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Abstract

Phyllosticta citriasiana is the causal agent of the pomelo tan spot. Here, we
presented the ~34Mb genome of P. citriasiana. The genome is organized in 92
contigs, encompassing 9202 predicted genes. Comparative genomic analyses with
other two Phyllosticta species (P. citricarpa and P. capitalensis) associated with citrus
was conducted to understand their evolutionary conservation and diversification. Pair-
wise genome alignments revealed that these species are highly syntenic. All species
encode similar numbers of CAZymes and secreted proteins. However, the molecular
functions of the secretome showed that each species contains some enzymes with
distinct activities. Three Phyllosticta species shared a core set of 7261 protein
families. P. capitalensis had the largest set of orphan genes (2040), in complete
contrast to that of P. citriasiana (371) and P. citricarpa (262). Most of the orphan
genes were functionally unknown, but they contain a certain number of species-
specific secreted proteins. A total of 23 secondary metabolites (SM) biosynthesis
clusters were identified in the three Phyllosticta species, 21 of them are highly
conserved among these species while the remaining 2 showed whole cluster gain and
loss polymorphisms or gene content polymorphisms. Taken together, our study
reveals insights into the genetic mechanisms of host adaptation of Phyllosticta species
associated with citrus and paves the way to identify effectors that function in infection

of citrus plants.
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43 Introduction

44 Citrus Black Spot (CBS), caused by Phyllosticta citricarpa, is an important disease
45  of citrus, it can affect almost all grown citrus cultivars, including sweet orange (Citrus
46  sinensis), mandarin (C. reticulata and C. unshiu), pomelo (C. maxima), grapefruit (C.
47  paradise) and lemon (C.limon) (Wang et al., 2012). This disease mainly causes black
48  lesions in the fruits, making the fruits unsuitable for the fresh market. When the disease
49  is severe, yield losses are significant due to premature fruit drop (Kotzé, 1981). CBS
50 mainly happened in humid subtropical regions, including Asia, Africa, South America,
51  Australia, and most recently, Florida (Kotz¢, 1981; Wang et al., 2012; Miles et al., 2013;
52 Wang et al., 2016b; Carstens et al., 2017). As this disease is previously absent in
53  Mediterranean countries like Spain, Italy, Israel, and Turkey, P. citricarpa was listed as
54  an Al quarantine pest by European Union (Paul et al., 2005; EFSA, 2014). However, a
55  recent survey reported the presence of P. citricarpa in Italy, Malta and Portugal

56  (Guarnaccia et al., 2017).

57 Besides P. citricarpa, other species of Phyllosticta have been reported to be
58 associated with citrus. P. citriasiana, first identified to be a harmful pathogen of
59  pomelos in 2009, was able to cause necrotic spots (tan spots) on fruit similar to those
60 caused by P citricarpa (Wulandari et al., 2009). By performing multi-locus
61  phylogenetic analyses on a large number of Phyllosticta species collected in China,
62  Wang et al.(2012) found that P. citriasiana was isolated only from pomelos, and P,
63  citricarpa was isolated from lemons, mandarins, and oranges, but never from pomelos,
64  indicating that the citrus-associated pathogenic Phyllosticta population may have a
65  host-related differentiation (Wang et al., 2012). In addition to P. citriasiana, many other
66  Phyllosticta fungi were also found in citrus, such as P. capitalensis, P. citribraziliensis,
67  Pcitrichinaensis, P. paracapitalensis, and P. paracitricarpa (Glienke et al., 2011; Wang
68 et al., 2012; Guarnaccia et al., 2017). Of them, P. capitalensis is the most frequently
69 isolated species. This species has a very wide distribution and it has been isolated as

70  endophytes from dozens of plants (Wikee et al., 2013).

71 Due to the early discovery of P. citricarpa causing CBS and its economic
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72 importance, P. citricarpa is extensively studied and many information is now available
73 on this pathogen’s population structure, reproduction mode and introduction pathways
74 (Sposito etal., 2011; Wang et al., 2016b; Carstens et al., 2017). However, little is known
75  about the newly identified pathogen of pomelo tan spot, P. citriasiana. In this study, we
76 sequenced the genome of P. citriasiana, generating a high-quality reference genome
77  assembly and provide an overview of the genome structure of this important pathogen;
78  we also compared its genome with other two closely related Phyllosticta species
79  associated with citrus, i.e., P, citricarpa and P. capitalensis to provide insight into their

80 evolutionary conservation and diversification.

81

82  Materials and Methods

83  Fungal strain

84 The Phyllosticta citriasiana strain ZJUCC200914 (CGMCC3.14344) was isolated
85  from tan spot infected pomelos collected from Fujian Province, China (Wang et al.,
86  2012). Cultures of strains were maintained on regular solid PDA (potato dextrose agar)

87  orin liquid potato dextrose broth (PDB) at 25°C.

88  Genome assembly and annotation

89 The genomic DNA and RNA of P. citriasiana were extracted from mycelia grown
90 in PDB as described previously (Wang et al., 2015). The genome was first surveyed
91  through Illumina HiSeq 2500 platform using TruSeq libraries (150bp paired-end reads,
92  insert size of 350bp) and then sequenced using the long reads PacBio technology. A
93 total of 1.9 Gb PacBio data, 6.7 Gb pair-end data were generated in the sequencing
94  process, which corresponds to ~250 fold of sequence depth. To obtain high-quality gene
95 calls, RNA-Seq was conducted with the same sample and 6.0Gb Illumina paired-end

96 reads were obtained.

97 To obtain the P. citriasiana genome, the PacBio reads were initially assembled
98  using Canu 1.7 (Koren et al., 2017) and error correction was conducted using Pilon

99  version 1.22 with the Illumina reads (Walker et al., 2014). Genome quality assessment
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100  was performed through the presence of conserved single-copy fungal genes using
101 BUSCO version 3 (Simao et al., 2015). RNA-seq data were aligned to the genome using
102 Bowtie 2.3.4 and TopHat 2.0.9 (Langmead and Salzberg, 2012; Kim et al., 2013).
103  Genome annotation was performed using the BRAKER version 1.0 pipeline combining

104  the RNA-seq-based gene prediction and ab initio gene prediction (Hoff et al., 2015).

105 The genomes of P. citricarpa (accession number LOEO00000000.1) and P
106  capitalensis (accession number LOEN00000000.1) were downloaded from the NCBI
107  genome database (Wang et al., 2016b). Gene model predictions of these two genomes
108  were generated with AUGUSTUS 3.1 using the training annotation file of Phyllosticta
109  citriasiana (Stanke et al., 2008). Repetitive elements were annotated in all assemblies
110  using RepeatMasker version open-4.0.7 (http://www.repeatmasker.org). For pairwise
111  syntenic analysis of genome structures, the contigs of the paired genomes of
112 Phyllosticta species were aligned with the MUMmer 3.23 package (Delcher et al.,
113 2003). The average nucleotide identity was estimated using the ANI calculator
114  (Rodriguez-R and Konstantinidis, 2016). The statistical reports for genomes were

115  calculated by using in-house Perl scripts.

116  Functional annotation of genes.

117 To functionally annotate gene models, we assigned protein sequence motifs to
118  protein families (Pfam) and gene ontology (GO) terms using the Pfam and eggNOG
119  databases (Huerta-Cepas et al., 2017; El-Gebali et al., 2018). The GO enrichment in
120  molecular functions was produced with the dcGO database (Fang and Gough, 2013).
121 Protein orthogroups were clustered using the orthoMCL algorithm in combination with
122 an all-versus-all protein BLAST search (e-value < le-10, identity > 50%) (Chen et al.,
123 2006). The carbohydrate-active enzymes were annotated by the web-based dbCAN2
124  meta server (Zhang et al., 2018). To identify secreted proteins, we use SingalP 4.1 to
125  predict the transmembrane domains and we excluded non-extracellular and GPI-
126 anchored proteins by using targetP 1.1 (Emanuelsson et al., 2000) and GPI-SOM
127  (Fankhauser and Miser, 2005). Fungal secondary metabolite pathways were predicted
128  using the online tool antiSMASH 4.0 (Blin et al., 2017).
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129  Data availability: The assembled Phyllosticta citriasiana genome has been deposited
130 in GenBank under the accession number QOCMO00000000. All the annotation data
131  generated in this study have been deposited on the figshare repository at DOI:
132 10.6084/m9.figshare.9178061 (the data will be made publicly available upon

133 acceptance of the manuscript).

134

135 Results and discussion

136  Genome assembly and general features

137 We assembled the genome of P. citriasiana using a combination of Illumina and
138  PacBio reads with ~250 fold of sequence depth. The de novo assembly resulted in a
139  genome size of 34.2 Mb assembled in 92 contigs with an N50 of ~1Mb. The genomes
140  of P, citricarpa and P. capitalensis previously sequenced were utilized and annotated in
141  this study (Wang et al., 2016b). The completeness of these three genome assemblies
142  was estimated by BUSCO (Simao et al., 2015). We found 1759 out of 1732 (98.4%)
143  BUSCO groups were identified in the P. citriasiana genome, indicating a high degree
144  of completeness. Although the assembly of P. citricarpa and P. capitalensis possess a
145  large number of contigs, the BUSCO results showed that they are around 95%
146  completeness, suggesting that these genomes are reliable for the downstream analyses

147  (Table 1).

148 The overall G + C content of P. citriasiana (51.4%) is apparently lower than that
149  of P citricarpa (53.1%) and P. capitalensis (54.6%). The percentage of repetitive
150  sequences of P. citriasiana is 2.19%, around 2-fold of that of P. citricarpa (0.97%) and
151 7-fold of P. capitalensis (0.29%). P. citriasiana has the lowest gene density but the
152  longest gene length among the three species. The genome of P citriasiana was
153  predicted to have 9202 proteins, which is comparable with that of P, citricarpa (9083),

154  but much lower than that (9983) of P. capitalensis genome (Table 1).

155 During preparing this manuscript, we noticed that a paper describing the genomic
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156  sequencing of P. citricarpa and P. capitalensis was published (Rodrigues et al., 2019).
157  However, the general features of their genome sequences are of great difference from
158  ours. For example, the authors predicted ~15000 proteins for both species while our
159  data only predicted ~9500 ones. In that study, we found that the P. citricarpa genomic
160  assembly consisted of 19,143 contigs with the N50 of 3049bp and the P. capitalensis
161  genomic assembly contains 11,080 contigs with the N50 of 4925bp (Rodrigues et al.,
162  2019). This means that their genome sequence was very fragmented and the
163  incompleteness of the genome was also confirmed by their BUSCO analysis (Rodrigues
164  etal., 2019). Thus, comparing with their genomic data, we believe that the data in this

165  study is much better and more reliable.

166

167  Genomic similarity

168 The pairwise comparison analysis based on oriented contigs reveals a high degree
169  of genome-wide macrosynteny between P. citriasiana and the other two species (Fig.
170  1A). However, the average nucleotide identity (95.98%) between P. citriasiana and P.
171 citricarpa is much larger than that (81.19%) between P. citriasiana and P. capitalensis
172 (Fig. 1B), indicating that P. citriasiana is much closer to P. citricarpa and relatively far

173 from P. capitalensis.

174  Carbohydrate active enzymes and secretomes

175 The cell wall in plant forms a complex network of different polysaccharides that
176  includes cellulose, hemicellulose, pectin, and lignin. Carbohydrate-active enzymes
177  (CAZymes) play important roles in the breakdown of complex carbohydrates and are
178  responsible for the acquisition of nutrients from the plant for plant-associated fungi
179  (Kubicek et al., 2014). A total of 183 putative CAZyme genes were identified in P,
180  citriasiana, which includes 100 Glycoside Hydrolases (GHs), 46 Glycosyl Transferases
181  (GTs), 30 Auxiliary Activities (AAs), 3 Carbohydrate Esterases (CEs), 3
182  Polysaccharide Lyases (PLs), and 1 Carbohydrate-Binding Modules (CBMs) (Table S1-

183  4). The types and numbers of CAZymes among different species of Phyllosticta are
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184  very similar (Table S1-4). When compared with other species in the Dothideomycetes,
185 P citriasiana appears to contain a much less extensive set of CAZymes, for example,
186  Alternaria alternata has 373 CAZymes while Zymoseptoria tritici contains 324 ones
187  (Goodwin et al., 2011; Ohm et al., 2012; Wang et al., 2016a). The smaller number of
188  CAZymes in Phyllosticta coincides with the phenomenon that these species have a
189  relatively long time to infect citrus fruits and the scab expanded slowly in the fruit peels

190 (Wanget al., 2012; Goulin et al., 2016).

191 Pathogens can secrete a series of proteins that are deployed to the host-pathogen
192  interface during infection, and secretome proteins play an important role in
193  pathogenicity (Presti et al., 2015). Approximately 5% of the total proteins (470) of P,
194  citriasiana are predicted to be secreted (Table S5-8). ‘Hydrolase activity’ was the most
195  abundant molecular function of the secretome, other GO terms over-represented among
196  the secreted proteins include ‘hydrolase activity, acting on glycosyl bonds’, ‘carboxylic
197  ester hydrolase activity’, ‘lipase activity’, ‘exopeptidase activity’, ‘serine hydrolase
198 activity’, and ‘hydrolase activity, acting on carbon-nitrogen bonds’ (Table 2). The other
199  two Phyllosticta species contain a similar number of SPs with P. citriasiana, i.e., 465
200 in P, citricarpa and 491 in P. capitalensis (Table S5-8). However, their GO categories
201 showed some differences from that of P. citriasiana. The SPs of P. citricarpa were not
202  enriched in ‘exopeptidase activity’, ‘serine hydrolase activity’, and ‘hydrolase activity,
203  acting on carbon-nitrogen bonds’ but was in ‘transferase activity, transferring hexosyl
204  groups’ (Table 2). The SPs of P capitalensis lacks ‘exopeptidase activity’ and
205  ‘hydrolase activity, acting on carbon-nitrogen bonds’ but contains ‘phosphatase
206  activity’, ‘transferase activity, transferring hexosyl groups’, and ‘UDP-
207  glycosyltransferase activity’ (Table 2). These results suggested that the constitution of
208  different Phyllosticta secretomes has changed, each species have some preferred

209  enzymes with distinct activities.

210 Orthologs groups and orphan genes

211 We then searched the conservation and diversification of proteins among different

212 Phyllosticta species from genome-scale. The protein orthology analysis identified 7261
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213 orthologous groups existed in all the three Phyllosticta species, constituting the core
214  gene set of Phyllosticta (Fig. 2). To find if any protein might be under positive selection,
215  the dN/dS ratios for predicted proteins in a pairwise comparison between P. citriasiana
216  and the other two Phyllosticta species were calculated. However, all gene show signs
217  of purifying selection (dN/dS<1). 2040 genes in P. capitalensis have no orthologs in the
218  other two species (Fig. 2), suggesting that these genes might play roles in constructing
219  the endophytic relationship of P capitalensis with its host. P. citriasiana and P.
220  citricarpa encoded 371 and 262 species-specific proteins, respectively (Fig. 2),
221  suggesting that these genes might be related to the host-specific pathogenicity. To know
222  the functions of the genes in those three gene sets, we annotated them using the
223 eggNOG database. However, the results showed that the majority of genes in each
224  group encoded proteins without well-characterized domains and very few sequences

225  can be assigned to the GO terms (Table S9-12).

226 We are then curious about if the distribution of CAZymes and secreted proteins
227  might differ among different gene sets. We found that the P. capitalensis orphan genes
228 contain only one CAZyme gene which encodes the AA3 family of cellobiose
229  dehydrogenase while the other two species’ orphan genes contain no CAZyme gene
230 (Table S13). However, the case for the secreted proteins is much different. P,
231  capitalensis, P. citricarpa, and P. citriasiana contain 75, 8 and 17 species-specific
232 secreted proteins, respectively (Table S13). These results indicate that Phyllosticta
233  species have formed lineage-specific sets of orphan genes which might have a potential
234  role in species diversification. Although functions of most orphans are unknown, the
235 secreted proteins (potential effectors) are likely the essential factors of host
236  specialization and they might be good candidates for future functional characterization

237  in distinct Phyllosticta species.

238  Secondary metabolite gene clusters
239 We identified 23 secondary metabolites (SM) biosynthesis clusters in the three
240  Phyllosticta species (Table S14). These clusters are comprised of 3 NRPS clusters, 5

241  PKS clusters, 4 terpene clusters, 1 terpene-NRPS cluster, 1 PKS-NRPS cluster, and 9
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242  clusters do not fit into any category (Table S14). Of them, cluster C9 contains all
243 Alternaria solani genes involved in alternapyrone synthesis, suggesting that these
244  Phyllosticta species have the potential to synthesize alternapyrone or its derivatives
245  (Fujii et al., 2005). Most SM clusters (21) are well conserved among the three
246 Phyllosticta species while 2 SM clusters of them showed whole cluster gain and loss
247  polymorphisms or gene content polymorphisms. Cluster C7 was present in P, citricarpa
248  and P, citriasiana but absent from P. capitalensis, indicating that this cluster might be
249  lost in P. capitalensis or gained in the common ancestor of P. citricarpa and P
250 citriasiana. Meanwhile, Cluster C7 in P, citricarpa possesses another 3 genes while P
251  citriasiana contains a ~11 Kb region encoding no proteins, showing gene content
252  polymorphisms (Fig. 3). SM cluster C23 showed two gene content polymorphisms. One
253  is that the P, capitalensis has an additional 4 genes between orthologous gene OG0649
254 and OG0648. The other is P, citriasiana lost two genes, of which gene OG7537 encodes
255  the backbone of this cluster (Fig. 3). A following tBLASTn analysis against the P,
256  citriasiana genome confirmed the loss of these two genes. This gene content
257  polymorphism was most likely generated through a genomic deletion event, rendering

258  the SM gene cluster nonfunctional.

259 Secondary metabolites, especial fungal toxins, are believed to be involved in the
260  pathogenicity of many plant pathogenic fungal species and can be described as potential
261  virulence factors. Previously, a handful of secondary metabolites from the citrus
262  pathogen P. citricarpa were identified and characterized. Of them, a new dioxolanone,
263  phenguignardic acid butyl ester, showed low phytotoxic activity in citrus leaves and
264  fruits (at a dose of 100 pg) (Savi et al., 2019). However, the involvement of this
265  compound in the formation of citrus black spot disease needs to be further addressed.
266  In this study, we observed the major structural variation of two SM clusters among
267  different Phyllosticta species, therefore, distinct corresponding metabolites are
268  expected. However, if they are involved in the host specialization are not known. So,
269  future investigations and elucidations of secondary metabolic mechanisms in

270  Phyllosticta species and their functions involved in plant-fungal interactions will be of
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271  great significance.

272

273  Conclusions

274 In this study, we sequenced the genome of P. citriasiana, the causal agent of the
275 pomelo tan spot, generating a high-quality reference genome assembly and provide an
276  overview of the genome structure of this important pathogen. We performed
277  comparative genomics analysis to reveal overall high similarities in sequence identity
278  and gene content among P. citriasiana, P. citricarpa, and P. capitalensis, reflecting the
279  phylogenetic and ecological relatedness of these species associated with citrus. Our data
280 also highlighted several striking differences in the constitution of secretomes, species-
281  specific genes, and secondary metabolite gene clusters, which might contribute to the
282  formation of fungal diversity. However, it is yet to be determined how a Phyllosticta
283  species emerged as a pathogen of alternate hosts. These data would be valuable in the
284  future investigation of the driving forces of fungal host switch, in population genomic
285  studies for identification of haplotypes and alleles, and in identifying effectors that may

286  function in infection of citrus plants.
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Table 1 Genomic features of three Phyllosticta species associated with citrus.

P. capitalensis strain

P. citricarpa strain

P. citriasiana strain

Features Gm33 Gcl2 CGMCC3.14344
Genome size (Mb) 32.4 31.1 34.2
BUSCOs (%) 95.5 94.8 98.4
Number of contigs 1341 5748 92

N50 (Kb) 20.8 76 968.9

GC content (%) 54.6 53.1 51.4
Protein-coding genes 9983 9083 9202

Gene density (number of genes per Mb) 308 292 269

Mean gene length (bp) 1632 1642 1677
Repeat rate (%) 0.29 0.97 2.19
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Table 2 Enriched molecular functional categories for secreted proteins genes of Phyllosticta species associated with citrus.

Species GO id GO term FDR Gene number
G0:0016787 hydrolase activity 2.82E-21 82
G0:0016798 hydrolase activity, acting on glycosyl bonds 1.34E-19 29
G0:0052689 carboxylic ester hydrolase activity 4.44E-07 12
P. citriasiana G0:0016298 lipase activity 3.61E-05 10
G0:0008238 exopeptidase activity 8.67E-04 8
GO0:0017171 serine hydrolase activity 6.66E-03 7
G0:0016810 hydrolase activity, acting on carbon-nitrogen bonds 9.33E-03 8
G0:0016787 hydrolase activity 4.80E-17 76
G0:0016798 hydrolase activity, acting on glycosyl bonds 1.57E-20 30
P. citricarpa  GO:0052689 carboxylic ester hydrolase activity 4.56E-06 11
G0:0016298 lipase activity 2.10E-04 9
GO0:0016758 transferase activity, transferring hexosyl groups  2.42E-03 10
G0:0016787 hydrolase activity 1.48E-18 100
G0:0016798 hydrolase activity, acting on glycosyl bonds 6.07E-15 29
G0:0052689 carboxylic ester hydrolase activity 5.68E-08 15
G0:0016298 lipase activity 1.76E-04 11
P. capitalensis GO0:0016791 phosphatase activity 3.96E-04 13
GO0:0016758 transferase activity, transferring hexosyl groups ~ 4.07E-04 14
GO0:0017171 serine hydrolase activity 1.14E-03 10
G0:0008238 exopeptidase activity 1.90E-03
G0:0008194 UDP-glycosyltransferase activity 6.87E-03
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423 Fig. 1 Genomic similarity between P. citriasiana and the other two Phyllosticta

424 species (P. citricarpa and P. capitalensis) associated with citrus. A) Dotplos showing
425  genome nucleotide alignments of P. citriasiana with P. citricarpa and P. capitalensis.
426 Red diagonals represent alignments in the same direction, whereas blue ones suggest
427 a reverse orientation. B) Distribution of nucleotide identities between P. citriasiana
428 and the other two Phyllosticta species.
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P, capitalensis
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Fig. 2 Numbers of orthologous groups that are unique to each isolate, specific to two

isolates, and common to all three Phyllosticta isolates. Corresponding gene numbers

are indicated in the outer ring.
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Fig. 3 Structural variations of secondary metabolic (SM) gene cluster C7 and C23
among Phyllosticta species associated with citrus. For each SM cluster, orthologues
among different species are marked with the same color. Genes marked by white lack

orthologues in other species. The short black vertical line indicates the end of the
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