

1 **Title:** BMP-signalling inhibition in *Drosophila* secondary cells remodels the seminal
2 proteome, and self and rival ejaculate functions

3

4

5 **Authors:** Ben R. Hopkins¹, Irem Sepil¹, Sarah Bonham², Thomas Miller¹, Philip D. Charles²,
6 Roman Fischer², Benedikt M. Kessler², Clive Wilson³, and Stuart Wigby¹

7

8 Author ORCIDs: BRH - 0000-0002-9760-6185

9 IS – 0000-0002-3228-5480

10 PDC - 0000-0001-5278-5354

11 BMK – 0000-0002-8160-2446

12 SW – 0000-0002-2260-2948

13

14

14 **Affiliation:** ¹Edward Grey Institute, Department of Zoology, University of Oxford, Oxford
15 OX1 3PS, United Kingdom.

21

22 **Corresponding Author:** Ben R. Hopkins, Department of Zoology, University of Oxford,
23 Oxford, OX1 3PS. brhopkins92@gmail.com

24

25 **Keywords:** reproduction, seminal fluid, sexual selection, sperm competition

26

27 **Author contributions:** B.R.H., I.S., and S.W. designed research; B.R.H., I.S., S.B., T.M., and
28 S.W. performed research; S.B., P.D.C., R.F., B.M.K., and C.W. contributed new
29 reagents/analytic tools; B.R.H. analysed the data; B.R.H. and S.W. wrote the paper with input
30 from all co-authors.

31

32 The authors declare no conflicts of interest

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 ABSTRACT

52 Seminal fluid proteins (SFPs) exert potent effects on male and female fitness. Rapidly evolving
53 and molecularly diverse, they derive from multiple male secretory cells and tissues. In
54 *Drosophila melanogaster*, most SFPs are produced in the accessory glands, which are
55 composed of ~1000 fertility-enhancing ‘main cells’ and ~40, more functionally cryptic,
56 ‘secondary cells’. Inhibition of BMP-signalling in secondary cells suppresses secretion,
57 leading to a unique uncoupling of normal female post-mating responses to the ejaculate:
58 refractoriness stimulation is impaired, but offspring production is not. Secondary cell
59 secretions might therefore make a highly specific contribution to the seminal proteome and
60 ejaculate function; alternatively, they might regulate more global – but hitherto-undiscovered
61 – SFP functions and proteome composition. Here, we present data that supports the latter
62 model. We show that in addition to previously reported phenotypes, secondary cell-specific
63 BMP-signalling inhibition compromises sperm storage and increases female sperm use
64 efficiency. It also impacts second male sperm, tending to slow entry into storage and delay
65 ejection. First male paternity is enhanced, which suggests a novel constraint on ejaculate
66 evolution whereby high female refractoriness and sperm competitiveness are mutually
67 exclusive. Using quantitative proteomics, we reveal a mix of specific and widespread changes
68 to the seminal proteome that surprisingly encompass alterations to main cell-derived proteins,
69 indicating important cross-talk between classes of SFP-secreting cells. Our results demonstrate
70 that ejaculate composition and function emerge from the integrated action of multiple secretory
71 cell-types suggesting that modification to the cellular make-up of seminal fluid-producing
72 tissues is an important factor in ejaculate evolution.

73

74

75

76 INTRODUCTION

77 Ejaculates are compositionally rich. In addition to sperm, males transfer a cocktail of proteins
78 (seminal fluid proteins, 'SFPs'), lipids, salts, vesicles, and nucleic acids, which together
79 constitute the seminal fluid (1–3). The phenotypic effects of seminal fluid in females are broad,
80 particularly in invertebrates. In various species these effects include increased aggression,
81 reduced sexual receptivity, shifts in dietary preference, conformational changes in the
82 reproductive tract, immuno-modulation, and stimulation of offspring production (reviewed in
83 4–6). A number of SFPs have been further implicated in sperm competition, the battle between
84 sperm from different males for fertilisations (7–10). Consequently, seminal fluid represents a
85 critical mediator of male reproductive success (11, 12).

86 While sperm are always produced in testes, seminal fluid generally comprises products
87 drawn from a number of reproductive tissues (13). These tissues vary considerably in number,
88 cellular make-up, and developmental identity between species, with lineages showing
89 evolutionary patterns of loss, modification, and acquisition (4, 13–15). Why male reproductive
90 systems incorporate this diversity is unclear. It has been suggested that by sequestering SFPs
91 in different cells or glands males are afforded control over their release, and consequently,
92 spatiotemporal control over their interactions with sperm, the female reproductive tract, or with
93 other SFPs (16). Additionally, functional diversification of tissues and cell-types may be
94 required to build specialised parts of the ejaculate, such as mating plugs (17). In either case,
95 activities may be carried out independently between cell-types and tissues or there may be
96 cross-talk between them that coordinates global seminal fluid composition. Such cross-talk
97 may be required to drive the sophisticated strategic changes in ejaculate composition observed
98 in relation to sperm competition threat (18). Fundamentally, to understand how ejaculates
99 evolve it is essential that we understand the drivers of diversity in the elements within the male
100 reproductive system, as well as the functional connectivity between them.

101 The male reproductive system of *Drosophila melanogaster* consists of testes that
102 produce sperm, and three secretory tissues that contribute to the seminal fluid: the paired
103 accessory glands, ejaculatory duct, and ejaculatory bulb (4)(Fig. 1A). The majority of the ~200
104 SFPs known to be transferred to females are produced and stored in the accessory glands (19).
105 Each of the two lobes of the glands is composed of two distinct cell-types (20). The majority
106 are the ~1000 small, binucleate ‘main cells’ (20), which are thought to produce most of the
107 gland’s secretion (21). Accordingly, these cells have been shown to be the sole production site
108 for several highly-abundant and functionally-important SFPs, including sex peptide (SP), a key
109 driver of post-mating changes (22–25). Ablation of main cells leads to failures in the induction
110 of the main female post-mating responses: receptivity to remating remains high, and egg
111 production unstimulated (26).

112 The distal tips of each gland also contain a further subpopulation of ~40 unusually large
113 ‘secondary cells’ (20, 27; Fig. 1B). As with main cells, failures in secondary cell development
114 are associated with defective post-mating responses: high receptivity, low fecundity (28, 29).
115 This is partly attributable to glycosylation defects in ‘SP network’ proteins, which are required
116 for the storage and gradual release of SP from the female sperm storage organs – the process
117 through which SP’s effects are extended over several weeks (28). However, targeted
118 suppression of BMP-signalling in adult secondary cells has more specific effects. While it
119 suppresses the secretion of nanovesicles (‘exosomes’) and dense core granules – packages of
120 secretory material that contain high concentrations of signalling molecules – it decouples
121 female post-mating responses: fecundity is normally-stimulated, but sexual receptivity remains
122 high (27, 30, 31). This raises the prospect that BMP-signalling in adult secondary cells acts as
123 a highly-targeted mediator of reproductive processes. However, we do not know whether the
124 phenotypic effects are restricted to those already identified, or whether secondary cell BMP-
125 signalling is a potentially more global regulator of reproduction. This uncertainty also extends

126 to the effects on the seminal proteome: does suppression of secretion by BMP-signalling
127 inhibition in secondary cells cause highly specific changes to the seminal proteome or does it
128 generate more extensive remodelling? In the present study, we use targeted suppression of
129 BMP-signalling in adult secondary cells to test between these models at both the functional
130 and proteomic level.

131

132 RESULTS & DISCUSSION

133 **Sperm Storage is Compromised in Dad-Mated Females.** We began by mating virgin
134 females to males who possessed GFP-tagged sperm (32), and who overexpressed
135 the transcriptional repressor of BMP-signalling Dad, which suppresses secondary cell secretion
136 (31) (hereafter ‘Dad’ males), to test whether these secretions are required for normal sperm
137 entry into storage. We found no significant difference in the number of sperm transferred
138 ($F_{1,53} = 1.700, p=0.198$; Fig. 2A), but the proportion that initially enter into the storage organs
139 (seminal receptacle and paired spermathecae), and that are ultimately stored (5 hours post-
140 mating; 32) was significantly lower in Dad-mated females (initial entry at 25 mins, $F_{1,53} =$
141 $5.340, p=0.024$; Fig. 2B; 5hrs storage, $F_{1,53} = 5.043, p=0.029$; Fig. 2C). This demonstrates a
142 role for secondary cell activity in promoting normal sperm storage, which is surprising given
143 that the number of offspring produced by Dad males has previously been shown to be normal
144 (31). A potential mechanism for reduced storage in Dad-mated females is premature ejection
145 of received sperm (33). However, we found no significant difference in the timing of ejection
146 ($LRT=0.892, p=0.345$; SI Appendix, Fig. S1). Reduced sperm storage in Dad-mated females
147 may instead be a consequence of loss of secondary-cell-derived exosomes, the prostate-derived
148 equivalent of which in mammals are known to fuse with sperm and stimulate motility (34).
149 Reduced storage could also arise if secondary cell BMP-signalling inhibition affected SFPs,

150 such as the main cell-produced Acp36DE and/or its associated co-factors, which are known to
151 collectively promote sperm storage (35–39).

152

153 **Dad-Mated Females Show Decoupled Post-Mating Responses.** Despite initially storing
154 fewer sperm, we confirm previous work in finding that Dad-mated females show normal
155 offspring production (31), additionally finding that this holds when females are far more fecund
156 than in previous studies (likely due to the addition of live yeast to the fly food in our
157 experiments, 40) and in both the short- and long-term (Genotype x Day, $F_{4,346} = 0.305, p = 0.875$;
158 Genotype, $F_{1,98} = 0.007, p = 0.932$; Day, $F_{4,346} = 49.340, p < 0.0001$; Fig. 2D). We also confirm
159 that Dad-mated females show abnormally high receptivity to remating ($LRT = 75.158$,
160 $p < 0.0001$; Fig. 2E), an effect which is absent when flies are kept at low temperatures where
161 Dad overexpression remains inactivated (see *Materials and Methods*; $LRT = 0.001, p = 0.981$; SI
162 Appendix, Fig. S2), again supporting the finding that inhibition of BMP-signalling in
163 secondary cells reduces male ability to induce refractoriness in their partners. This decoupling
164 in the post-mating response is surprising given that both effects are driven by the binding of
165 sex peptide (SP) to a specific receptor expressed in female reproductive tract neurons (41, 42).
166 How these are mechanistically uncoupled remains unclear, but it may be that secondary cell
167 secretions differentially affect interactions between SP and subpopulations of female
168 reproductive tract neurons controlling receptivity (43, 44).

169

170 **Females Mated to Dad Males Over-Retain Sperm in the Seminal Receptacle Despite**
171 **Normal Offspring Production.** Because Dad-mated females store fewer sperm, but produce
172 normal numbers of offspring, we predicted they would become sperm-depleted more rapidly.
173 In contrast, we found significantly more sperm in the primary female sperm storage organ, the
174 seminal receptacle, of Dad-mated females 7 days after copulation ($F_{1,34} = 12.568, p = 0.001$;

175 Fig. 3A). This effect was independent of the number of offspring produced (Genotype x
176 Offspring, $F_{1,33} = 2.169, p = 0.150$; Offspring, $F_{1,34} = 0.429, p = 0.517$) and did not extend to
177 the spermathecae, where we found no difference in sperm retention ($F_{1,35} = 0.005, p = 0.947$; Fig.
178 3B). This result is only partially consistent with defective activity of SP: females that fail to
179 receive SP are known to show defective release of stored sperm, as are females that receive a
180 form of SP that cannot be cleaved from the sperm surface (45). However, defective SP activity
181 causes a dramatic reduction in the rate of offspring production (28, 46), which is not exhibited
182 by Dad-mated females. Moreover, defects in SP transfer and processing cannot explain the
183 reduction in initial sperm storage in Dad-mated females as this process is known to be
184 independent of SP (45). Thus, our data suggest both that (a) Dad-mated females show broad
185 decoupling of post-mating responses (normal offspring production, but abnormal sperm release
186 and receptivity) and, (b) the compromised ejaculate performance of Dad males is wide-ranging,
187 affecting both SP-dependent (sperm release, receptivity) and SP-independent (sperm storage)
188 reproductive processes.

189

190 **Dad Males Acquire Higher Paternity Shares in Competitive Matings.** *D. melanogaster*
191 females can hold sperm from as many as 6 different males simultaneously (47). However, total
192 female storage capacity is <1000 sperm, leading to sperm competition between rival males
193 (32). Consequently, males are presumed to be under selection to both displace resident sperm
194 from storage when mating with non-virgin females ('offensive sperm competition') and in turn,
195 to produce sperm that resist displacement by incoming ejaculates ('defensive sperm
196 competition') (48). To test whether these abilities are mediated by secondary cells, we first
197 mated a Dad or control male to a virgin female, who then remated 24hrs later with a standard
198 male competitor. Both the females and competitor males carried a recessive *sparkling* (*spa*)
199 eye marker, which allowed us to assign paternity of the resulting offspring (49–52). We found

200 that Dad males gained significantly higher first-male paternity shares ('P1') in offspring
201 produced over the first day after female remating ($F_{1,360}= 9.445, p=0.002$; Fig. 3C). This effect
202 was still present in offspring produced in 24-hour periods at day 4 ($F_{1,171}= 11.525, p=0.009$;
203 Fig. 3D) and day 6 ($F_{1,105}= 7.424, p=0.008$) after the female remated. It was also independent
204 of remating latency either overall ($F_{1,359}= 0.264, p = 0.608$; SI Appendix, Fig. S3) or as an
205 interaction with male genotype ($F_{1,357}= 0.329, p = 0.567$), which suggests that the elevated P1
206 of Dad males is not an artefact arising through a lack of remating by control-mated females.
207 No P1 differences were detected when flies are kept at low temperatures where Dad
208 overexpression remains inactivated (day 1, $F_{1,134}= 1.717, p=0.192$; day 4, $F_{1,131}= 1.027$,
209 $p=0.313$; Fig. 3E), confirming that the effect is caused by inhibition of BMP-signalling in
210 secondary cells. Next, we reversed the mating order, such that Dad or control males mated to
211 a female previously mated to a *spa* male, and found no effect on paternity share (P2; 24 hours,
212 $F_{1,81}= 0.246, p=0.621$; 4 days, $F_{1,80}= 1.814, p=0.182$, Fig. 3F). Thus, the effect of secondary
213 cell secretions on sperm competition performance are mating-order specific.

214

215 **Over-Retention of Dad Sperm Provides a Mechanism for Enhanced Paternity Share.**

216 Under single-mating conditions, Dad-mated females retain more sperm 7-days after mating
217 (Fig. 3A). Under double-mating conditions, Dad males achieve higher paternity shares (Fig.
218 3C,D). Thus, a possible mechanism for the increased paternity share is Dad-mated females
219 having greater numbers of first male sperm in storage at the time of second mating compared
220 to control-mated females. This mechanism would explain why we detect no differences in P2
221 and would be partially consistent with previous work on failure in secondary cell development,
222 which showed over-retention of sperm and improved paternity share, but crucially alongside
223 dramatically-reduced offspring production (28). However, given that Dad-mated females
224 initially store fewer sperm (Fig. 2C) and display normal productivity (Fig. 2D) we predicted a

225 different mechanism: that the elevated paternity share achieved by Dad males acts through
226 enhanced resistance to displacement by a second male ejaculate. To test this, we counted sperm
227 across all regions of the female reproductive tract at two time-points after the start of a female's
228 second mating: 10 minutes (~halfway through mating) and 24 hours. By selecting these time-
229 points, we were able to ask whether the P1 advantage in Dad-mated females is present from
230 the outset of a female's second mating (*i.e.* Dad-mated females have retained more sperm) or
231 whether it develops over the course of second male sperm entering into storage.

232 Overall, we found significantly higher quantities of first male sperm throughout the
233 female reproductive tract (in storage or displaced into the uterus; $F_{1,120}=5.616$, $p=0.019$; Fig.
234 3G) in Dad-mated females. This effect was independent of the time-point after mating
235 (Genotype x Timepoint, $F_{1,119}=0.351$, $p=0.554$; Fig. 3G), but contrary to our prediction, there
236 was a trend for the degree of difference between Dad and control sperm number to be
237 diminished 24 hours after re-mating. Thus, the P1 sperm advantage in Dad-mated females
238 appears to be present at the start of a female's second mating and, if anything, remating appears
239 to weaken, not reinforce the sperm advantage of the Dad male. This also means that despite
240 Dad-mated females initially storing reduced quantities of sperm (Fig. 2C), they hold more in
241 storage relative to control-mated females by the time of their second mating (Fig. 3G). Greater
242 retention of sperm is a known consequence of SP dysregulation, but in these cases it is partly
243 explained by females using fewer sperm because they produce fewer offspring (28, 45). Why,
244 then, does reduced sperm release in Dad-mated females not translate into reduced offspring
245 output (Fig. 2D)? The most parsimonious explanation is that Dad-mated females achieve the
246 same number of fertilisations as control-mated females, but release fewer sperm per
247 fertilisation. Previous estimates suggest that females release 1-5 sperm per fertilisation, but are
248 able to modulate the efficiency of sperm use in response to variation in environmental quality
249 (reviewed in 53). While sperm use is challenging to measure directly, on the rare occasions

250 where we found eggs in the uterus of dissected females we did find instances where large
251 number of sperm (up to 17) were associated with an egg (Fig. 3*H*), suggesting that sperm use
252 may be more inefficient than previously suggested. This inefficiency may be particularly
253 pronounced when the storage organs are largely full, as would be the case so soon after mating
254 (5 hours). Despite appearing wasteful, profligacy in sperm release may be adaptive if it
255 encourages further competition between sperm of varying quality, with consequences for
256 offspring fitness (54–56).

257

258 **Altered Dynamics of Second Male Ejaculates in Dad-Mated Females.** Dad-mated females
259 treat potential sexual partners differently by showing higher receptivity to remating. We
260 therefore sought to test whether they treat second male sperm differently. We first looked at
261 the rate at which second male sperm are stored. It is already known that if a male fails to transfer
262 Acp36DE both his sperm and those transferred by the next male show compromised storage,
263 despite the second male presumably transferring Acp36DE himself (10). Dissecting females
264 10 minutes after starting a second mating, we found a non-significant trend for slowed entry of
265 second male sperm in previously Dad-mated females ($F_{1,59} = 3.718, p = 0.054$; Fig. 3*I*) and
266 reduced displacement of first male sperm at this time point (first male sperm in the uterus/total
267 first male sperm across all regions of the reproductive tract; $F_{1,61} = 2.836, p = 0.097$; Fig. 3*J*).

268 We next tested for differences in the timing of female ejection. The length of time a
269 female retains a second male ejaculate after remating influences the outcome of sperm
270 competition: the longer it takes a female to eject, the greater the opportunity for second male
271 sperm to enter into storage and displace resident sperm (57). We therefore predicted that Dad-
272 mated females would eject sperm earlier, thereby terminating the displacement of first male
273 sperm, and promoting the paternity share advantage experienced by Dad males (Fig. 3*C*).
274 Contrary to expectation, Dad-mated females were significantly slower to eject after their

275 second mating ($LRT=17.981$, $p<0.0001$; Fig. 3K). This should weaken the advantage
276 experienced by Dad males that arises through over-retention of sperm by their female partners.
277 Indeed, this weakening could explain the slight decrease in the degree of difference between
278 Dad and control sperm number in the 24 hours after re-mating relative to 10 minutes after re-
279 mating (Fig. 3G). Ultimately, this result suggests that female treatment of a second ejaculate is
280 influenced by features of the first male's ejaculate.

281 Finally, we tested whether offspring production after a second mating differs depending
282 on whether a female first mated with a Dad male or a control. As second males we used either
283 males transferring both sperm and seminal fluid or spermless *son-of-Tudor* males that transfer
284 seminal fluid but no sperm. This allowed us to identify the relative importance of second male
285 sperm and seminal fluid in driving any detected effects. We found a significant interaction
286 between day since mating and first male genotype on daily offspring production ($F_{4,1432}=2.740$,
287 $p=0.027$; Fig. 3L). This appears to be driven by a short-term increase in offspring production
288 by Dad-mated females exclusively in the 24 hours following remating ($t\ ratio=2.663$,
289 $p=0.008$). This effect was independent of whether the female received second male sperm (First
290 male x Second male x Day, $F_{4,1398}=0.577$, $p=0.679$; First male x Second male, $F_{1,400}=0.096$,
291 $p=0.757$), demonstrating that it is specifically attributable to the second male's seminal fluid.
292 A potential mechanism for this short-term boost in offspring production in Dad-mated females
293 is second males transferring larger quantities of fecundity-stimulating SFPs when mating with
294 Dad-mated females compared to those females previously mated to controls. There is good
295 precedent for this: males strategically decrease their transfer of the short-term acting,
296 fecundity-stimulating SFP ovulin when they detect that they are mating with a mated female
297 (58). Given the high receptivity of Dad-mated females, second males may perceive them as
298 virgins and transfer higher quantities of SFPs such as ovulin, though this remains to be tested.
299

300 **The SFP Proteome is Remodelled in Dad Males.** The phenotypic effects we find in Dad-
301 mated females are likely to arise through changes to the production, transfer, and protein
302 composition of seminal fluid, particularly given that BMP-signalling promotes secondary cell
303 secretion (27, 30). This change may operate exclusively through secondary cells or, if there is
304 cross-talk between cell-types, also via their influence on main cells. To this end, we performed
305 label-free quantitative proteomics on the accessory glands of Dad and control males dissected
306 either before or immediately after mating. This pre- and post-mating approach has previously
307 been shown to provide a deep analysis of the seminal proteome, sensitive to low abundance
308 proteins, while exposing patterns of differential SFP production, depletion, and transfer (19,
309 51). We detected 1194 proteins on the basis of at least 2 unique peptides (as in 19, 59), of which
310 88 are SFPs known to be transferred to females (see *Materials and Methods*). A principal
311 component analysis (PCA) conducted on these 88 SFPs showed full separation of samples in
312 relation to both genotype and mating status (Fig. 4B). Analysis of the extracted scores showed
313 that PC1, which described the majority of variance (60.8%), was associated with the interaction
314 between mating and genotype (Table S1). PC2 was significantly described by male genotype
315 and captures an axis of variation (7.8%) associated with divergent responses among SFPs in
316 the extent to which their abundance was affected by secondary cell disruption. Thus, as
317 expected, inhibition of BMP-signalling in secondary cells changes the SFP composition of the
318 accessory glands.

319

320 **Split Responses of the Seminal Proteome to Suppression of Secondary Cell BMP-**
321 **Signalling.** To test for patterns among SFPs in their response to BMP-signalling suppression
322 in secondary cells, we undertook a hierarchical clustering analysis across genotypes and mating
323 treatments (Fig. 4A). Responses of SFPs to genotype appear variable with multiple higher-
324 order clusters identified. The changes did not suggest a complete loss of any SFPs in Dad

325 males. Instead, we find evidence of quantitative changes in the abundance of some SFPs.
326 Indeed, we find that a majority of SFPs are transferred in smaller quantities in Dad males
327 compared to controls (67% of SFPs show smaller change in Dad; 2-tailed binomial test,
328 $p=0.002$; Fig. 4C). Following false detection rate (FDR) correction, we failed to identify any
329 SFPs showing the significant mating x genotype interaction that would indicate high-
330 confidence differences in transfer. This may in part due to low power (5 samples per treatment
331 combination), but it could also be due to any differences in transfer being relatively small,
332 which seems to be the case for most SFPs (Fig. 4C). However, we found that 11 of the 88 SFPs
333 show a significant response to genotype (Fig. 4D; Table S2; Fig. S4). This list did not include
334 SP or Acp36DE, two candidate proteins that could be influencing the receptivity (Fig. 2E) and
335 sperm storage (Fig. 2C) phenotypes, respectively, that we detect in Dad-mated females. A
336 further 26 differentially abundant glandular proteins (*i.e.* non-SFPs) are given in Table S3.
337 Thus, while SFPs make up just 7.4% of the proteins we detect (88/1194), they make up 29.7%
338 (11/37) of the proteins showing a significant difference in abundance in Dad males, suggesting
339 a disproportionate effect of BMP-signalling suppression on the seminal fluid proteome.

340 7 of the 11 differentially abundant SFPs showed higher abundance in Dad glands
341 (Acp26Ab, antr, CG11598, CG9997, Spn28F, Spn77Bb, Spn77Bc), 4 showed higher
342 abundance in control glands (CG6690, Sfp24C1, CG31413, NLaz). CG9997 is thought to be
343 specifically expressed in secondary cells, but we did not find significant differences in
344 abundance in other SFPs thought to be exclusively produced in the secondary cells, such as
345 CG1652, CG1656, and CG17575 (28). Therefore, suppression of BMP-signalling does not
346 appear to block production of these secondary cell proteins, and its effects on their abundance
347 seem to be selective.

348 Acp26Ab stands out from the other differentially abundant SFPs in the scale of its
349 expression differences: 16x more abundant in Dad pre-mating glands and 8x more abundant in

350 Dad mated glands. This suggests, counterintuitively, that Dad males increase the transfer of
351 this SFP. Consistent with this, Acp26Ab had the lowest FDR-corrected genotype x mating *p*-
352 value of the 1194 proteins we tested ($p=0.059$). Interestingly, previous work has shown that
353 Acp26Ab is present in both main and secondary cells within the first day of eclosion, but after
354 5 days is only present within the dense core granules of secondary cells (60), a pattern that
355 suggests Acp26Ab is produced by main cells and trafficked to secondary cells. Suppression of
356 BMP-signalling in secondary cells may disrupt this process of inter-cellular transport and lead
357 to over-production of Acp26Ab by main cells. Similarly, CG11598 has previously been shown
358 to be present in both main and secondary cells. In a previous transcriptomic study, manipulation
359 of secondary cell development led to a large downregulation of *CG11598* expression, the
360 magnitude of which was suggested to only be accountable for by changes in main cell activity
361 (21). Surprisingly, we find that the abundance of CG11598 changed in the opposite direction,
362 being more abundant following suppression of secondary cell BMP-signalling. Collectively,
363 the changes we detect in Acp26Ab and CG11598 suggest a role for the secondary cells in
364 mediating the activity of main cells, perhaps via cell-cell signalling.

365 In 9 of 11 of these proteins, the between-genotype fold change became more Dad-
366 biased after mating (blue dot above pink dot, Fig. 4D). Indeed, looking across all 88 SFPs we
367 find that the majority of SFPs are at higher abundance in Dad glands prior to mating (65%,
368 57/88; 2-tailed binomial test, $p=0.007$) with the number increasing after mating (73%, 64/88;
369 2-tailed binomial test, $p<0.0001$). We offer two explanations for why the majority of SFPs are
370 initially at higher abundance in Dad males. Firstly, Dad males may overproduce SFPs, perhaps
371 due to disruption to main cell/secondary cell signalling. Secondly, if males suffer even slightly
372 reduced SFP transfer in each mating then they may accumulate over-retained SFPs following
373 the previous day's triple-matings, which we provided to clear the glands of products produced
374 prior to expressing Dad (*Materials and Methods*; as in (27, 31)). In either case, the differences

375 in transfer for the significantly differentially abundant SFPs are surprisingly small given the
376 clear between-genotype differences in their abundance within the gland (Fig. 4D). This
377 suggests that there may be mechanisms that regulate the quantity of accessory gland secretion
378 that is transferred to females independently of both the quantity within the gland and secondary
379 cell activity.

380

381 CONCLUSIONS

382 We conclude that BMP-signalling in adult secondary cells is a major mediator of manifold
383 reproductive processes. These findings have broad implications for our understanding of how
384 ejaculates evolve. Firstly, ejaculate evolution may be constrained. Although normal secondary
385 cell activity inhibits male defensive sperm competition performance, it is required to reduce
386 female receptivity to remating. Given that the latter ability is the wild-type condition, it seems
387 likely that the benefits loss of secondary cell secretion brings to paternity share are outweighed
388 by the benefits of suppressing female receptivity to remating. However, the question remains
389 why males apparently aren't able to simultaneously maximise performance in both. Such intra-
390 ejaculate trade-offs in function may represent an under-appreciated constraining force on
391 ejaculate evolution. Secondly, our data demonstrate that the composition and function of the
392 ejaculate depends on the integrated activity of the two constituent cell-types of the accessory
393 glands. Thus, evolutionary changes to the architecture of seminal fluid-producing tissues would
394 have knock-on consequences for ejaculate composition and function. Interestingly, secondary
395 cell number is variable between *Drosophila* species – they have even been lost entirely in
396 *Drosophila grimshawi* (15). In light of our results, we would predict covariance between
397 accessory gland cellular architecture and variable aspects of mating biology, such as mating
398 rate and sperm competition intensity, across the *Drosophila* phylogeny. Given that we find an
399 element of modularity in ejaculate design, with normal offspring production being exclusively

400 driven by main cell activity in adults, it may be that some reproductive functions are insulated
401 from changes in a given part of the male reproductive system. Ultimately, by taking an evo-
402 devo approach to male reproductive tissues we may begin to understand how ejaculate function
403 and composition evolve.

404

405 **MATERIALS AND METHODS**

406 **Fly Stocks and Husbandry.** Males with disrupted secondary cell secretion were generated by
407 crossing *esg^{ts}* F/O flies (genotype: *w*; *esg-GAL4* *tub-GAL80^{ts}* *UAS-FLP/CyO*; *UAS-GFP_{nls}*
408 *actin>FRT>CD2>FRT>GAL4/TM6*) to *w¹¹¹⁸* flies into which a *UAS-Dad* transgene had been
409 backcrossed ('Dad' males)(27, 31). For controls, we crossed *esg^{ts}* F/O to flies from a *w¹¹¹⁸*
410 background ('control' males). The *esg-GAL4* system incorporates a temperature-sensitive
411 *GAL80*, which inhibits *GAL4* and suppresses the activation of *Dad* expression below 28.5°C
412 (see 31). Where sperm counts were undertaken, we backcrossed the *GFP-ProtB* construct,
413 which labels the heads of sperm (32), into our Dad and *w¹¹¹⁸* lines for 6 generations. All females
414 were from a Dahomey wild-type background into which the *spa^{pol}* recessive eye-marker had
415 previously been backcrossed for 4 generations. All competitor males were of this same
416 genotype or, where sperm counts were conducted, this genotype carrying a *RFP-ProtB*
417 construct (32).

418 All flies were reared at standardised larval densities of ~200 in 250mL bottles
419 containing 50mL of Lewis medium (as in 61). Larvae were left to develop at a non-permissive
420 temperature of 20°C on a 12:12 L:D cycle. Upon eclosion, we collected males under ice
421 anaesthesia and separated them into groups of 8 to 12 in 36mL Lewis medium-containing
422 plastic vials, supplemented with *ad libitum* yeast granules. To activate the expression of *Dad*
423 (where present), we immediately moved these vials to 30°C where they remained for the full
424 duration of experiments. To verify that phenotypes were specifically attributable to *Dad*

425 expression, we repeated some experiments at a non-permissive temperature of 20°C. In these
426 experiments, flies were moved to 20°C after eclosion where they remained for the full duration
427 of experiments. The day before using Dad or control males, each was mated to three virgin
428 females to deplete, as much as possible, the accessory gland lumen of any secondary cell
429 products produced before activation of the *Dad* transgene. We delivered a single female at a
430 time, removing the female after mating. Following the end of the third mating, we moved the
431 male to a fresh, yeast-supplemented vial.

432 The rearing, collection, and grouping of flies from all other lines was performed
433 following the methods outlined above. However, in these cases rearing was conducted at 25°C
434 with us moving flies to 30°C the evening before use in experiments. We reared all flies and
435 performed all experiments in controlled-temperature rooms on 12:12 light:dark cycles. All flies
436 were between 3 and 5 days old at the time of first experimental mating.

437

438 **Sperm Count Experiments.** We conducted the initial sperm transfer experiment in two
439 blocks. Females were frozen at 25 minutes or 5 hours after the start of mating (ASM). We
440 conducted the post-first-mating retention experiment in one block. Here, females were frozen
441 7 days after mating. We conducted the post-second-mating sperm dynamics experiment in two
442 blocks. Here, females were frozen at 10 minutes or 24 hours after second mating. Females in
443 all experiments were randomly assigned a freezing time-point prior to mating. Offspring were
444 collected and counted between mating and freezing where appropriate. Females were flash-
445 frozen in liquid nitrogen and stored at -80°C until dissection, which we performed under light
446 microscope in PBS. We retained the female reproductive tract from the vulva through to the
447 common oviduct, sealed the slides using (Fixogum, Marabu), and stored slides at 5°C. We
448 imaged the slides using a Zeiss 880 confocal microscope and processed the images by taking
449 an average intensity Z-projection in the Fiji distribution of ImageJ (62) to condense Z-stacks

450 into a single image for easier counting. We manually counted sperm using the multi-point tool
451 in Fiji. We performed all dissections and sperm counts blind to treatment. We omitted any
452 samples that showed no GFP sperm due to the possibility of heterozygosity for the *GFP-ProtB*
453 chromosome in our stock populations.

454

455 **Sperm competition outcome and post-mating response assays.** For P1 defensive sperm
456 competition assays, we aspirated single Dad or control males into yeasted vials containing an
457 individual virgin *spa^{pol}* female. We monitored all matings, recording the time males were
458 introduced, mating began, and when mating finished. From these data we calculated the
459 duration of and latency to mating. After mating, we disposed of the males and left the females
460 to oviposit. The following morning, we individually aspirated mated females into a yeasted
461 vial containing a pair of *spa^{pol}* males, grouped under ice anaesthesia the previous day. Again,
462 we monitored all matings and recorded duration and latency. We introduced females in the
463 order they had finished mating the previous day. Previous work has shown that Dad-mated
464 females remain highly receptive to remating (31), so we staggered the introduction of Dad-
465 mated females to minimise any systematic difference between treatments in inter-mating
466 interval. Following the end of mating, we discarded the two males and moved the females to
467 25°C, transferring them into a fresh, yeasted vial every 24 hours. We allowed the resulting
468 progeny to develop, freezing the vials after the adults eclosed. We then counted offspring and
469 scored their eye phenotype in order to assign paternity. By adopting this same approach but
470 reversing the mating order, we tested for an association with offensive sperm competition
471 performance (P2). We performed three blocks of a repeat of the P1 experiment conducted
472 entirely at a non-permissive temperature of 20°C. We obtained P1 data across 6 experimental
473 blocks at 30°C. In each of these, we collected offspring for at least 24 hours after the female's
474 second mating. In one replicate, we collected offspring for 6 days to test for the persistence of

475 any detected differences. Within four of these replicates, we varied the identity of the second
476 mating male. Here, prior to first mating to a Dad or control male, females were randomly
477 assigned (a) no second mating, (b) a *spa^{pol}* second mating, or (c) a spermless, *son-of-Tudor*
478 mating. In these variants, we collected offspring over four days after second mating to gain
479 additional information relating to short- and longer-term patterns of offspring production.

480

481 **Female ejection assays.** We followed the P1 experimental setup outlined in the preceding
482 section, but moved females to 3D-printed, black plastic chambers immediately after a first or
483 second mating. These chambers, of printing resolution 0.2mm, were cuboids of 34mm x 33mm
484 x 9mm with a half-sphere concavity of dimensions 20mm x 20mm x 7mm. A .stl file of this
485 design is included as a supplementary file for use by other researchers. We used a glass
486 coverslip to cover the concavity once a female had been introduced. We checked each chamber
487 for the presence of an ejected sperm mass every 10 minutes under a light microscope. We ran
488 this experiment four times: twice for each of the females first (Dad or control) and second
489 (*spa^{pol}*) mating.

490

491 **Proteomics experiment.** We randomly assigned males a mating treatment ('pre-mating' or
492 'mated') and paired within a genotype. We aspirated the 'mated' treatment male within each
493 pair into a yeasted vial containing an individually isolated 4/5-day old virgin female. At this
494 same point, the 'pre-mating' male from the pair was introduced to an empty, yeasted vial. We
495 flash-froze 'mated' males in liquid nitrogen 25 minutes after the start of mating, freezing their
496 'pre-mating' partner at the same time. This paired freezing approach ensures that the
497 distribution of freezing times is equivalent between mated and pre-mating males. Frozen males
498 were stored at -80°C until dissection.

499 For each sample, we pooled 20 pairs of accessory glands, which we dissected under a
500 light microscope on ice in a drop of ice-cold PBS. We took care to remove the seminal vesicles
501 and testes, and severed the glands from the distal end of the ejaculatory duct. Dissected glands
502 were then transferred to an Eppendorf tube containing 25 μ l of PBS, which we stored at -80°C.
503 In total, we had 20 samples: five for each of the four treatment permutations (mated, Dad; pre-
504 mating, Dad; mated, control; pre-mating, control). We ran this experiment five times in order
505 to produce five independent biological replicates. Our quantitative proteomics analysis was
506 conducted in accordance with the gel-aided sample preparation (GASP) protocol outlined in
507 detail elsewhere (19, 63). Details of this method, the LC-MS/MS platform, and the data
508 processing and normalization are given in *SI Materials and Methods*.

509 The mass spectrometry proteomics data will be deposited to the ProteomeXchange
510 Consortium via the PRIDE (64) partner repository.

511

512 **Statistical analysis.** We conducted all analyses with R statistical software (version 3.5.1)(65)
513 in RStudio (version 1.1.456)(66). We assessed the significance of variables in linear and
514 generalized linear models by dropping individual terms from the full model using the ‘drop1’
515 function. Where the interaction term was non-significant we refitted the model without it. We
516 determined model fit by visual inspection of diagnostic plots (67). Where multiple
517 measurements were taken from the same female, as in analyses of day-by-day female offspring
518 production, we used linear mixed effects models that accounted for female identity as a random
519 effect. In our day-by-day analysis of female offspring production, our starting model contained
520 a three-way interaction (male 1 x male 2 x day) along with two random effects (block and
521 female ID). We used a stepwise algorithm (‘step’ function) to identify the best model by AIC.
522 Associated *p*-values were generated using Satterthwaite’s method (68). To analyse latency to
523 mating and ejection, we ran Cox proportional hazard models using the *survival* package (69,

524 70) and graphed the results using ‘ggsurvplot’ in the *survminer* package (71). We analysed
525 proportional data, relevant for paternity shares (P1 and P2) and some sperm count data, using
526 generalised linear models. In all cases, we used a quasibinomial extension to account for the
527 overdispersion we detected. When analysing the number of sperm retained in the seminal
528 receptacle after 7 days, we used a quasipoisson distribution to correct for overdispersion. We
529 limited all analyses to matings lasting longer than 7 minutes and which gave rise to fertile
530 offspring to exclude disturbed or pseudo-matings (72). In our analysis of first male sperm
531 retention after a second mating, we winsorized one extreme significant outlier (as determined
532 by two-tailed Grubbs’ test) found to exert disproportionate leverage in our models (73).

533 Our assessment of whether a protein was a SFP was based on a reference list provided
534 by Mariana Wolfner (Cornell University, NY) and Geoff Findlay (College of the Holy Cross,
535 MA) and updated to include the high confidence SFPs from Sepil *et al.* (19). We also included
536 Intrepid (intr), despite it not having been conclusively shown to be transferred to females, as
537 we find it at significantly lower abundance in mated glands and because it is known to function
538 in the sex peptide network (16). All analyses were performed on \log_2 transformed values to
539 standardise the variance across the dynamic range of protein abundances. Fold changes were
540 calculated using per-treatment means (taken across the five replicates). Our hierarchical
541 clustering analysis was conducted on the mean per-SFP abundance taken across the five
542 replicates for each treatment permutation and used a Pearson correlation distance metric. We
543 plotted the results using the *pheatmap* package (74). We conducted a PCA on SFPs using the
544 ‘prncomp’ function in *stats*. Variables were scaled to have unit variance and shifted to be zero-
545 centred. We ran linear models on the PC scores to test for associations between PCs and our
546 variables. For our differential abundance analysis, we iterated a linear model over all detected
547 proteins across the 20 samples, including genotype, replicate, and mating status as factors. We
548 used a tail-based false discovery rate correction from the *fdrtool* package (75).

549

550 ACKNOWLEDGEMENTS

551 We thank Josephine Hellberg and Aashika Sekar for images, Mariana Wolfner and Geoff
552 Findlay for sharing their list of SFPs, and Stefan Lüpold for providing the *GFP-ProtB*
553 line. Thanks also to Natasha Gillies, Rebecca Dean, and Lynn Marie Johnson for advice on the
554 statistical analysis and to Alex Majane, Artyom Kopp, and David Begun for drawing our
555 attention to the absence of secondary cells in *D. grimshawi*. This work was funded by the EP
556 Abraham Cephalosporin-Oxford Graduate Scholarship to B.R.H., with additional support from
557 the BBSRC DTP. S.B., P.C., R.F., and B.M.K. were supported by the Wellcome Trust
558 (097813/11/Z) and John Fell Fund (133/075). C.W. was supported by the BBSRC
559 (BB/N016300/1, BB/R004862/1) and CRUK (C19591/A19076). I.S. and S.W. were supported
560 by a BBSRC fellowship to S.W. (BB/K014544/1).

561

562

563

564 REFERENCES

565 1. Poiani A (2006) Complexity of seminal fluid: A review. *Behav Ecol Sociobiol*
566 60(3):289–310.

567 2. Hopkins BR, Sepil I, Wigby S (2017) Seminal fluid. *Curr Biol* 27(11):R404–R405.

568 3. Perry JC, Sirot L, Wigby S (2013) The seminal symphony: How to compose an
569 ejaculate. *Trends Ecol Evol* 28(7):414–422.

570 4. Hopkins BR, Avila FW, Wolfner MF (2018) Insect Male Reproductive Glands and
571 Their Products. *Encyclopedia of Reproduction* (Elsevier), pp 137–144.

572 5. Avila FW, et al. (2011) Insect seminal fluid proteins: Identification and function. *Annu
573 Rev Entomol* 56(1):21–40.

574 6. Gillott C (2003) Male accessory gland secretions: modulators of female reproductive
575 physiology and behavior. *Annu Rev Entomol* 48(1):163–84.

576 7. Clark AG, Aguadé M, Prout T, Harshman LG, Langley CH (1995) Variation in sperm
577 displacement and its association with accessory gland protein loci in *Drosophila*
578 *melanogaster*. *Genetics* 139(1):189–201.

579 8. Fiumera AC, Dumont BL, Clark AG (2007) Associations between sperm competition
580 and natural variation in male reproductive genes on the third chromosome of
581 *Drosophila melanogaster*. *Genetics* 176:1245–1260.

582 9. Fiumera AC, Dumont BL, Clark AG (2005) Sperm competitive ability in *Drosophila*
583 *melanogaster* associated with variation in male reproductive proteins. *Genetics*
584 169:243–257.

585 10. Chapman T, Neubaum DM, Wolfner MF, Partridge L (2000) The role of male
586 accessory gland protein Acp36DE in sperm competition in *Drosophila melanogaster*.
587 *Proc R Soc B Biol Sci* 267(1448):1097–1105.

588 11. Reinhardt K, Naylor R, Siva-Jothy MT (2011) Male mating rate is constrained by
589 seminal fluid availability in bedbugs, *Cimex lectularius*. *PLoS One* 6(7):e22082.

590 12. Linklater JR, Wertheim B, Wigby S, Chapman T (2007) Ejaculate depletion patterns
591 evolve in response to experimental manipulation of sex ratio in *Drosophila*
592 *melanogaster*. *Evolution (N Y)* 61(8):2027–2034.

593 13. Mcgraw LA, Suarez SS, Wolfner MF (2015) On a matter of seminal importance.
594 *BioEssays* 37(2):142–147.

595 14. Chen PS (1984) The Functional Morphology and Biochemistry of Male Accessory
596 Glands. *Annu Rev Entomol* 29(1):233–255.

597 15. Taniguchi K, et al. (2012) Binucleation of *Drosophila* Adult Male Accessory Gland
598 Cells Increases Plasticity of Organ Size for Effective Reproduction. *Biol Syst Open*

599 Access 01(01):1000e101.

600 16. Findlay GD, et al. (2014) Evolutionary rate covariation identifies new members of a
601 protein network required for *Drosophila melanogaster* female post-mating responses.
602 *PLoS Genet* 10(1):e1004108.

603 17. Meslin C, et al. (2017) Structural complexity and molecular heterogeneity of a
604 butterfly ejaculate reflect a complex history of selection. *Proc Natl Acad Sci*
605 114(27):E5406–E5413.

606 18. Bayram H, Sayadi A, Immonen E, Arnqvist G (2019) Identification of novel ejaculate
607 proteins in a seed beetle and division of labour across male accessory reproductive
608 glands. *Insect Biochem Mol Biol* 104:50–57.

609 19. Sepil I, et al. (2019) Quantitative proteomics identification of seminal fluid proteins in
610 male *Drosophila melanogaster*. *Mol Cell Proteomics* 18(Supplement 1):S46–S58.

611 20. Bairati A (1968) Structure and Ultrastructure of the Male Reproductive System in
612 *Drosophila Melanogaster* Meig. *Monit Zool Ital J Zool* 2(3–4):105–182.

613 21. Sitnik J, Gligorov D, Maeda R, Karch F, Wolfner MF (2016) The female post-mating
614 response requires genes expressed in the secondary cells of the male accessory gland
615 in *Drosophila melanogaster*. *Genetics* 202(3):1029–1041.

616 22. Wolfner MF, et al. (1997) New Genes for Male Accessory Gland Proteins in
617 *Drosophila melanogaster*. *Insect Biochem Mol Biol* 27(10):825–834.

618 23. Styger D (1992) Molekulare Analyse des Sexpeptidgens aus *Drosophila melanogaster*.
619 Dissertation (University of Zurich, Zurich, Switzerland).

620 24. Liu H, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in
621 *Drosophila melanogaster*. *Proc Natl Acad Sci* 100(17):9929–9933.

622 25. Chapman T, et al. (2003) The sex peptide of *Drosophila melanogaster*: female post-
623 mating responses analyzed by using RNA interference. *Proc Natl Acad Sci U S A*

624 100(17):9923–9928.

625 26. Kalb JM, DiBenedetto AJ, Wolfner MF (1993) Probing the function of *Drosophila*
626 *melanogaster* accessory glands by directed cell ablation. *Proc Natl Acad Sci*
627 90(17):8093–8097.

628 27. Corrigan L, et al. (2014) BMP-regulated exosomes from *Drosophila* male reproductive
629 glands reprogram female behavior. *J Cell Biol* 206(5):671–688.

630 28. Gligorov D, Sitnik JL, Maeda RK, Wolfner MF, Karch F (2013) A Novel Function for
631 the Hox Gene Abd-B in the Male Accessory Gland Regulates the Long-Term Female
632 Post-Mating Response in *Drosophila*. *PLoS Genet* 9(3):e1003395.

633 29. Minami R, et al. (2012) The homeodomain protein defective proventriculus is essential
634 for male accessory gland development to enhance fecundity in *Drosophila*. *PLoS One*
635 7(3):e32302.

636 30. Redhai S, et al. (2016) Regulation of dense-core granule replenishment by autocrine
637 BMP signalling in *Drosophila* secondary cells. *PLoS Genet* 12(10):e1006366.

638 31. Leiblich A, et al. (2012) Bone morphogenetic protein- and mating-dependent secretory
639 cell growth and migration in the *Drosophila* accessory gland. *Proc Natl Acad Sci U S*
640 *A* 109(47):19292–7.

641 32. Manier MK, et al. (2010) Resolving mechanisms of competitive fertilization success in
642 *Drosophila melanogaster*. *Science (80-)* 328(5976):354–357.

643 33. Lee KM, et al. (2015) A neuronal pathway that controls sperm ejection and storage in
644 female *drosophila*. *Curr Biol* 25(6):790–797.

645 34. Aalberts M, Stout TAE, Stoorvogel W (2013) Prostasomes: extracellular vesicles from
646 the prostate. *Reproduction* 147(1):R1–R14.

647 35. Neubaum DM, Wolfner MF (1999) Mated *Drosophila melanogaster* females require a
648 seminal fluid protein, Acp36DE, to store sperm efficiently. *Genetics* 153(2):845–57.

649 36. Adams EM, Wolfner MF (2007) Seminal proteins but not sperm induce morphological
650 changes in the *Drosophila melanogaster* female reproductive tract during sperm
651 storage. *J Insect Physiol* 53(4):319–331.

652 37. Avila FW, Wolfner MF (2009) Acp36DE is required for uterine conformational
653 changes in mated *Drosophila* females. *Proc Natl Acad Sci* 106(37):15796–15800.

654 38. Qazi MCB (2003) An early role for the *Drosophila melanogaster* male seminal protein
655 Acp36DE in female sperm storage. *J Exp Biol* 206(19):3521–3528.

656 39. Avila FW, Wolfner MF (2017) Cleavage of the *Drosophila* seminal protein Acp36DE
657 in mated females enhances its sperm storage activity. *J Insect Physiol* 101:66–72.

658 40. Partridge L, Fowler K, Trevitt S (1988) An effect of egg-deposition on the subsequent
659 fertility and remating frequency of female *Drosophila melanogaster*. *J Insect Physiol*
660 34:821–828.

661 41. Hasemeyer M, Yapici N, Heberlein U, Dickson BJ (2009) Sensory neurons in the
662 *Drosophila* genital tract regulate female reproductive behavior. *Neuron* 61:511–518.

663 42. Yapici N, Kim Y-J, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-
664 mating switch in *Drosophila* reproductive behaviour. *Nature* 451(7174):33–37.

665 43. Rezával C, et al. (2012) Neural circuitry underlying *Drosophila* female postmating
666 behavioral responses. *Curr Biol* 22:1155–1165.

667 44. Haussmann IU, Heman Y, Wijesekera T, Dauwalder B, Soller M (2013) Multiple
668 pathways mediate the sex-peptide-regulated switch in female *Drosophila* reproductive
669 behaviours. *Proc Biol Sci* 280(1771):20131938.

670 45. Avila FW, Ram KR, Bloch Qazi MC, Wolfner MF (2010) Sex peptide is required for
671 the efficient release of stored sperm in mated *drosophila* females. *Genetics*
672 186(2):595–600.

673 46. Peng J, et al. (2005) Gradual Release of Sperm Bound Sex-Peptide Controls Female

674 Postmating Behavior in *Drosophila*. *Curr Biol* 15(3):207–213.

675 47. Imhof M, Harr B, Brem G, Schlötterer C (1998) Multiple mating in wild *Drosophila*
676 *melanogaster* revisited by microsatellite analysis. *Mol Ecol* 7(7):915–917.

677 48. Boorman E, Parker G a (1976) Sperm (ejaculate) competition in *Drosophila*
678 *melanogaster*, and the reproductive value of females to males in relation to female age
679 and mating status. *Ecol Entomol* 1:145–155.

680 49. Wigby S, et al. (2009) Seminal fluid protein allocation and male reproductive success.
681 *Curr Biol* 19(9):751–757.

682 50. Perry JC, et al. (2016) Experimental evolution under hyper-promiscuity in *Drosophila*
683 *melanogaster*. *BMC Evol Biol* 16(1):131.

684 51. Sepil I, et al. (2019) Ejaculate deterioration with male age, and its amelioration in
685 *Drosophila*. *bioRxiv*:624734.

686 52. Morimoto J, Wigby S (2016) Differential effects of male nutrient balance on pre- and
687 post-copulatory traits, and consequences for female reproduction in *Drosophila*
688 *melanogaster*. *Sci Rep* 6(1):27673.

689 53. Bloch Qazi MC, Hogdal L (2010) Hold on: Females modulate sperm depletion from
690 storage sites in the fly *Drosophila melanogaster*. *J Insect Physiol* 56(9):1332–1340.

691 54. Alavioon G, et al. (2017) Haploid selection within a single ejaculate increases
692 offspring fitness. *Proc Natl Acad Sci* 114(30):8053–8058.

693 55. Alavioon G, Cabrera Garcia A, LeChatelier M, Maklakov AA, Immler S (2019)
694 Selection for longer lived sperm within ejaculate reduces reproductive ageing in
695 offspring. *Evol Lett* 3(2):198–206.

696 56. Hosken DJ, Garner TWJ, Tregenza T, Wedell N, Ward PI (2003) Superior sperm
697 competitors sire higher-quality young. *Proc R Soc B Biol Sci* 270(1527):1933–1938.

698 57. Lupold S, et al. (2013) Female mediation of competitive fertilization success in

699 Drosophila melanogaster. *Proc Natl Acad Sci* 110(26):10693–10698.

700 58. Sirot LK, Wolfner MF, Wigby S (2011) Protein-specific manipulation of ejaculate
701 composition in response to female mating status in Drosophila melanogaster. *Proc
702 Natl Acad Sci* 108(24):9922–9926.

703 59. Borziak K, Álvarez-Fernández A, L. Karr T, Pizzari T, Dorus S (2016) The Seminal
704 fluid proteome of the polyandrous Red junglefowl offers insights into the molecular
705 basis of fertility, reproductive ageing and domestication. *Sci Rep* 6(1):35864.

706 60. Monsma SA, Harada HA, Wolfner MF (1990) Synthesis of two Drosophila male
707 accessory gland proteins and their fate after transfer to the female during mating. *Dev
708 Biol* 142(2):465–475.

709 61. Clancy DJ, Kennington WJ (2001) A simple method to achieve consistent larval
710 density in bottle culture. *Drosoph Inf Serv* 84(84):168–169.

711 62. Schindelin J, et al. (2012) Fiji: an open-source platform for biological-image analysis.
712 *Nat Methods* 9(7):676–682.

713 63. Fischer R, Kessler BM (2015) Gel-aided sample preparation (GASP)-A simplified
714 method for gel-assisted proteomic sample generation from protein extracts and intact
715 cells. *Proteomics* 15(7):1224–1229.

716 64. Vizcaíno JA, et al. (2016) 2016 update of the PRIDE database and its related tools.
717 *Nucleic Acids Res* 44(D1):D447–D456.

718 65. Team RC (2013) R: A language and environment for statistical computing. R
719 Foundation for Statistical Computing, Vienna, Austria. <http://wwwR-project.org/>.
720 doi:10.1348/000712608X366867.

721 66. RStudio Team - (2015) RStudio: Integrated Development for R. [Online] RStudio, Inc,
722 Boston, MA URL <http://www.rstudio.com>. doi:10.1126/science.aad6351.

723 67. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid

724 common statistical problems. *Methods Ecol Evol* 1(1):3–14.

725 68. Bolker BM, et al. (2009) Generalized linear mixed models: a practical guide for
726 ecology and evolution. *Trends Ecol Evol* 24(3):127–135.

727 69. Therneau TM, Grambsch PM (2000) *Modeling survival data : extending the Cox*
728 *model* (Springer, New York).

729 70. Therneau T (2015) A package for survival analysis in S. R package.

730 71. Kassambara A, Kosinski M (2018) survminer: Drawing Survival Curves using
731 “ggplot2”. R package.

732 72. Gilchrist AS, Partridge L (2000) Why it is difficult to model sperm displacement in
733 *Drosophila melanogaster*: The relation between sperm transfer and copulation
734 duration. *Evolution (N Y)* 54(2):534–542.

735 73. Tukey JW (1962) The Future of Data Analysis. *Ann Math Stat* 33(1):1–67.

736 74. Kolde R (2018) pheatmap: Pretty Heatmaps. R package.

737 75. Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-
738 based false discovery rates. *Bioinformatics* 24(12):1461–1462.

739

740

741 **FIGURE LEGENDS**

742 **Figure 1.** (A) The architecture of the *Drosophila melanogaster* male reproductive system. The
743 testes, which branch off from where the two lobes of the accessory glands meet, are not shown.
744 Figure adapted from (30). (B) Dissected glands from a control (*esg-GAL4 x w¹¹¹⁸*) male.
745 Secondary cells fluorescence derives from *UAS-GFP_{nls}*. Nuclei stained with DAPI. Image
746 courtesy of Aashika Sekar.

747

748 **Figure 2.** Defective sperm storage and decoupled post-mating responses in Dad-mated
749 females. (A) The number of sperm present across all regions of the female reproductive tract
750 25 mins after the start of mating, *i.e.* the number transferred. $n_{Dad}=27$, $n_{control}=28$. (B) The
751 proportion of transferred sperm that has entered into the storage organs (seminal receptacle and
752 spermathecae) at 25 mins after the start of mating, $n_{Dad}=27$, $n_{control}=28$. (C) The number of
753 sperm in storage at 5h after mating, $n_{Dad}=25$, $n_{control}=30$. (D) Daily offspring production,
754 $n_{Dad}=47$, $n_{control}=56$. (E) The latency to remating by Dad- and control-mated females when
755 presented with a second male 24h later, $n_{Dad}=276$, $n_{control}=275$. In A-D, horizontal bars represent
756 the mean, with vertical bars representing ± 1 SE. Data are plotted with horizontal ‘jitter’. In E,
757 confidence intervals are at 95%. * = $p < 0.05$.

758

759 **Figure 3.** Dad-mated females over-retain sperm, provide higher first male paternity, and handle
760 a second ejaculate differently. (A) The number of sperm in the seminal receptacle 7 days after
761 singly mating to a Dad or control male. $n_{Dad}=18$, $n_{control}=19$. (B) As (A) but the total across both
762 spermathecae. $n_{Dad}=18$, $n_{control}=19$. (C) First male paternity share when a female first mates to
763 a Dad or control male and then a standardised competitor 24 hours later. Offspring collected
764 over the 24h following remating. $n_{Dad}=190$, $n_{control}=173$. (D) As (C), but offspring collected in
765 a 24-hour period 4 days after the female remated. $n_{Dad}=92$, $n_{control}=81$. (E) As (D), but
766 conducted at 20°C to block Dad expression. $n_{Dad}=69$, $n_{control}=67$. (F) First male paternity share
767 when a female first mated to a standardised competitor male and then a Dad or control male
768 24h later. Offspring collected over the 24h 4 days after remating. $n_{Dad}=43$, $n_{control}=41$. (G) Dad
769 or control sperm across all regions of the female reproductive tract 10 minutes or 24 hours after
770 remating to a standardised competitor. 10 mins: $n_{Dad}=38$, $n_{control}=24$; 24h: $n_{Dad}=38$, $n_{control}=24$.
771 The p -values associated with Genotype (G), Timepoint (T), and their interaction in predicting
772 sperm numbers are provided. (H) A female dissected at 5 hours after singly mating to a control

773 male. Released sperm in the uterus are circled. SR, seminal receptacle; Sp, spermathecae. (I)
774 Proportion of females where second male sperm has entered into the storage organs 10 mins
775 after the start of mating. Females mated to a Dad or control male 24h previously. $n_{Dad}=38$,
776 $n_{control}=24$. (J) As (I) but the proportion of the total first male sperm within the female
777 reproductive tract that is found outside of the storage organs. $n_{Dad}=38$, $n_{control}=24$. (K) Latency
778 to ejaculate ejection after previously Dad- or control-mated females remate with a standardised
779 competitor. $n_{Dad}=85$, $n_{control}=101$. Confidence interval is 95%. (L) Daily offspring production
780 by Dad- and control-mated females that secondarily mate to either a male transferring seminal
781 fluid but no sperm or a normal second ejaculate. The dashed line gives the point at which the
782 female remates. SFPs: $n_{Dad}=66$, $n_{control}=48$; SFPs + sperm: $n_{Dad}=193$, $n_{control}=179$. In panels A-
783 G, I, J, and L, horizontal bars represent the mean, with vertical bars representing ± 1 SE of the
784 mean or proportion. Data are plotted with horizontal ‘jitter’. * = $p<0.05$, ** = $p<0.01$. Non-
785 significant p -values between 0.05 and 0.1 are provided.

786

787 **Figure 4.** Quantitative proteomics reveals defects in SFP transfer in Dad males. (A) A heatmap
788 showing the abundance patterns of SFPs. Columns 1 and 2: males dissected prior to mating;
789 columns 3 and 4: males dissected 25 minutes after mating. Columns 1 and 3: Dad males;
790 Columns 2 and 4: control males. Row annotations highlight membership of higher-order
791 clusters based on a Pearson correlation distance metric. (B) Output of a PCA conducted on
792 abundances of the 88 detected SFPs. Points coloured according to male genotype. Mated glands
793 on the left, pre-mating glands on the right of $x=0$ line. Ellipses denote 80% normal probability.
794 (C) Correlation between Dad and control pre- vs post-mating fold changes (degree of transfer)
795 for each SFP. Red gives SFPs transferred in greater quantities by control males, blue gives
796 SFPs transferred in greater quantities by Dad males. Grey denotes non-SFPs. (D) Log₂ fold
797 changes for three different between-genotype comparisons for each of 11 SFPs identified as

798 showing a significant abundance change in response to BMP-signalling suppression.
799 Comparisons: pre-mating (pink), post-mating (blue), and transfer to females (black). Positive
800 values indicate greater abundance in Dads.

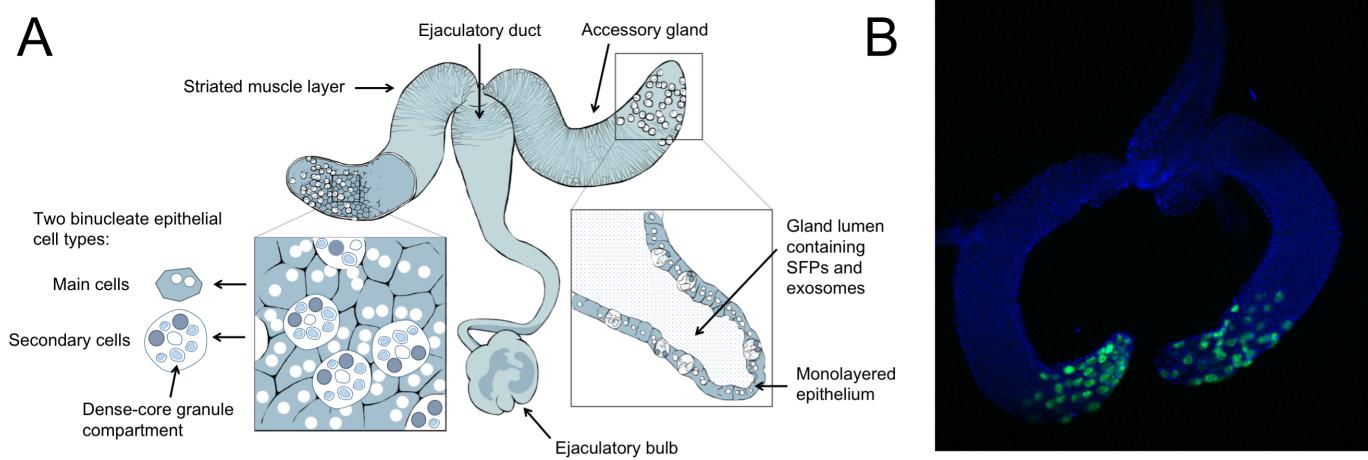


Figure 1

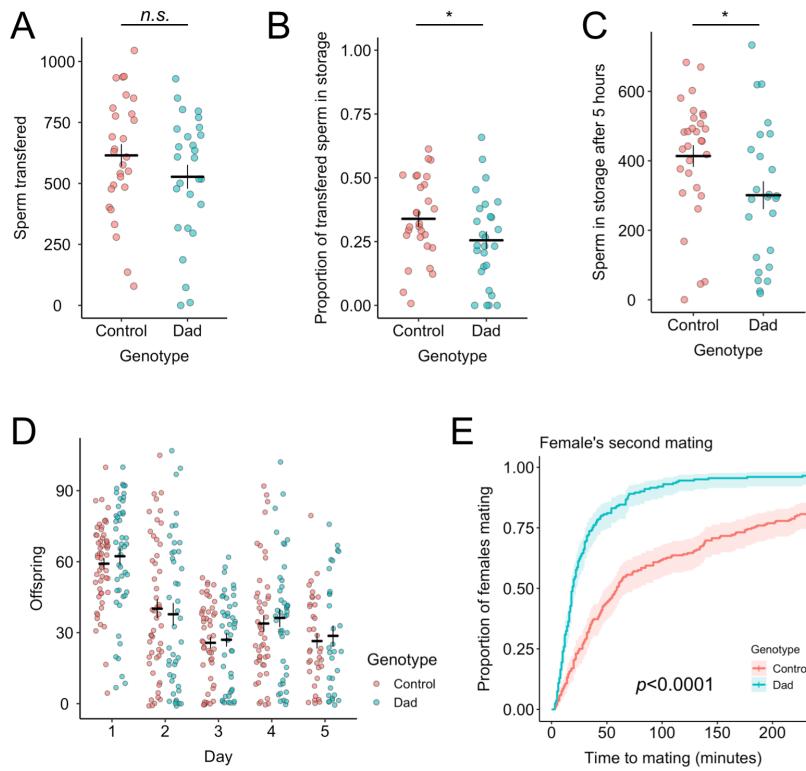


Figure 2

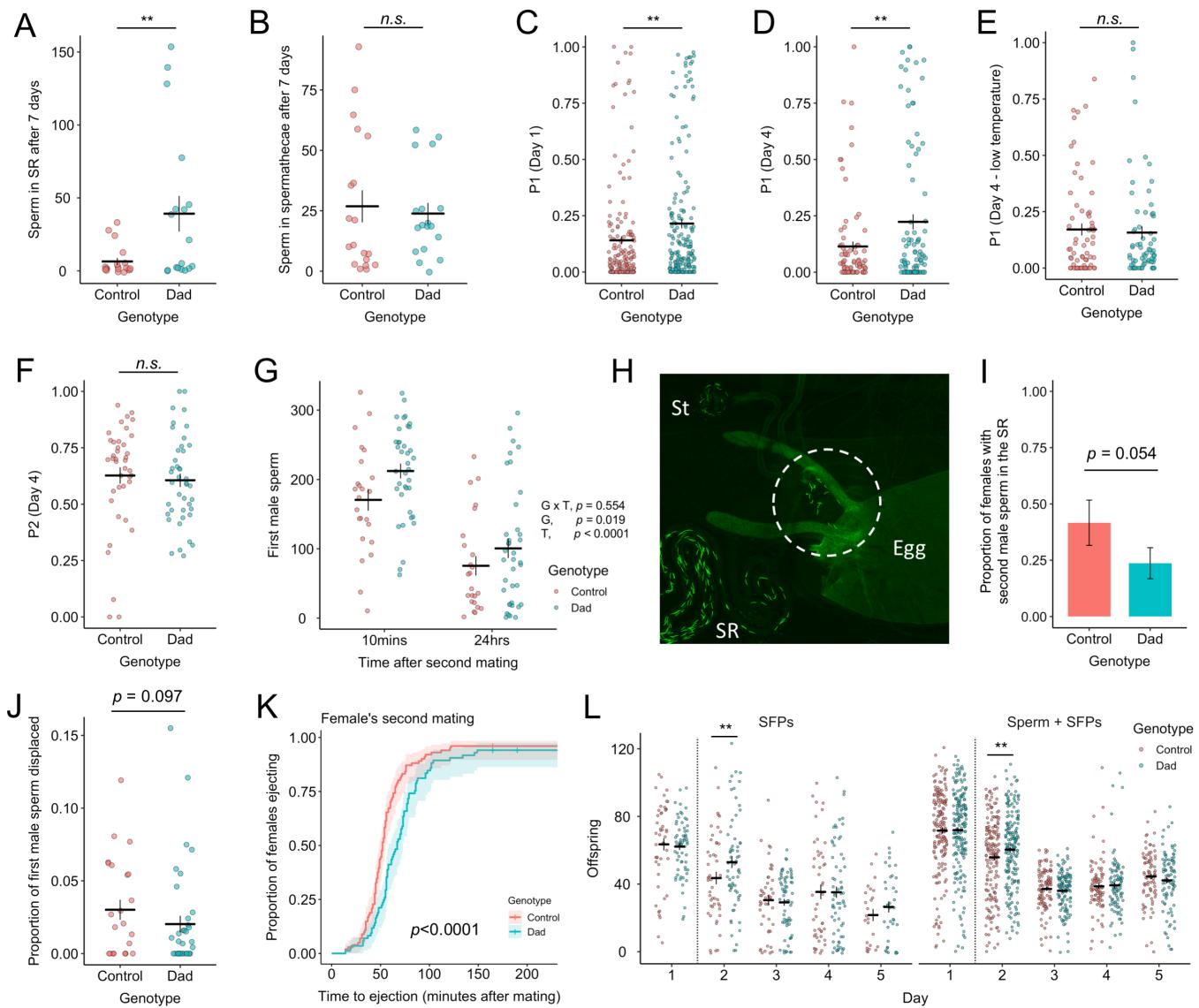


Figure 3

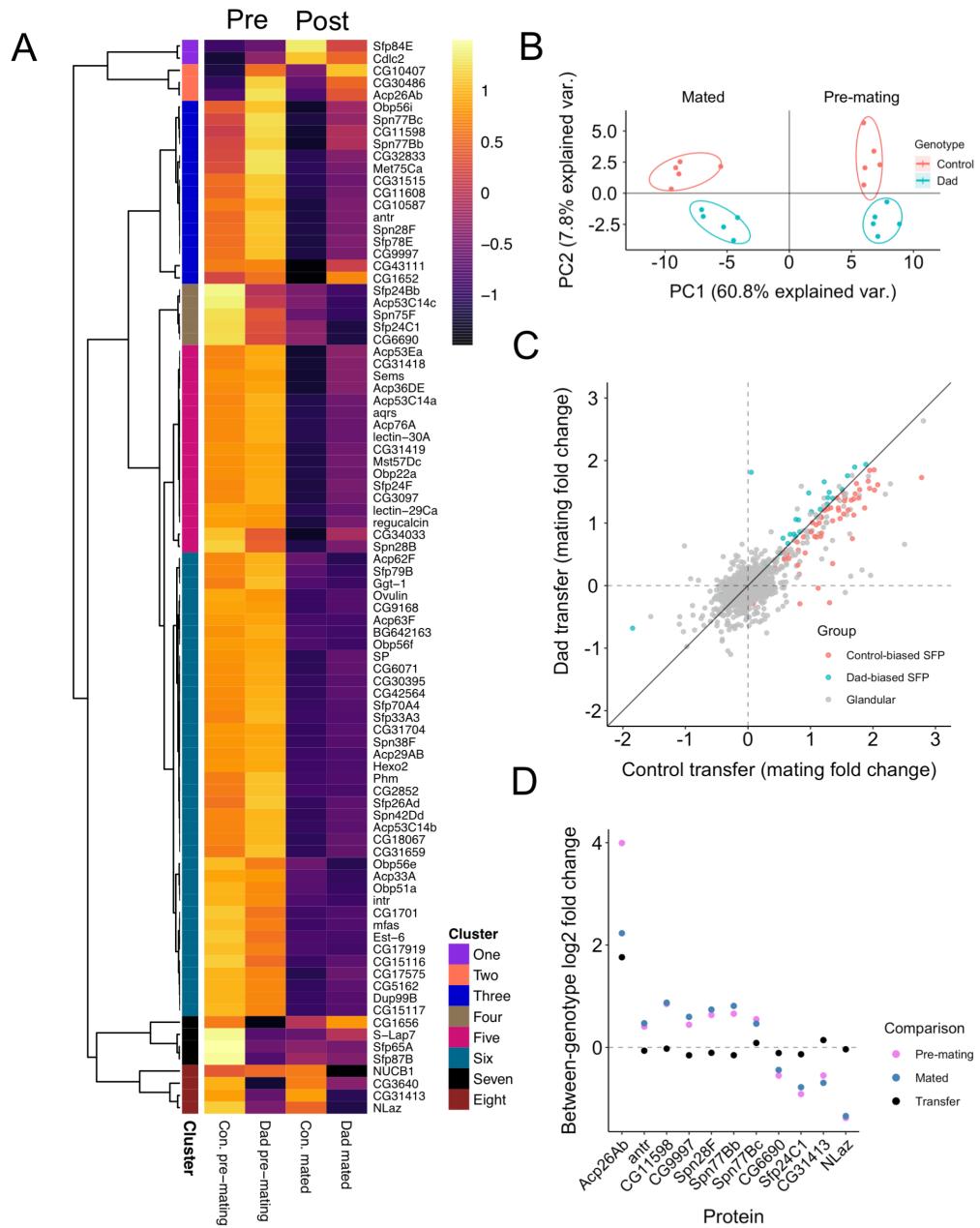


Fig. 4