

1 Inherited chromosomally integrated HHV-6 demonstrates tissue-specific RNA expression *in*
2 *vivo* that correlates with increased antibody immune response.

3
4 Vikas Peddu^{a#}, Isabelle Dubuc^{b#}, Annie Gravel^b, Hong Xie^a, Meei-Li Huang^a, Dan Tenenbaum^b,
5 Keith R. Jerome^{a,b}, Jean-Claude Tardif^{c,d}, Marie-Pierre Dubé^{c,d}, Louis Flamand^{c,e,*}, Alexander L.
6 Greninger^{a,f,*}

7
8 ^a Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
9 ^b CHU de Quebec Research Center-Université Laval, Quebec City, QC, Canada
10 ^c Montreal Heart Institute, Montréal, Québec, Canada
11 ^d Faculté de Médecine, Département de Médecine, Université de Montréal, Montréal, Québec,
12 Canada
13 ^e Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval
14 University
15 Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
16 ^f Fred Hutchinson Cancer Research Center, Seattle, WA, USA
17

18 [#]These authors contributed equally

19 ^{*}Co-corresponding authors

20 Louis Flamand
21 CHU de Quebec Research Center-Université Laval
22 Division of infectious and immune diseases
23 2705 Laurier boulevard
24 Room T1-49
25 Quebec City, QC, Canada G1V4G2
26 louis.flamand@crchudequebec.ulaval.ca Tel:418-525-4444 x46164
27

28 Alex Greninger
29 1616 Eastlake Avenue East Suite 320, Seattle, WA 98102
30 agreninger@uw.edu Tel: 415-439-3448
31

32 Keywords:

33 Human herpesvirus 6, iciHHV-6, ciHHV-6, HHV-6, GTEx, Genotype Tissue Expression Project,
34 LIPS, antibody response, IE1

35 **Abstract**

36 Human herpesvirus-6A and 6B (HHV-6A, HHV-6B) are human viruses capable of
37 chromosomal integration. Approximately 1% of the human population carry one copy of HHV-
38 6A/B integrated into every cell in their body, referred to as inherited chromosomally integrated
39 human herpesvirus 6A/B (iciHHV-6A/B). Whether iciHHV-6A/B is transcriptionally active in vivo
40 and how it shapes the immunological response is still unclear. Here, we screened DNA-Seq
41 and RNA-Seq data for 650 individuals available through the Genotype-Tissue Expression
42 (GTEx) project and identified 2 iciHHV-6A and 4 iciHHV-6B positive candidates. When
43 corresponding tissue-specific gene expression signatures were analyzed, low levels HHV-6A/B
44 gene expression was found across multiple tissues, with the highest levels of gene expression
45 in the brain (specifically for iciHHV-6A), testis, esophagus, and adrenal gland. U90 and U100
46 were the most highly expressed HHV-6 genes in both iciHHV-6A and iciHHV-6B individuals. To
47 assess whether tissue-specific gene expression from iciHHV-6A/B influences the immune
48 response, a cohort of 15,498 subjects was screened and 85 iciHHV-6A/B⁺ subjects were
49 identified. Plasma samples from iciHHV-6A/B⁺ and age and sex matched controls were
50 analyzed for antibodies to control antigens (CMV, EBV, FLU) or HHV-6A/B antigens. Our results
51 indicate that iciHHV-6A/B⁺ subjects have significantly more antibodies against the U90 gene
52 product (IE1) relative to non-iciHHV-6 individuals. Antibody responses against EBV and FLU
53 antigens or HHV-6A/B gene products either not expressed or expressed at low levels, such as
54 U47, U57 or U72, were identical between controls and iciHHV-6A/B⁺ subjects. CMV
55 seropositive individuals with iciHHV-6A/B⁺ have more antibodies against CMV pp150, relative to
56 CMV seropositive controls. These results argue that spontaneous gene expression from
57 integrated HHV-6A/B leads to an increase in antigenic burden that translates into a more robust
58 HHV-6A/B specific antibody response.

59

60 **Importance**

61 HHV-6A/B are human herpesviruses that have the unique property of being able to
62 integrate into the subtelomeric regions of human chromosomes. Approximately 1% of the
63 world's population carries integrated HHV-6A/B genome in every cell of their body. Whether
64 viral genes are transcriptionally active in these individuals is unclear. By taking advantage of a
65 unique tissue-specific gene expression dataset, we show the majority of tissues from iciHHV-6
66 individuals do not show HHV-6 gene expression. Brain and testes showed the highest tissue-
67 specific expression of HHV-6 genes in two separate datasets. Two HHV-6 genes, U90
68 (immediate early 1 protein) and U100 (glycoproteins Q1 and Q2), were found to be selectively
69 and consistently expressed across several human tissues. Expression of U90 translates into an
70 increase in antigen-specific antibody response in iciHHV-6A/B⁺ subjects relative to controls.
71 Future studies will be needed to determine the mechanism of gene expression, the effects of
72 these genes on human gene transcription networks and the pathophysiological impact of having
73 increased viral protein expression in tissue in conjunction with increased antigen-specific
74 antibody production.

75

76

77 **Introduction**

78 Human herpesvirus 6 (HHV-6) represents two unique species: HHV-6A and HHV-6B.
79 Primary HHV-6B infection occurs in 90% of children within their first two years of life and causes
80 Roseola, also known as sixth disease, and has been strongly associated with febrile (1). HHV-
81 6B reactivation has been observed in 56% of post hematopoietic stem cell transplant recipients.
82 Those with post-transplant HHV-6B reactivation have also been observed to have a higher
83 chance of human cytomegalovirus reactivation (2).

84 As with all herpesviruses, HHV-6A/B establish lifelong latency, though it is unique in that
85 it is the only human herpesviruses capable of chromosomal integration. The method of
86 integration is thought to be the result of homologous recombination between the direct repeat
87 (DR) regions on the right end of the HHV-6 genome and the subtelomeric regions of the human
88 genome (3). In approximately 0.5-2% of the general population, integrated virus can be
89 vertically passed through the germline, resulting in one copy of the HHV-6A/B genome in every
90 cell in the resulting child's body. This is referred to as inherited chromosomally integrated HHV-
91 6A/B (iciHHV-6A/B) (4).

92 A sensitive ddPCR based assay to detect a 1:1 ratio of HHV-6A/B to human cellular
93 DNA has been described as a method of diagnosing iciHHV-6A/B (5). However, iciHHV-6A/B
94 present a confounding issue for conventional DNA based PCR diagnostic assays when
95 diagnosing HHV-6A/B active infections because HHV-6A/B DNA is always present in the cells of
96 iciHHV-6A/B patients. As a result, though the previously described ddPCR assay can be used to
97 discriminate active infections from HHV-6A/B positive patients, it cannot determine HHV-6A/B
98 active infection in the context of iciHHV-6A/B.

99 The biological consequences of having the entire HHV-6A/B genome in every cell have
100 yet to be examined in detail. In the only large population study performed so far, Gravel et al
101 reported that iciHHV-6⁺ represents a risk factor for development of angina (6). Endo et al also
102 provided convincing evidence of reactivation of iciHHV-6A in a boy with SCID (7). Reactivation

103 was associated with pathogenesis and was successfully treated with antivirals. At the molecular
104 level, the left direct repeat region of the genome is fused to the subtelomeric region (8–10). At
105 the other side of the genome, the right direct repeat ends with telomeric DNA repeat extensions
106 whose lengths are often shorter than those of the other chromosomes (9). In Europe and
107 America, integration in chromosome 17p is overrepresented while overrepresentation of
108 integration in chromosome 22q is observed in Asia (11, 12). Such overrepresentation in
109 chromosome 17p and 22q are unlikely due to multiple independent integration events but likely
110 originates in ancestral integration events that were propagated over time (11, 12).

111 At present, it is unclear whether integrated HHV-6A/B genomes are transcriptionally
112 active, and if so, whether they exhibit tissue-specific expression. In a recent study Saviola et al
113 reported that the viral genome resides in a condensed nucleosome-associated state with
114 modest enrichment for repressive histone marks H3K9me3/H3K27me3 and does not possess
115 the active histone modifications H3K27ac/H3K4me3 (13). Whether such an epigenetic
116 signature varies depending on the cell type and whether it is modified by *in vitro* passaging of
117 iciHHV-6A/B⁺ subject cells remains to be determined. To study HHV-6A/B gene expression
118 under *in vivo* conditions, we utilized the Genotype-Tissue Expression project (GTEx), which at
119 the time of analysis contained 650 whole blood DNAseq samples, that we used to screen for
120 iciHHV-6A/B individuals. Each of the 650 DNAseq samples corresponds to donor ID-containing
121 RNA-seq data for various tissues within that donor. Here, we report the results of the RNAseq
122 screen, and tissue-based iciHHV-6A/B activity from two unique gene expression datasets.
123 Furthermore, we studied whether the HHV-6A/B gene expression detected was correlated with
124 antigen specific antibody responses. Our hypothesis was that iciHHV-6A/B⁺ subjects may be
125 routinely exposed to a higher antigenic burden than iciHHV-6⁻ subjects and this would translate
126 into a more robust anti-HHV-6A/B immune response.

127

128 **Materials and Methods**

129 *GTEx data analysis*

130 GTEx genotype data was downloaded from dbgap (June 1st, 2018) using prefetch. 650
131 DNA sequence SRA files were clipped, decompressed, and extracted using fastq-dump with the
132 following flags: –W (remove tag sequences from dataset), –l (uniquely labels paired-end reads),
133 and –split-files (splits paired-end reads into separate files). The fastq-dump output was piped to
134 bowtie2 (14) for alignment using the --no-unal (unaligned reads not saved in resulting SAM file)
135 and --local (local alignment) flags. FASTQ files were aligned to the HHV-6A (NC_001664.4),
136 HHV-6B (AF157706.1), and HHV-7 (NC_001716.2) reference genomes with any repeat like
137 regions manually removed.

138 For the 6/650 files suspected to be positive for iciHHV-6A/B (e.g., >25x average depth
139 across HHV-6A/B reference genomes in DNA-Seq dataset), corresponding RNA-seq FASTQ
140 files for all available tissues (111 total) were downloaded and aligned to HHV-6A/B reference
141 genomes as described above. All reads were confirmed as HHV-6A/B using BLAST with an
142 Evalue<1e-8 against the NCBI nt database (January 5, 2019). For corresponding negative
143 controls, 100 GTEx biospecimen IDs were randomly selected and all available RNA-seq FASTQ
144 files (1903 total) corresponding to those individuals were aligned against HHV-6A/B references
145 as described above.

146 DNA-seq FASTQ reads corresponding to the six iciHHV-6 positive donors were aligned
147 to portions of the human genes EDAR (NM_022336.4) and Beta-globin (AH001475.2) that were
148 trimmed of human repeats as well as repeat-trimmed HHV-6A (NC_001664.4) and HHV-6B
149 (AF157706.1) reference genomes (Supplement 2), using with the same bowtie2 options
150 specified above. We calculated a normalized depth of coverage by counting the number of
151 reads aligned to the region of interest (R) divided by the total length of the sequence in
152 megabases (B) from the sample and normalizing the highest rpkm from EDAR or beta-globin
153 obtained to 100 ($\frac{R*30,000}{B}$).

154

155 *GTEx RNA-seq quality control analyses*

156 To calculate fragment insert size distribution of the human WGS and human RNA-seq
157 reads, a random subsample of 10 million reads was taken from GTEx WGS data for each of the
158 four iciHHV-6B positive individuals as well as the 7 RNA-seq samples that showed the highest
159 HHV-6 gene expression. Alignment was performed to hg38 and HHV-6 reference genomes
160 using Bowtie2 with the same flags described above. Because of the low numbers of RNA-seq
161 reads to HHV-6A/B, these reads were pulled from the resulting SAM files and analyzed as one
162 distribution.

163 HHV-6B RNA-seq reads for each iciHHV-6B individual were aligned to the GTEx-OXRO
164 consensus genome using the Geneious read mapper and manually inspected for variants that
165 could differentiate each donor. Alignment of paired reads to the HHV-6B Z29 reference genome
166 using Geneious was also performed to find paired reads spanning splice junctions.

167

168 *Mount Sinai Brain Bank (MSBB) data*

169 Whole exome BAM files aligned to hg19 were downloaded (8/2018) from the Synapse
170 MSBB database (15). Unmapped reads were extracted via samtools using the command
171 “samtools view -b -f 4 <BAM file>” and converted into FASTQ files via samtools bam2fq (16).
172 FASTQ files were then combined and aligned to HHV-6A and HHV-6B reference genomes as
173 described above. Twenty randomly selected samples that were negative for HHV-6 DNA were
174 also screened for HHV-6 RNA. All reads were confirmed as HHV-6 using BLASTn with an
175 Evalue<1e-8 against the NCBI nt database (January 5, 2019).

176

177 *Phylogenetic trees*

178 HHV-6A and HHV-6B genomes were downloaded from NCBI GenBank (September 1st,
179 2018). Contiguous HHV-6B sequences between nucleotides 9,515 and 118,889 of the Z29

180 reference sequence (AF157706.1), corresponding to genes U4 - U77, were used for analysis
181 due to lack of missing sequence in this region. Contiguous HHV-6A sequences between
182 nucleotides 79,352 and 110,248 of the U1102 reference sequence (NC_001664.4) were
183 similarly used, corresponding to genes U48 - U73. Both sets of subsequences were aligned with
184 MAFFT using default parameters. Phylogenetic trees were constructed using the Geneious tree
185 builder with 100 bootstrap iterations.

186

187 *Montreal Heart Institute biobank screening*

188 The MHI Biobank contains DNA, buffy coats and aliquots of plasma for every patient
189 (n=15 498). Basic demographic data of the subjects are presented under table 1. For
190 identification of iciHHV-6A/B⁺ subjects, screening was carried out using Roche LightCycler®
191 480 Instrument II real time PCR apparatus and 384-well plates containing DNA samples from
192 the MHI biobank using a previously described protocol (6). Samples positive for iciHHV-6A/B
193 were confirmed by ddPCR as previously described (17, 18). All patients provided consent and
194 the study was approved by the Montreal Heart Institute Ethics Committee.

195

196 *Plasma cytokine analysis*

197 Plasma were analyzed using the Human High Sensitivity T-Cell 14-Plex assay from Eve
198 Technologies (Calgary, Alberta, Canada). Analytes included GM-CSF, IFN gamma, IL-1 beta,
199 IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-23, TNF-alpha.

200

201 *LIPS assay*

202 The Luciferase ImmunoPrecipitation assay System has been described previously (19, 20).. In
203 brief, genes of interest are cloned in frame with a FLAG-tagged renilla luciferase (Ruc) gene
204 using the pREN2 vector. All clones are verified by restriction enzyme profiling and DNA

205 sequencing. The following constructs were previously described and generously provided by
206 Peter Burbelo (NIH): pREN2-p18 EBV, pREN2-pp150-d1 CMV and pREN2-HA2 influenza (21).
207 The entire HHV-6B U57 was first cloned into pENTR-FLAG by Gibson assembly cloning. Then,
208 the BamH1/SmaI fragment containing the U57 coding region 1-902 was subcloned into pREN2
209 to yield the pREN2-HHV-6B MCP. The entire HHV-6B gM (U72 aa 1-344) was cloned by
210 Gibson assembly cloning into BamH1-Sca1 digested pREN2 to yield pREN2-HHV-6B gM. The
211 entire HHV-6B gO (U47 aa 1-738) was cloned by Gibson assembly cloning into BamH1-Sca1
212 digested pREN2 to yield pREN2-HHV-6B gO. The pREN2-IE1B (aa 1-857) was created by
213 subcloning a BamH1/Kpn1 fragment from the pMalC2-IE1B vector into BamH1/Kpn1-digested
214 pREN2. The pREN2-IE1A (aa 24- 941) vector was generated by subcloning a BamH1/Xho1
215 fragment from pcDNA4TO-IE1A into BamH1/Xho1-digested pREN2 vector. The pREN2-GST
216 negative control vector was generated by subcloning the GST gene using the Nco1 blunted-
217 XbaI fragment obtained from pENTR4-GST 6P-1. pENTR4-GST 6P-1 (w487-1) was a gift from
218 Eric Campeau & Paul Kaufman (Addgene plasmid # 17741) (22). The insert was ligated in
219 BamH1 blunted-Xba1 digested pREN2 vector. Protein expression was validated by western
220 blot using anti-FLAG antibodies. To prepare lysates for the LIPS assay, HEK293T cells seeded
221 the day before at 4×10^6 cells/10 cm² petri dish, were transfected with 8 μ g of vectors using PEI.
222 Forty-eight hours post-transfection, cells were harvested and lysed as previously described (19,
223 20). Each serum was tested in duplicate at a final dilution of 1:100. Sera were incubated with
224 the lysate containing 10^6 relative luciferase unit (RLU) of the target antigen in wells of a 96-well
225 plate for 2h at room temperature with shaking (300 rpm) after which protein A coated magnetic
226 spheres were added to the wells with moderate shaking (300 rpm). After 60 minutes, the plates
227 were loaded onto an automatic ELSA plate washer equipped with a magnetic stand. After 3
228 washes, the buffer was removed, and the plates loaded into a luminometer with an automatic
229 substrate dispenser (TECAN M200 reader, Morrisville, NC, USA). Light emission was
230 measured over 10 seconds with a 2 sec start delay.

231

232 *Statistical analysis*

233 Analyses of cytokine levels were performed using non-parametric Kruskall-Wallis test followed
234 by Dunn's multiple comparisons test. For antibody levels, statistical significance was
235 determined using the non-parametric Mann-Whitney test. A p value <0.05 was considered
236 significant.

237

238

239 **Results**

240 *Screening for HHV-6 in GTEx DNA-Seq data reveals 6 iciHHV-6 cases among 650 individuals*

241 From the whole genome DNA-Seq data available from 650 GTEx individuals, we
242 determined 6 were consistent with iciHHV-6 – 4 iciHHV-6B and 2 iciHHV-6A. These 6 samples
243 had an average normalized depth of coverage across the HHV-6A/B genome that was
244 approximately half (0.45 ± 0.035) that of human housekeeping genes EDAR and beta-globin,
245 consistent with heterozygous iciHHV-6 at the approximate 1% prevalence typically found in
246 human populations (Figure 1A) (23). Of note, no evidence of chromosomally integrated HHV-7
247 was found (24).

248

249 *Off-target HHV-6 read coverage from whole exome sequencing also correctly detects iciHHV-6A/B*

250 Because of the unique availability of WGS and whole exome sequencing (WES) data for
251 most participants in the GTEx study, we examined whether WES data could be used to detect
252 iciHHV-6A/B individuals given the comparatively large amounts of WES data available
253 compared to WGS. Within the GTEx WES dataset, the only samples with reads aligning to
254 HHV-6A/B were the six iciHHV-6A/B positive samples by WGS (Figure 1B). The mean depth of

256 coverage for HHV-6A/B in the exome data from iciHHV-6A/B individuals was 0.27x, compared
257 to 117x for beta-globin and 14.5x for EDAR. Screening of the other 603 available whole exome
258 sequences revealed no HHV-6A/B sequence outside of the repeat regions. We used the exome
259 screening approach to screen the MSBB dataset of 350 individuals and found 4 iciHHV-6
260 positive individuals (1 iciHHV-6A and 3 iciHHV-6B), again consistent with the expected
261 population incidence of iciHHV-6A/B (Figure 1C).

262

263 *Phylogeny reveals genetic high genetic similarity amongst iciHHV-6 sequences*

264 Phylogenetic trees reveal clustering with previously deposited iciHHV-6 sequences
265 (Supplementary Figure 1). From the available GenBank HHV-6B sequences, two distinct HHV-
266 6B clades are visible: one Asian and one American/European, with GTEEx-OXRO falling into the
267 former, and GTEEx-13LV, -14C38, and -YF70 the latter. The American clade consists of iciHHV-
268 6B sequences from the UK and Seattle, as well as HHV-6B sequences from New York (25). The
269 Asian clade contains iciHHV-6B sequences from Pakistan and China, as well as HHV-6B
270 sequences from Japan. It was not possible to build consensus sequences from the Synapse
271 iciHHV-6 exome sequence samples due to insufficient coverage.

272

273 *Brain HHV-6 RNA expression is higher in iciHHV-6A individuals compared to iciHHV-6B and*
274 *glycoprotein U100 and IE1 U90 genes are the most highly expressed HHV-6 genes across*
275 *tissues*

276 From the six individuals who tested positive for iciHHV-6A/B based on WGS and WES data,
277 RNA-seq data was available from a total of 111 tissues. Analysis of these transcriptomes
278 showed variable tissue-specific activity with highest gene expression levels in U90-U100 genes
279 for both iciHHV-6A and iciHHV-6B (Figure 2; Supplementary Figures 2 and 3). The IE1 protein
280 is among the most divergent protein between HHV-6A and HHV-6B with 62% identity. IE1A and
281 IE1B are large (150 kDa) proteins involved in preventing type I Interferon synthesis and

282 signaling (26, 27). Glycoproteins Q (Q1 and Q2) are part of a multiprotein assembly responsible
283 for receptor binding and viral entry (28, 29). iciHHV-6A expression was noticeably higher in the
284 brain in both the GTEx and MSBB datasets compared to iciHHV-6B (Figures 2 and 3). Viral
285 genes were also actively expressed in the testis and esophagus for both iciHHV-6A and iciHHV-
286 6B individuals.

287

288 *The presence of reads spanning exons, comparison of SNPs, and insert mean sizes suggest*
289 *RNA-seq reads are from RNA*

290 Because of the low levels of RNA expression of HHV-6A/B compared to high number of
291 reads to HHV-6A/B in WGS data from iciHHV-6A/B individuals combined with the overall perils
292 of data mining, we performed specific quality control to ensure pre-analytical issues did not
293 compromise our analysis. Specifically, we examined RNA-seq data for fragment insert size,
294 splicing, and presence of unique nucleotide polymorphisms. RNA-seq reads that matched to
295 HHV-6B from iciHHV-6B individuals demonstrated the same fragment insert size as human
296 RNA-seq reads and were noticeably different to the high insert sizes achieved for the human
297 WGS data (Figure 4A). We also detected reads consistent with splicing in the U90 and U100
298 genes for three of the four iciHHV-6B individuals (Figure 4B). Unique sequence polymorphisms
299 in the HHV-6 RNA-seq data could be found that segregated the four iciHHV-6B sequences and
300 these polymorphisms matched the respective iciHHV-6B DNA sequence for that individual
301 (Figure 4C).

302

303 *Screening and identification of iciHHV-6⁺ subjects from the MHI biobank*
304 DNA samples from 15498 of the MHI biobank were screen by qPCR to identify iciHHV-6A/B⁺
305 subjects. In total, 85 iciHHV-6A/B⁺ individuals (40 females) were identified indicating a
306 prevalence of 0.55% (Table 1). Of these, 46 were iciHHV-6A⁺ and 39 were iciHHV-6B⁺. With the
307 exception of two subjects with 2 copies of HHV-6A/cell, all other iciHHV-6A/B⁺ samples were

308 confirmed by ddPCR as having 1 integrated copy of HHV-6A/B/cell. The demographics of the
309 MHI biobank participants are provided under Table 1. Plasma samples from these 85 iciHHV-
310 6A/B⁺ subjects and 20 controls matched for age and sex were used for the serological assay.
311 Blood samples from 55 iciHHV-6A/B⁺ subjects and 57 controls matched for age and sex were
312 used for plasmatic cytokine analyses.

313

314 *Plasmatic cytokine analysis*

315 The summary of results is presented under Supplementary Table 1. Of the 14 analytes
316 measured, only TNF-alpha showed a statistically significant difference between controls and
317 iciHHV-6A⁺ subject (p=0.02). All other cytokine levels were comparable between iciHHV-6A⁺,
318 iciHHV-6B⁺ and controls.

319

320 *Antibody response of iciHHV-6A/B+ individuals against control antigens.*

321 The sera of 46 iciHHV-6A⁺, 38 iciHHV-6B⁺ and 20 controls matched for age and sex were
322 analyzed for their reactivity against FLU (HA), EBV (p18) and CMV (pp150) antigens. The
323 Luciferase-GST fusion antigen was used as negative control. Expression of the fusion proteins
324 was determined by western blot (Figure 5). Relative to the negative control antigen, all sera
325 showed > 2 log₁₀ reactivity against the FLU antigen with no significant differences between the
326 groups (Figure 6A). Similar results were observed with the EBV antigen with the exception that
327 iciHHV-6A⁺ and iciHHV-6B⁺ subjects had slightly higher (1.7X) antibody levels relative to control
328 subjects. Such difference did not however reach statistical significance. Results for the CMV
329 pp150 antigen indicate that the cohort contains both CMV seronegative and seropositive
330 subjects (Figure 6C). The proportion of seropositive subjects varied between 25-30% and was
331 no different between groups. Intriguingly, among CMV seropositive subjects, iciHHV-6A⁺ and
332 iciHHV-6B⁺ subjects displayed >5x higher antibody reactivity against the CMV antigen than

333 control subjects with such a difference reaching statistical significance for the iciHHV-6A⁺ group
334 (p<0.01).

335

336 *Antibody response of iciHHV-6A/B+ individuals against HHV-6A/B antigens.*

337 The GTEx results indicate that certain HHV-6A/B genes such as U90 (IE1) and U100 (gQ) are
338 preferentially expressed relative to others such as U47 (gO), U57 (MCP) or U72 (gM). Whether
339 this would translate into a differential antibody response was examined next. Constructs
340 expressing Ruc-gO, Ruc-MCP, Ruc-gM and Ruc-IE1A or Ruc-IE1B were generated and
341 expression verified by western blots (Figure 5). Most HHV-6A/B proteins share >85% (often
342 >95%) identity at the amino acids level making it very difficult to discriminate whether antibodies
343 are specific to HHV-6A or HHV-6B proteins. For this reason, reactivity against gO (87%
344 identity), gM (97% identity) and MCP (97% identity) were measured using HHV-6B proteins.

345 Sera reactivity against gO, gM and MCP were detected in most subjects with no significant
346 differences observed between iciHHV-6A⁺, iciHHV-6B⁺ and control subjects (Figures 7A-C).

347 Considering that IE1 is the most divergent protein between HHV-6A and HHV-6B (62% identity),
348 antibody reactivity against both proteins were measured. The mean reactivity of sera from
349 iciHHV-6A⁺ and iciHHV-6B⁺ subjects against the IE1A antigen (U90) was significantly higher
350 (p<0.01) than that of sera from control subjects (Figure 7D). Of interest, two distinctive patterns
351 of reactivity were observed in sera of iciHHV-6A⁺ and iciHHV-6B⁺ subjects. Approximately two-
352 thirds of the iciHHV-6⁺ subjects had antibody reactivity against IE1A that was similar to that of
353 the control group. The remaining third iciHHV-6⁺ sera had antibodies levels against IE1A that
354 were $\geq 25X$ that of controls. Analysis of antibody response against IE1B also indicate that
355 iciHHV-6B⁺ subjects has significantly more antibodies than control subjects or iciHHV-6A⁺
356 subjects (Figure 7E). Mean antibody response against IE1B of iciHHV-6B⁺ individuals was 13X
357 greater than that of control subjects (p<0.05).

358

359 **Discussion**

360 Here, we show that iciHHV-6 individuals show tissue specific expression of HHV-6
361 genes in vivo and that the highly expressed U90 gene is associated with a stronger immune
362 response in iciHHV-6A/B⁺ individuals. We detected a 0.92% prevalence of iciHHV-6A/B⁺ in the
363 GTEx cohort, while in the MHI cohort, 0.55% of individuals were iciHHV-6A/B⁺, both matching
364 the previously reported rate of 0.5-2% (30). Our analysis of the GTEx RNA-seq files revealed
365 iciHHV-6A and -6B are not equally active in all tissues, consistent with tissue-specific gene
366 expression. Where HHV-6A/B gene expression could be detected, there was consistently high
367 expression of the U90 and U100 genes relative to other genes for both iciHHV-6A and iciHHV-
368 6B.

369 We also found that coverage from WES data could prove to be a reliable metric for
370 detecting iciHHV-6A/B in WES sequence. In the GTEx dataset we first analyzed WGS data to
371 find possible iciHHV-6A/B candidates and confirmed the candidates by looking for a 1:2 ratio of
372 coverage for housekeeping genes to HHV-6A/B genomes. Out of the 650 available WES
373 samples in the GTEx dataset, the only ones that contained reads to HHV-6A/B were the six
374 samples confirmed by our WGS screen to be iciHHV-6A/B⁺. Given the significantly greater
375 number of individuals with WES data compared to WGS, the ability to determine iciHHV-6A/B
376 status via WES data alone substantially expands the numbers and types of studies of iciHHV-
377 6A/B status that can be performed.

378 Within the GTEx iciHHV-6A/B positive samples, brain tissue was observed to be
379 relatively highly active with 11 different viral genes being expressed. We also screened the
380 Synapse Mount Sinai Brain Bank (MSBB) dataset and found three iciHHV-6B sequences and
381 one iciHHV-6A sequence. Analysis of the corresponding RNA-seq reads revealed that iciHHV-6
382 was expressed in the frontal pole, superior temporal gyrus, parahippocampal gyrus, and interior
383 frontal gyrus. Of the three positive iciHHV-6B samples, only one was found to be expressing
384 HHV-6B genes. This sample, AMPAD_MSSM_0000035609, was only active in the

385 parahippocampal gyrus, and had only 6 genes expressed as opposed to 38 genes expressed
386 for the iciHHV-6A sample (Figure 4). RPKM values for HHV-6B RNA expression in the brain in
387 iciHHV-6B individuals in the MSBB cohort was roughly 2-4 logarithms lower than in other
388 tissues in the GTEx expression data.

389 Considering that iciHHV-6A/B⁺ individuals have 1 copy of the entire viral genome in
390 every cell, it is expected that at any given time, certain viral genes might be expressed. At
391 present it is unclear what stimulates viral gene expression from the integrated HHV-6A/B.
392 Certain genes such as U90 and U100 are expressed more readily than others, as evidenced by
393 the GTEx data. Of interest, recent results by Gravel et al using *in vitro*-derived cellular clones
394 with chromosomally-integrated HHV-6A also identified U90 and U100 as genes whose
395 expression could readily be demonstrated (18). Expression of U90 and U100 was however
396 clone specific, suggesting that the chromosome carrying the integrated virus might influence
397 viral gene expression.

398 The biological consequences of carrying iciHHV-6A/B⁺ remain poorly characterized. In
399 the current work, we provide evidence that the magnitude of the antibody responses of iciHHV-
400 6A/B⁺ subjects correlates with the expression of viral genes. The antibody responses against
401 low-level expressed genes such as U47, U57 and U72 are similar between controls and iciHHV-
402 6A/B⁺ subjects. In contrast, the antibody responses of iciHHV-6A/B⁺ subjects against gene
403 products such as U90, which are highly expressed, are much greater than those of control
404 individuals. Whether this increase in antibody against HHV-6A/B antigens offers increased
405 protection against HHV-6 reactivation or reinfection is presently unknown. However, considering
406 that all cells of iciHHV-6A/B⁺ subjects have the potential to express viral proteins, these may, if
407 appropriately presented or exposed to the cell surface, represent targets for immune attacks
408 leading to cell destruction. Over time (decades), such chronic immune destruction may result in
409 various pathological conditions depending on the affected tissues.

410 Our results also suggest that iciHHV-6A/B⁺ subjects have higher antibody levels than
411 controls against EBV and CMV. Previous work indicated that HHV-6A promotes the reactivation
412 of EBV (31) through activation of the EBV Zebra promoter (32). Immediate-early or early gene
413 products were thought responsible for activation of the EBV Zebra promoter (32). Similarly, a
414 recent report indicated that subjects with documented HHV-6B reactivation had a 15X increase
415 in CMV reactivation rates, suggesting that HHV-6B may, directly or indirectly, trigger CMV
416 reactivation (33). Reactivation of EBV and/or CMV by HHV-6A/B would therefore cause an
417 increase viral antigenic burden resulting in increased antibody production. Considering that
418 every cell of iciHHV-6⁺ subjects contain the entire HHV-6A/B genome, expression of viral
419 transactivator such as U90 may be sufficient to initiate the reactivation of CMV or EBV from
420 latently infected cells.

421 Since much of the work described here was secondary data analysis, our study has a
422 number of limitations. We were unable to obtain tissues or additional metadata from either the
423 GTEx or MSBB datasets to confirm our work. We cannot rule out the possibility of pre-analytical
424 errors such as trace DNA contamination being the cause of low levels of iciHHV-6 RNA
425 expression. Similarly, we were unable to confirm HHV-6A/B gene or protein expression by
426 orthogonal methods such as immunohistochemistry or RT-qPCR. Alternatively, it is difficult to
427 rule out the possibility that viral gene expression may occur post-mortem, although all GTEx
428 autopsies were performed within 24 hours of death (34). Where possible, we used specific
429 HHV-6 SNPs to ensure no cross-sample contamination could account for recovery of HHV-6A/B
430 reads and we confirmed every read by BLASTn analysis to NT.

431 Despite these limitations, our work provides the first demonstration of *in vivo* expression
432 of HHV-6 genes from the integrated HHV-6A/B in various tissues. The fact that brain tissue was
433 the most active in transcribing iciHHV-6A genes is of potential interest considering the
434 association of HHV-6A with various neurodegenerative diseases such as MS and Alzheimer's
435 disease (35, 36). Furthermore, these *in silico* analyses could be correlated with actual biological

436 data from a large cohort of iciHHV-6A/B+ subjects. Considering the prevalence of iciHHV-6A/B
437 (0.5-1%), only through analyses of very large biobanks with full medical record will the etiology
438 of diseases linked with iciHHV-6A/B be unraveled.

439

440 *Acknowledgements*

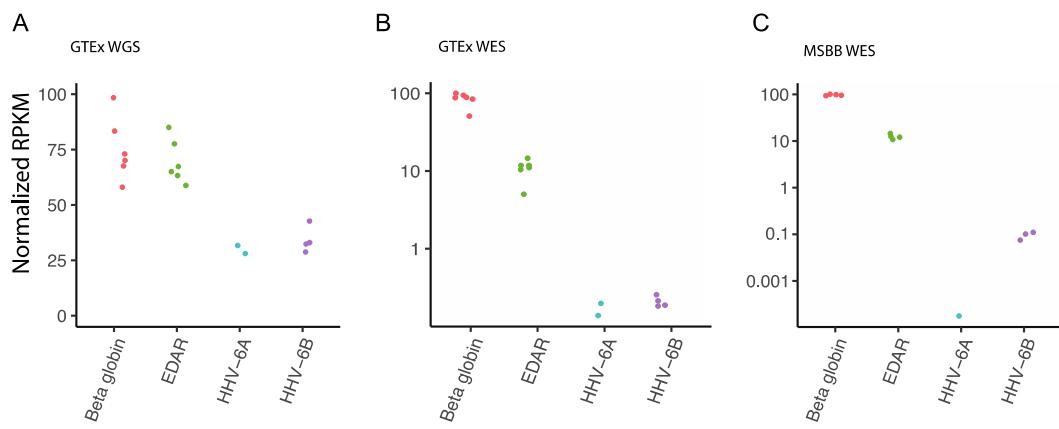
441 This work was made possible with grants from the Heart and Stroke Foundation of Canada (LF,
442 JCT, MPD) and the Canadian Institutes of Health Research (LF). We thank the Montreal Heart
443 Institute participants for their contribution to his work.

444

445 *Competing interests*

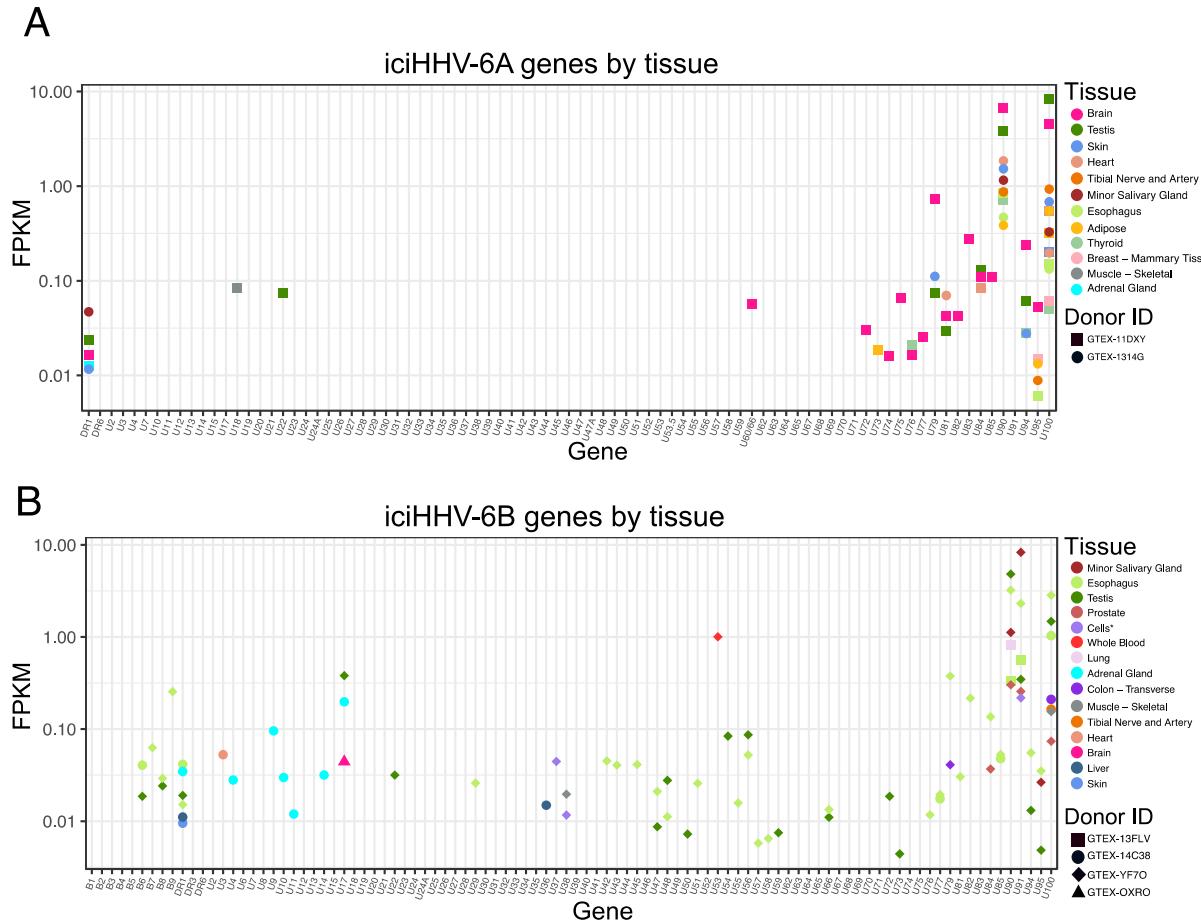
446 The authors declare they have no competing interests relevant to this work.

447 **Table 1. Demographics of the IciHHV-6A/B cohort and control subjects.**


448

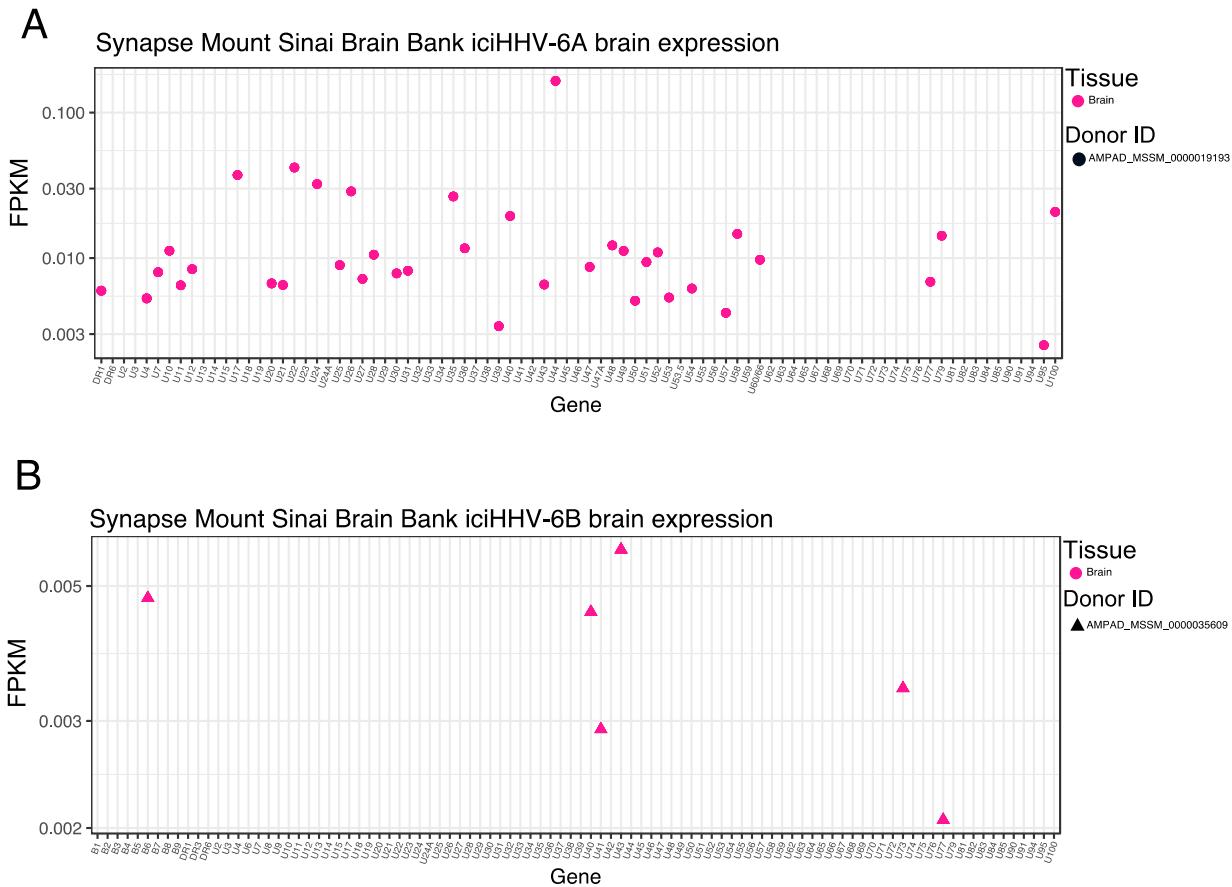
		MHI BioBank sample (n=15499)		Subset of matched samples (n=112)	
Variable		IciHHV6 Positive	IciHHV6 Negative	IciHHV6 Positive	IciHHV6 Negative
N		85	15413	55	57
Demographics					
Age, mean \pm std		62.69 \pm 9.61	63.04 \pm 11.42	61.98 \pm 9.32	63.43 \pm 9.67
Female, N (%)		40 (47.05)	6400 (41.52)	27 (48.21)	27 (48.21)
Race, N (%)	Asian	0	58 (0.38)	---	---
	Black	0	113 (0.73)	---	---
	Caucasian	84 (98.82)	15102 (97.98)	56 (100.0)	54 (96.43)
	Hispanic	1 (1.18)	110 (0.71)	---	---
	Native Am	0	25 (0.16)	0	2 (3.57)
	Other	0	2 (0.01)	---	---
HHV6 type, N (%)	A	46 (54.12)	-	28 (50.00)	-
	B	39 (45.88)	-	27 (48.21)	-

449

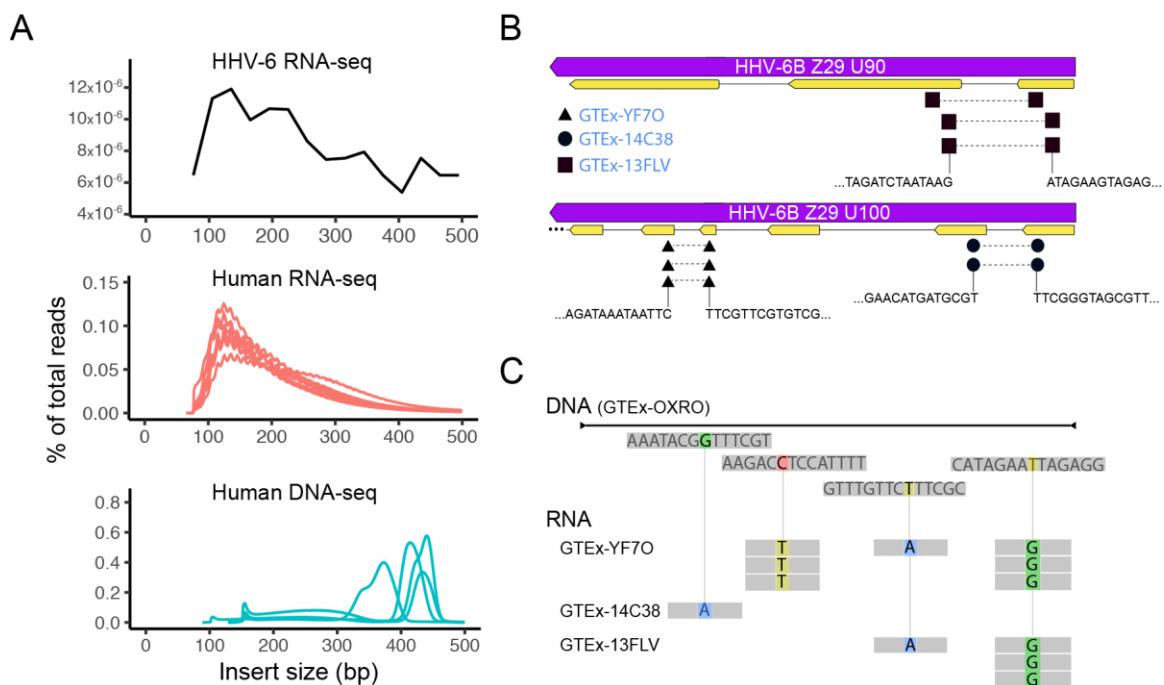

450

451 **Figure 1** – Detection of iciHHV-6A/B individuals in whole genome sequencing (WGS) and whole
452 exome sequencing (WES) data from GTEx and MSBB datasets. a) Six of 650 GTEx samples
453 had high levels of HHV-6A/B in WGS data consistent with iciHHV-6A/B. Normalized depth of
454 HHV-6 compared to control gene reads (*EDAR* and *beta-globin*) yielded a ratio of 0.45 ± 0.035 ,
455 consistent with one copy of iciHHV-6A/B per diploid human genome. b) HHV-6A/B was
456 uniquely detected in off-target reads from the same six individuals' WES, albeit at far lower
457 levels, consistent with the presence of off-target reads. c) Analysis of the Mount Sinai Brain
458 Bank WES data revealed 4 of 350 individuals were likely positive for iciHHV-6A/B.

459
460


461 **Figure 2** - RNA-seq reads from iciHHV-6A (A) and iciHHB-6B (B) positive individuals from the
 462 GTEx dataset. The highest levels of HHV-6A/B gene expression were seen in the U90 and
 463 U100 genes and in the brain (uniquely for iciHHV-6A), testis, and esophagus.

* Transformed Fibroblasts and EBV-transformed Lymphocytes


464
 465
 466
 467
 468
 469
 470

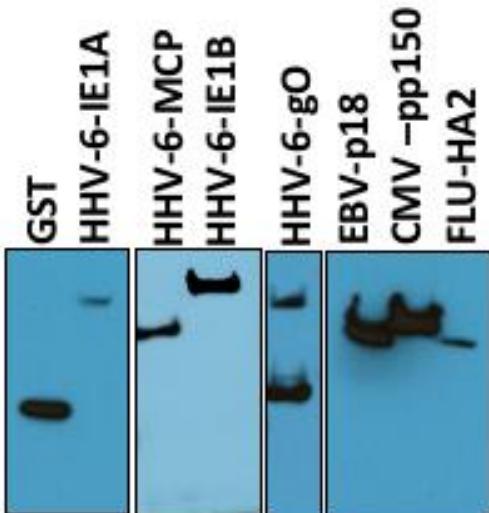
471 **Figure 3 – RNA-seq reads from iciHHV-6A (A) and iciHHB-6B (B) positive individuals from the**
472 **Mount Sinai Brain Bank.**

473
474

475 **Figure 4 –** Quality control of RNA-seq reads from iciHHV-6B individuals. A) The insert size
476 distribution for iciHHV-6B RNA-seq, human RNA-seq, and human WGS data were compared to
477 confirm that reads aligning to HHV-6 RNA were not due to HHV-6 DNA contamination rather
478 than RNA. B) Splicing in the U90 and U100 was detected in the three iciHHV-6B individuals
479 with significant RNA-seq reads. C) Sequence polymorphisms in iciHHV-6B RNA-seq reads
480 could also be detected in the three samples that discriminated them from each other and
481 matched their respective consensus iciHHV-6B sequences from WGS data.

482

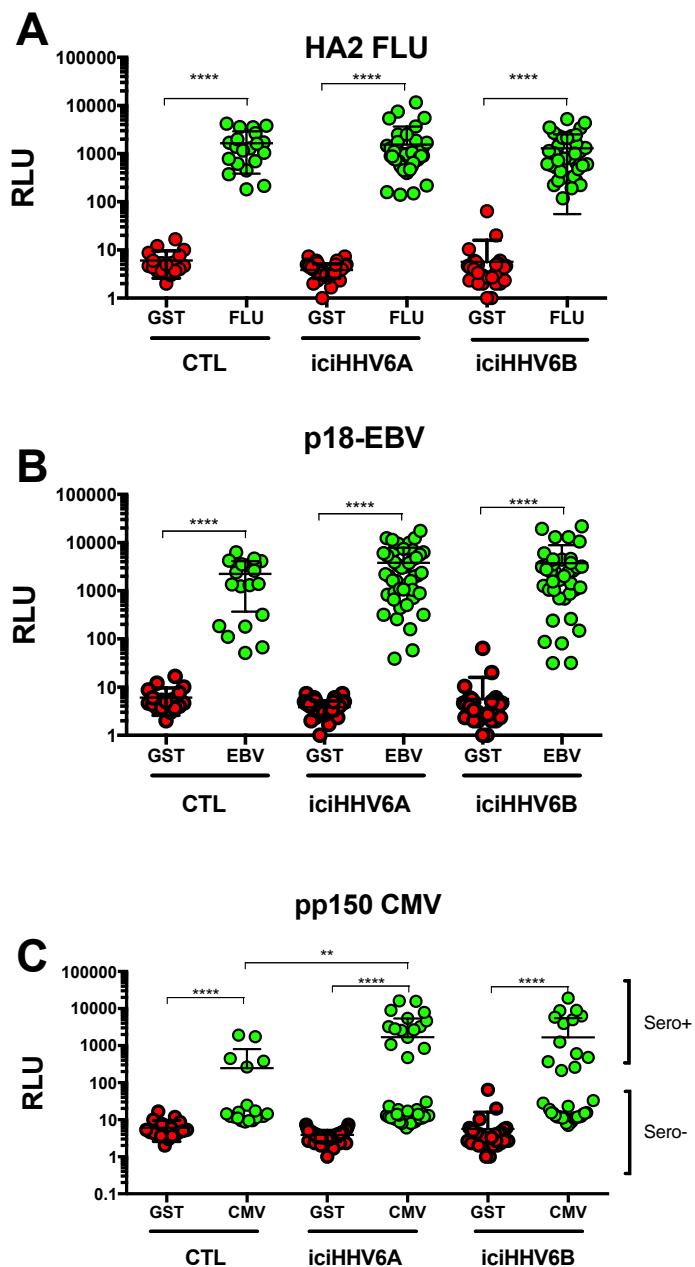
483


484

485

486

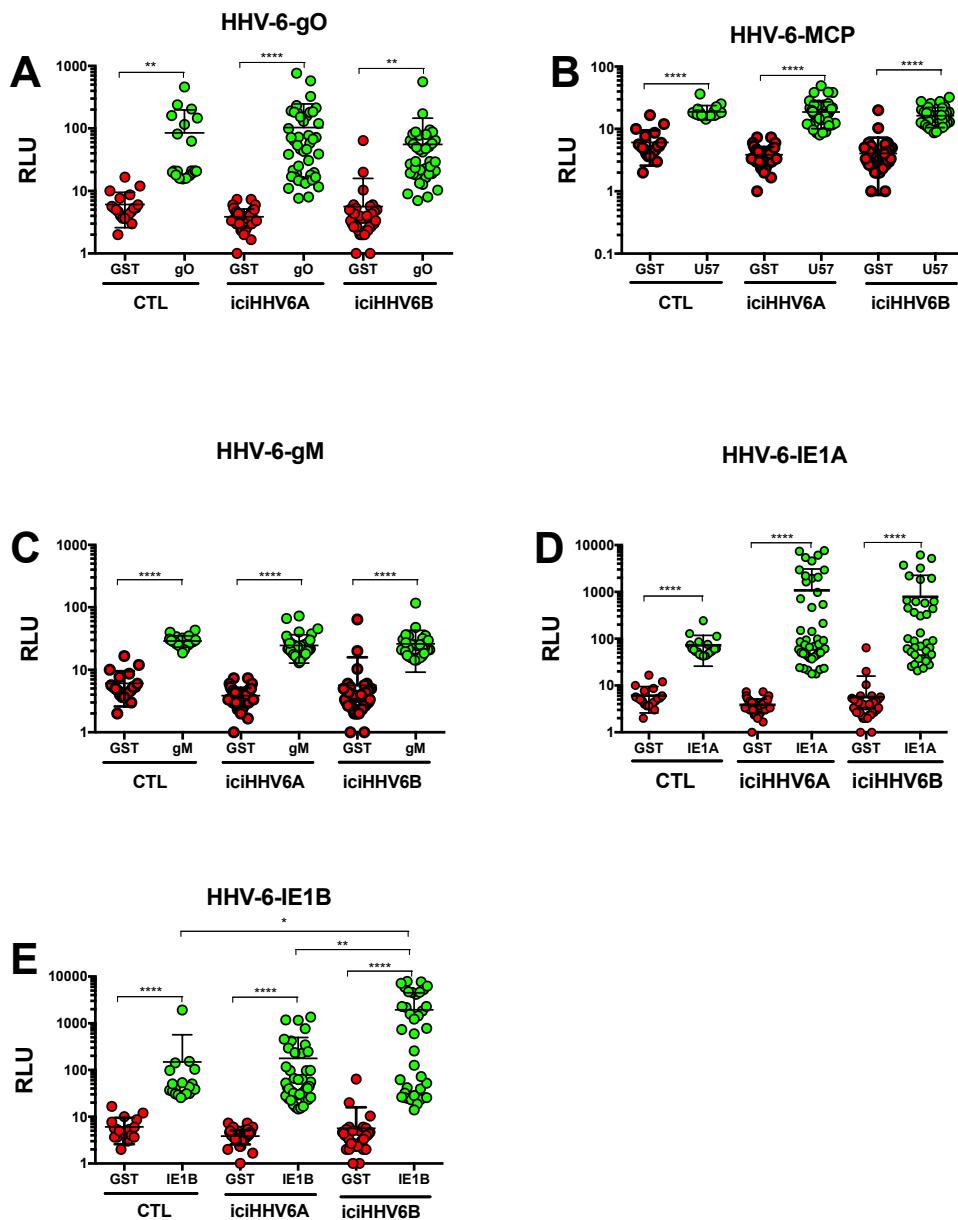
487 **Figure 5-** Expression and detection of antigens used for LIPS assay. Vectors expressing control
488 (GST, HA-FLU, p18-EBV, pp150-CMV) or HHV-6 antigens (gO, MCP, IE1A, IE1B) were
489 transfected in HEK293T cells. Forty-eight hours later, expression of proteins was assessed by
490 western blot using anti-FLAG antibodies.


491

492
493
494

495 **Figure 6**- Detection of antibodies against control antigens using LIPS. Lysates containing
496 antigens were incubated with sera from controls (n=20), iciHHV-6A+ (n=46) and iciHHV-6B+
497 (n=38) subjects to determine reactivity. Each dot represents the mean of samples ran in
498 duplicate from 1 donor. ***p<0.0001, **p<0.01.

Figure 6



499
500
501
502

503
504

505 **Figure 7-** Detection of antibodies against HHV-6A/B antigens using LIPS. Lysates containing
506 antigens were incubated with sera from controls (n=20), iciHHV-6A+ (n=46) and iciHHV-6B+
507 (n=38) subjects to determine reactivity. Each dot represents the mean of samples ran in
508 duplicate from 1 donor. ***p<0.0001, **p<0.001, *p<0.05.

Figure 7

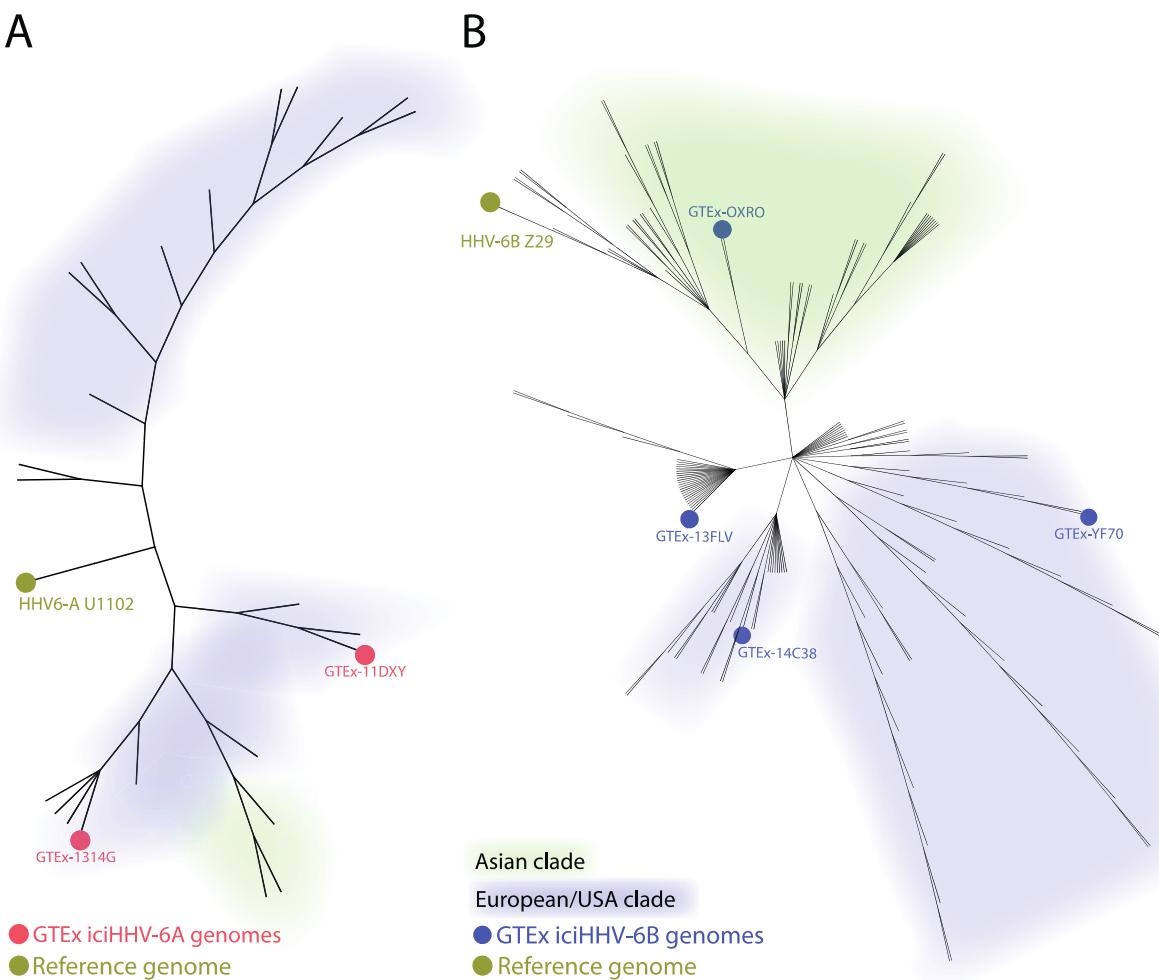
509

510

511 Supplementary Table 1: Cytokine levels in plasma of control (n=57), iciHHV-6A⁺ (n=28) and
512 iciHHV-6B⁺ (n=27) individuals.

513

		CTL	iciHHV-6A	iciHHV-6B
IL-10	mean	3,77	1,95	1,89
	SD	11,35	1,31	1,30
	p value		ns	ns
GM-CSF	mean	28,09	13,54	13,66
	SD	81,32	12,97	11,86
	p value		ns	ns
IFNg	mean	11,39	9,83	8,76
	SD	9,53	6,33	4,83
	p value		ns	ns
IL-12(p70)	mean	4,20	1,81	1,83
	SD	16,65	1,99	1,12
	p value		ns	ns
IL-1beta	mean	6,65	6,78	4,17
	SD	10,27	8,68	6,63
	p value		ns	ns
IL-2	mean	7,05	23,81	3,32
	SD	9,31	28,71	3,04
	p value		ns	ns
IL-5	mean	0,74	0,57	0,56
	SD	1,09	0,41	0,28
	p value		ns	ns
IL-13	mean	6,35	3,49	2,86
	SD	20,28	4,26	2,76
	p value		ns	ns
IL-17A	mean	6,60	8,16	7,85
	SD	3,76	7,44	9,35
	p value		ns	ns
IL-4	mean	16,48	15,81	23,94
	SD	22,03	27,36	48,51
	p value		ns	ns


IL-23	mean	397,24	422,37	322,66
	SD	544,71	490,85	324,10
	p value		ns	ns
IL-6	mean	2,28	1,82	1,11
	SD	5,90	1,57	0,80
	p value		ns	ns
IL-8	mean	40,09	55,53	35,45
	SD	68,50	60,89	60,90
	p value		ns	ns
TNF-alpha	mean	8,12	11,12	6,53
	SD	4,00	6,00	3,72
	p value		0.02	ns

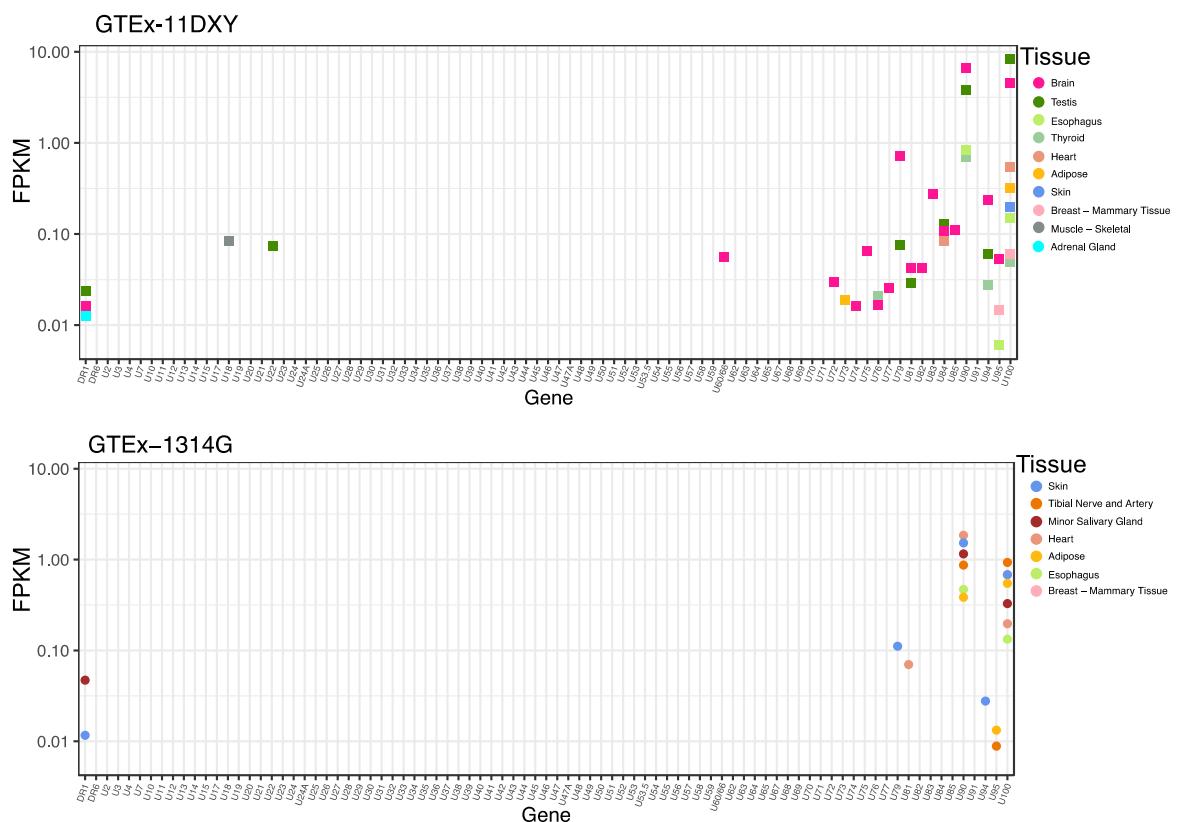
514

515

516 **Supplementary Figures**

517 **Supplementary Figure 1 – iciHHV-6A (A) and iciHHV-6B (B) sequences found in the GTEx**
518 **dataset cluster with previously deposited GenBank iciHHV-6 sequences. GTEx-OXRO clusters**
519 **with a previously deposited iciHHV-6 sequence that is genetically similar to other deposited**
520 **Asian HHV-6 sequences.**

521

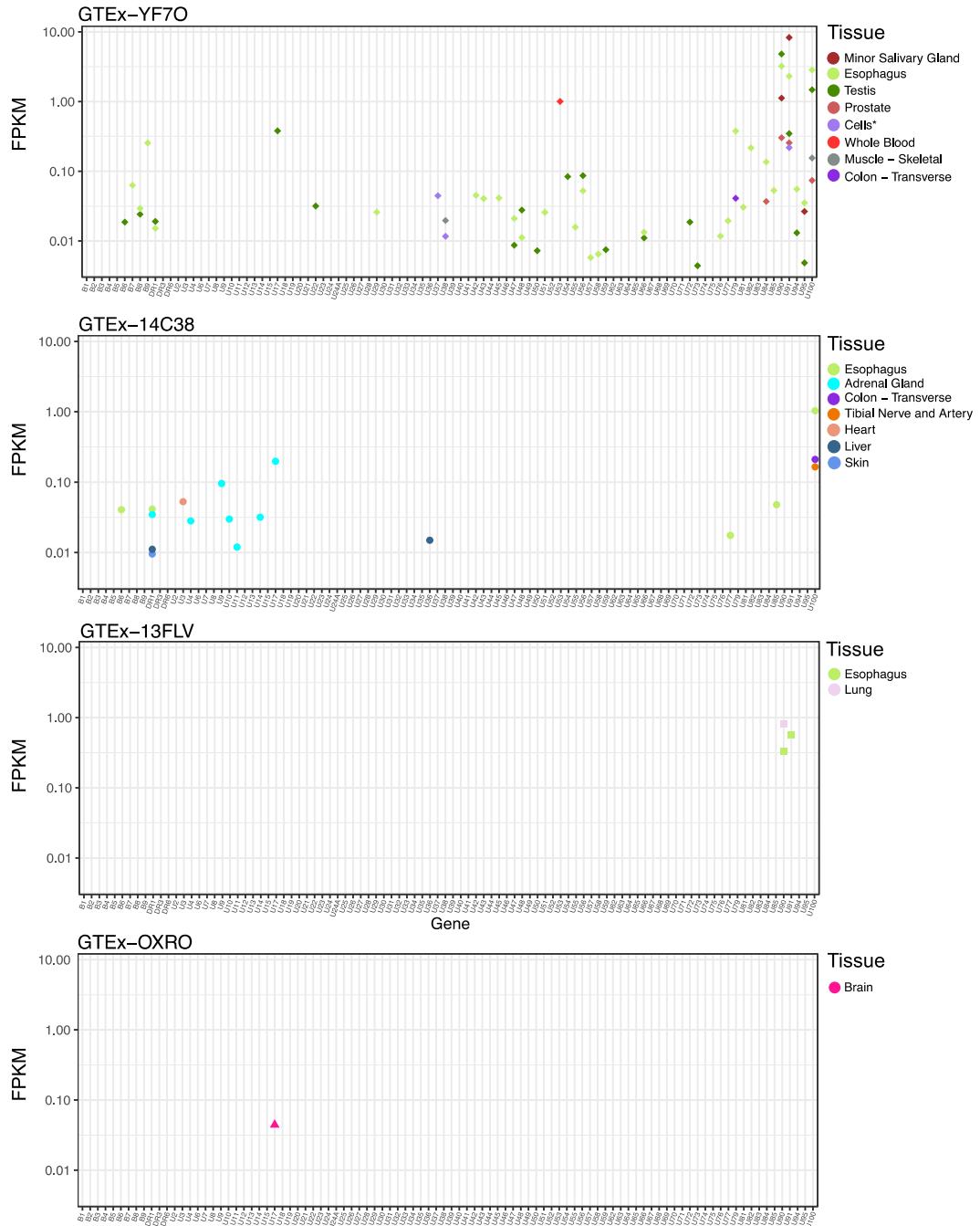

522

523

524 **Supplementary Figure 2 – Individual level iciHHV-6A gene expression data from the two**

525 **iciHHV-6A positive individuals from GTEx.**

Individual GTEx iciHHV-6A positive expression graphs



526

527

528 **Supplementary Figure 3 – Individual level iciHHV-6B gene expression data from the four**
529 **iciHHV-6B positive individuals from GTEx.**

Individual GTEx iciHHV-6B positive expression graphs

530

531 **References**

532 1. Theodore WH, Epstein L, Gaillard WD, Shinnar S, Wainwright MS, Jacobson S. 2008.
533 Human herpes virus 6B: A possible role in epilepsy? *Epilepsia* 49:1828–1837.

534 2. Crocchiolo R, Giordano L, Rimondo A, Bologna M, Sarina B, Morabito L, Bramanti S,
535 Castagna L, Miner I. 2016. Human Herpesvirus 6 replication predicts Cytomegalovirus
536 reactivation after allogeneic stem cell transplantation from haploidentical donor. *J Clin Virol*
537 84:24–26.

538 3. Tweedy J, Spyrou MA, Pearson M, Lassner D, Kuhl U, Gompels UA. 2016. Complete
539 Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and
540 Analyses Integration Sites Define a New Human Endogenous Virus with Potential to
541 Reactivate as an Emerging Infection. *Viruses* 8.

542 4. Agut H, Bonnafous P, Gautheret-Dejean A. 2015. Laboratory and Clinical Aspects of Human
543 Herpesvirus 6 Infections. *Clinical Microbiology Reviews* 28:313–335.

544 5. Sedlak RH, Cook L, Huang M-L, Magaret A, Zerr DM, Boeckh M, Jerome KR. 2014.
545 Identification of Chromosomally Integrated Human Herpesvirus 6 by Droplet Digital PCR.
546 *Clinical Chemistry* 60:765–772.

547 6. Gravel A, Dubuc I, Morissette G, Sedlak RH, Jerome KR, Flamand L. 2015. Inherited
548 chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the
549 development of angina pectoris. *Proc Natl Acad Sci USA* 112:8058–8063.

550 7. Endo A, Watanabe K, Ohye T, Suzuki K, Matsubara T, Shimizu N, Kurahashi H, Yoshikawa
551 T, Katano H, Inoue N, Imai K, Takagi M, Morio T, Mizutani S. 2014. Molecular and

552 virological evidence of viral activation from chromosomally integrated human herpesvirus 6A
553 in a patient with X-linked severe combined immunodeficiency. *Clin Infect Dis* 59:545–548.

554 8. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J,
555 De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG. 2010. The latent
556 human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes
557 in vivo and in vitro. *Proc Natl Acad Sci USA* 107:5563–5568.

558 9. Huang Y, Hidalgo-Bravo A, Zhang E, Cotton VE, Mendez-Bermudez A, Wig G, Medina-
559 Calzada Z, Neumann R, Jeffreys AJ, Winney B, Wilson JF, Clark DA, Dyer MJ, Royle NJ.
560 2014. Human telomeres that carry an integrated copy of human herpesvirus 6 are often
561 short and unstable, facilitating release of the viral genome from the chromosome. *Nucleic
562 Acids Res* 42:315–327.

563 10. Arbuckle JH, Pantry SN, Medveczky MM, Prichett J, Loomis KS, Ablashi D, Medveczky PG.
564 2013. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. *Virology*
565 442:3–11.

566 11. Tweedy J, Spyrou MA, Pearson M, Lassner D, Kuhl U, Gompels UA. 2016. Complete
567 Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and
568 Analyses Integration Sites Define a New Human Endogenous Virus with Potential to
569 Reactivate as an Emerging Infection. *Viruses* 8.

570 12. Miura H, Kawamura Y, Hattori F, Kozawa K, Ihira M, Ohye T, Kurahashi H, Yoshikawa T.
571 2018. Chromosomally integrated human herpesvirus 6 in the Japanese population. *J Med
572 Virol* 90:1636–1642.

573 13. Saviola AJ, Zimmermann C, Mariani MP, Signorelli SA, Gerrard DL, Boyd JR, Wight DJ,
574 Morissette G, Gravel A, Dubuc I, Flamand L, Kaufer BB, Frietze S. 2019. Chromatin Profiles
575 of Chromosomally Integrated Human Herpesvirus-6A. *Front Microbiol* 10:1408.

576 14. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nature*
577 *Methods* 9:357–359.

578 15. Wang M, Beckmann ND, Roussos P, Wang E, Zhou X, Wang Q, Ming C, Neff R, Ma W,
579 Fullard JF, Hauberg ME, Bendl J, Peters MA, Logsdon B, Wang P, Mahajan M, Mangravite
580 LM, Dammer EB, Duong DM, Lah JJ, Seyfried NT, Levey AI, Buxbaum JD, Ehrlich M,
581 Gandy S, Katsel P, Haroutunian V, Schadt E, Zhang B. 2018. The Mount Sinai cohort of
582 large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. *Scientific*
583 *Data* 5:180185.

584 16. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
585 R. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25:2078–
586 2079.

587 17. Sedlak RH, Cook L, Huang M-L, Magaret A, Zerr DM, Boeckh M, Jerome KR. 2014.
588 Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. *Clin*
589 *Chem* 60:765–772.

590 18. Gravel A, Dubuc I, Wallaschek N, Gilbert-Girard S, Collin V, Hall-Sedlak R, Jerome KR,
591 Mori Y, Carboneau J, Boivin G, Kaufer BB, Flamand L. 2017. Cell Culture Systems To
592 Study Human Herpesvirus 6A/B Chromosomal Integration. *J Virol* 91.

593 19. Burbelo PD, Bren KE, Ching KH, Gogineni ES, Kottilil S, Cohen JI, Kovacs JA, Iadarola MJ.
594 2011. LIPS arrays for simultaneous detection of antibodies against partial and whole
595 proteomes of HCV, HIV and EBV. *Mol Biosyst* 7:1453–1462.

596 20. Burbelo PD, Ching KH, Klimavicz CM, Iadarola MJ. 2009. Antibody profiling by Luciferase
597 Immunoprecipitation Systems (LIPS). *J Vis Exp.*

598 21. Burbelo PD, Ching KH, Morse CG, Alevizos I, Bayat A, Cohen JI, Ali MA, Kapoor A, Browne
599 SK, Holland SM, Kovacs JA, Iadarola MJ. 2013. Altered antibody profiles against common
600 infectious agents in chronic disease. *PLoS ONE* 8:e81635.

601 22. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P,
602 Cooper PK, Kaufman PD. 2009. A versatile viral system for expression and depletion of
603 proteins in mammalian cells. *PLoS ONE* 4:e6529.

604 23. Pantry SN, Medveczky PG. 2017. Latency, Integration, and Reactivation of Human
605 Herpesvirus-6. *Viruses* 9.

606 24. Prusty BK, Gulve N, Rasa S, Murovska M, Hernandez PC, Ablashi DV. 2017. Possible
607 chromosomal and germline integration of human herpesvirus 7. *Journal of General Virology*
608 98:266–274.

609 25. Greninger AL, Knudsen GM, Roychoudhury P, Hanson DJ, Sedlak RH, Xie H, Guan J,
610 Nguyen T, Peddu V, Boeckh M, Huang M-L, Cook L, Depledge DP, Zerr DM, Koelle DM,
611 Gantt S, Yoshikawa T, Caserta M, Hill JA, Jerome KR. 2018. Comparative genomic,
612 transcriptomic, and proteomic reannotation of human herpesvirus 6. *BMC Genomics* 19.

613 26. Jaworska J, Gravel A, Fink K, Grandvaux N, Flamand L. 2007. Inhibition of transcription of
614 the beta interferon gene by the human herpesvirus 6 immediate-early 1 protein. *J Virol*
615 81:5737–5748.

616 27. Jaworska J, Gravel A, Flamand L. 2010. Divergent susceptibilities of human herpesvirus 6
617 variants to type I interferons. *Proc Natl Acad Sci USA* 107:8369–8374.

618 28. Jasirwan C, Furusawa Y, Tang H, Maeki T, Mori Y. 2014. Human herpesvirus-6A gQ1 and
619 gQ2 are critical for human CD46 usage. *Microbiol Immunol* 58:22–30.

620 29. Tang H, Wang J, Mahmoud NF, Mori Y. 2014. Detailed study of the interaction between
621 human herpesvirus 6B glycoprotein complex and its cellular receptor, human CD134. *J Virol*
622 88:10875–10882.

623 30. Flamand L. 2018. Chromosomal Integration by Human Herpesviruses 6A and 6B. *Adv Exp
624 Med Biol* 1045:209–226.

625 31. Flamand L, Stefanescu I, Ablashi DV, Menezes J. 1993. Activation of the Epstein-Barr virus
626 replicative cycle by human herpesvirus 6. *J Virol* 67:6768–6777.

627 32. Flamand L, Menezes J. 1996. Cyclic AMP-responsive element-dependent activation of
628 Epstein-Barr virus zebra promoter by human herpesvirus 6. *J Virol* 70:1784–1791.

629 33. Crocchiolo R, Giordano L, Rimondo A, Bologna M, Sarina B, Morabito L, Bramanti S,
630 Castagna L, Miner R. 2016. Human Herpesvirus 6 replication predicts Cytomegalovirus
631 reactivation after allogeneic stem cell transplantation from haploidentical donor. *J Clin Virol*
632 84:24–26.

633 34. GTEx Consortium. 2013. The Genotype-Tissue Expression (GTEx) project. *Nat Genet*
634 45:580–585.

635 35. Readhead B, Haure-Mirande J-V, Funk CC, Richards MA, Shannon P, Haroutunian V, Sano
636 M, Liang WS, Beckmann ND, Price ND, Reiman EM, Schadt EE, Ehrlich ME, Gandy S,
637 Dudley JT. 2018. Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption
638 of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. *Neuron* 99:64-82.e7.

639 36. Opsahl ML, Kennedy PGE. 2005. Early and late HHV-6 gene transcripts in multiple sclerosis
640 lesions and normal appearing white matter. *Brain* 128:516–527.

641

642

643

644