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Abstract:

Global rise in incidence of woody breast (WB) syndrome imposes a significant economic burden 

on the poultry industry. The increase in WB is due to the large increase in the weight of chickens 

these days within a very short period. An early determination of WB can significantly reduce losses 

to the poultry industry. Diffuse reflectance spectroscopy provides a noninvasive and rapid method 

to interrogate tissue function. The sensitivity of DRS to the distinct absorption spectra of 

oxygenated and deoxygenated hemoglobin allows accurate quantification of average hemoglobin 

concentration and vascular oxygenation within the sampled tissue. In this study, we used diffuse 

reflectance spectroscopy to monitor breast hemoglobin concentration (THb) and vascular oxygen 

saturation (sO2) of 16 chickens that were exposed to heat stress (HS). HS is an important cause 

of WB myopathy in chickens. Animals were exposed to heat-stress (HS) and optical data were 

acquired at three time points: at baseline prior to heat stress, 2 days, and 21 days after initiation 

of HS. Our results show that animals from control and HS groups had a steady decay in optically 

derived breast hemoglobin concentration consistent with independent i-STAT measurements 

made on blood sampled from the femoral artery and could provide a noninvasive technology for 

monitoring tissue function in the poultry industry.

1 Introduction:

Poultry meat is a mass consumer product and one of the main food sources worldwide for billions 

of people. In 2006, US was the largest consumer of poultry meat with average consumption rate 
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of 54 kg/capita/year [1]. Boneless breast meat is a popular choice for consumers and high breast-

yielding strains of broilers are adopted to meet this fast-growing demand. Today chickens and 

turkeys are marketed in twice the body weight in shorter period of time compared to 50 years ago 

[2]. This increase in body weight within such short periods of time can lead to various meat quality 

problems including high incidence of metabolic disorders such as woody breast (WB) myopathy 

[3]. Emerging in global scale, WB is reported to have extreme palpable stiffness of breast muscle 

which severely affects meat appearance with bulge-out and pale color [4]. WB can adversely 

affect consumer acceptance of poultry meat which can result in huge economic loss to the 

industry. Optical methods, such as near infrared (NIR) spectroscopy have been demonstrated to 

correctly differentiate WB fillets from normal fillets based on their water and protein content [5,6] 

because WB is known to contain more loosely water bound and lower protein content compared 

to normal breast muscle [7]. Although NIR spectroscopy allows for rapid identification of WB fillets 

in production line, they are not capable of identifying animals susceptible of formation of WB. 

Although several transcriptomic and proteomic studies relate WB myopathy to localized muscular 

hypoxia [8] and oxidative stress [9], unfortunately no method yet reliably determines the likelihood 

of WB formation in chickens at earlier time points. Thus, there remains a critical unmet need to 

engineer new predictive biomarkers of WB formation. Such a biomarker can identify animals 

susceptible of WB formation in advance to avoid further investment in those animals. In order to 

fill this gap, we propose to use diffuse reflectance spectroscopy (DRS) to monitor the hemoglobin 

concentration and vascular oxygen saturation of the chicken breast. DRS is an optical fiber-based 

technique that uses ‘source’ optical fibers to deliver low-power non-ionizing broadband white light 

to the tissue surface and ‘detector’ optical fibers to collect the diffusely reflected light from tissue. 

The source and detector fibers are typically separated from each other, with the source-detector 

separation distance determining the sampling depth within tissue. This diffusely reflected light 

carries the spectral signatures of tissue components that interacted with the light. These 

‘interactions’ consist of 1. Elastic scattering (no loss of energy but a change in direction) from cell 
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nuclei, mitochondria and collagen, and 2. Absorption, primarily by oxygenated and deoxygenated 

hemoglobin in blood vessels. Depending on tissue type, other major absorbers include melanin 

(skin) and beta-carotene (breast). By analyzing the diffusely reflected light from tissue using 

analytical or quantitative models of light-tissue interaction, it is possible to determine the scattering 

and absorption properties of interrogated tissue, and extract meaningful information regarding 

tissue scattering, hemoglobin concentration, and vascular oxygen saturation. Specifically, the 

distinct absorption spectra of oxygenated (HbO2) and deoxygenated hemoglobin (dHb) allow the 

quantification of total hemoglobin concentration (THb = HbO2 + dHb) and vascular oxygen 

saturation (sO2 = HbO2/THb) in the tissue sampling volume. Previous work by us and others have 

demonstrated that vascular oxygenation measured using DRS is correlated with 

immunohistochemical measures of hypoxic fraction [10] and microelectrode based measures of 

tissue oxygenation (pO2) [11,12]. One of the foremost applications of diffuse reflectance 

spectroscopy has been in the field of cancer as a potential complementary tool to histopathology. 

These applications have spanned early cancer detection in several organs including skin [13] and 

breast [14], identification of surgical margins [15], and monitoring response to therapy [16–18]. 

The underlying premise of these applications is that the major sources of tissue scattering and 

absorption are also molecules that undergo significant changes during disease progression or in 

response to external stimuli; therefore DRS can provide a noninvasive and nonionizing ‘optical 

biopsy’ of tissue. The simplicity of the tool also lends itself to potentially repeated measurements 

on the same tissue, thus providing a continuous time-lapse of changes in tissue rather than a 

single snapshot. 

Given the sensitivity of DRS to changes in vascular oxygenation and the relevance of tissue 

hypoxia in chicken breast pathology, we sought to determine the effects of heat stress (HS) in 

chickens using DRS. HS is devastating to poultry production due to its adverse effects on growth 

performance and mortality. The most prominent effect of HS is depression in feed intake and 

increase in core body temperature. To increase heat loss, birds divert blood to the periphery (skin) 
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which results in a hypoxia-like state in the internal organs such as the breast muscle. We have 

used DRS to show that circulatory and breast muscle oxygen homeostasis is deregulated in 

chickens with WB myopathy compared to healthy counterparts (data not shown). In this study, we 

determined hemoglobin concentration in chickens exposed to heat stress (HS) and compared our 

measurements with the standard i-STAT device for measuring circulatory Hb levels. Our results 

show that aging leads to a decline in optically derived breast hemoglobin levels, a result that was 

confirmed by independent i-STAT measurements. Furthermore, longitudinal changes in optically 

derived Hb concentration were consistent with i-STAT measurements. Our data indicate that DRS 

measures of hemoglobin concentration could be a reliable, rapid, accurate, and non-invasive 

method to measure hematologic parameters in avian species.

2 Materials and Methods:

2.1 Animal storage and handling: 

The studies with chickens were approved by the University of Arkansas Institutional Animal Care 

and Use Committee (IACUC Protocol #16084). 3-week-old chickens (n=16) were randomly 

divided into cyclic heat stress (HS, 35°C for 12 hours/day) and thermoneutral conditions (TN, 

24°C) and were given ad libitum access to food and clean water. We collected optical data and 

blood samples at three time points: before exposure to heat-stress (pre-HS), 2 days after initiation 

of HS (Acute-HS), and 21 days after HS (Chronic-HS). First, 10 mL of blood sample were collected 

from femoral artery from each animal. This was followed by optical data acquisition from chicken 

breast while animals were held upside down. In addition, we determined the presence of WB by 

manual palpation as previously described in literature [19].   

2.2 Diffuse reflectance spectroscopy:

Our spectroscopic system consists of a halogen lamp (HL-2000, Ocean Optics, Dunedin, Florida) 

as light source and a USB spectrometer (Flame, Ocean Optics) for spectral light acquisition. The 

common end of a bifurcated probe was employed for delivery and collection of light with four 
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illumination and five detector fibers located at a source-detector separation distance (SDSD) of 

2.25 mm. We have confirmed that this probe samples light from a depth of approximately 1.8 mm 

[20]. Data acquisition was simplified by using a foot pedal controlled by a custom LabVIEW 

(National Instruments, Austin, Texas) software. Minimum of 15 spectral data in spectral range of 

475 to 600 nm were collected from multiple sites from each chicken’s breast and averaged optical 

properties were used to represent that chicken. Prior to any optical measurement from animals, 

reflected light intensity of an 80% reflectance standard (SRS-80-010; Labsphere, North Sutton, 

New Hampshire) was acquired to calibrate for daily variations in light throughput. 

2.3 Quantification of tissue optical properties:

We used a LUT-based inverse model to fit the acquired data and extract wavelength-dependent 

absorption and scattering properties of tissue. The model has been described previously [21] and 

validated for a range of different source detector separations (SDSDs) [20]. To fit the model to 

the acquired optical spectra, we constrained scattering to follow a negative power-law 

dependence on wavelength [22]: , with  as a reference point µs
'(λ) = µs

'(λ0).(λ
λ0

)
‒ B

λ0 = 600 nm

where light absorption is minimum. We further assumed light absorption to be a linear sum of light 

absorbing chromophores, namely oxygenated and deoxygenated hemoglobin, as well absorption 

from skin.  In the spectral range of 475-600 nm, we calculated  as: µa µa(λ) = [Hb][ασHbO2(λ) +

, where [Hb] and [Ml] respectively are total hemoglobin concentration (1 ‒  α)σdHb(λ)] + [Ml]mel(λ)

and skin absorption. α is oxygen saturation which represents the ratio of oxygenated (HbO2) to 

total hemoglobin concentration [Hb]. The fixed absorption parameters, extinction coefficients of 

oxygenated hemoglobin ( ), deoxygenated hemoglobin ( ), and melanin (mel) were σHbO2 σdHb

obtained from an online database [23]. Generation of LUT and data analysis was performed in 

MATLAB (Mathworks, Natick, Massachusetts). 

2.4 i-STAT system:
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Circulatory hemoglobin concentration (Hb) were determined using i-STAT Alinity system (SN: 

801128; software version JAMS 80.A.1/CLEW D36; Abaxis, Union City, CA) with the i-STAT 

CG8+ cartridge test (ABBT-03P77-25) according to manufacturer’s recommendation. i-STAT 

derived hemoglobin values have previously been validated in laying hens [24,25].

2.5 Statistical analysis:

Repeated measures analysis of two-factor ANOVA was employed to determine statistically 

significant differences in Hb levels from both DRS and i-STAT readings between different groups. 

Time and treatment were respectively considered as within and between effects. Additionally, 

interactions between all effects were included in the analysis. Post-hoc Tukey HSD test were 

used to differentiate specific groups. Significant differences among slopes of regression lines 

were tested with Analysis of Covariance (ANCOVA). All statistical analyses were performed using 

JMP (ANOVA) and GraphPad Prism (ANCOVA).

3 Results:

Absorption spectra of oxyegnated (HbO2 - solid line) and deoxygenated hemoglobin (dHb 

– dashed line) are illustrated in figure 1A. Figure 1B presents the measured diffuse reflectance 

spectra from representative animals in TN (orange circles) and HS (green circles) groups and 

their corresponding LUT fit (black line) at pre-HS time points. Based on LUT fits, we extracted 

absoprtion (Fig 1C) and scattering (Fig 1B) properties of the reflectance data. We noted 

absorption spectra belonging to HS have a slightly more pronounced Hb bands compared to that 

of TN group. We additionally observed similar magnitude of scattering in HS and TN groups at 

pre-HS time point. 
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Figure 1. (A) Absorbance spectra of oxygenated and deoxygenated Hb. (B) Measured diffuse reflectance spectra of 
representative animals in TN (orange circles) and HS (red circles) and their corresponding LUT fit (black line). LUT 
extracted absorption (C) and scattering (D) coefficients.

To enable quantitative comparisons between the different groups, we determined the fit 

parameters derived from the absorption and scattering coefficients. Figure 2 shows the temporal 

kinetics of the concentration of i-STAT-measured Hb (Figure 2.A), concentration of DRS-

measured Hb (Fig 2B), concentration of dHb (Figure 2C), concentration of HbO2 (Figure 2D), 

oxygen saturation (Fig 2E), and mean reduced scattering coefficient (Fig 2F). For each treatment, 

the data are presented as pre-HS (blue bars), Acute-HS (green bars), and Chronic-HS (red 

bars) ± standard error of the mean (SEM). Figures 2A & 2B demonstrate a trend toward lower 

Hb concentration after HS, using both the i-STAT and DRS devices.  While no significant 

differences between groups were found in i-STAT measurements of circulatory Hb, [Hb] 

measured in the chicken breast using DRS was significantly lower at the chronic HS time point 

compared with pre-HS and acute-HS. While the decrease in [Hb] was observed in both TN and 

HS groups over time, the source of this decrease appears to be different in both groups. 

Specifically, there was a significant decrease in [dHb] concentration in the chronic-HS TN group. 

On the other hand, the [Hb] decrease in the HS group appears to be driven primarily by a large, 

significant decrease in [HbO2] in the HS group. To further investigate these group-specific 

changes, we calculated the vascular oxygen saturation (sO2) as the ratio of HbO2/(dhb+HbO2) 

illustrated in fig 2E. We found statistically significant differences in sO2 between the acute and 

chronic time points of the HS group. No significant differences were found in the TN group. Finally, 

we found significant decreases in the mean reduced scattering coefficient between pre-HS and 
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acute HS time points in both the TN and HS groups, followed by a significant increase at the 

chronic time point. 

Figure 2. Circulatory hemoglobin concentration detected by i-STAT device (A). Optically derived parameters: Total 
hemoglobin concertation – Hb (B), deoxygenated hemoglobin – dHb (C), oxygenated hemoglobin – HbO2 (D), 
hemoglobin oxygen saturation – sO2 (E), and total scattering coefficient – µs’ (F). Data shown as means ± SEM 
representing pre-HS (blue bars), Acute-HS (green bars), and Chronic-HS (red bars). 

A B

DC

FE
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To determine whether the rates of change in optically measured Hb were similar to the i-

STAT measurements, we compared the slope of regression lines over time (Figure 3). There 

were no significant differences in the slope of the regression line in TN and HS groups. TN 

(P=0.17, Fig 3A), HS (p=0.65, Fig 3B). Note that hemoglobin concentration measured by i-STAT 

and DRS are illustrated in green and blue, respectively. 

Figure 3. Longitudinal comparison of the slope of changes in Hemoglobin concentration in TN (A) and HS (B) groups 
detected with i-STAT (green) and DRS (blue). The equation of average line from each measurement are represented 
with their abovementioned colors.

In addition to collecting blood samples and optical spectra from each chicken, we 

determined the presence of WB by manual palpation. We observed that for both treatment groups, 

the fold change in the incidence rate of WB increased, with a higher rate observed in the TN 

group. (Figure 4A). 

Since animals from both TN and HS groups formed WB, we sought to investigate whether 

vascular oxygen saturation (sO2) could differentiate animals with WB from those with normal 

breast. We classified chickens as normal breast (NB) or woody breast (WB) based on final 

assessment of the breast on Day 21. We found higher sO2 in animals with NB compared with 

animals with WB at pre-HS and acute-HS time points but not at the Chronic-HS time point. 
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However, we failed to observe any statistically significant differences among the groups at any of 

the time points (Figure 4B). 

Figure 4. (A) Comparison of the fold change in incidence of WB in TN and HS groups at pre-HS, Acute-HS, and 
Chronic-HS time points. (B) Optically derived Hb readings in animals with normal breast (NB) and woody breast 
(WB) animals across time. Error bars are standard error of mean (SEM). 

4 Discussion:

Previous studies have shown the importance of optically derived hemoglobin 

concentration in cancer research studies. For instance, hemoglobin concentration has been 

shown to be elevated in breast cancer patients due to angiogenesis [26,27]. In addition to that, 

near infrared (NIR) spectral tomography has been used to show that breast adipose and fibro-

glandular tissues have significantly different contents of hemoglobin [28]. Mell et al. have shown 

that the volume of bone marrow is associated with hematologic toxicity of anal cancer patients 

treated with concurrent chemo-radiotherapy [29]. Crawford et al. have also associated the 

hemoglobin counts with quality of life improvements in anemic cancer patients treated with epotin 

alfa [30].

In this study, we used DRS to evaluate the effects of acute and chronic HS on hemoglobin 

profile in broiler chicken breast. We observed temporally significant decay in optically derived Hb 

concentration of animals exposed to TN and HS which were validated by i-STAT measurements. 

The similarity in slope of changes in hemoglobin detected by DRS and i-STAT indicate that aging 

A B
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can lead to a decay in both circulatory and breast hemoglobin concentration disregarding 

environmental conditions. The decrease in the circulatory and breast muscle hemoglobin 

concentration suggests a possible presence of circulatory (anemic) hypoxia which leads to 

diminished supply of oxygen to breast muscle [31](Figure 2. E). While sO2 in TN group remained 

relatively the same, oxygen saturation in HS group had a significant decrease after a sudden 

increase in Acute-HS time point which is due to significant decrease in the content of oxygenated 

hemoglobin [HbO2]. This significant decrease in sO2 value in chronic time-point of HS groups is 

negatively correlated (r2=-0.16) with palpation scores of WB incidence, however the correlation 

was not statistically significant (data not shown).

 We observed an increase of light scattering in chronic-HS time points of both TN and HS 

groups (Figure 2. F). Chickens with WB myopathy have significantly higher levels of fibrosis, 

collagen, and necrosis [9], all of which can greatly contribute to light scattering [32]. However, we 

do not understand the etiology of reduction of light scattering at the acute-HS time point.

To examine how WB incidence changes over time and its association with TN and HS 

treatments, we determined the presence of WB by manual palpation. We observed that a greater 

increase in WB incidence in the TN group over time compared with the HS group (Figure 4. A). 

HS is known to lead to hyperthermia, which can cause a reduction in animal feed intake to avoid 

further diet-induced thermogenesis (DIT) [33]. This reduction in feed intake and body weight likely 

explains why HS chickens had a lower incidence of WB.

We showed that optically derived oxygen saturation is higher in animals with healthy 

breast (NM) compared to animals with WB. This difference was observed at pre-HS and acute-

HS time-points. However, the opposite was observed 3 weeks after initiation of the study. More 

studies with larger sample size are required to establish the sensitivity of such optically derived 

parameters.
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This study shows that diffuse reflectance spectroscopy has the potential to dynamically 

monitor changes in physiology and morphology of chicken breast. Further research with larger 

sample size with possibility of animal euthanasia at acute-HS time point can shine more light into 

HS, WB, and their relationship and can aid in early determination of WB formation. Unlike the i-

STAT, DRS provides a method to measure vascular changes directly from the breast. An accurate 

early determination, which is not possible by manual palpation, can aid in developing strategies 

to treat WB. The low cost and easy implantation of DRS setup makes it an ideal screening tool 

for longitudinal monitoring of WB formation. 
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