+4.21) 0.021

P-values are from Wilcoxon rank sum tests for continuous variables and Fisher's exact tests for categorical variables
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Table 6. Linear model for assessment of relationship of biochemical concentrations
and APOE genotype on universal epigenetic age acceleration. Intrinsic epigenetic age
acceleration linear model not shown.

Age Acceleration & CSF Biomarkers

Predictors Estimates Cl adjusted p
(Intercept) -1.18 -2.80-0.45 0.517
Male (ref = Female) 0.65 -0.61 - 1.37 0.448
Diagnosis (ref = CN)

EMCI 0.77 -0.12-1.65 0.09

LMCI 0.47 -0.51-145 0.569

AD 0.54 -1.10-2.19 0.738
APOE status (ref = 0 alleles)

1 allele -0.031 -0.09 -0.84 0.945

2 alleles -0.3 -1.75-1.14 0.813
CSF Amyloid Beta 0.00018 -0.00083 — 0.0011 0.813
CSF Tau 0.0078 -0.0077 — 0.023 0.569
CSF PTau -0.072 -0.22 - 0.072 0.569
Observations 533

R?/ adjusted R 0.0143/-0.00262
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Table S1. Linear regression results for all variables investigated by sex and APOE status. Markers in CSF

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU PTAU Cortisol Cortisol ng ml C Reactive Protein ug/ml

Predictors Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p  Estimates Cl adjusted p  Estimates Cl adjusted p  Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) 1.63 1.12-2.14 2.05 1.47 -2.62 1458.67 1247.77 - 1669.57 0.00752 0.00709 — 0.00795 56.15 -30.03 — 142.34 4.75 -4.89 — 14.38 -1.38 -9.15-6.39 -3.05 -3.79--2.32
AGE (years) -0.02 -0.02 —-0.01 -0.02 -0.03 —-0.02 -6.19 -9.01 —-3.36 -0.00004 -0.0004 — -0.0003 2.68 1.54 -3.81 0.26 0.13-0.39 0.21 0.11-0.32 0.01 -0.00 — 0.02
Male (ref = Female) -0.17 -0.26 —-0.07 0.002 -0.03 -0.14 - 0.08 0.68 -29.77 -71.55-12.01 0.28 -0.00024 -0.00033 — -0.00016 <0.0001 -1.37 -31.43-16.70 -0.34 -3.03-2.35 1.37 -0.05-2.78 0.12 -0.12 -0.26 — 0.01 0.15
';re?ei)Stat”S (ref=0 <0.0001 <0.0001 <0.0001 <0.0001 0.52 0.007

1 allele -0.45 -0.55--0.34 -0.3 -0.42 --0.19 -240.23 -284.27 —-196.20 -0.00031 --0.0004 — -0.00022 104.14 77.21 - 131.06 11.73 8.72-14.74 1.03 -0.44 - 2.50 -0.19 -0.33 --0.05

2 alleles -0.69 -0.85--0.53 -0.46 -0.64 —-0.28 -455.95 -521.02 —-390.88 -0.00057  -0.00071 —--0.00044 178.88 137.45 -220.31 19.81 15.18 —24.44 0.5 -1.68 —2.68 -0.31 -0.52 —--0.10
Interaction term 0.0008 0.001

Male:1 allele -49.76 -85.30 —-14.22 -5.58 -9.55 —-1.60

Male:2 alleles -101.56  -153.97 —-49.16 -10.78 -16.64 —-4.92
Observations 1145 1144 947 1224 947 947 279 279
R?/ adjusted R 0.106 / 0.103 0.058 / 0.055 0.203/0.199 0.191/0.189 0.140/0.134 0.136/0.130 0.086 / 0.073 0.058 / 0.045
Table S1 (continued). Linear regression results for all variables investigated by sex and APOE status. Markers in CSF

CD 40 antigen ng/ml Interleukin 16 pg/ml Interleukin 3 ng/mli Interleukin 6.receptor ng/mi Interleukin 8 pg/mi Immunoglobulin A mg/ml Intercellular Adhesion Molecule ng/ml
Predictors Estimates (¢]] adjusted p Estimates Cl adjusted p Estimates (¢]] adjusted p Estimates Cl adjusted p  Estimates Cl adjusted p Estimates Cl adjusted p  Estimates Ci adjusted p
(Interlgi%g[ziv preprint doi: https:-/}d%?orgllo.1_110%P74_ﬁgﬁ§tghis version posted August02§,52019. Thgblt)%y/_rig(;)h?golder for this preprint (whi(-:%'\?vgs not -3.38--2.54 0.29 -0.48--0.10 1.38 118 -1.57 -2.82 -3.22--2.43 0.19 0.75-0.36
AGE q&/éiéies) by peer review) isgtglauthor/furide whg.0as granted bioRxiv a licens@tg Hisplay the)npeprirg ig perpetuity. It is made availgo@under 0.00 - 0.02 0 0.00 - 0.01 0 0.00 —0.01 0 -0.00 — 0.01 0.01 0.01 -0.02
aCC-BY-NC-ND 4.0 International license.

Male (ref = Female) 0.01 -0.02 - 0.04 0.64 0.12 0.06 —0.18 0.08 0.00-0.16 0.09 0.01 -0.02 - 0.05 0.57 0.1 0.05-0.15 0.01 0.21 0.14-0.29 <0.0001 0.18 0.07 - 0.28 0.002
APOE status (ref =0 0.76 0.34 0.13 0.33 0.27 0.31
alleles)

1 allele 0.01 -0.02 - 0.03 0.08 0.01-0.16 -0.03 -0.10-0.05 0.04 0.00-0.08 0.04 -0.02-0.10 0.02 -0.05-0.10 0.09 -0.01 - 0.20

2 alleles 0.02 -0.03 - 0.06 0.06 -0.04 -0.16 -0.1 -0.22 -0.02 0.04 -0.02 - 0.09 0.01 -0.07 - 0.09 -0.09 -0.20-0.02 0.02 -0.13-0.18
Interaction term 0.02

Male:1 allele -0.13 -0.22 - -0.03

Male:2 alleles -0.15 -0.28 — -0.02
Observations 279 279 279 279 279 279 279
R?/ adjusted R 0.124/0.111 0.117/0.098 0.081/0.068 0.045/0.031 0.092/0.072 0.135/0.122 0.107 / 0.094
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Table S2. Linear regression results for all variables investigated by sex and baseline diagnosis. Markers in CSF

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU PTAU Cortisol Cortisol ng ml C Reactive Protein ug/ml

Predictors Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) 1.79 1.45-2.13 2.26 1.80-2.73 116157  944.04 —1379.10 0.00747 0.00710 — 0.00785 154.16 70.57 —237.75 15.72 6.36 —25.09 -1.87 9.56—5.81 -3.19 3.93--2.45
AGE (years) -0.01 -0.01 —-0.00 -0.02 .03 —-0.01 -1.64 452-1.24 -0.00003  -0.00004 — --0.00003 1.25 0.15-2.36 0.1 0.02-0.23 0.22 0.12-0.32 0.01 -0.00 - 0.02
g?r'lzl(gf - -0.16 -023--0.09  <0.0001 -0.04 -0.13-0.05  <0.0001 -26.62 -69.46 — 16.22 0.38 -0.00022  -0.00029 —-0.00015  <0.0001 -42.59 -59.05--26.13  <0.0001 -4.22 -6.06—-2.38  <0.0001 118 -0.25-2.61 0.22 0.1 -0.24-0.03 0.27
E'g?\ln)os's (ref <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.44 0.28

EMCI -0.5 -0.61 —-0.39 -0.42 -0.56 —-0.27 -85.2 -148.82 - -21.59 -0.00016 -0.00027 —-0.00005 37.85 13.41 - 62.30 4.22 1.48 — 6.96

LMCI -1.08 -1.16 —-1.00 -0.79 -0.90 —-0.67 -256.85 -315.81--197.89 -0.00073 -0.00083 —-0.00064 93.34 70.69 — 116.00 10.58 8.05-13.12 1.24 -0.42-2.90 -0.15 -0.31-0.01

AD -1.84 -1.94 —-1.75 -1.63 -1.76 —-1.50 -390.48 -453.59 — -327.37 -0.00106 -0.00116 —-0.00096 143.6 119.35-167.86 15.81 13.10 - 18.53 0.24 -1.68 —2.16 -0.15 -0.33-0.04
Observations 1150 1149 947 1234 947 947 279 279
R?/ adjusted
R? 0.589/0.588 0.380/0.377 0.168/0.164 0.398 /0.396 0.164/0.160 0.156 /0.152 0.088/0.075 0.030/0.016
Table S2 (continued). Linear regression results for all variables investigated by sex and baseline diagnosis. Markers in CSF

CD 40 antigen ng/ml Interleukin 16 pg/ml Interleukin 3 ng/ml Interleukin 6.receptor ng/mi Interleukin 8 pg/ml Immunoglobulin A mg/ml Intercellular Adhesion Molecule ng/ml

Predictors Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) -1.11 -1.27--0.96 0.42 0.18 — 0.65 -3 -3.42--2.59 -0.26 -0.45--0.07 14 1.20-1.59 -2.9 -3.29--2.50 -0.22 -0.77-0.33
AGE (years) 0.01 0.00-0.01 0.01 0.00-0.01 0.01 0.00-0.02 0 0.00-0.01 0 0.00-0.01 0 -0.00-0.01 0.01 0.01 -0.02
:Y;ar;l;l(gf - 0.01 -0.02-0.03 0.77 0.05 0.01-0.10 0.06 0.08 0.01-0.16 0.11 0.01 -0.02 -0.05 0.67 0.05 0.01 -0.09 0.02 0.21 0.14-0.29 <0.0001 0.17 0.06 —0.27 0.006
E)'(‘i?\l”)os's (ref 0.18 0.64 0.64 0.64 0.96 0.98 0.67

EMCI

LMCI 001 -0.03-004 0.01 -0.04 — 0.06 _ 004 .13 -0.05 0.01 -0.03 - 0.05 0.01 -0.03 - 0.05 0 -0.08 - 0.09 0.06 -0.06—0.18

bioRxiv preprint doi: https://doi.org/10.1101/741777; this version posted August 23, 2019. The copyright holder for this preprint (which was not

ADxertified by peer rev{\é)/.\&ﬂs the authofji@ter Owhib has granted bioRxiv a licen€eG display the.p@priot OBperpetuity. It is made availabl@@inder -0.17-0.04 -0.02 -0.07 -0.03 0.01 -0.04 - 0.06 -0.01 -0.11-0.09 0.02 -0.12-0.16
Observations A/ T 279 279 279 279 279 279

2 .
R*Jadjusted 4 138 /0,125 0.089/0.075 0.077/0.063 0.031/0.017 0.059 /0.045 0.123/0.111 0.101/0.088

R2
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Table S3. Linear regression results for all plasma variables investigated by sex and APOE genotype

Interleukin 18 pg/ml

Predictors Estimates

Cl adjusted p Estimates

Cl

Cortisol Cortisol ng/ml

C Reactive Protein ug/ml

Intercellular Adhesion Molecule ng/ml

Immunoglobulin E ng/ml

Interleukin 8 pg/ml

adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) 241 2.25-2.57 2.04 1.92-2.16 0.06 -0.39-0.52 191 1.78 —=2.04 1.66 1.18-2.14 0.79 0.62 -0.96
AGE (years) 0 -0.00 - 0.00 0 -0.00 - 0.00 0 -0.00-0.01 0 -0.00 - 0.00 0 -0.01-0.01 0 0.00 - 0.01
garl:liﬂ(er;}f - 0.06 0.03 -0.09 0.002 0.01 -0.01 - 0.04 0.54 -0.15 -0.25 --0.06 0.009 -0.04 -0.06 —-0.01 0.07 0.25 0.15-0.34 <0.0001 -0.01 -0.04 -0.03 0.82
APOE status 0.29 0.46 <0.0001 0.89 0.49 0.41
(ref = 0 alleles)
1 allele -0.03 -0.07 —-0.00 0.01 -0.01 - 0.04 -0.28 -0.37--0.18 0.01 -0.02 -0.04 0.03 -0.06 -0.13 -0.03 -0.07 - 0.00
2 alleles -0.04 -0.09 - 0.01 0.03 -0.00 - 0.07 -0.36 -0.50--0.23 0 -0.04 - 0.04 -0.1 -0.25-0.04 -0.03 -0.09 - 0.02
bioRxiv prep(mi g6y Hédoi.org/10.1101/741777; this version posted AugusBZ8z 2019. The copyright holder for this preprint (which 23 not 526 527 527 527
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
RZ / adjusted aCC-BY-NC-ND 4.0 International license.
R? 0.038/0.031 0.014/0.007 0.105/0.098 0.019/0.012 0.056/0.048 0.027/0.019

Table S3 (continued). Linear regression results for all plasma variables investigated by sex and APOE genotype

CD 40 antigen ng/ml

Interleukin 16.1L 16.pg m

Interleukin 3 ng/ml

Interleukin 6 receptor ng/ml

Immunoglobulin A mg/ml

Predictors Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p Estimates Cl adjusted p
(Intercept) 058  -0.68—-0.47 2.32 2.18 - 2.47 171 -1.98 —-1.45 1.42 1.30 — 1.55 0.48 0.28 — 0.69
AGE (years) 0.01 0.00 — 0.01 0 0.00 — 0.00 0 -0.00 — 0.00 0 -0.00 — 0.00 0 -0.00 — 0.00
g?:;l(g)ef - 001 -0.03-001 063 0.01 0.02-0.04 071 0 0.06-0.05 092 003 -0.05--0.00 0.9 002 -002-006  0.66
APOE status 0.66 0.75 0.76 0.54 0.71
(ref = 0 alleles)

1 allele -0.01 -0.03 - 0.01 -0.02 -0.05-0.01 0.01 -0.05 - 0.06 0.01 -0.01-0.04 -0.01 -0.05 - 0.03

2 alleles 0.01 -0.02 - 0.04 -0.01 -0.06 - 0.03 0.04 0.03-0.12 -0.02 -0.06 — 0.02 -0.04 -0.10 - 0.02
Observations 526 527 527 527 527

2 -
R Jadjusted 4 133/0.126 0.023/0.015 0.002 / -0.005 0.016 /0.008 0.009 /0.002

RZ
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Table S4. Linear regression results for all plasma variables investigated by sex and baseline diagnosis.

Interleukin 18 pg/ml

Cortisol Cortisol ng/ml C Reactive Protein ug/ml Intercellular Adhesion Molecule ng/ml

Immunoglobulin E ng/ml

Interleukin 8 pg/ml

bioRxiv i St . adjus [ mat ofll ALES \vac not O adjusted p  Estimates Cl adjusted p  Estimates Cl adjusted p  Estimates Cl adjusted p
tified b; th /fund h t d b R | display; t tuity. It d ilabl
corted pHRGESE o © he Sggndes o has gganted bioRuv ?n;gfnnsﬁqul ;,chggle%pfef% i perpetuty. 1t madegpyglaie unges (4] 192 178-205 16 111-2.09 078 061096
AGE (years) 0 20.00 — 0.00 20.00 - 0.00 0.01 0.00 - 0.01 0 20.00 - 0.00 0 -0.01-0.01 0 0.00 - 0.01
gﬂig’f - 006  0.03-0.09  0.005 002  -0.01-0.04 047 014  -024--005 003 003 -0.06--001  0.08 025  015-034 <0.0001 0 0.04-0.03  0.88
Diagnosis (ref 0.63 0.01 0.08 0.27 0.88 0.35
= CN)
LMCI 004  -0.01-0.10 002 -0.07-0.02 026  -0.44--0.09 -0.01 -0.06 - 0.03 001 -0.18-0.17 004 -0.10-0.02
AD 003  -0.03-0.10 003  -0.02-0.08 022 -0.41--0.03 0.02 -0.03 - 0.08 004 -023-0.16 0 -0.07 - 0.06
Observations 527 527 526 527 527 527
2 .
22 fadiusted 4 632/ 0.025 0.034/0.026 0.043/0.036 0.029/0.021 0.050 / 0.043 0.027/0.020

Table S4 (continued). Linear regression results for all plasma variables investigated by sex and baseline diagnosis.

CD 40 antigen ng/ml Interleukin 16 pg/ml Interleukin 3 ng/ml Interleukin 6 receptor ng/ml Immunoglobulin A mg/ml

Predictors Estimates Cl adjusted p  Estimates Cl adjustedp  Estimates Cl adjusted p  Estimates Cl adjusted p  Estimates Cl adjusted p
(Intercept) -0.56 -0.67 —-0.46 2.38 2.23-2.53 -1.62 -1.89--1.35 1.44 1.32-1.56 0.42 0.22 -0.63
AGE (years) 0.01 0.00-0.01 0 0.00-0.00 0 -0.00 - 0.00 0 -0.00 - 0.00 0 -0.00 - 0.00
g?rl;(gf - 001  -003-001  0.68 001  -0.02-004 063 001 -0.06-005 052 002  0.05--000 0.9 002  -0.02-0.06  0.68
Diagnosis (ref 0.08 0.08 0.75 0.63 0.84
=CN)
LMCI -0.02 -0.05-0.02 -0.08  -0.13--0.02 -0.04 -0.14 -0.06 -0.03 -0.08 - 0.01 0.03 -0.05-10.10
AD 0.02 -0.02 - 0.06 -0.08  -0.14--0.02 -0.12 -0.22 --0.01 -0.03 -0.08 - 0.02 0.02 -0.07-0.10
Observations 526 527 527 527 527
R?/ adjusted

0.143/0.137 0.036/0.029 0.013/0.006 0.014/0.006 0.008 /-0.000

R2
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