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Abstract

Recent empirical findings have indicated that gaze allocation plays a cru-
cial role in simple decision behaviour. Many of these findings point to-
wards an influence of gaze allocation onto the speed of evidence accumu-
lation in an accumulation-to-bound decision process (resulting in generally
higher choice probabilities for items that have been looked at longer). Fur-
ther, researchers have shown that the strength of the association between
gaze and choice behaviour is highly variable between individuals, encourag-
ing future work to study this association on the individual level. However,
only few decision models exist that easily allow studying the gaze-choice
association on the individual level, due to the high cost of developing and
implementing them. The model space is particularly scarce for choice sets
with more than two choice alternatives. Here, we present GLAMbox, a
Python-based toolbox that is built upon PyMC3 and allows the easy ap-
plication of the gaze-weighted linear accumulator model (GLAM) to exper-
imental choice data. The GLAM assumes gaze-dependent evidence accu-
mulation in a linear stochastic race that extends to decision scenarios with
many choice alternatives. GLAMbox enables Bayesian parameter estima-
tion of the GLAM for individual, pooled or hierarchical models, provides an
easy-to-use interface to predict choice behaviour and visualize choice data,
and benefits from all of PyMC3’s Bayesian statistical modeling functional-
ity. Further documentation, resources and the toolbox itself are available at
https://github.com/glamlab/glambox.

Keywords: Decision making, visual attention, gaze bias, Python toolbox

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2019. ; https://doi.org/10.1101/741678doi: bioRxiv preprint 

https://github.com/glamlab/glambox
https://doi.org/10.1101/741678
http://creativecommons.org/licenses/by/4.0/


A plethora of empirical findings has established an association between gaze allocation
and decision behaviour on the group-level. For example, in value-based decision making, it
was repeatedly shown that longer gaze towards one option is associated with a higher choice
probability for that option (Armel, Beaumel, & Rangel, 2008; Cavanagh, Wiecki, Kochar,
& Frank, 2014; Fiedler & Glöckner, 2012; Folke, Jacobsen, Fleming, & De Martino, 2017;
Glöckner & Herbold, 2011; Konovalov & Krajbich, 2016; Krajbich, Armel, & Rangel, 2010;
Krajbich & Rangel, 2011; Pärnamets et al., 2015; Shimojo, Simion, Shimojo, & Scheier,
2003; Stewart, Gächter, Noguchi, & Mullett, 2016; Stewart, Hermens, & Matthews, 2016;
Vaidya & Fellows, 2015) and that external manipulation of gaze allocation changes choice
probabilities accordingly (Armel et al., 2008; Pärnamets et al., 2015; Shimojo et al., 2003;
Tavares, Perona, & Rangel, 2017). Such gaze bias effects are not limited to value-based
decisions, but have recently also been observed in perceptual choices, where participants
judge the perceptual attributes of stimuli based on available sensory information (Tavares
et al., 2017).

These findings have led to the development of a set of computational models, aimed at
capturing the empirically observed association between gaze allocation and choice behaviour
by utilizing gaze data to inform the momentary accumulation rates of diffusion decision
processes (Ashby, Jekel, Dickert, & Glöckner, 2016; Cavanagh et al., 2014; Fisher, 2017;
Krajbich et al., 2010; Krajbich, Lu, Camerer, & Rangel, 2012; Krajbich & Rangel, 2011;
Tavares et al., 2017). Specifically, these models assume that evidence accumulation in favour
of an item continues while it is not looked at, but at a discounted rate. The application of
these models is limited so far, as fitting them to empirical data depends on computationally
expensive simulations, involving the simulation of fixation trajectories. These simulations,
as well as the creation of models of the underlying fixation process, become increasingly
difficult with increasing complexity of the decision setting (e.g., growing choice set sizes
or number of option attributes, etc.). Existing approaches that circumvent the need for
simulations, model the evidence accumulation process as a single diffusion process between
two decision bounds and are therefore limited to binary decisions (Cavanagh et al., 2014;
Lopez-Persem, Domenech, & Pessiglione, 2016).

However, researchers are increasingly interested in choice settings involving more than
two alternatives. Choices outside the laboratory usually involve larger choice sets or describe
items on multiple attributes. Besides, many established behavioural effects only occur
in multi-alternative and multi-attribute choice situations (e.g., context effects; Trueblood,
Brown, Heathcote, & Busemeyer, 2013).

Furthermore, recent findings indicate strong individual differences in the association
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GLAMBOX 2

between gaze allocation and choice behaviour (Smith & Krajbich, 2018; Thomas, Molter,
Krajbich, Heekeren, & Mohr, 2019) as well as individual differences in the decision mech-
anisms used (Ashby et al., 2016). Yet, the majority of model-based investigations of the
relationship between gaze allocation and choice behaviour were focused on the group level,
disregarding differences between individuals.

With the Gaze-weighted linear accumulator model (GLAM; Thomas et al., 2019),
we have proposed an analytical tool that allows the model-based investigation of the re-
lationship between gaze allocation and choice behaviour at the level of the individual, in
choice situations involving more than two alternatives, solely requiring participants’ choice,
response time (RT) and gaze data, in addition to estimates of the items’ values.

The GLAM assumes that the decision process is biased by momentary gaze behaviour.
While an item is not fixated, its value representation is discounted. The resulting deci-
sion signals are averaged using relative gaze data, compared, transformed and fed into a
stochastic race framework. Thereby, GLAM naturally generalizes to choice scenarios in-
volving more than two alternatives while remaining analytically tractable. By providing an
analytical solution for the first-passage-density (FPD) of the stochastic race process, these
models’ parameters can be efficiently estimated in a hierarchical Bayesian framework.

To make GLAM more accessible, we now introduce GLAMbox, a Python-based tool-
box for the application of the GLAM to empirical choice, RT and gaze data. GLAMbox
allows for individual and hierarchical estimation of the GLAM parameters, simulation of
response data and model-based comparisons between experimental conditions and groups.
It further contains a set of visualization functions to inspect choice and gaze data and
evaluate model fit. We illustrate three application examples of the toolbox: In Example
1, we illustrate how GLAMbox can be used to analyze individual participant data with
the GLAM. In particular, we perform an exemplary model comparison between multiple
model variants on the individual level, as well as an out-of-sample prediction of partici-
pants’ choice and RT data. In Example 2, we demonstrate the application of the GLAM to
perform a comparison of group-level parameters in a setting with limited amounts of data,
using hierarchical parameter estimation. Lastly, in Example 3, we walk the reader through
a step-by-step parameter recovery study with the GLAM, which is encouraged to increase
confidence in the estimated parameter values.

Methods

Gaze-weighted linear accumulator model details

The GLAM assumes that preference formation, during a simple choice process, is
guided by the allocation of visual gaze (for an overview, see Fig. 1). Particularly, the
decision process is guided by a set of decision signals: An absolute and relative decision
signal. Throughout the trial, the absolute signal of an item can be in two states: An
unbiased state, equal to the item’s value ri while the item is looked at, and a biased state
while any other item is looked at, where the item value ri is discounted by a parameter γ.
The average absolute decision signal Āi is given by

Āi = giri + (1 − gi)γri, (1)
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GLAMBOX 3

Figure 1 . In the GLAM, preference formation during the decision process is dependent on
the allocation of visual gaze (A). For each item in the choice set, an average absolute decision
signal Āi is computed (dashed lines in B). The magnitude of this signal is determined by
the momentary allocation of visual gaze: While an item is currently not looked at, its signal
is discounted by parameter γ (γ ≤ 1; discounting is illustrated by gray arrows) (B). To
determine a relative decision signal Ri for each item in the choice set, absolute evidence
signals are transformed in two steps (C): First, the difference between each average absolute
decision signal Āi and the maximum of all others is determined. Second, the resulting
differences are scaled through a logistic transform, as the GLAM assumes an adaptive
representation of the relative decision signals that is especially sensitive to differences close
to 0 (where the absolute signal for an item is very close to the maximum of all others). The
resulting relative decision signals Ri can be used to predict choice and RT, by determining
the speed of the accumulation process in a linear stochastic race (D). The stochastic race
then provides first-passage time distributions pi, describing the likelihood of each item being
chosen at each time point (E).

where gi is defined as the fraction of total trial time that item i was looked at. If
γ = 1, there is no difference between the biased and unbiased state, resulting in no influence
of gaze allocation on choice behaviour. For γ values less than 1, the absolute decision signal
Ai is discounted, resulting in generally higher choice probabilities for items that have been
looked at longer.

To determine the relative decision signals, the average absolute decision signals Āi are
transformed in two steps: First, The difference R∗

i between the average absolute decision
signal Āi and the maximum of all other decision signals ĀJ is computed:

R∗
i = Āi − max

J
ĀJ . (2)

Second, the resulting difference signals R∗
i are scaled through a logistic transform

s(x). The GLAM assumes an adaptive representation of the relative decision signals, which
is maximally sensitive to small differences in the absolute decision signals close to 0 (where
the difference between the absolute decision signal of an item and the maximum of all others
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GLAMBOX 4

is small):

Ri = s(R∗
i ) (3)

s(x) = 1
1 + exp −τx

(4)

The sensitivity of this transform is determined by the temperature parameter τ of
the logistic function. Larger values of τ indicate stronger sensitivity to small differences in
the average absolute decision signals Āi.

To lastly capture response behaviour as well as RTs, the relative signals Ri can be
fed into a linear stochastic race. Here, one item accumulator Ei is defined for each item in
the choice set:

Ei(t) = Ei(t− 1) + vRi +N(0, σ2),with Ei(0) = 0 (5)

At each time step t, the amount of accumulated evidence is determined by the ac-
cumulation rate vRi, (where v indicates a general speed parameter that is independent of
gaze and item value) and zero-centered normally distributed noise with standard deviation
σ. A choice for an item is made as soon as one accumulator reaches the decision boundary
b. The first passage time density fi(t) of a single linear stochastic accumulator Ei, with
decision boundary b, is given by the inverse Gaussian distribution:

fi(t) =
[ λ

2πt3
] 1

2 exp
(−λ(t− µ)2

2µ2t

)
(6)

with µ = b

vRi
and λ = b2

σ2

However, this density does not take into account that there are multiple accumulators
in each trial racing towards the same boundary. For this reason, fi(t) must be corrected
for the probability that any other accumulator crosses the boundary first. The probability
that an accumulator crosses the boundary prior to t, is given by its cumulative distribution
function Fi(t):

Fi(t) = Φ
(√λ

t

( t
µ

− 1
))

+ exp
(2λ
µ

)
· Φ
(

−

√
λ

t

( t
µ

+ 1
))

(7)

Here, Φ(x) defines the standard normal cumulative distribution function. Hence, the
joint probability pi(t) that accumulator Ei crosses b at time t, and that no other accumulator
Ej has reached b first, is given by:

pi(t) = fi(t)
∏
J

(
1 − Fj(t)

)
(8)
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GLAMBOX 5

Contaminant response model. To reduce the influence of erroneous responses
(e.g., when the participant presses a button by accident or has a lapse of attention during
the task) on parameter estimation, we include a model of contaminant response processes
in all estimation procedures: In line with existing drift diffusion modelling toolboxes (e.g.,
Wiecki, Sofer, & Frank, 2013), we assume a fixed 5% rate of erroneous responses ε that
is modeled as a participant-specific uniform likelihood distribution us(t). This likelihood
describes the probability of a random choice for any of the N available choice items at a
random time point in the interval of empirically observed RTs (cf., Ratcliff & Tuerlinckx,
2002; Wiecki et al., 2013):

us(t) = 1
N(max rts − min rts)

(9)

The resulting likelihood for participant s choosing item i, accounting for erroneous
responses, is then given by:

li(t) = (1 − ε) · pi(t) + ε · us(t) (10)

The rate of error responses ε can be specified by the user to a different value than the
default of 5% using the error_weight keyword in the make_model method (see below).

Individual parameter estimation details. The GLAM is implemented in a
Bayesian framework using the Python library PyMC3 (Salvatier, Wiecki, & Fonnesbeck,
2016, version 3.7). The model has four parameters (v, γ, σ, τ). By default, uninformative,
uniform priors between sensible limits (derived from earlier applications to four different
datasets; Thomas et al., 2019) are placed on all parameters:

v ∼ U(0, 2)
γ ∼ U(−10, 1)
σ ∼ U(0, 2)
τ ∼ U(0, 5)

The γ parameter has a natural upper bound at 1 (indicating no gaze bias). The
τ parameter has a natural lower bound at 0 (resulting in no sensitivity to differences in
average absolute decision signals Āi). The velocity parameter v and the noise parameter σ
must be strictly positive.

Hierarchical parameter estimation details. For hierarchical models, individual
parameters are assumed to be drawn from Truncated Normal distributions, parameterized
by mean and standard deviation, over which weakly informative, Truncated Normal priors
are assumed (based on the distribution of group level parameter estimates obtained from
four different datasets in Thomas et al. 2019; see Figs. 2, A2 and A3 and Table A1):
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Figure 2 . In the hierarchical model, individual subject parameters γi, vi, σi and τi (subject
plate) are assumed to be drawn from Truncated Normal group level distributions with means
µ and standard deviations σ (outside of subject plate). By default, weakly informative
Truncated Normal priors, based on previous on previous applications of the model to four
different datasets, are placed on the group level parameters. RT and choice data xi,t for
each trial t is distributed according to subject parameters and the GLAM likelihood (Eq.
8; inner trial plate).

vµ ∼ N(0.63, 10 · 0.26), truncated to [0, 2]
vσ ∼ N(0.26, 10 · 0.11), truncated to [0, 1]
γµ ∼ N(0.12, 10 · 0.11), truncated to [−2, 1]
γσ ∼ N(0.35, 10 · 0.1), truncated to [0, 1]
σµ ∼ N(0.27, 10 · 0.08), truncated to [0, 1]
σσ ∼ N(0.05, 10 · 0.01), truncated to [0, 0.2]
τµ ∼ N(1.03, 10 · 0.58), truncated to [0, 5]
τσ ∼ N(0.62, 10 · 0.26), truncated to [0, 3]

Basic usage

Data format, the GLAM class. The core functionality of the GLAMbox is imple-
mented in the GLAM model class. To apply the GLAM to data, an instance of the model
class needs to be instantiated and supplied with the experimental data, first:

import glambox as gb
glam = gb.GLAM(data=data)
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GLAMBOX 7

subject trial choice rt item_value_0 item_value_1 item_value_2 gaze_0 gaze_1 gaze_2 speed
0 0 0 2.056 5 1 3 0.16 0.62 0.22 ’fast’
0 1 2 3.685 3 6 9 0.44 0.22 0.34 ’slow’
Table 1
The first two rows of a pandas DataFrame ready to be used with GLAM.

The data must be a pandas (McKinney, 2010) DataFrame with one row per trial,
containing the following variable entries:

• subject: Subject index (integer, first subject should be 0)

• trial: Trial index (integer, first trial should be 0)

• choice: Chosen item in this trial (integer, items should be 0, 1, . . . , N)

• rt: Response time (float, in seconds)

• for each item i in the choice set:

– item_value_i: The item value (float)
– gaze_i: The fraction of total time in this trial that the participant spent looking

at this item (float, between 0 and 1)

• additional variables coding groups or conditions (string or integer)

For reference, the first two rows of a pandas DataFrame ready to be used with GLAM-
box are shown in Table 1.

Next, the respective PyMC3 model, which will later be used to estimate the model’s
parameters, can be built using the make_model method. Here, the researcher specifies the
kind of the model: 'individual' if the parameters should be estimated for each sub-
ject individually, 'hierarchical' for hierarchical parameter estimation, or 'pooled' to
estimate a single parameter set for all subjects. At this stage, the researcher can also spec-
ify experimental parameter dependencies: For example, a parameter could be expected to
vary between groups or conditions. In line with existing modeling toolboxes (e.g., Voss
& Voss, 2007; Wiecki et al., 2013) dependencies are defined using the depends_on argu-
ment. depends_on expects a dictionary with parameters as keys and experimental factors
as values (e.g., depends_on=dict(v='speed') for factor 'speed' with conditions 'fast'
and 'slow' in the data). The toolbox internally handles within- and between subject de-
signs and assigns parameters accordingly. If multiple conditions are given for a factor, one
parameter will be designated for each condition. Finally, the make_model method allows
parameters to be fixed to a specific value using the *_val arguments (e.g., gamma_val=1
for a model without gaze bias). If parameters should be fixed for individual subjects, a list
of individual values needs to be passed.

model.make_model(kind='individual',
depends_on=dict(v='speed'),
gamma_val=1)
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Inference. Once the PyMC3 model is built, parameters can be estimated using the
fit method:

model.fit(method='MCMC')

The fit method defaults to Markov-Chain-Monte-Carlo (MCMC; Gamerman &
Lopes, 2006) sampling, but also allows for Variational Inference (see below).

Markov-Chain-Monte-Carlo. MCMCmethods approximate the Bayesian poste-
rior parameter distributions, describing the probability of a parameter taking certain values
given the data and prior probabilities, through repeated sampling. GLAMbox can utilize
all available MCMC step methods provided by PyMC3. The resulting MCMC traces can
be accessed using the trace attribute of the model instance (note that a list of traces is
stored for models of kind 'individual'). They should always be checked for convergence,
to ascertain that the posterior distribution is approximated well. Both qualitative visual
and more quantitative numerical checks of convergence, such as the Gelman-Rubin statistic
R̂ and the number of effective samples are recommended (see Gelman & Shirley, 2011; Kr-
uschke, 2014, for detailed recommendations). PyMC3 contains a range of diagnostic tools
to perform such checks (such as the summary function).

Variational inference. Estimation can also be done using all other estimation
procedures provided in the PyMC3 library. This includes variational methods like Auto-
matic Differentiation Variational Inference (ADVI; Kucukelbir, Tran, Ranganath, Gelman,
& Blei, 2017). To use variational inference, the method argument can be set to 'VI', de-
faulting to the default variational method in PyMC3. We found variational methods to
quickly yield usable, but sometimes inaccurate parameter estimates, and therefore recom-
mend using MCMC for final analyses.

Accessing parameter estimates. After parameter estimation is completed, the
resulting estimates can be accessed with the estimates attribute of the GLAM model
instance. This returns a table with one row for each set of parameter estimates for each
individual and condition in the data. For each parameter, a maximum a posteriori (MAP)
estimate is given, in addition to the 95% Highest-Posterior Density Interval (HPD). If the
parameters were estimated hierarchically, the table also contains estimates of the group-level
parameters.

Predicting choices and response times. Choices and RTs can be predicted with
the GLAM by the use of the predict method:

model.predict(n_repeats=50)

For each trial of the dataset that is attached to the model instance, this method
predicts a choice and RT according to Eq. 10, using the previously determined maximum
a posteriori (MAP) parameter estimates. To obtain a stable estimate of the GLAM’s
predictions, as well as the noise contained within them, it is recommended to repeat every
trial multiple times during the prediction. The number of trial repeats can be specified
with the n_repeats argument. After the prediction is completed, the predicted data can
be accessed with the prediction attribute of the model.
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Figure 3 . Individual differences in the data. A-C: distributions of individuals’ mean RT
(A), behavioural influence of gaze allocation on choice behaviour (B), and the probability of
choosing the highest-valued item in a trial (C). D-F: associations between individuals’ mean
RT and their probability of choosing the highest-valued item (D), individuals’ behavioural
influence of gaze allocation on choice behaviour and their mean RT (E), individuals’ be-
havioural influence of gaze allocation on choice behaviour and their probability of choosing
the highest-valued item (F). Red lines indicate linear regression fits with confidence bands
surrounding them. Pearson’s r coefficients with corresponding P -values are reported for
each association in D-F.

Results

Example 1: Individual Level Data & Model Comparison

Our first example is based on the study by Thomas et al. (2019). Here, the authors
study the association between gaze allocation and choice behaviour on the level of the
individual. In particular, they explore whether (1) gaze biases are present on the individual
level and (2) the strength of this association varies between individuals. In this example,
we replicate this type of individual model-based analysis, including parameter estimation,
comparison between multiple model variants, and out-of-sample prediction of choice and
RT data.

Simulating data. First, we simulate a dataset containing 30 subjects, each per-
forming 300 simple value-based choice trials. We assume that in each trial participants are
asked to choose the item that they like most out of a set of three presented alternatives
(e.g., snack food items; similar to the task described in Krajbich and Rangel (2011)). While
participants perform the task, their eye movements, choices and RTs are measured. After
completing the choice trials, participants are further asked to indicate their liking rating
for each of the items used in the choice task on a liking rating scale between 1 and 10 (with
10 indicating strong liking and 1 indicating little liking). The resulting dataset contains a
liking value for each item in a trial, the participants’ choice and RT, as well as the par-
ticipant’s gaze towards each item in a trial (describing the fraction of trial time that the
participant spent looking at each item in the choice set).

To simulate individuals’ response behaviour, we utilize the parameter estimates that
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GLAMBOX 10

were obtained by Thomas et al. (2019) for the individuals in the three item choice dataset
by Krajbich and Rangel (2011) (see Fig. A2). Importantly, we assume that ten individuals
do not exhibit a gaze bias, meaning that their choices are independent of the time that
they spend looking at each item. To this end, we set the γ value of ten randomly selected
individuals to 1. We further assume that individuals’ gaze is distributed randomly with
respect to the values of the items in a choice set. An overview of the generating parameter
estimates is given Fig. A1.

We first instantiate a GLAM model instance using gb.GLAM() and then use its
simulate_group method. This method requires us to specify whether the individuals of the
group are either simulated individually (and thereby independent of one another) or as part
of a group with hierarchical parameter structure (where the individual model parameters
are drawn from a group distribution, see below). For the former, the generating model
parameters (indicated in the following as gen_parameters) are provided as a dictionary,
containing a list of the individual participant values for each model parameter:

import glambox as gb
import numpy as np
glam = gb.GLAM()
no_bias_subjects = np.random.choice(a=gen_parameters['gamma'].size,

size=10,
replace=False)

gen_parameters['gamma'][no_bias_subjects] = 1
glam.simulate_group(kind='individual',

n_individuals=30,
n_trials=300,
n_items=3,
parameters=gen_parameters)

As this example is focused on the individual level, we can further create a summary
table, describing individuals’ response behaviour on three behavioural metrics, using the
aggregate_subject_level_data function from the analysis module. The resulting table
contains individuals’ mean RT, their probability of choosing the item with the highest item
value from a choice set and a behavioural measure of the strength of the association between
individuals’ gaze allocation and choice behaviour (indicating the mean increase in choice
probability for an item that was fixated on longer than the others, after correcting for the
influence of the item value on choice behaviour; for further details, see Thomas et al. 2019).

from glambox.analysis import aggregate_subject_level_data
subject_data_summary = aggregate_subject_level_data(data=glam.data,

n_items=3)

Exploring the behavioural data. In a first step of our analysis, we explore
differences in individuals’ response behaviour. To this end, we plot the distributions
of individuals’ scores on the three behavioural metrics, and their associations, using the
plot_behaviour_associations function implemented in the plots module:

gb.plots.plot_behaviour_associations(data=data)
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GLAMBOX 11

The resulting plot is displayed in Fig. 3 and shows that individuals’ probability of choosing
the best item, as well as the strength of their behavioural association of gaze and choice,
are not associated with their mean RT (Fig. 3D-E). However, individuals’ probability of
choosing the best item increases with decreasing strength of the behavioural association of
gaze and choice (Fig. 3F).

Likelihood-based model comparison. In a second step of our analysis, we want
to test whether the response behaviour of each individual is better described by a decision
model with or without gaze bias. To this end, we set up the two GLAM variants:

glam_bias = gb.GLAM(data=data)
glam_bias.make_model(kind='individual')

glam_nobias = gb.GLAM(data=data)
glam_nobias.make_model(kind='individual', gamma_val=1)

For the GLAM variant without gaze bias mechanism, we use the gamma_val argument and
set it to a value of 1 (fixing γ to 1 for all subjects).

Subsequently, we fit both models to the data of each individual and compare their
fit by means of the Widely Applicable Information Criterion (WAIC; Vehtari, Gelman, &
Gabry, 2017):

glam_bias.fit(method='MCMC',
tune=5000,
draws=5000)

glam_nobias.fit(method='MCMC',
tune=5000,
draws=5000)

The fit method defaults to Metropolis-Hastings MCMC sampling (for methodological de-
tails, see Methods Section ). The draws argument sets the number of samples to be drawn.
This excludes the tuning (or burn-in) samples, which can be set with the tune argument. In
addition, the fit method accepts the same keyword arguments as the PyMC3 sample func-
tion, which it wraps (see the PyMC3 documentation for additional details). The chains
argument sets the number of MCMC traces (it defaults to four and should be set to at least
two, in order to allow convergence diagnostics).

After convergence has been established for all parameter traces (for details on the
suggested convergence criteria, see Methods), we perform a model comparison on the indi-
vidual level, using the compare function of the PyMC3 library. For each individual, this
function requires as input a dictionary, containing the individual’s model and trace. The
individually fitted models, as well as their traces, can be accessed through the model and
trace attributes of our GLAM instances. Both are lists, with one entry per subject in the
dataset. The ic argument specifies the information criterion to be used for the model com-
parison ('WAIC' or Leave-One-Out Cross Validation 'LOO'). The compare function returns
a table containing an estimate of the specified information criterion for each inputted model
variant.
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Figure 4 . Individual differences in the strength of the association of gaze allocation and
choice behaviour. A) Distribution of γ estimates resulting from the in-sample individual
model fits. B) Association of γ estimates and individuals’ values on the behavioural gaze
bias measure. The red line indicates a linear regression fit, with surrounding 95% confidence
bands. Pearson’s r correlation with P -value is given.

from pymc3 import compare
n_subjects = 30
for s in range(n_subjects):

waic_df = compare({glam_bias.model[s]:
glam_bias.trace[s],
glam_nobias.model[s]:
glam_nobias.trace[s]},
ic='WAIC')

With this comparison, we are able to identify those participants whose response behaviour
matches the assumption of gaze-biased evidence accumulation. In particular, we find that we
accurately recover whether an individual has a gaze bias or not for 29 out of 30 individuals.

Looking at the individual parameter estimates (defined as maximum a posteriori
(MAP) of the posterior distributions), we find that the individually fitted γ values (Fig.
4A) cover a wide range between -0.8 and 1, indicating strong variability in the strength of
individuals’ gaze bias. We also find that γ estimates have a strong negative correlation with
individuals’ scores on the behavioural gaze bias measure (Fig. 4B).

Out-of-sample prediction. We have identified those participants whose response
behaviour is better described by a GLAM variant with gaze-bias than one without. Yet,
this analysis does not indicate whether the GLAM is a good model of individuals’ response
behaviour on an absolute level. To test this, we perform an out-of-sample prediction exer-
cise.

We divide the data of each subject into even- and odd-numbered experiment trials
and use the data of the even-numbered trials to fit both GLAM variants:

glam_bias.exchange_data(data_even)
glam_bias.fit(method='MCMC',

tune=5000,
draws=5000)
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glam_nobias.exchange_data(data_even)
glam_nobias.fit(method='MCMC',

tune=5000,
draws=5000)

Subsequently, we evaluate the performance of both models in predicting individuals’ re-
sponse behaviour using the MAP estimates and item value and gaze data from the odd-
numbered trials. To predict response behaviour for the odd-numbered trials, we use the
predict method. We repeat every trial 50 times in the prediction (as specified through the
n_repeats argument) to obtain a stable pattern of predictions:

glam_bias.exchange_data(data_odd)
glam_bias.predict(n_repeats=50)

glam_nobias.exchange_data(data_odd)
glam_nobias.predict(n_repeats=50)

Lastly, to determine the absolute fit of both model variants to the data, we plot the indi-
vidually predicted against the individually observed data on all three behavioural metrics.
To do this, we use the plot_individual_fit function of the plots module. This function
takes as input the observed data, as well as a list of the predictions of all model variants
that ought to be compared. The argument prediction_labels specifies the naming used
for each model in the resulting figure. For each model variant, the function creates a row
of panels, plotting the observed against the predicted data:

from glambox.plots import plot_individual_fit
plot_individual_fit(observed=data_odd,

predictions=[glam_bias.prediction,
glam_nobias.prediction],

prediction_labels=['gaze-bias',
'no gaze-bias'])

The resulting plot is displayed in Fig. 5. We find that both model variants perform well
in capturing individuals’ RTs and probability of choosing the best item (Fig. 5A, D, B, E).
Importantly, only the GLAM variant with gaze bias is able to also recover the strength of
the association between individuals’ choice behaviour and gaze allocation (Fig. 5C).

Conclusion. GLAMbox provides an easy-to-use tool to test the presence (and vari-
ability) of gaze biases on the individual level. With GLAMbox, we can easily fit the GLAM
to individual participant data, compare different model variants and predict individuals’
response behaviour. It also provides a set of analysis functions to explore behavioural dif-
ferences between individuals and to compare the fit of different model variants to observed
response behaviour.

Example 2: Hierarchical Parameter Estimation in Cases with Limited Data

In some research settings, the total amount of data one can collect per individual is
limited, conflicting with the large amounts of data required to obtain reliable and precise
individual parameter estimates from diffusion models (Lerche, Voss, & Nagler, 2017; Voss,
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Figure 5 . Comparison of individuals’ observed response behaviour with the out-of-sample
predictions of a GLAM variant with (A-C) and without gaze bias (D-F): Individuals’ mean
RT (A, D), probability of choosing the best item (B, E), and influence of gaze allocation on
choice probability (C, F). Points indicate individual participant means.

Nagler, & Lerche, 2013). Hierarchical modeling can offer a solution to this problem. Here,
each individual’s parameter estimates are assumed to be drawn from a group level distribu-
tion. Thereby, during parameter estimation, individual parameter estimates are informed
by the data of the entire group. This can greatly improve parameter estimation, especially
in the face of limited amounts of data (Ratcliff & Childers, 2015; Wiecki et al., 2013). In this
example, we will simulate a clinical application setting, in which different patient groups
are to be compared on the strengths of their gaze biases, during a simple value-based choice
task that includes eye tracking. It is reasonable to assume that the amount of data that
can be collected in such a setting is limited on at least two accounts:

1. The number of patients available for the experiment might be low

2. The number of trials that can be performed by each participant might be low, for
clinical reasons (e.g., patients feel exhausted more quickly, time to perform tests is
limited, etc.)

Therefore, we simulate a dataset with a low number of individuals within each group (be-
tween 5 and 15 per group), and a low number of trials per participant (50 trials). We then
estimate model parameters in a hierarchical fashion, and compare the group level gaze bias
parameter estimates between groups.
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GLAMBOX 15

Figure 6 . Aggregate view of the simulated data for Example 2. The data can be visualized
quickly using the plot_behaviour_aggregate function from the plots module. It plots
(A) mean RT, binned by trial difficulty (defined as the difference between the highest item
value and the mean of all other item values), (B) the probability of choosing an item based
on its relative value (defined as the difference between an item’s value and the mean value of
all other items), (C) the probability of choosing an item based on the relative gaze towards
it (the difference between the gaze towards this item and the mean gaze towards all others)
and (D) the probability of choosing an item, based on the relative gaze towards it, and
corrected for the influence of item value. Bars correspond to data pooled across groups,
coloured lines indicate individual groups.

Simulating data. We simulate data of three patient groups (N1 = 5, N2 = 10, N3
= 15), with 50 trials per individual, in a simple three item value-based choice task, where
participants are instructed to simply choose the item they like the best. These numbers
are roughly based on a recent clinical study on the role of the prefrontal cortex in fixation-
dependent value representations (Vaidya & Fellows, 2015). As before, we sample parameter
sets for each individual from the estimates obtained from fitting the model to the data
from (Krajbich & Rangel, 2011). This ensures that the simulated data used here closely
resemble data that could be obtained experimentally. Importantly, we let the gaze bias
parameter γ differ systematically between the groups, with means of γ1 = 0.7 (weak gaze
bias), γ2 = 0.1 (moderate gaze bias) and γ3 = −0.5 (strong gaze bias), respectively. All other
parameters are sampled from the same distribution across groups (for an overview of the
generating parameters, see Fig. A4). The groups primarily differ in the gaze bias parameter
γ, whereas other parameters largely overlap (even though there is some non-systematic
variance between individuals).

Behavioural differences between the three groups are plotted in Fig. 6, using the
plot_behaviour_aggregate function from the plots module. Group-level summary tables
can be created using the aggregate_group_level_data from the analysis module. Even
though the groups only differ in the gaze bias parameter, they also exhibit differences in
RT (Group 1 mean ± s.d. = 1.96 ± 0.33 s, Group 2 mean ± s.d. = 2.38 ± 1.4 s; Group 3
mean ± s.d. = 2.59 ± 1.26 ms; Fig. 6A) and choice accuracy (Group 1 mean ± s.d. = 0.88
± 0.06, Group 2 mean ± s.d. = 0.71 ± 0.07, Group 3 mean ± s.d. = 0.50 ± 0.16; Fig. 6B).
As is to be expected, we can also observe behavioural differences in gaze influence measure
(Group 1 mean ± s.d. = 0.08 ± 0.07, Group 2 mean ± s.d. = 0.26 ± 0.11, Group 3 mean
± s.d. = 0.38 ± 0.11; Fig. 6 C-D, where the choices of Group 3 are driven by gaze more
than those of the other groups.
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Building the hierarchical model. When specifying the hierarchical model, we
allow all model parameters to differ between the three groups. This way, we will subse-
quently be able to address the question whether individuals from different groups differ on
one or more model parameters (including the gaze bias parameter γ, which we are mainly
interested in here). As for the individual models, we first initialize the model object using
the GLAM class and supply it with the behavioural data using the data argument. Here, we
set the model kind to 'hierarchical' (in contrast to 'individual'). Further, we specify
that each model parameter can vary between groups (referring to a 'group' variable in the
data):

hglam = gb.GLAM(data=data)
hglam.make_model(kind='hierarchical',

depends_on=dict(v='group',
gamma='group',
s='group',
tau='group'))

Parameter estimation with MCMC. After the model is built, the next step is
to perform statistical inference over its parameters. As we have done with the individual
models, we can use MCMC to approximate the parameters’ posterior distributions (see
Methods for details):

hglam.fit(method='MCMC',
draws=10000, tune=10000)

Evaluating parameter estimates, interpreting results. After sampling is fin-
ished, and the chains were checked for convergence, we can turn back to the research ques-
tion: Do the groups differ with respect to their gaze biases? Questions about differences
between group-level parameters can be addressed by inspecting their posterior distributions.
For example, the probability that the mean γ1,µ for Group 1 is larger than the mean γ2,µ
of Group 2 is given by the proportion of posterior samples in which this was the case.

GLAMbox includes a plot_node_hierarchical function that plots posterior distri-
butions of group level parameters. Additionally, the user can specify a list of comparisons
between groups or conditions. If comparisons are specified, the posterior distributions of
their difference and corresponding relevant statistics are added to the figure:

from glambox.plots import plot_node_hierarchical
parameters = ['v', 'gamma', 's', 'tau']
comparisons = [('group1', 'group2'),

('group1', 'group3'),
('group2', 'group3')]

plot_node_hierarchical(model=hglam,
parameters=parameters,
comparisons=comparisons)

With the resulting plot (Fig. 7), the researcher can infer that the groups did not differ
with respect to their mean velocity parameters vi,µ (top row, pairwise comparisons), mean
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Figure 7 . Pairwise comparison of posterior group-level parameter estimates between groups.
The resulting figure has one row per model parameter. The leftmost column shows posterior
distributions for each group. The next columns show posterior distributions of pairwise
differences, as specified by the comparisons argument. These plots include the mean and
95% HPD values of the posterior distribution of the difference, as well as the proportion
of samples below and above zero (in red). In this example, differences between all three
groups on the γ parameter (row B) are present, as the posterior distributions of pairwise
differences between groups clearly exclude zero. For example, the difference between groups
1 and 2 is estimated at 0.51, 95% HPD = [0.2, 0.81], with over 99% of the posterior mass
above zero. No evidence for differences on any of the other model parameters is found (their
posterior distributions largely overlap and the posterior distributions of pairwise differences
between groups all clearly include zero).

accumulation noise σi,µ (third row), or scaling parameters τi,µ. The groups differ, however,
in the strength of their mean gaze bias γi,µ (second row): All differences between the groups
were statistically meaningful (as inferred by the fact that the corresponding 95% HPD did
not contain zero; second row, columns 2-4).

Conclusion. When faced with limited data, GLAMbox allows users to easily build
and estimate hierarchical GLAM variants, including conditional dependencies of model
parameters. The Bayesian inference framework allows the researcher to answer relevant
questions in a straightforward fashion. To this end, GLAMbox provides basic functions for

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2019. ; https://doi.org/10.1101/741678doi: bioRxiv preprint 

https://doi.org/10.1101/741678
http://creativecommons.org/licenses/by/4.0/


GLAMBOX 18

Figure 8 . Results from a basic parameter recovery. The lower row (E-H) shows deviations
between known generating parameter values and recovered MAP estimates (circles) and
their 95% HPDs (horizontal error bars) for each participant. Green (red) colour indicates
that the true value is within (outside) the 95% HPD. Most parameters were recovered with
small deviations. Panels A-D show distributions of deviations across individuals. Distribu-
tions are mostly centered around zero, indicating no systematic under- or overestimation
(bias) across individuals.

computation and visualization.

Example 3: Parameter Recovery

When performing model-based analyses of behaviour that include the interpretation of
parameter estimates, or comparisons of parameter estimates between groups or conditions,
the researcher should be confident that the model’s parameters are actually identifiable.
In particular, the researcher needs to be confident that the set of estimated parameters
unambiguously describes the observed data better than any other set of parameters. A
straightforward way of testing this is to perform a parameter recovery: The general intuition
of a parameter recovery analysis is to first generate a synthetic dataset from a model using
a set of known parameters, and then fitting the model to the synthetic data. Finally, the
estimated parameters can be compared to the known generating parameters. If they match
to a satisfying degree, the parameters were recovered successfully. Previous analyses have
already indicated that the GLAM’s parameters can be recovered to a satisfying degree
(Thomas et al., 2019). Yet, the ability to identify a given set of parameters always depends
on the specific features of a given dataset. The most obvious feature of a dataset that
influences recoverability of model parameters is the number of data points included. Usually
this quantity refers to the number of trials that participants performed. For hierarchical
models, the precision of group-level estimates also depends on the number of individuals per
group. Additional features that vary between datasets and that could influence parameter
estimation are the observed distribution of gaze, the distribution of item values or the
number of items in each trial. For this reason, it is recommended to test whether the
estimated parameters of a model can be recovered in the context of a specific dataset.

To demonstrate the procedure of a basic parameter recovery analysis using GLAMbox,
suppose we have collected and loaded a data set called data. In the first step, we perform
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parameter estimation as in the previous examples:

glam = gb.GLAM(data=data)
glam.make_model(kind='individual')
glam.fit(method='MCMC', draws=5000, tune=5000)

The next step is to create a synthetic, model-generated dataset using the model pa-
rameters estimated from the empirical data, together with the empirically observed stimulus
and gaze data using the predict method. Setting n_repeats to 1 results in a dataset of
the same size as the observed one:

glam.predict(n_repeats=1)
synthetic = glam.prediction

The synthetic dataset should resemble the empirically observed data closely. If there
are major discrepancies between the synthetic and observed data, this indicates that GLAM
might not be a good candidate model for the data at hand. Next, we create a new model
instance, attach the synthetic data, build a model and re-estimate its parameters:

glam_rec = gb.GLAM(data=synthetic)
glam_rec.make_model(kind='individual')
glam_rec.fit(method='MCMC',

draws=5000,
tune=5000)

Finally, the recovered and generating parameters can be compared. If the recovered
parameters do not match the generating parameters, the parameters cannot be identified
given this specific dataset. In this case, parameter estimates should not be interpreted.

If, on the other hand, generating and recovered parameters do align, the parame-
ters have been recovered successfully. This indicates that the model’s parameters can be
identified unambiguously given the general characteristics of the dataset and thereby in-
creases confidence that the parameters obtained from the empirical data are valid and can
be interpreted.

Here, all parameters could be recovered as illustrated in Fig. 8. For most individuals,
the MAP estimates and their 95% HPDs are close to the known generating parameters.
Across individuals, no systematic biases in the estimation can be identified.

Conclusion. In this example, we demonstrated how to perform a basic parameter
recovery for a given dataset. When successful, this increases confidence that the parameters
can be identified with the given dataset.

Discussion

Researchers have recently started to systematically investigate the role of visual gaze
in the decision making process. By now, it is established that eye movements do not merely
serve to sample information that is then processed independently to produce a choice,
but that they are actively involved in the construction of preferences (Ashby et al., 2016;
Cavanagh et al., 2014; Folke et al., 2017; Konovalov & Krajbich, 2016; Krajbich et al., 2010;
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Krajbich & Rangel, 2011; Orquin & Mueller Loose, 2013; Shimojo et al., 2003; Tavares
et al., 2017; Thomas et al., 2019). The dominant theoretical perspective is that evidence
accumulation in favor of each option is modulated by gaze allocation, so that accumulation
for non-fixated options is attenuated. This mechanism is formally specified in various models
of gaze-dependent decision making, such as the attentional Drift Diffusion Model (aDDM;
Krajbich et al., 2010; Krajbich & Rangel, 2011) and the conceptually related Gaze-weighted
Linear Accumulator Model (GLAM; Thomas et al., 2019). In contrast to analyses based on
behavioural and eye tracking data alone, these models can act as analytical tools that enable
researchers to address questions regarding specific mechanisms in the decision process, like
the gaze bias. They further formally establish mechanistic associations between choice, RT
and eye tracking data and enable prediction of these data. Even though the advantages of
applying these models are apparent, their use is limited by their complexity and the high cost
of implementing, validating and optimizing them. Further, there are only few off-the-shelf
solutions researchers can turn to, if they want to perform model-based analyses of gaze-
dependent choice data, particularly for choice settings involving more than two alternatives.
With GLAMbox, we present a Python-based toolbox, built on top of PyMC3, that allows
researchers to perform model-based analyses of gaze-bias effects in decision making easily.
We have provided step-by-step instructions and code to perform essential modeling analyses
using the GLAM. These entail application of the GLAM to individual and group-level
data, specification of parameter dependencies for both within- and between-subject designs,
(hierarchical) Bayesian parameter estimation, comparisons between multiple model variants,
out-of-sample prediction of choice and RT data, data visualization, Bayesian comparison of
posterior parameter estimates between conditions, and parameter recovery. We hope that
GLAMbox will make studying the association between gaze allocation and choice behaviour
more accessible. We also hope that the resulting findings will ultimately help us better
understand this association, its inter-individual variability and link to brain activity.
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Appendix

Figure A1 . Distribution of individual generating GLAM parameters of Example 1. Colours
indicate whether a subject was simulated with or without gaze bias.
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Figure A2 . Distribution of individual parameter estimates from four datasets analysed in
Thomas et al. (2019). The top row contains distributions of parameter estimates across
datasets. Subsequent rows show distributions per dataset: Krajbich et al. (2010; blue),
Krajbich & Rangel (2011; orange), Experiment 2 from Folke et al. (2017; green) and
Experiment 1 from Tavares et al. (2017; red).
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Figure A3 . Illustration of hyperpriors. Different hyperpriors based on group-averaged
parameter values were obtained from fitting the model to four different datasets (Folke et
al., 2017; Krajbich et al., 2010; Krajbich & Rangel, 2011; Tavares et al., 2017; see Table
A1 and Fig. A2). Panels show prior distributions on group level mean (upper row) and
standard deviation (lower row) for each model parameter (columns; from left to right: v, γ,
σ, τ). Observed group level estimates from the four datasets are indicated as red ticks in
each panel. Blue, orange and green lines represent prior distributions with increasing levels
of vagueness f . They are constructed as normal distributions with mean equal to the mean
of the observed group level parameters across datasets (M), and standard deviation equal to
f times the observed standard deviation across datasets (SD). Higher values of f correspond
to wider, less informative priors. Prior distributions are further bounded between sensible
limits. The user can specify the factor f during specification of hierarchical models. By
default, hyperpriors with f = 10 (orange lines) are used.
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Figure A4 . Distributions of data-generating parameters for the three groups in Example
2. The top row shows distributions pooled across groups. The bottom three rows show
distributions per group. Note that the groups do not differ systematically with respect to
the velocity parameter v, the noise parameter σ, or the scaling parameter τ (first, second
and last column; even though there is some variability between individuals). The groups
differ, however, on the gaze bias parameter γ (third column): Group 1 only has a weak gaze
bias (large γ), group 2 has a medium strong gaze bias (smaller γ), and group 3 has a very
strong gaze bias (even smaller, negative γ).
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Dataset N Parameter Mean SD min 25% 50% 75% max
Folke 2016 24 v 0.25 0.08 0.17 0.19 0.22 0.3 0.51

γ -0.01 0.28 -0.45 -0.22 -0.04 0.2 0.43
σ 0.19 0.03 0.12 0.17 0.19 0.21 0.28
τ 1.85 0.97 0.43 1.19 1.62 2.52 3.92

Krajbich 2010 39 v 0.77 0.33 0.24 0.53 0.77 0.93 1.69
γ 0.23 0.47 -0.78 -0.07 0.33 0.6 0.85
σ 0.28 0.05 0.19 0.25 0.29 0.32 0.38
τ 0.74 0.52 0.1 0.37 0.57 1.09 2.27

Krajbich 2011 30 v 0.67 0.33 0.18 0.44 0.63 0.78 1.58
γ 0.19 0.41 -1.02 -0.07 0.33 0.45 0.81
σ 0.25 0.05 0.17 0.22 0.25 0.28 0.36
τ 1.0 0.71 0.24 0.52 0.81 1.39 3.53

Tavares 2017 25 v 0.84 0.3 0.38 0.54 0.9 1.02 1.4
γ 0.09 0.23 -0.36 0.01 0.08 0.22 0.54
σ 0.37 0.05 0.23 0.35 0.37 0.39 0.46
τ 0.54 0.26 0.12 0.34 0.49 0.74 0.97

Table A1
Description of individual parameter estimates from four datasets analysed in Thomas et al.
(2019). The datasets are originally from Folke et al., 2017 (Experiment 2); Krajbich et al.,
2010; Krajbich & Rangel, 2011 and Tavares et al., 2017 (Experiment 1).
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