

Trading Genome Vulnerability for Stable Genetic Inheritance: Active Retrotransposons Help Maintain Pericentromeric Heterochromatin Required for Faithful Cell Division

Yajing Hao^{1,2,3,4}, Dongpeng Wang^{1,2,4}, Shuheng Wu^{1,2}, Xiao Li³, Changwei Shao³, Peng Zhang¹, Jia-Yu Chen³, Do-Hwan Lim³, Xiang-Dong Fu^{3, *}, Shunmin He^{1, *}, and Runsheng Chen^{1, *}

¹Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, China

²University of Chinese Academy of Sciences, Beijing, 100101, China

³Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA

⁴ These authors contributed equally

*Corresponding authors:

Xiang-Dong Fu (xdfu@ucsd.edu); Shunmin He (heshunmin@ibp.ac.cn); Runsheng Chen (chenrs@sun5.ibp.ac.cn)

25 **ABSTRACT**

26 Retrotransposons are extensively populated in vertebrate genomes, which, when active,
27 are thought to cause genome instability with potential benefit to genome evolution.
28 Retrotransposon-derived RNAs are also known to give rise to small endo-siRNAs to help maintain
29 heterochromatin at their sites of transcription; however, as not all heterochromatic regions are
30 equally active in transcription, it remains unclear how heterochromatin is maintained across the
31 genome. Here, we attack these problems by defining the origins of repeat-derived RNAs and their
32 specific chromatin registers in *Drosophila* S2 cells. We demonstrate that repeat RNAs are
33 predominantly derived from active Gypsy elements, and upon their processing by Dicer-2, these
34 endo-siRNAs act in *cis* and *trans* to help maintain pericentromeric heterochromatin. Remarkably,
35 we show that synthetic repeat-derived siRNAs are sufficient to rescue Dicer-2 deficiency-induced
36 defects in heterochromatin formation in interphase and chromosome segregation during mitosis,
37 thus demonstrating that active retrotransposons are actually required for stable genetic inheritance.

38 INTRODUCTION

39 Eukaryotic genomes contain both gene-rich and gene-poor regions, respectively
40 corresponding to euchromatin and heterochromatin. Heterochromatin can be further divided into
41 two classes: facultative, which is dynamic and marked by H3K27me3, and constitutive, which is
42 largely stable and marked by H3K9me2/3(Grewal and Jia 2007). Constitutive heterochromatin is
43 predominately associated with centromeric and pericentromeric regions, telomeres, and
44 retrotransposons(Lippman et al. 2004). Constitutive heterochromatin plays important roles in
45 genome organization in the nucleus(Avner and Heard 2001; Zhang et al. 2019), suppression of
46 recombination to protect genome integrity(Grewal and Klar 1997), and stable genetic inheritance
47 during development and differentiation(Allshire et al. 1995; Peters et al. 2001). These critical
48 biological functions underscore the importance of repeat-rich sequences underneath constitutive
49 heterochromatin, which used to be referred to as “junk” DNA in the genome. In fact, besides their
50 potential contribution to genome evolution, it has been unclear whether active retrotransposons
51 have any immediate benefit to an organism.

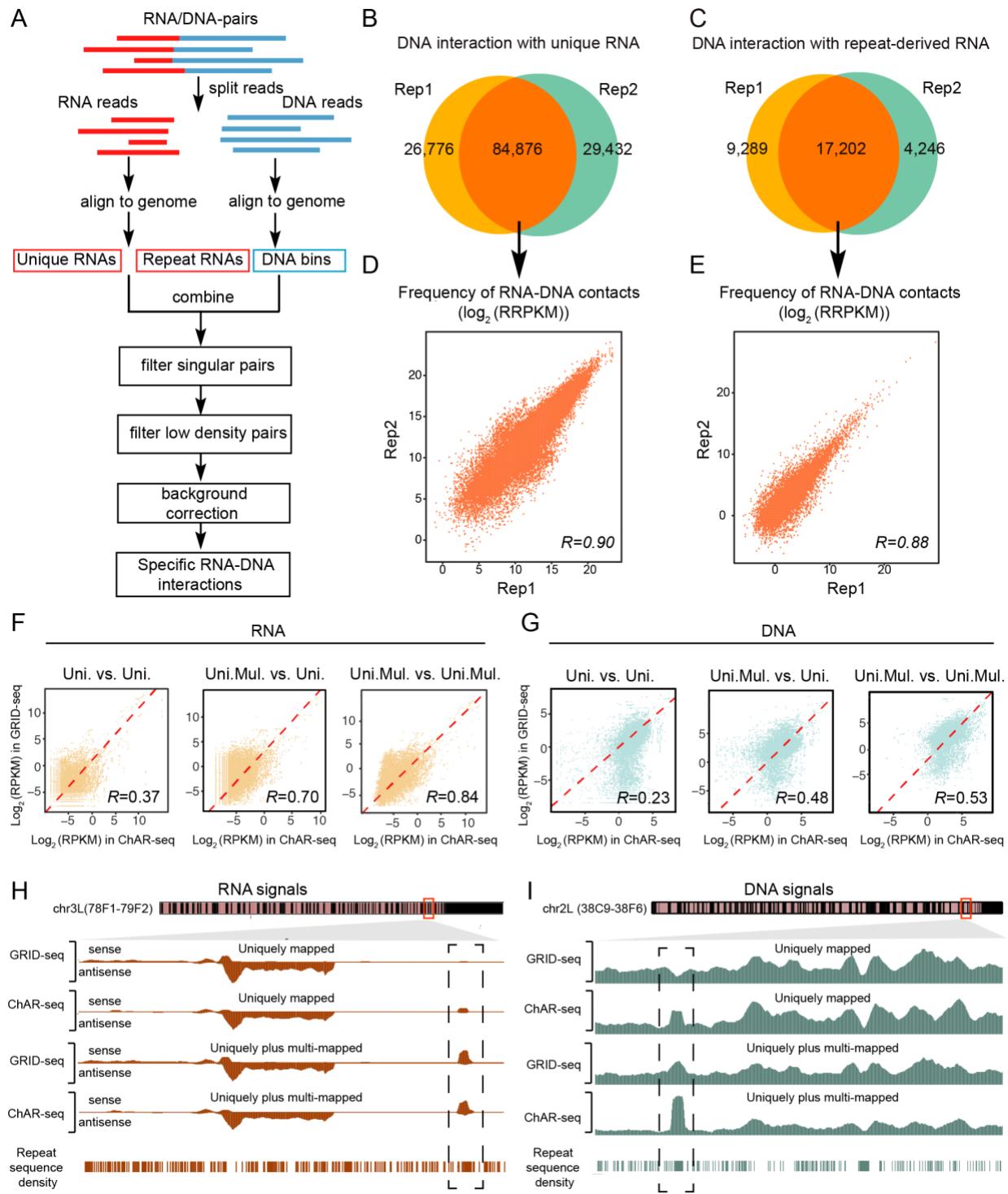
52 Regarding the formation and maintenance of constitutive heterochromatin (hereafter
53 generally referred to as heterochromatin), our current knowledge is largely derived from elegant
54 genetic and biochemical studies in fission yeast and *Drosophila melanogaster*(Tschiersch et al.
55 1994; Grewal and Jia 2007; Holoch and Moazed 2015b). The most striking aspect of the emerging
56 theme is that transcription is required for initiating heterochromatin formation, even though the
57 eventual fate is to shut down transcription. In fission yeast, initial repeat-derived transcripts are

58 amplified by an RNA-dependent RNA polymerase (RdRP). Resultant double-stranded RNAs are
59 next processed by Dicer to produce small interfering RNAs (siRNAs), which are then loaded onto
60 Ago1 to form the RNA-induced transcription silencing (RITS) complex to target nascent repeat
61 RNA. RITS recruits a key histone methyltransferase Clr4 (Su(var)3-9 in flies and SUV39H1 in
62 humans) to generate H3K9me2/3, which then attracts its reader Swi6 (HP1 in flies and humans),
63 together inducing a series of RNA-protein and protein-protein interactions to mediate both initial
64 deposition and spreading of H3K9me2/3 to neighboring sequences (Volpe et al. 2002; Verdel et al.
65 2004). *Drosophila melanogaster* appears to follow a similar scheme except using the piRNA
66 system to process and amplify repeat-derived RNAs to establish heterochromatin to actively
67 repress retrotransposition in the germline (Vagin et al. 2006; Halic and Moazed 2009; Muerdter et
68 al. 2013; Iwasaki et al. 2015).

69 While the general conceptual framework for heterochromatin formation has been well
70 established, there are multiple puzzles that remain to be solved. First, heterochromatin is still
71 dynamic, rather than completely inert, raising the question of how transcription is restarted and
72 whether heterochromatin maintenance depends on local transcription in all regions in need to be
73 patched up. Second, in principle, some repeat-derived RNAs may also be capable of acting in *trans*,
74 as suggested by a recent analysis of crosstalk between a reporter gene with one copy localized near
75 a pericentromeric region of one chromosome and the other in its native euchromatic context of
76 another chromosome in fission yeast (Yu et al. 2018). However, it remains unclear whether this
77 principle generally applies to heterochromatin maintenance on all pericentromeric regions, and if

78 so, what is the relative contribution of *cis*- versus *trans*-acting RNAs to such maintenance. Third,
79 both fission and *Drosophila* germ cells are equipped with an RNA amplification system (RNA-
80 dependent RNA polymerase in fission yeast and the ping-pong cycle in the fly), but such system
81 is lacking in somatic cells of flies and mammals(Stein et al. 2003). The question is how somatic
82 cells meet this supply/demand dilemma. Forth, fission yeast uses siRNA to drive heterochromatin
83 formation and maintenance, but fly enlists the piRNA pathway for such purpose in the germline.
84 This raises the question of whether different organisms may use distinct machineries for processing
85 repeat-derived RNAs. Last, but not least, Dicer deficiency has been reported to cause chromosome
86 mis-segregation during mitosis in both flies and mammals(Pek and Kai 2011; Huang et al. 2015),
87 but it has remained unclear whether such dramatic phenotype results from impaired production of
88 some sort of endo-siRNAs or other function(s) of Dicer in the nucleus.

89 Addressing the above questions would require critical information on where repeat-rich
90 transcripts are generated and where these repeat RNAs target specific loci in the genome, which
91 has been a challenging problem. Recent technological innovations have made it possible to
92 comprehensively elucidate the RNA-chromatin interactome, which has been applied to multiple
93 cell types, including *Drosophila* S2 cells(Li et al. 2017; Sridhar et al. 2017; Bell et al. 2018), but
94 rich information on repeat-derived RNAs has not yet been explored. We have now utilized this
95 information to define the interaction of repeat-derived RNAs with chromatin across the fly genome.
96 Our analysis reveals that endo-siRNAs are mostly derived from the Gypsy family of
97 retrotransposons, which are able to act in *cis* and *trans* to balance local transcription to help


98 maintain pericentromeric heterochromatin. Strikingly, we show that a pool of synthetic endo-
99 siRNA mimics is sufficient to rescue chromosome segregation defects in Dicer-deficient cells.
100 These findings reveal that active retrotransposons are functionally required for maintaining
101 heterochromatin to ensure stable genetic inheritance during cell cycle.

102

103 **RESULTS**

104 **Strategy for genome-wide assignment of multi-mapped RNA and DNA reads**

105 We recently developed a technology called global RNA-DNA interaction sequencing
106 (GRID-seq) to detect chromatin-associated RNAs and their respective binding sites genome-wide.
107 GRID-seq employs a bivalent linker to ligate to RNA in one end and fragmented DNA in the other
108 end on fixed nuclei followed by selection and cleavage of linker ligated products with a type IIS
109 restriction enzyme (Mme I) to generate “mated” RNA and DNA (both ~20nt in length) for deep
110 sequencing(Li et al. 2017). To control for the specificity in RNA-DNA mating, we also generated
111 a GRID-seq library on mixed human and fly cells, thus enabling the construction of a critical
112 background model by using cross-species reads (i.e. fly RNA ligated to human DNA and vice
113 versa). Using these datasets, we previously explored uniquely mapped RNA-DNA mates to reveal
114 nascent RNA-covered “transcription hubs” where specific promoters and enhancers are
115 interconnected in the nucleus(Li et al. 2017). Given such high-quality data, we herein explored the
116 biological significance of multi-mapped RNA and DNA reads in *Drosophila* S2 cells, taking
117 advantage of high density reads on the much smaller genome of fly relative to humans.

118

119 **Figure 1. Strategy for assigning multi-mapped RNA and DNA reads**

120 (A) Schematic presentation of the GRID-seq data processing pipeline. (B and C) Overlapped
 121 RNA-DNA mates containing annotated unique (B) or repeat-derived (C) RNA between the two
 122 independent GRID-seq libraries. (D and E) Quantitative analysis of commonly identified RNA-

123 DNA mates containing annotated unique RNA (D) or repeat-derived RNA (E) between the two
124 independent GRID-seq libraries. RRPKM: Read counts per kilobase of RNA per kilobase of DNA
125 per million. (F and G) Comparison between GRID-seq and ChAR-seq with uniquely or uniquely
126 plus multi-mapped RNA (F) or DNA (G) in repeat-enriched Alu I-generated DNA bins. Uni.:
127 uniquely mapped reads. Uni.Mul.: uniquely plus multi-mapped reads. (H and I) Transcribed
128 RNA signals (H) or RNA-contacted DNA signals (I) obtained with different mapping strategies
129 on representative genomic regions.

130 The two independently generated GRID-seq libraries on S2 cells (Supplementary Table

131 1) were of high global concordance between RNA or DNA reads (Supplementary Fig. 1A).

132 Interestingly, both replicates showed a high percentage (65% to 75%) of RNA reads that were

133 mapped to repeat-derived transcripts, but a much smaller fraction (10% to 20%) of DNA reads

134 were assigned to repeat-rich genomic loci (Supplementary Fig. 1B). To fully utilize these multi-

135 mapped RNA and DNA reads, we took a previously established ShortStack strategy to make

136 assignment to specific transcripts and genomic locations based on the local density of uniquely

137 mapped reads(Axtell 2013). As illustrated (Fig. 1A), we first aligned each RNA read to genome

138 and assigned it to annotated unique RNA transcripts according to the FlyBase database(Drysdale

139 2008) or repeat-derived transcripts based on the RepeatMasker database

140 (<http://www.repeatmasker.org>), and each DNA read to genomic fragments(Roberts et al. 2015),

141 generated by Alu I, a restriction enzyme used to fragment the fly genome during library

142 construction. For multi-mapped reads, we distributed them to individual RNA transcripts or DNA

143 fragments according to the relative density of uniquely mapped reads (Supplementary Fig. 1C).

144 We next filtered out singular RNA-DNA mates and low-density mates below a set

145 threshold according to the Poisson distribution of all mates across the genome (see Online

146 METHODS). Additionally, we also subtracted the background based on human RNA signals
147 mapped to fly DNA loci from our fly/human GRID-seq library. The density of such background
148 reads is quite significant in many accessible chromatin regions (Supplementary Fig. 1D), as
149 detailed earlier(Li et al. 2017). After these data processing steps, retained RNA-DNA mates show
150 high consistency between the two independent GRID-seq libraries, as indicated by predominant
151 common mates associated with both annotated unique RNAs (Fig. 1B) and repeat-derived
152 transcripts (Fig. 1C). This consistency is also reflected at the quantitative levels of individual
153 common RNA-DNA mates (Fig. 1D,1E), thus enabling us to rely on these common mates to
154 generate the final RNA-DNA interactome for downstream analysis. Notably, after assigning multi-
155 mapped RNA and DNA reads, most gaps around repeat-rich DNA regions were “filled” to the
156 similar levels, as compared to adjacent unique regions across the fly genome (Supplementary Fig.
157 2A).

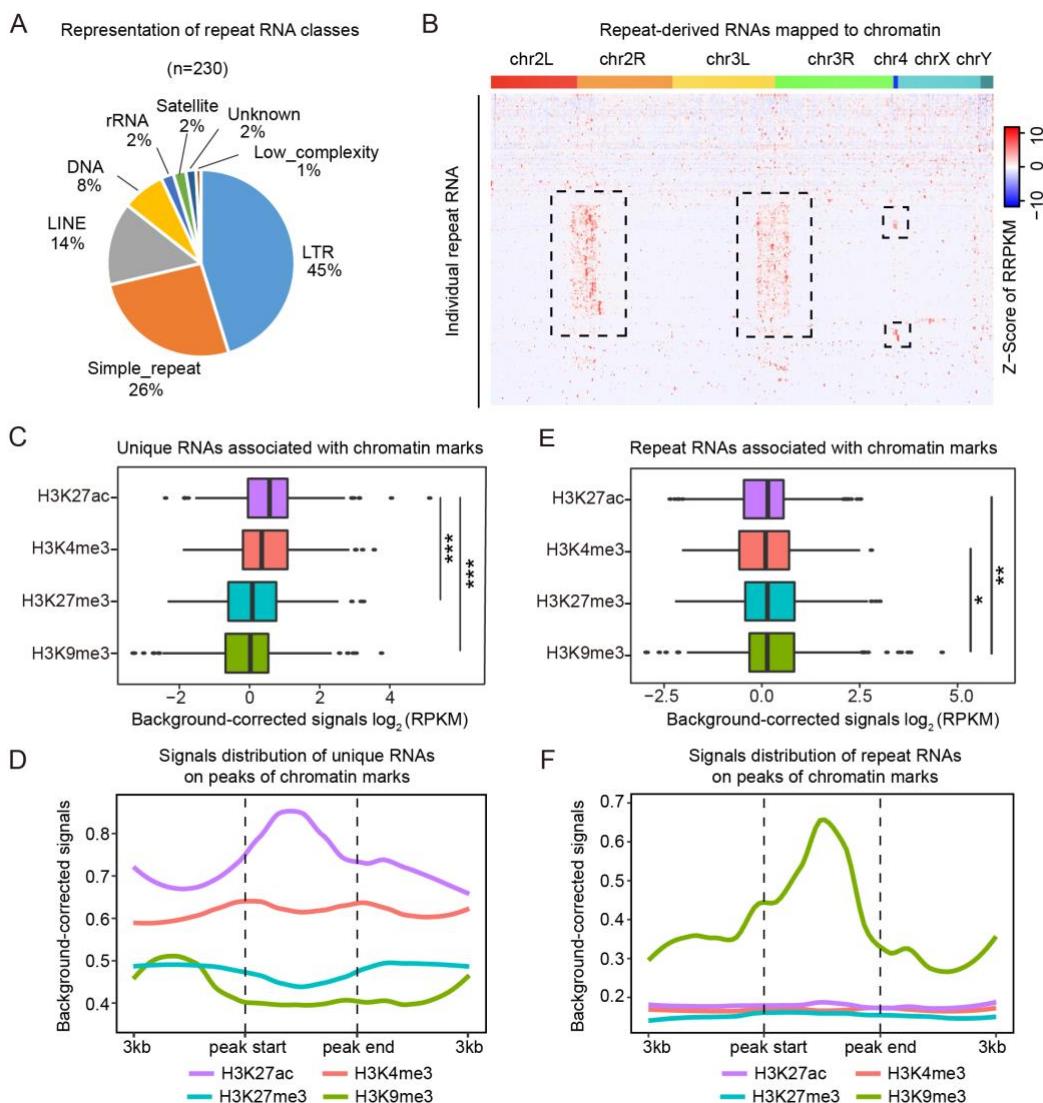
158

159 **Validation of mapping results with an independent dataset**

160 It is critical to validate our mapping strategy, even though ShortStack has been generally
161 accepted as a strategy to dynamically assign multi-mapped reads in a given genome. For this
162 purpose, we utilized the data generated by ChAR-seq, a strategy similar to GRID-seq except longer
163 RNA and DNA reads were generated by sonication after linker ligation (Supplementary Fig.
164 2B)(Bell et al. 2018). Compared to GRID-seq that generates predominantly mated RNA-DNA
165 pairs, ChAR-seq tends to trade off relative longer reads with a large fraction of unmated RNA or

166 DNA reads from sequenced libraries. Moreover, it was not optimal to use the ChAR-seq data in
167 the first place for several reasons: (i) GRID-seq libraries were generated on *Drosophila* S2 cells
168 where many other types of genomic data are available for comparison (see Supplementary Table 2),
169 whereas ChAR-seq libraries were produced on a less commonly used *Drosophila* cell line (CME-
170 W1-cl8+), (ii) the vast majority of ChAR-seq reads was from a single library (see Supplementary
171 Table 1), thus prohibitive to assessing internal data reproducibility, and most importantly, (iii) one
172 of our GRID-seq libraries was constructed on mixed fly and human cells, thus permitting the use
173 of cross-species RNA-DNA mates to build a background for non-specific RNA-DNA interactions,
174 which is missing from the existing ChAR-seq libraries. Nevertheless, the available ChAR-seq data
175 with longer RNA and DNA reads provided an independent dataset to evaluate our strategy for
176 assigning multi-mapped RNA and DNA reads, despite the fact that GRID-seq and ChAR-seq
177 libraries were derived from different fly cell types.

178 We first compared between ChAR-seq and GRID-seq data, observing an overall high
179 Spearman correlation ($R=0.75$ for RNA reads; $R=0.62$ for DNA reads) across the reference fly
180 genome (Supplementary Fig. 2C). However, when focused on repeat-enriched Alu I-generated
181 DNA bins, the correlation was quite modest at the levels of both RNA (left panel in Fig. 1F, $R=0.37$)
182 and DNA (left panel in Fig. 1G, $R=0.23$). Notably, a population of DNA reads (distributed in lower
183 right in Fig. 1G) was scored by ChAR-seq, but less by GRID-seq, likely due to the higher mapping
184 power of the former. Interestingly, the correlation was dramatically improved when comparing
185 uniquely mapped RNA or DNA reads from ChAR-seq with uniquely plus multi-mapped RNA or


186 DNA reads from GRID-seq (middle panels in Fig. 1F, R=0.70 for RNA and Fig. 1G, R=0.48 for
187 DNA), suggesting that many assigned multi-mapped GRID-seq reads matched uniquely mapped
188 ChAR-seq reads. As expected, after also assigning multi-mapped reads from ChAR-seq using
189 ShortStack, the correlation was further improved when compared between uniquely plus multi-
190 mapped RNA or DNA reads in both cases (right panels in Fig. 1F, R=0.84 for RNA and Fig. 1G,
191 R=0.53 for DNA), which becomes comparable to the overall correlation across the genome (see
192 Supplementary Fig. 2C, the remaining differences likely, at least in part, result from different cell
193 types used to construct GRID-seq and ChAR-seq libraries). The progressive improvement is also
194 evident on representative genomic regions, showing gained RNA (Fig. 1H) or DNA (Fig. 1I)
195 signals, each in a repeat-rich region (dashed boxes), both of which were detectable with uniquely
196 mapped ChAR-seq reads, missing from uniquely mapped GRID-seq reads, and then became
197 visible after assigning multi-mapped GRID-seq reads. Together, these data validate our
198 computational strategy to assign multi-mapped RNA and DNA reads to the genome.

199

200 **Preferential interaction of distinct RNA classes with eu- versus hetero-chromatin**

201 Having maximally utilized both uniquely and multi-mapped RNA and DNA reads from
202 our GRID-seq libraries, we next wished to investigate how different classes of RNA might
203 differentially interact with DNA in the fly genome. We were first focused on annotated non-repeat
204 RNAs with respect to their interactions with the genome. As reported earlier(Li et al. 2017), among
205 4,856 non-repeat RNAs associated with chromatin, most showed interactions with DNA near their

206 sites of transcription (Supplementary Fig. 3A). Upon further subdividing different classes of such
207 RNAs, we noted that most annotated snoRNAs and snRNAs were not only expressed but also
208 extensively engaged in interactions with chromatin in *Drosophila* S2 cells, whereas virtually no
209 pre-miRNA was associated with chromatin (Supplementary Fig. 3B). The intermediate levels of
210 lncRNAs, mRNAs, and tRNAs on chromatin probably reflected wide expression ranges of these
211 RNA species, and thus, only those with sufficient expression were detectable on chromatin.

212

213 **Figure 2. Interaction of distinct RNA classes with eu- versus hetero-chromatin**

214 (A) Different repeat RNA classes represented by 230 DNA bound repeat-derived RNAs. (B)
215 Heatmap showing the distribution of individual 230 repeat-derived RNAs across the *Drosophila*
216 genome in S2 cells. Row: Individual chromatin-associated repeat-derived RNAs. Column: AluI
217 DNA bins. Boxed regions: Repeat-derived RNAs that showed preferential binding to constitutive
218 heterochromatin in pericentromeric regions. (C) Association of chromatin marks with background-
219 corrected signals of unique RNAs. *p<0.05, **p<0.01, *** p<0.001 (unpaired Student's t-test).
220 (D) Distribution of unique RNA interaction signals around chromatin mark peaks. (E) Association
221 of chromatin marks with background-corrected signals of repeat-derived RNAs. *p<0.05,
222 **p<0.01 (unpaired Student's t-test). (F) Distribution of repeat RNA interaction signals around
223 chromatin mark peaks.

224 In contrast to the chromatin binding patterns of annotated non-repeat RNAs, we also
225 identified 230 repeat-derived RNA species that showed significant interactions with chromatin,
226 which include all rRNAs, satellite DNA-transcribed RNAs (including those from simple repeats),
227 and >70% of LINE and LTR-derived RNA species (Supplementary Fig. 3C). Percentage wise, the
228 majority of RNA species was from LTR (45%), simple repeat (28%), and LINE (14%) classes
229 (Fig. 2A). We then displayed these 230 repeat-derived RNAs across the fly genome and observed
230 two general patterns, one scattering across the genome and the other concentrating on
231 pericentromeric regions in chromosome 2 and 3 (large dashed boxes in Fig. 2B). A subset of these
232 repeat-derived RNAs also bound chromosome 4 (small dashed boxes in Fig. 2B), which is known
233 to be predominantly heterochromatic(Sun et al. 2000).

234 We next linked RNA-DNA interactions to critical chromatin features based on various
235 published epigenetic profiles (Supplementary Table 2). As expected, annotated non-repeat RNAs
236 showed the highest association with H3K27ac (Fig. 2C), exhibiting coincidental peak summits
237 (Fig. 2D). In contrast, repeat-derived RNAs displayed the greatest preference for H3K9me3 (Fig.

238 2E,F). Conversely, we sorted the restriction enzyme Alu I-generated DNA fragments according to
239 the levels of associated repeat-derived RNAs, observing that, among top 1,000 repeat RNA-
240 associated DNA bins, H3K9me3 was the dominant signal on these DNA regions (Supplementary
241 Fig. 3D). Together, these data suggest a general trend in which annotated non-repeat RNAs tend
242 to interact with euchromatic regions marked by H3K27ac, whereas repeat-derived RNAs prefer to
243 associate with heterochromatin marked by H3K9me3. While this is somewhat anticipated from the
244 vast literature, we now obtained critical information on which specific repeat-derived RNAs are
245 more prevalent than others in interacting with specific heterochromatic regions in the fly genome.
246 This established the critical foundation to investigate their relative contributions to the initiation
247 and/or maintenance of heterochromatin in *Drosophila* cells.

248

249 **Prevalent association of Gypsy-derived RNAs with constitutive heterochromatin**

250 We next asked which repeat-derived RNAs were more prevalent than others on
251 heterochromatin. We intersected the density of individual repeat-derived RNAs with markers for
252 constitutive heterochromatin characterized by the coordinated ChIP-seq signals for H3K9me3 and
253 its reader HP1 (Fig. 3A). By determining the co-localization coefficient for each of the 230 repeat-
254 derived RNAs between their DNA interaction frequencies and relative densities of H3K9me3 and
255 HP1 signals in 1Mb DNA bins of the fly genome, we identified 79 repeat-derived RNAs, including
256 two rRNAs, that showed the *Pearson* correlation coefficient of >0.3 (red dots in Fig. 3A). The
257 association of rRNAs with heterochromatin agrees with a recent observation that transcriptionally

258 inert centromere-proximal regions tend to be organized around the nucleolus in 3D
259 genome(Quinodoz et al. 2017). However, since rRNAs are assembled into ribosomes, rather than
260 processed into small RNAs, it is unlikely that they contribute to heterochromatin functions.
261 Excluding rRNAs, we named the rest of heterochromatin-enriched RNAs as CHARRs
262 (Constitutive Heterochromatin-Associated Repeats-derived RNAs). These CHARRs appear to
263 show exclusive association with constitutive heterochromatin, as none of them exhibited
264 significant co-localization with the facultative chromatin marker H3K27me3 ([Supplementary Fig.](#)
265 [4A](#)), as illustrated with three specific CHARRs ([Supplementary Fig. 4B](#)). Furthermore, these
266 CHARRs showed little association with MSL ([Supplementary Fig. 4C,D](#)), a key component of the
267 silencing complex involved in X inactivation in *Drosophila*, consistent with the nature of
268 predominant facultative heterochromatin formed on X-inactivation (Xi)(Baker et al. 1994; Franke
269 and Baker 1999).

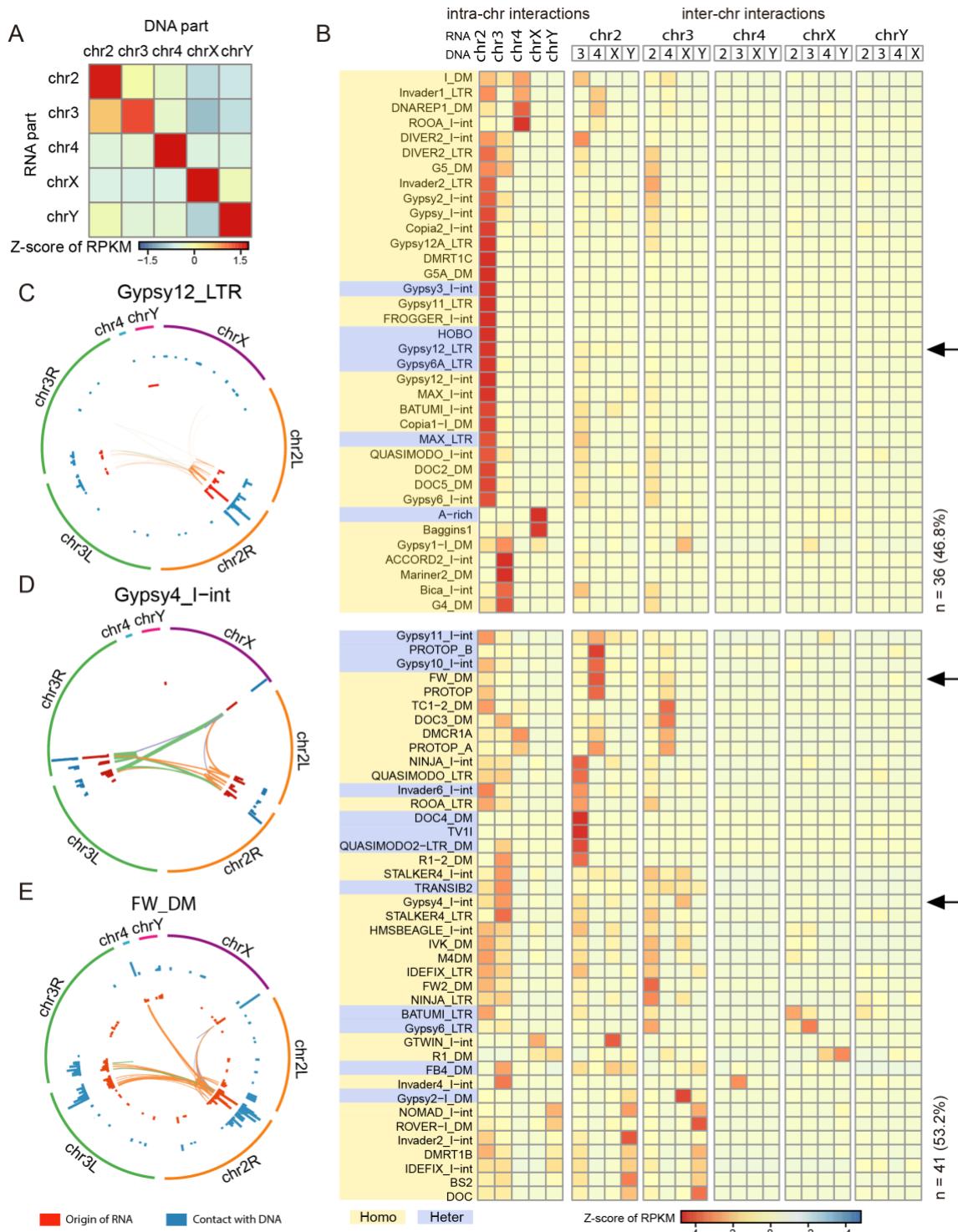
Figure 3. Prevalent association of Gypsy-derived RNAs with constitutive heterochromatin

(A) Scatterplot of co-localization coefficients between repeat-derived RNA signals on DNA and the levels of H3K9me3 (y-axis) or HP1 (x-axis) in S2 cells. A threshold of 0.3 was chosen for both chromatin marks (red lines). Dashed lines were used to differentiate CHARRs (red dots) from other repeat-derived RNAs (grey dots). (B) Left: Heatmap of co-localization of each CHARR with individual chromatin marks or Pol II ChIP-seq signals. Right: Heatmap of chromatin interaction of each CHARR with Alu I-generated DNA bins, which were merged from 100 continuous Alu I DNA bins. HP1 binding signals in these DNA bins are displayed below the schematic presentation of *Drosophila* chromosomes. Three representative CHARRs are labeled on the right. (C) Chromatin interaction signals of three representative CHARRs, DMCR1A, PROTOP_A and PROTOP_B on a genomic region in chromosome 2R in comparison with non-specific background based on human RNA mapped to fly DNA and HP1 binding density. All signals were scaled to reads per million. (D and E) The number of repeat classes (D) or sub-families (E) associated with CHARRs. (F) The relative RNA abundance (% of total) of CHARRs on constitutive heterochromatin and specific subfamilies they belong to. Colors show the RNA classes individual CHARR subfamilies belong to.

288 The 77 CHARRs we identified correspond to those predominantly associated with
289 pericentromere of chromosome 2 and 3 where their interactions with DNA positively correlated to
290 heterochromatin markers (e.g. H3K9me3 and HP1) and negatively to euchromatin markers (e.g.
291 H3K27ac and H3K4me3) as well as RNAP II ChIP-seq signals (Fig. 3B). This is further
292 highlighted with 3 specific repeat-derived RNAs (e.g. DMCR1A, PRTOP_A and PRTOP_B) on
293 the right arm of chromosome 2 (chr2R, Fig. 3C). We next determined RNA class, genomic origins,
294 and relative abundance for each CHARR. Interestingly, the largest RNA class of identified
295 CHARRs corresponds to LTR (n=47), while the second largest class to LINE repeats (n=19) (Fig.
296 3D). The majority of RNA species from these two classes of retrotransposons belongs to the Gypsy
297 and Jockey subfamilies, respectively (Fig. 3E). Most importantly, by ranking individual CHARRs
298 according to their relative abundance on heterochromatin and summing the collective abundance
299 according to specific RNA subclasses, we found that active Gypsy family members were top
300 contributors to the overall RNA signals on heterochromatin (Fig. 3F). This suggests a major role
301 of Gypsy-derived RNAs in heterochromatin formation/maintenance in *Drosophila* S2 cells.

302

303 ***Cis*- and *trans*-acting repeat-derived RNAs on chromatin**


304 The RNA-DNA interactome permitted for the first time to determine both the source of
305 repeat-derived RNAs and their registers on specific chromatin regions. Given the predominant
306 mode of annotated non-repeat RNAs that act in *cis* (*cis* defined by mated RNA and DNA reads
307 mapped to the same chromosomes, as supposed to *trans* defined by mated RNA and DNA reads

308 mapped to different chromosomes), we asked whether this also applied to repeat-derived RNAs.
309 We noted that rRNA-derived RNAs all interacted with heterochromatin regions near the loci of
310 their transcription where CHARRs also predominantly bound (Supplementary Fig. 5A,B). This
311 suggests multiple active rRNA transcription sites are in close spatial proximity with adjacent
312 pericentromeric regions, as recently observed based on proximity ligation(Quinodoz et al. 2017).
313 Importantly, we also identified CHARRs on multiple non-pericentromeric regions, suggesting
314 their potential interactions with chromatin in both *cis*- and *trans*-modes.

315 We therefore determined the origins of CHARRs and their collective interactions with
316 chromatin at the chromosomal levels. This analysis revealed their extensive chromatin interactions
317 not only within the same chromosomes, but also across different chromosomes (Fig. 4A),
318 suggesting a significant degree of *trans*-interactions. This prompted us to examine individual
319 CHARRs to segregate their *cis*- and *trans*-interactions by first assigning their origins of
320 transcription, and then determining their linkage to DNA on the same (intra) or different (inter)
321 chromosomes. Interestingly, we found that about half (46.8%) of the CHARRs were
322 predominantly engaged in intra-chromosomal interactions, whereas the other half (53.2%) were
323 actively involved in both intra- and inter-chromosomal interactions (Fig. 4B). This is further
324 illustrated with 3 representative CHARRs. Specifically, Gypsy12_LTR preferentially interacted
325 with DNA on the same chromosome (Fig. 4C); Gypsy4_I-int was engaged in both intra- and inter-
326 chromosomal interactions (Fig. 4D); and FW_DM seemed to mainly act in *trans* on other

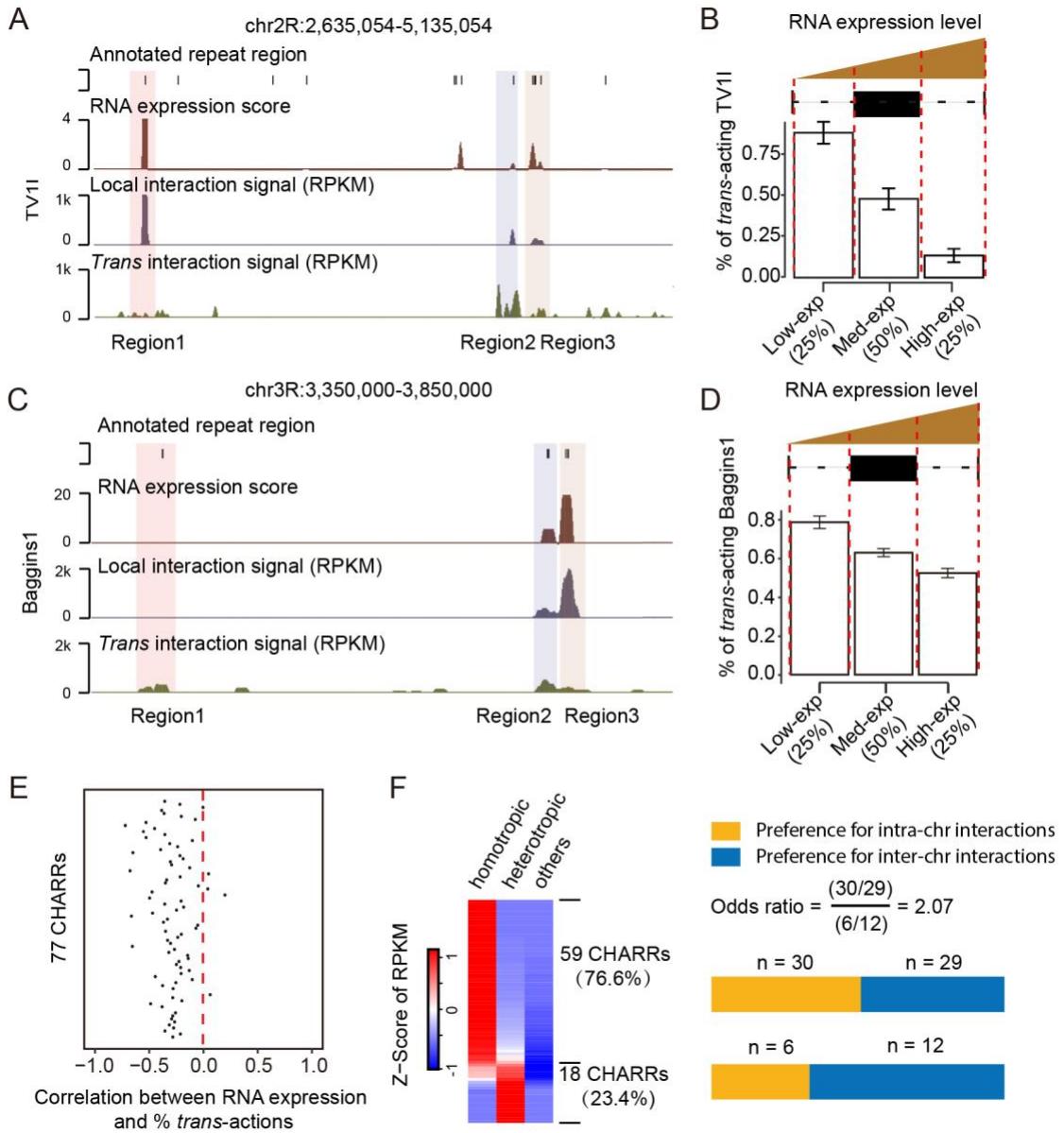
327 chromosomes (Fig. 4E). It is also interesting to note that individual CHARRs all selectively bound

328 Hi-C defined “B” domains in pericentromeric regions (Supplementary Fig. 5C,D).

329

330

331 **Figure 4. *Cis*- and *trans*-acting repeat-derived RNAs on chromatin**


332 (A) Heatmap of RNA-DNA interaction scores for 77 CHARRs on the same or different
333 chromosomes. *Trans*-chromosome interactions are referred to as RNA interacts with DNA in
334 chromosomes other the RNA is transcribed from. (B) Assignment of each of the 77 CHARRs to
335 either intra- or inter-chromosomal interactions in S2 cells and sorting of the data by unsupervised
336 clustering. Top: RNA derived from different chromosomes (first row) and its DNA contacts in the
337 same or different chromosomes (second row). The RNA-DNA interaction intensities were
338 indicated by the z-scores according to the color key at the bottom. Arrows point to the three specific
339 CHARRs Gypsy12_LTR, Gypsy4_I-int and FW_DM, as individually illustrated in panel C, D,
340 and E. All CHARRs are either highlighted with yellow or blue to indicate their preferences for
341 homotropic or heterotropic interactions as described later. (C, D, E) The origins of three
342 representative CHARRs and their DNA contacts, as shown by the Circos plots for Gypsy12_LTR
343 (C), Gypsy4_I-int (D) and FW_DM (E). In each of these plots, the inner (red) track indicates the
344 origins of individual RNAs and the outer (blue) track shows where the RNAs interact with DNA
345 in 100kb DNA windows. The heights of the signals correspond to Reads per 100kb window per
346 millions. Lines specify intra- or inter-chromosomal interactions with width indicating the relative
347 interaction levels in each case. The line color indicates the origin of chromatin-interacting RNAs.

348

349 **Tendency for *trans*-acting RNAs to supplement *cis*-acting RNAs on chromatin**

350 During our analysis of *cis*- and *trans*-acting CHARRs, we further noted an interesting
351 phenomenon where DNA loci expressing high levels of CHARRs tended to associate with less
352 *trans*-acting RNAs (related repeat-derived RNA species transcribed from other chromosomes) and
353 the converse was also true, as exemplified on a specific region in chromosome 2R where TV1I
354 RNA (a Gypsy family member from the LTR class) was mainly transcribed from region 1 (Fig.
355 [5A](#), second track), most of which contacted DNA locally around the transcribing locus (Fig. [5A](#),
356 third track). Interestingly, *trans*-acting RNAs (transcribed from TV1I-related repeat species from
357 other chromosomes) were mostly mapped to region 2 where little TV1I RNA was produced and 3

358 where a much lower level of the TV1I RNA was transcribed compared to region 1 (Fig. 5A, third
359 track). We quantified these results by dividing all active TV1I loci into 3 groups according to their
360 levels of transcription (bottom 25%, middle 50%, and top 25%, Fig. 5B), and then determined the
361 ratio of *trans*-acting over *cis*- plus *trans*-acting RNAs for each group and observed a reverse
362 correlation between local RNA production and the percentage of association with *trans*-acting
363 RNAs (bars, Fig. 5B). This phenomenon also applied to another repeat RNA, Baggins1 (a LOA
364 family member from the LINE class) (Fig. 5C, D). To determine whether this represents a general
365 trend, we extended the analysis to all CHARRs and found that, with a few exceptions, most
366 followed this rule (Fig. 5E). Together, these observations suggest that highly transcribed CHARRs
367 supply RNAs in *trans* to interact with DNA regions with less transcription activities.

368

369 **Figure 5. Reverse correlation between local transcription and association with *trans*-acting**
 370 **RNAs on chromatin**

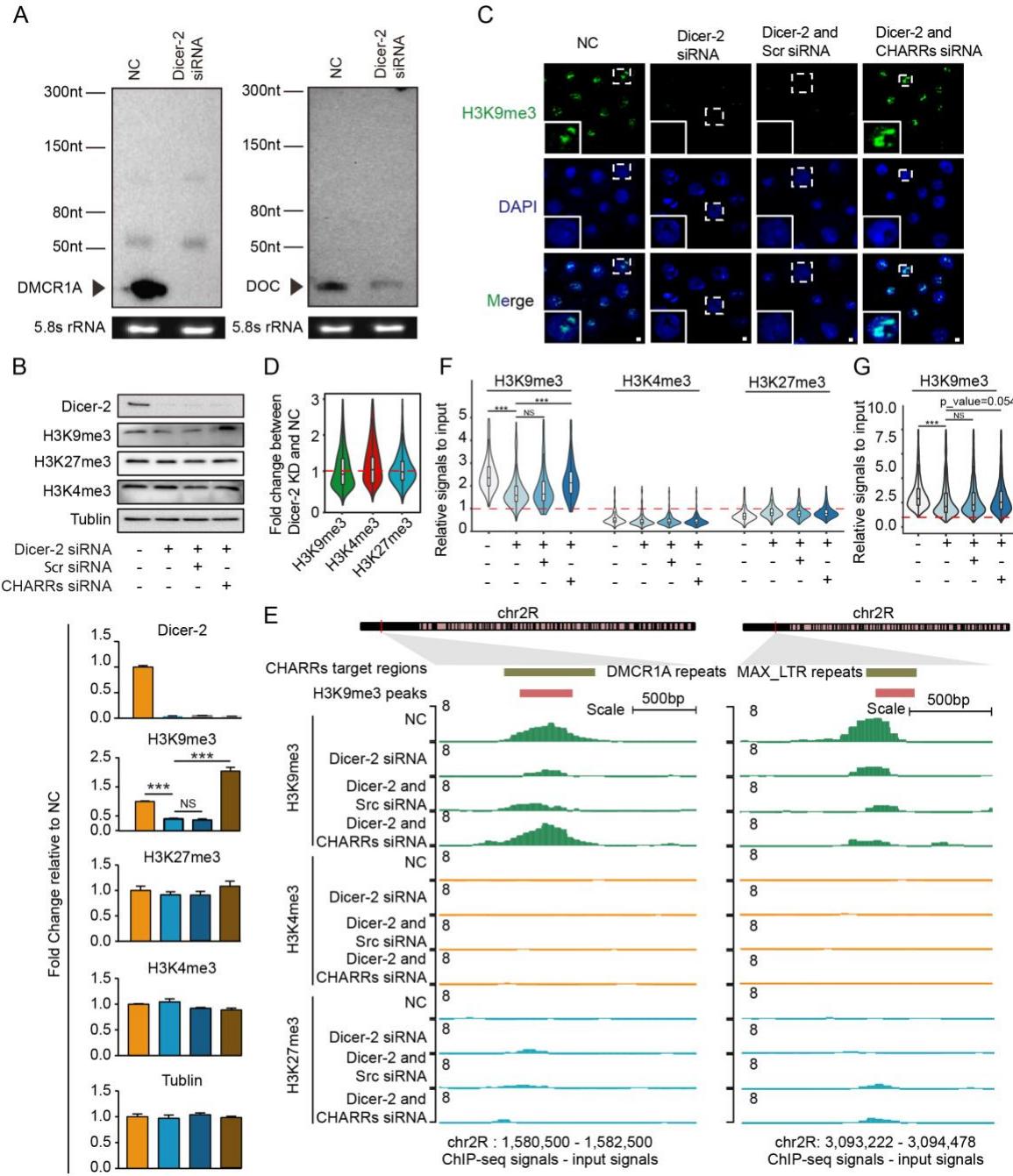
371 (A) A representative genomic region showing TV1I transcription loci and interactions with TV1I
 372 subfamily RNAs produced either locally or from other chromosomes (*trans*-acting RNAs). Three
 373 annotated TV1I transcription regions are indicated at bottom. (B) TV1I subfamily-derived RNAs
 374 were segregated into three groups according to their levels of transcription (bottom 25%, middle
 375 50%, and top 25%). Bars indicate the percentage of *trans*-acting TV1I RNAs on the transcription
 376 loci in each group. (C and D) Similar analysis and illustration for another typical CHARR Baggins
 377 1 as in A and B. (E) Pearson correlation scores for individual CHARRs between their expression

378 and the percentage of associated *trans*-acting RNAs from the same subfamilies.(F) Tendencies of
379 CHARRs engaging homotropic versus heterotropic interactions based on normalized reads per
380 kilobase per million (Left). The two classes of CHARRs were further separated into those with
381 preference for inter- (yellow) or intra- (blue) chromosomal interactions (Right), as indicated in Fig.
382 4.

383 Given the observation that some CHARRs preferred to interact with DNA near their sites
384 of transcription while others showed both *cis*- and *trans*-chromosomal interactions, we next
385 characterized the underlying DNA sequences that might specify such RNA-DNA interactions. If
386 a given CHARR specifically interacted with a DNA region that harbors the same repeat sequence
387 within a 1kb window, we called it “homotropic” interactions. If the interacting DNA region
388 contains distinct repeat sequence (e.g. those encoding for RNAs of different classes or different
389 subfamily members), we then referred it to as “heterotropic” interactions. All DNA interaction
390 regions that contain no repeat sequence were classified as “others”. According to these definitions,
391 we found that 59 CHARRs (yellow-labeled in Fig. 4B) were predominantly engaged in homotropic
392 interactions, whereas the remaining 18 (blue-labeled in Fig. 4B) were more involved in
393 heterotropic interactions, and none showed significant interactions with DNA that contain no
394 repeat sequence (Fig. 5F, left). We further noted that relative to CHARRs with preference for
395 homotropic interactions, more CHARRs with higher tendency to engage in heterotropic
396 interactions were more involved in inter-chromosomal interactions, as indicated by a significant
397 odds ratio (Fig. 5F, right). These observations imply that CHARRs with preference for homotropic
398 interactions may facilitate initiating heterochromatin formation, whereas those for heterotropic
399 interactions may play more important roles in heterochromatin spreading as well as maintenance.

400

401 **Dicer-2 processed repeat-derived RNAs for heterochromatin maintenance**


402 Most retrotransposons are known to be bi-directionally transcribed. To verify this, we
403 took advantage of the existing GRO-seq data on *Drosophila* S2 cells (Supplementary Table 2),
404 showing that both sense and anti-sense repeat-derived transcripts were indeed represented in
405 relatively equal abundance, with rRNAs served as control for predominantly sense transcription
406 (Supplementary Fig. 6A). Interestingly, but not necessarily surprisingly, the identified CHARRs
407 were among the most abundant repeat-derived RNAs. This was true regardless of different RNA
408 classes (Supplementary Fig. 6B), which is in contrast to annotated non-repeat transcripts, the
409 majority of which was transcribed from the sense strand (Supplementary Fig. 6C), with exception
410 of some long intergenic non-coding RNAs (Supplementary Fig. 6D).

411 Bi-directionally transcribed repeat RNAs may thus provide dsRNA substrates for further
412 processing into endo-siRNAs to function in heterochromatin formation/maintenance, as
413 demonstrated earlier(Fagegaltier et al. 2009; Volpe and Martienssen 2011). Furthermore, in
414 contrast to piRNA-mediated heterochromatin formation in germline, Dicer-2 has been reported to
415 be specifically devoted to endo-siRNA processing in fly somatic cells(Lee et al. 2004; Pham et al.
416 2004; Czech et al. 2008; Ghildiyal et al. 2008). To determine whether the CHARRs we identified
417 all depended on Dicer-2 for their efficient processing and thus expression, we took advantage of
418 the existing small RNA-seq data (Supplementary Table 2) to compare their expression levels
419 between wild-type, Dicer-2 knockout, and Dicer-2 rescued S2 cells(Kandasamy and Fukunaga

420 2016). We found that almost all CHARRs were down regulated in response to Dicer-2 knockout
421 and rescued in Dicer-2 re-expressed cells (Supplementary Fig. 7A). Note that much higher
422 expression of those endo-siRNAs in Dicer-2 re-expressed cells likely resulted from Dicer-2
423 overexpression. Importantly, the RNA-seq reads of total CHARRs from wild-type S2 cells were
424 distributed between 18 to 25nt in length, consistent with their processing into endo-siRNAs
425 (Supplementary Fig. 7B). These endo-siRNAs appeared to have assembled into Ago2-containing
426 complexes, as 54 (75%) CHARRs could be identified in the published Ago2 RIP data
427 (Supplementary Fig. 7C). Therefore, re-analysis of these published data on CHARRs strongly
428 suggests that Dicer-2 is responsible for processing CHARRs into endo-siRNAs to help maintain
429 heterochromatin in S2 cells.

430 To directly test this hypothesis, we performed Dicer-2 knockdown in S2 cells
431 (Supplementary Fig. 7D, E) and confirmed drastic reduction of small RNAs derived from
432 DMCR1A or DOC by Northern blotting (Fig. 6A). Because many CHARRs were able to supply
433 RNAs in *trans*, as we documented in the present study, we asked whether or not the associated
434 phenotype previously detected on heterochromatin could be “rescued” with small RNAs derived
435 from CHARRs. For this purpose, we chemically synthesized a pool of endo-siRNA mimics based
436 on a representative subset of CHARRs (DMCR1A, FB4_DM, FB_DM, Gypsy4_I-inU, DOC,
437 Gypsy2-I and I_DM, Supplementary Table 3) and transfected this pool into S2 cells depleted of
438 Dicer-2. We found that relative to wild-type cells, Dicer-2 knockdown reduced H3K9me3 as
439 expected, and importantly, the CHARR-derived siRNA pool, but not scrambled siRNA, effectively

440 restored this heterochromatin marker, while the levels of H3K27me3 and H3K4me3 remained
441 constant under these experimental conditions (Fig. 6B, quantified below based on triplicated
442 experiments). This was also evident at the immunocytochemical level by staining for H3K9me3
443 (Fig. 6C). These data suggest that the CHARR-derived siRNA mimics were able to rescue
444 heterochromatin defects upon transfection (thus only acting in *trans*) into Dicer-2 deficient S2
445 cells.

446

447 **Figure 6. Trans-acting repeat-derived RNAs for heterochromatin maintenance**

448 (A) Confirmation of Dicer-2 dependent expression of DMCR1A (left) and DOC (right) expression
 449 by Northern blotting analysis.(B) Western blotting analysis of Dicer-2, H3K9me3, H3K27me3,
 450 H3K4me3 and Tubulin in S2 cells in response to siRNA-mediated knockdown of Dicer-2 and
 451 rescue with a transfected pool of CHARR-derived synthetic siRNAs. Quantified data are shown
 452 below as fold-change (FC) relative to input (NC) in lane 1. Data are presented as mean \pm SEM (n

453 = 3 biological replicates). *p<0.05, **p< 0.01, ***p<0.001. (unpaired Student's t test).(C)
454 H3K9me3 detected by immunocytochemistry in S2 cells treated with different combinations of
455 siRNAs, as indicated. Green, H3K9me3 signals; blue, DAPI. Scale bar, 2μm.(D) Violin plot for
456 fold-change of H3K9me3, H3K4me3 and H3K27me3 signals on CHARRs-targeted peaks in
457 response to Dicer-2 knockdown. KD: knockdown. (E) H3K9me3 ChIP-seq signals on
458 representative genomic loci, one corresponding to a CHARR-target locus (left) and a non-
459 CHARR-target locus (right) in response to Dicer-2 knockdown, complemented with either
460 scrambled or CHARRs-derived siRNAs. ChIP-seq signals for euchromatin (H3K4me3) or
461 facultative heterochromatin (H3K27me3) were shown for comparison.

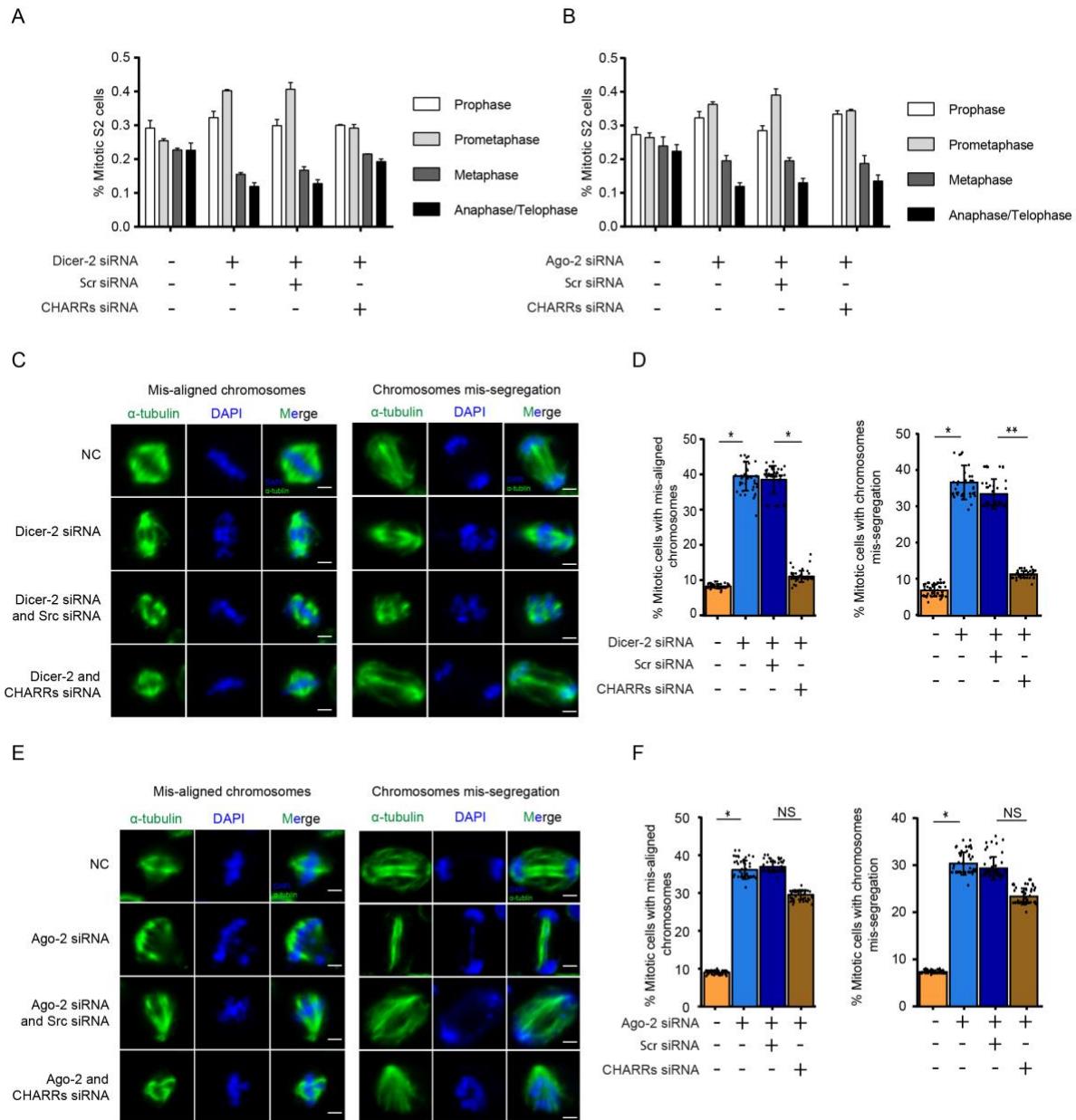
462 **Rescuing global heterochromatin defects in Dicer-2 deficient cells**

463 To demonstrate the contribution to repeat-derived endo-siRNAs to heterochromatin
464 maintenance genome-wide, we next performed ChIP-seq for H3K9me3 in comparison with
465 H3K4me3 and K3K27me3 in response to Dicer-2 knockdown with or without treatment with
466 CHARR-derived siRNA mimics in S2 cells. Our ChIP-seq datasets were comparable to the profiles
467 of these histone marks published earlier on the same cell type, demonstrating the quality of our
468 data (Supplementary Fig. 8A, B). Upon Dicer-2 knockdown, we detected global decrease of the
469 H3K9me3 ChIP-seq signals, while the ChIP-seq signals for H3K4me3 and H3K27me3 were not
470 affected (Fig. 6D). The effects were also evident on individual H3K9me3-marked genomic loci
471 (see first two tracks in Fig. 6E), suggesting that Dicer-2 is functionally required for maintaining
472 heterochromatin genome-wide.

473 The next question was whether CHARR-derived siRNA mimics were able to rescue
474 heterochromatin defects, and if so, whether the rescue required their targeting specificity. Because
475 those siRNA mimics were designed to target 10 representative CHARRs (Supplementary Table
476 3), we thus analyzed the H3K9me3 ChIP-seq signals on 1kb-binned genomic regions that show

477 homology with at least one of the CHARR-derived siRNA mimics (Fig. 6F) in comparison with
478 genomic regions that showed H3K9me3 ChIP-seq signals but with <50% homology with any of
479 those CHARR-derived siRNA mimics (Fig. 6G). Indeed, we found that CHARR-derived siRNA
480 mimics, but not scrambled siRNA, effectively rescued H3K9me3 ChIP-seq signals on CHARRs
481 target genomic regions (compare lane 2 vs. 4 in Fig. 6F), but modest at best (likely due to a
482 remaining degree of heterotropic interactions) on none CHARRs target regions (compare lane 2
483 vs. 4, p=0.054, in Fig. 6G). As expected, little H3K4me3 and H3K27me3 ChIP-seq signals were
484 detected in H3K9me3-marked genomic loci. These general trends were also illustrated on two
485 representative genome loci for CHARRs targets (Fig. 6E, left and Supplementary Fig. 9A) and
486 none CHARRs targets (Fig. 6E, right and Supplementary Fig. 9B). Collectively, these data
487 demonstrated that a pool of *trans*-acting CHARR-derived siRNA mimics was able to bypass the
488 functional requirement of Dicer-2 for maintaining heterochromatin homeostasis on their target
489 regions in *Drosophila* S2 cells.

490


491 **CHARR-derived endo-siRNAs required for faithful chromosome segregation**

492 It has been previously documented that knockdown of Dicer-2 and Ago-2 caused
493 significant defects in chromosome segregation during cell division in S2 cells(Pek and Kai 2011).
494 Because Dicer-2 and Ago-2 are key siRNA pathway components, it is reasonable to extrapolate
495 that endo-siRNAs processed by Dicer-2 and loaded on Ago-2 are responsible for the phenotype,
496 but direct evidence for this critical conclusion has been lacking. Given that the CHARRs we

497 identified cover most of pericentromeric regions to maintain the heterochromatin status in the fly
498 genome (see Fig. 3B) and most of these CHARRs-derived were bound by Ago-2 (see
499 Supplementary Fig. 7C), we took advantage of the ability of CHARRs-derived siRNAs to rescue
500 most heterochromatin defects to ask whether these siRNA mimics were also able to rescue the
501 chromosome segregation defects. To this end, we first confirmed that knockdown of either Dicer-
502 2 or Ago-2 caused cell cycle defects, and as expected, we detected G1-S arrest in both cases (Fig.
503 7A, B and Supplementary Fig. 10). Importantly, we found that CHARRs-derived siRNAs, but not
504 scrambled siRNA, were able to rescue the cell cycle defects in Dicer-2 knockdown cells (Fig. 7A),
505 but not Ago-2 knockdown cells (Fig. 7B). These data are fully in line with the requirement of
506 Dicer-2 for processing CHARRs into small endo-siRNAs, which could be bypassed by the
507 transfected siRNA mimics, although these siRNA mimics would still need Ago-2 to execute their
508 functions in the cell.

509 We closely examined the mitotic defects in Dicer-2 knockdown cells, noting both mis-
510 aligned chromosomes and lagged as well as mis-segregated chromosomes (Fig. 7C and
511 Supplementary Fig. 11A) in about equal frequencies (Fig. 7D). Importantly, transfection of
512 CHARRs-derived siRNA mimics into these Dicer-2 deficient cells, but not scrambled siRNA,
513 were sufficient to rescue these defects (Fig. 7D and Supplementary Fig. 11A). In contrast, we
514 observed similar mitotic defects in Ago-2 knockdown cells, but the CHARRs-derived siRNAs
515 failed to correct the phenotype (Fig. 7E and Supplementary Fig. 11B). Taken together, these results
516 provide unequivocal evidence for active retrotransposon RNAs to preserve pericentromeric

517 heterochromatin homeostasis and thus cell cycle progression through the Dicer-2/Ago-2 mediated
 518 endo-siRNA pathway.

519
 520 **Figure 7. CHARRs could rescue Dicer-2 knockdown, but not Ago-2 knockdown, induced**
 521 **cell division defects**

522 (A and B) Percentages of S2 cells at each stage of mitosis in response to knockdown of Dicer-2
 523 (A) or Ago-2 (B) and treatment with either scrambled or CHARRs-derived siRNAs. n=50 for each

524 experiment. (C) Dicer-2 knockdown-induced chromosomes mis-alignment (left) and mis-
525 segregation (right) and rescue by CHARRs-derived siRNAs, but not scrambled siRNA. Green,
526 stained α -tubulin; blue, DAPI. Scale bar, 2 μ m.(D) Percentages of S2 cells at metaphase exhibiting
527 mis-aligned chromosomes (left) and anaphase exhibiting lagging chromosomes (right) at different
528 experimental conditions. n=50 for each condition. *p<0.05, **p<0.01, NS: not significant
529 (multiple group Student's t test). (E and F) Similar to C and D except on Ago-2 knockdown cells.
530 n=50 for each condition. *p<0.05, **p<0.01, NS: not significant (multiple group Student's t test).

531

532 **DISCUSSION**

533 Genetic and biochemical experiments in fission and *Drosophila* have laid a general
534 conceptual framework in understanding the formation and maintenance of constitutive
535 heterochromatin in centromeric and pericentromeric regions(Ekwall et al. 1995; Kellum and
536 Alberts 1995; Grewal and Jia 2007). Interestingly, however, while heterochromatin is in general
537 prohibitive to transcription, mounting evidence suggests that transcription is actually required to
538 initiate heterochromatin formation. This so-called nascent RNA model(Buhler et al. 2006; Holoch
539 and Moazed 2015a) also creates a puzzle in envisioning how heterochromatin could be actively
540 maintained. As a matter of fact, it has been reported that repeat-derived RNAs are prevalent on
541 chromatin in vertebrate cells from *Drosophila* to humans(Hall et al. 2014), implying that there is
542 no shortage of repeat-derived RNAs to help maintain heterochromatin. The central question is
543 what is the nature of these RNAs and where they come from?

544 The consensus in the field is that heterochromatin-associated RNAs are mostly derived
545 from active retrotransposons and simply repeats. However, the nature of such repetitive sequences
546 has made it difficult to determine their origins and destinations in the genome. We have now

547 attacked this fundamental problem by using the newly elucidated RNA-DNA interactome in
548 *Drosophila* somatic cells(Li et al. 2017). Taking advantage of such high density interactome, we
549 now show that various active retrotransposons, especially those from the Gypsy family of the LTR
550 class, produce a large amount of repeat RNAs that are selectively associated with pericentromeric
551 regions in the fly genome. Interestingly, while a subset of those repeat-derived RNAs tends to act
552 in *cis*, another subset appears to interact with DNA in both *cis* and *trans* modes. Particularly
553 interesting is a general trend we have uncovered, where DNA loci with more active local
554 transcription seem to inversely correlate to their ability to attract *trans*-acting RNAs from related
555 repeat species. Therefore, RNAs released from those more active loci may supply extra RNAs to
556 act in *trans* on less transcribed loci. This “community” act of repeat-derived RNAs may thus help
557 “patch up” certain heterochromatic regions “damaged” by chromatin remodeling activities in the
558 cell, such as that catalyzed by the H3K9me3 demethylase, thereby ensuring heterochromatin
559 homeostasis for stable epigenetic inheritance.

560 In fission yeast, repeat-derived RNAs are amplified by an RNA-dependent RNA
561 polymerase, which may supply a population of *trans*-acting RNAs to help initiate and/or maintain
562 heterochromatin in other genomic loci(Yu et al. 2018). A different mechanism is employed in
563 *Drosophila* germline where repeat-rich transcripts are processed and amplified by the piRNA
564 machinery to ensure efficient silencing of retrotransposons to protect the genome integrity as well
565 as to help maintain heterochromatin in centromeric and pericentromeric regions to ensure accurate
566 chromosome segregation during cell division in gonad(Muerdter et al. 2013; Iwasaki et al. 2015).

567 The problem is that such RNA amplification mechanism does not seem to exist in somatic cells of
568 flies and mammals. The endo-siRNA pathway has clearly been implicated in *Drosophila* somatic
569 cells(Czech et al. 2008; Ghildiyal et al. 2008), although it remains unclear whether such endo-
570 siRNA pathway also operates in somatic cells of mammals, which might result from less attention
571 paid on processing of repeat-derived RNAs by the conserved siRNA machinery known to be
572 highly active in mammals. In any case, at least in *Drosophila* S2 cells, we now document that such
573 endo-siRNA pathway is responsible for generating small RNAs that can act in *cis* and *trans* to help
574 maintain heterochromatin homeostasis in pericentromeric regions. We envision a similar
575 mechanism that may also operate in somatic cells in mammals, which requires future investigation
576 once the RNA-DNA interactome of much higher density becomes available.

577 Knockdown of Dicer (Dicer-1 in mammals and Dicer-2 in fly) and Ago-2 has been shown
578 to cause mitotic defects in both fly and mammalian cells(Pek and Kai 2011; Huang et al. 2015),
579 but it has been unclear whether these small RNA machineries act through their traditional functions
580 or through some new mechanism(s) in the nucleus. We now show that a pool of synthetic repeat-
581 derived siRNA mimics is able to rescue all measurable cell cycle defects in *Drosophila* S2 cells,
582 which is fully compatible to the central role of the endo-siRNA pathway in ensuring cell cycle
583 progression through maintaining pericentromeric heterochromatin. We speculate the conversed
584 function of this pathway in mammals, although different classes of retrotransposons are likely
585 involved in different organisms.

586 The production of repeat-derived small RNAs to help maintain heterochromatin for stable
587 genetic inheritance in somatic cells suggests a key and immediate benefit of active
588 retrotransposons for the genome. This realization is interesting because retrotransposons have been
589 traditionally viewed as mutagens in the genome, although their relatively random actions may
590 facilitate genome evolution in the long run. In *Drosophila* germ cells, an RNA amplification
591 mechanism has been evolved to maximally suppress this mutagen function of retrotransposons to
592 ensure genome integrity. We now show that despite the lack of such RNA amplification
593 mechanism in somatic cells, the endo-siRNA machinery is still quite active to ensure the supply
594 of repeat-derived small RNAs. Therefore, without worrying about the responsibility to transmit
595 genetic materials to offspring, somatic cells may tolerate potential genome vulnerability in
596 exchange for stable genetic inheritance during development and differentiation. As higher
597 eukaryotic genomes are populated with enormous amounts of repeat sequences, we suggest that
598 some of those “junk” DNA sequences actually have important functions while most others are
599 fossil of genome evolution.

600

601

602 METHODS

603

604 Cell Lines and Cell Culture Conditions

605 S2 cells were cultured under sterile conditions at 26°C in Schneider medium (Invitrogen)
606 containing 10% heat-inactivated fetal bovine serum and 100 µg/ml penicillin-streptomycin. S2 cell
607 lines are negative for mycoplasma contamination.

608

609 **Alignment of GRID-seq reads to the *Drosophila* genome**

610 GRID-seq raw reads were split into RNA and DNA reads according to the designed bivalent linker.
611 Trimmomatic(Bolger et al. 2014) was used to remove adapter sequences and filter low-quality
612 reads by using the parameters *MINLEN*: 18 and *SLIDINGWINDOW*: 2:20. Filtered reads were
613 aligned to the *Drosophila* genome (genome version :dm6) with ShortStack(Axtell 2013) using the
614 parameter *-m 400* for DNA reads and *-m 200* for RNA reads, respectively. Multiple mapped reads
615 were weighted based on the frequencies of neighbor uniquely mapped reads (Supplementary Fig.
616 1C). Unmapped reads were cleaned with SAMtools(Li et al. 2009) using the parameter *-F 4*, and
617 the weighted score of each read was recorded in the fifth column of bed file.

618

619 **Annotation of RNA and DNA reads**

620 Annotated unique RNAs of *Drosophila* was downloaded from FlyBase(Drysdale 2008) and the
621 repeat sequences from RepeatMasker track in the UCSC genome browser(Jurka et al. 2005). RNA
622 reads were annotated to unique and repeat RNAs using IntersectBed tool with the parameter *-f 1.0*,
623 *-split* and *-s*. The *Drosophila* genome was scanned with EMBOSS (Rice et al. 2000) based on Alu
624 I restriction sites from REBASE (Roberts et al. 2015) to generate AluI DNA bins. IntersectBed
625 tool was used to connect Alu I DNA bins using the parameter *-f 1.0*.

626

627 **Assigning RNA-DNA interactions**

628 Multiple read pairs that have the same mapped RNA and DNA loci associated with the same PCR
629 primer sequences were considered PCR duplicated, and thus were counted only once. The
630 following equation was used to compute RNA-DNA interactions in each AluI DNA bin:

631
$$Num_{(interaction)} = \sum_{i=1}^n (R_i * D_i)$$

632 Where n is the number of assigned read pairs. For each read pair i , R_i is the contribution score of
633 this read to the RNA part and D_i is the contribution score of this read to the interacting AluI DNA
634 bin. $R_i = 1$, if the RNA part of the read pair is uniquely mapped, or equals to a fraction based on
635 the weighted score.

636

637 **Construction of non-specific background using mixed GRID-seq libraries**

638 A mixed GRID-seq library from human MDA-MB-231 and *Drosophila* S2 cells was used to
639 construct the non-specific RNA-DNA interaction profile. RNA reads, which were only mapped to
640 the human genome (hg38) using Bowtie(Langmead et al. 2009) with the parameter *-n 0*, were kept.
641 Their mated DNA reads were processed using ShortStack, as described above. The human RNA
642 signals within each 1kb DNA bin were normalized to one million, which was further smoothed by
643 a moving window that includes 5 upstream and 5 downstream bins. The final coverage of the 1kb
644 DNA bin i is:

645

$$Cov_i = \frac{1}{11} \sum_{i=5}^{i+5} \left(\frac{10^6 * \sum_m Read_{im}}{N} \right)$$

646 where m is the number of reads mapped to the 1k DNA bin i and N is the total read number mapped
647 to the *Drosophila* genome.

648

649 To make DNA binding scores comparable between Alu I binned versus 1kb binned genome, RNA
650 binding signals in each 1k DNA bin were converted to RNA binding signals in each AluI DNA
651 bin by first dividing each 1kb DNA bin into 1000 1bp bins to calculate the signal in each small bin
652 based on $\frac{Cov_{bin}}{1000}$. IntersectBed tool with the parameter $-f 1.0$ was used to compute signals in each
653 Alu I DNA bin by summing the signals from all 1bp bins in the fragment. Finally, signals in AluI
654 DNA bins were all normalized to signals per 1kb:

655

$$Score_{AluI \text{ DNA bin } j \text{ in mixed library}} = \frac{(10^3 * \sum_{m=1}^{Len_j} Cov_m)}{Len_j}$$

656 where Len_j is the length of the AluI DNA bin j .

657

658 **Filtering singular and background to identify specific RNA-DNA interactions**

659 To support specific RNA-DNA interactions, we required at least two RNA-DNA mates for each
660 RNA transcript in a given Alu I DNA bin. We also developed two background models to simulate
661 Poisson distribution of RNA binding signals on DNA. The first was based on uniform distribution
662 of individual RNAs on DNA, based on which we estimated the background score:

663

$$Score_{interaction \text{ } i-j} = \frac{(Len_g * N_i)}{Len_g}$$

664 where the Len_g is the length of the genome, Len_j is the length of AluI DNA bin j and N_i is total
665 signals for RNA i . This score was further normalized according to length in each AluI DNA bin,
666 and the resulting RPK (reads per kilobase) was used as the λ_{BG_i} value to obtain the Poisson
667 distribution of this RNA-engaged genomic interactions and to calculate the p-value for such
668 interactions. The ratio of $Num_{interaction \text{ } i-j}$ over $Score_{interaction \text{ } i-j}$ was reported as the
669 fold_change (FC) above the background. We also developed a second background model with that
670 data deduced with RNA signals from the mixed library. We first calculated the non-specific
671 interaction score ($Score_{AluI \text{ DNA bin } j \text{ in mix library}}$) based on human-derived RNA binding signals,
672 and then used this score as the λ_{BG_mix} value to obtain the Poisson distribution of human RNA-
673 engaged genomic interactions and to calculate the p-value for such interactions. The ratio of length
674 and sequencing depth normalized $Num_{interaction \text{ } i-j}$ (in RPKM) over λ_{BG_mix} was reported as
675 the fold_change (FC). RNA-DNA interactions that met the requirement of p-value <0.05 and the
676 fold_change (FC) >2 based on both background models were considered specific and thus retained
677 for further analysis.

678

679 **Data normalization for comparison between GRID-seq libraries and different RNAs within
680 the same libraries**

681 The interaction RNA-DNA score for each RNA is affected by the sequencing depth in different
682 GRID-seq libraries, the length of each Alu I DNA bin, and the length of each RNA. To enable
683 comparison among different libraries and different RNAs within the same libraries, we normalized
684 these variables according to:

685
$$RRPKM_{ij} = \frac{(Num_{ij} * 10^6 * 10^3 * 10^3)}{(TotalReadCounts * Len_{Dj} * Len_{Ri})}$$

686

687 where Num_{ij} is the interaction score of RNA i with Alu I DNA bin j , $TotalReadCounts$ is the
688 sequencing depth of individual libraries, Len_{Dj} is the length of Alu I DNA bin j and Len_{Ri} is
689 the length of RNA i .

690

691 **Comparison between GRID-seq and ChAR-seq datasets**

692 ChAR-seq raw data were downloaded from the GEO database (Supplementary Table 2). PCR
693 duplicates were removed using Clumpify with default parameters. All five independent ChAR-seq
694 libraries were combined followed by adapter trimming and filtering low-quality reads with
695 Trimmomatic using the parameters $MINLEN: 36$, $LEADING:3$ $TRAILING:3$ and
696 $SLIDINGWINDOW: 4:15$. Filtered ChAR-Seq reads were split into paired RNA and DNA reads,
697 and then processed as described above for the GRID-seq data. FeatureCounts was used to calculate
698 reads in 1kb DNA bins and then converted to RPKM using edgeR package in R language. For
699 validation for assigning multi-mapped reads, we only considered 1kb DNA bins that contain newly
700 assigned multi-mapped reads from the GRID-seq dataset.

701

702 **Comparison of RNA-DNA interactions in relationship with chromatin marks**

703 Public ChIP-seq data from S2 cells were downloaded from the SRA database (Supplementary
704 Table 2). Fastq-dump were used to convert raw SRA data to Fastq. Quality control and data
705 processing were similar to the procedures for processing the GRID-seq data with parameters
706 adjusted to $MINLEN: 36$ and $SLIDINGWINDOW: 4:20$ according to the read length. Filtered reads
707 were mapped to the reference *Drosophila* genome (dm6) using STAR (Dobin et al. 2013) with the
708 parameters: $--outFilterScoreMinOverRead 0.1$, $--outFilterMatchNminOverRead 0.1$, $--$
709 $alignIntronMax 1$ and $--alignEndsType EndToEnd$. The wig files of each chromatin mark ChIP-
710 seq dataset was obtained through STAR using the parameters: $--outWigType wiggle read1_5p$, $--$
711 $outWigStrandUnstranded$ and $--outWigNormRPM$. Enriched peaks were detected by MACS2 with
712 input data as control. Top 500 peaks were used for further analysis.

713

714 **Identification of repeat RNA on constitutive heterochromatin**

715 The ChIP-seq data for constitutive heterochromatin markers (H3K9me3 and HP1) were obtained
716 from the GEO database (Supplementary Table 2) and the RPKM values were calculated on 10kb

717 DNA bins. The Pearson correlation score was calculated on each DNA bin containing binding
718 signals from repeat RNAs. Repeat sequences, except rRNAs, were defined as CHARRs if the
719 correlation score with H3K9me3 or HP1 is >0.3.

720

721 **Analysis of CHARR-DNA interactions relative to Hi-C defined compartments**

722 Public Hi-C data from S2 cells were downloaded (Supplementary Table 2) and processed with
723 Trimmomatic using default settings plus trim tool in Homer using the parameter `-3 AAGCTT`.
724 Trimmed reads with length of ≥ 38 nt were mapped to the *Drosophila* genome using end-to-end
725 alignment model provided by Bowtie2 (Ref (Langmead and Salzberg 2012)). We discarded
726 potential PCR duplicates as well as reads with no useful information, including (1) read pairs
727 separated $<1.5\times$ of the sequenced insert fragment length, (2) reads from 10kb regions
728 containing $>5\times$ of the average coverage, (3) read pairs lacking restriction sites at the 3' end of
729 either read within the estimated fragment length, (4) reads with their ends resulting from self-
730 ligation with adjacent restriction fragments. We then used the filtered dataset to perform PCA
731 analysis with HOMER, using `runHiCpca.pl` with the parameters `-res 10kb` and `-superRes 20kb`
732 and compartments analysis using `runHiCpca.pl` and `findHiCCompartments.pl`. Finally, CHARR-
733 DNA interactions signals and Hi-C compartments were intersected with `IntersectBed` from
734 BedTools. The length of Hi-C compartment A and B was normalized to 1Mb.

735

736 **Processing GRO-seq, small RNA-seq and Ago2 RIP data from S2 cells**

737 All data were downloaded from public databases (Supplementary Table 2). GRO-seq data were
738 processed as with the ChIP-seq data for chromatin marks. Annotated unique and repeat RNA
739 species were used to calculate individual transcription scores by using FeatureCounts and EdgeR.
740

741 Small RNA-seq data were similarly processed as above using adjusted Trimmomatic parameters:
742 `SLIDINGWINDOW:4:24` and `MINLEN:18`. SortMeRNA(Kopylova et al. 2012) were used to filter
743 ribosomal RNAs with default setting. We also used ShortStack to map both uniquely and multi-
744 mapped reads to obtain the RPM value for each CHARR.

745

746 Reads for the downloaded Ago2 RIP data were blasted to identify repeat RNA-derived sequences
747 using the parameters `-outfmt 6` and `-word_size 7`. Reads will be kept for further analysis if the
748 mismatch number is under 3 and the mapping region of the reads equals to the whole length of the
749 reads. We then counted the reads number for each repeat sequence.

750

751 **siRNAs-mediated knockdown of Dicer-2 and Ago-2 and immunofluorescence**

752 Transfection was performed, as described(Rogers and Rogers 2008), using the “bathing” method
753 for siRNA delivery. Cells were counted, pelleted and resuspend at $1-5\times 10^6$ cells/ml in serum free
754 media. We added $\sim 10-30$ μ g dsRNA to each well in the 6-well tissue culture plate to obtain the
755 final concentration of 25-50 nM. About 1 ml of cells were seeded each well in the 6-well plate and

756 incubate at room temperature for 30 min followed by the addition of 3 ml complete media with
757 10% FBS to each well. This process was repeated every other day for three times before harvesting
758 the cells for downstream assays. Sequences of individual siRNAs were listed in Supplementary
759 Table 3.

760
761 For immunostaining, S2 cells were washed in 1× PBS and fixed in 4% paraformaldehyde (pH-7.2)
762 for 10 min at room temperature. After washing four times, cells were permeabilized with 0.1%
763 Triton X100 in 1× PBS for 5 min at room temperature. Permeabilized cells were then incubated in
764 1% normal goat serum in 1× PBST for 30 min at room temperature, and then with the primary
765 antibody (α -rabbit H3K9me3 1:500) and secondary antibodies (1:400) both in blocking buffer (3%
766 BSA, 1% goat serum in PBST), each for 1h at room temperature. Cells were washed three times
767 at room temperature, each for 5 min with 1× PBST. After mounting on coverslip with DAPI, cells
768 were examined under Zeiss LSM-700 confocal laser scanning microscope.

769
770 **ChIP-seq library construction and data analysis**

771 DNA libraries were constructed using the NEBNext® Ultra™ II DNA Library Prep kit (NEB,
772 USA) following manufacturer's recommendations. After end repair, 5' phosphorylation. and dA-
773 tailing of purified DNA fragments, NEBNext adaptors with hairpin loop structure were ligated and
774 library fragments were purified with SPRIselect sample purification beads (NEB, USA). After
775 ensuring the quality of libraries on the Agilent Bioanalyzer 2100 system, individual libraries were
776 sequenced on the Illumina HiSeq X Ten platform to generate 150 bp paired-end.

777
778 Adapters and low-quality reads were filtered to obtain clean reads and clean reads mapped to the
779 reference *Drosophila* genome (dm6) using Bowtie2. The wig files of each chromatin mark ChIP-
780 seq dataset was obtained by using bamCoverage tools from Deeptools(Ramirez et al. 2016) with
781 the parameters: *--binSize 1000, --normalizeTo1x 142573017 and --ignoreForNormalization chrM*.
782 Enriched peaks were detected by MACS2 with input data as control using the parameters *-f*
783 *BAMPE --nomodel --keep-dup all --broad*.

784
785 **Analysis of mitotic defects**

786 Medium and fetal bovine serum were batch tested for support of normal cell growth and RNAi
787 efficiency. For the knockdown group, specific synthetic siRNA was added to cell culture in 24-
788 well plates. After siRNA treatment for 4 days, cells were resuspended and transferred to glass-
789 bottom, 24-well plates (Cellvis) and allowed to adhere for 2.5 hrs before fixation, as
790 described(Goshima et al. 2007). Cells were fixed in 4% paraformaldehyde for 10 min,
791 permeabilized with 0.1% Triton X100 in PBS for 5 min and incubated overnight at 4° C with anti-
792 α -tubulin (ab7291 from abcam; 1:1000) in PBS containing 0.1% Triton and 0.5 mg/ml BSA,
793 followed by staining with secondary antibodies and DAPI (1 μ g/ml). For the rescue group, siRNAi
794 treatment was performed as above followed by transfection of CHARRs siRNA 2 days later.

795 Immunostained specimens were imaged under a Zeiss LSM-700 confocal laser scanning
796 microscope, using a 63x 1.4 NA oil immersion objective to achieve high resolution. We imaged
797 two channels (DAPI, AF488) at typically 10-20 sites/well to obtain 50 metaphase cells/well on
798 average.

799

800 **Western blotting, RT-qPCR and Northern blotting**

801 Total cell lysate containing 15-25 μ g protein from S2 cell cultures were fractionated by SDS-
802 PAGE, immunoblotted and probed with specific antibodies. After incubation with peroxidase-
803 conjugated secondary antibodies (1:5000; Abcam), blots were developed with Supersignal West
804 Pico Chemiluminescent Substrate (Pierce) and exposed to film (SAGECREATION, MiNiChemi).
805 Signal intensity for Dicer-2, H3K9me3, H3K27me3, H3K4me3 and Tublin was quantified using
806 ImageJ.

807

808 For RNA quantification, total RNA was extracted, and genomic DNA was removed with DNase I
809 (Roche, 04716728001). First-strand cDNA was generated with the SuperScript III Fist-Stand using
810 random hexamers. The expression levels of RNAs were quantified on Rotor-Gene Q (QIAGEN)
811 and normalized against GAPDH mRNA. PCR primers sequences were listed in Supplementary
812 Table 3.

813

814 About 30 μ g of total RNA isolated with Trizol was loaded into each lane of agarose gel and blotted
815 onto membrane with Chemiluminescent Nucleic Acid Detection Module (Thermo Fisher)
816 according to manufacturer's instruction. RNA probes were labeled by *in vitro* transcription of
817 plasmids with T7 RNA polymerase (Promega) in the presence of Biotin RNA labeling mix (Roche).
818 The primers used were listed in Supplementary Table 3.

819

820 **Quantification and statistical analysis**

821 Statistical parameters were reported either in individual figures or corresponding figure legends.
822 Quantified data were in general presented as bar/line plots, with the error bar representing mean \pm
823 SEM, or boxplot showing the median (middle line), first and third quartiles (box boundaries), and
824 furthest observation or 1.5 times of the interquartile (end of whisker). All statistical analyses were
825 done in R. Wherever asterisks are used to indicate the statistical significances, *stands for $p < 0.05$;
826 ** for $p < 0.01$, *** for $p < 0.001$ and NS for not significant.

827

828 **Data Access**

829 All sequencing and processed files were deposited to Gene Expression Omnibus under accession
830 number GSE134307. To review GEO accession GSE134307: Go to
831 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134307>, then enter token
832 qzexqwwmbbjhol into the box. All software and the datasets used in this study are available from
833 the corresponding author, Xiang-Dong Fu (xdfu@ucsd.edu), upon reasonable request.

834 **ACKNOWLEDGEMENTS**

835 We thank Dr. Yang Yu for providing S2 cells. This work was supported by grants from
836 the National Key R&D Program of China (2016YFC0901702, 2016YFC09010002) and the
837 National Natural Science Foundation of China (31871294, 31520103905) to R.S.C. and S.M.H.,
838 and NIH grants (HG004659, GM049369 and GM052872) to X.D.F.

839 **AUTHOR CONTRIBUTIONS**

840 Conceptualization, X.D.F., R.S.C., and S.M.H.; Methodology development and data
841 analysis, Y.J.H.; Generation of the GRID-seq data in S2 cells, X.L.; Experimental design and
842 execution, Y.J.H., D.P.W. and S.H.W.; Data interpretation and discussion, Y.J.H., X.D.F., R.S.C.,
843 S.M.H., D.P.W, S.H.W, P.Z., J.Y.C., C.W.S., and D.H.L.; Paper writing, Y.J.H. and X.D.F.

844 **DISCLOSURE DECLARATION**

845 The authors declare no competing interests.

846

847 **REFERENCES**

- 848 Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G. 1995. Mutations derepressing
849 silent centromeric domains in fission yeast disrupt chromosome segregation. *Genes Dev*
850 **9**: 218-233.
- 851 Avner P, Heard E. 2001. X-chromosome inactivation: counting, choice and initiation. *Nat Rev
852 Genet* **2**: 59-67.
- 853 Axtell MJ. 2013. ShortStack: comprehensive annotation and quantification of small RNA genes.
854 *Rna* **19**: 740-751.
- 855 Baker BS, Gorman M, Marin I. 1994. Dosage compensation in Drosophila. *Annu Rev Genet* **28**:
856 491-521.
- 857 Bell JC, Jukam D, Teran NA, Risca VI, Smith OK, Johnson WL, Skotheim JM, Greenleaf WJ,
858 Straight AF. 2018. Chromatin-associated RNA sequencing (ChAR-seq) maps genome-
859 wide RNA-to-DNA contacts. *Elife* **7**.
- 860 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
861 data. *Bioinformatics* **30**: 2114-2120.

- 862 Buhler M, Verdel A, Moazed D. 2006. Tethering RITS to a nascent transcript initiates RNAi-
863 and heterochromatin-dependent gene silencing. *Cell* **125**: 873-886.
- 864 Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M,
865 Wohlschlegel JA, Sachidanandam R et al. 2008. An endogenous small interfering RNA
866 pathway in Drosophila. *Nature* **453**: 798-802.
- 867 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras
868 TR. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**: 15-21.
- 869 Drysdale R. 2008. FlyBase : a database for the Drosophila research community. *Methods in
870 molecular biology (Clifton, NJ)* **420**: 45-59.
- 871 Ekwall K, Javerzat JP, Lorentz A, Schmidt H, Cranston G, Allshire R. 1995. The Chromodomain
872 Protein Swi6 - a Key Component at Fission Yeast Centromeres. *Science* **269**: 1429-1431.
- 873 Fagegaltier D, Bouge AL, Berry B, Poisot E, Sismeiro O, Coppee JY, Theodore L, Voinnet O,
874 Antoniewski C. 2009. The endogenous siRNA pathway is involved in heterochromatin
875 formation in Drosophila. *Proceedings of the National Academy of Sciences of the United
876 States of America* **106**: 21258-21263.
- 877 Franke A, Baker BS. 1999. The rox1 and rox2 RNAs are essential components of the
878 compensasome, which mediates dosage compensation in Drosophila. *Molecular Cell* **4**:
879 117-122.
- 880 Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z et
881 al. 2008. Endogenous siRNAs derived from transposons and mRNAs in Drosophila
882 somatic cells. *Science* **320**: 1077-1081.
- 883 Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N. 2007.
884 Genes required for mitotic spindle assembly in Drosophila S2 cells. *Science* **316**: 417-
885 421.
- 886 Grewal SI, Jia S. 2007. Heterochromatin revisited. *Nat Rev Genet* **8**: 35-46.
- 887 Grewal SI, Klar AJ. 1997. A recombinationally repressed region between mat2 and mat3 loci
888 shares homology to centromeric repeats and regulates directionality of mating-type
889 switching in fission yeast. *Genetics* **146**: 1221-1238.
- 890 Halic M, Moazed D. 2009. Transposon silencing by piRNAs. *Cell* **138**: 1058-1060.

- 891 Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M, Mehta N, Fackelmayer FO, Lawrence
892 JB. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic
893 interphase chromosomes. *Cell* **156**: 907-919.
- 894 Holoch D, Moazed D. 2015a. RNA-mediated epigenetic regulation of gene expression. *Nat Rev
895 Genet* **16**: 71-84.
- 896 Holoch D, Moazed D. 2015b. Small-RNA loading licenses Argonaute for assembly into a
897 transcriptional silencing complex. *Nat Struct Mol Biol* **22**: 328-335.
- 898 Huang C, Wang X, Liu X, Cao S, Shan G. 2015. RNAi pathway participates in chromosome
899 segregation in mammalian cells. *Cell Discov* **1**: 15029.
- 900 Iwasaki YW, Siomi MC, Siomi H. 2015. PIWI-Interacting RNA: Its Biogenesis and Functions.
901 *Annu Rev Biochem* **84**: 405-433.
- 902 Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. 2005. Repbase
903 Update, a database of eukaryotic repetitive elements. *Cytogenetic and genome research*
904 **110**: 462-467.
- 905 Kandasamy SK, Fukunaga R. 2016. Phosphate-binding pocket in Dicer-2 PAZ domain for high-
906 fidelity siRNA production. *Proc Natl Acad Sci U S A* **113**: 14031-14036.
- 907 Kellum R, Alberts BM. 1995. Heterochromatin Protein-1 Is Required for Correct Chromosome
908 Segregation in Drosophila Embryos. *J Cell Sci* **108**: 1419-1431.
- 909 Kopylova E, Noe L, Touzet H. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs
910 in metatranscriptomic data. *Bioinformatics* **28**: 3211-3217.
- 911 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nature methods* **9**:
912 357-359.
- 913 Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment
914 of short DNA sequences to the human genome. *Genome biology* **10**: R25.
- 915 Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. 2004. Distinct roles
916 for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. *Cell* **117**:
917 69-81.
- 918 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
919 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078-
920 2079.

- 921 Li X, Zhou B, Chen L, Gou LT, Li H, Fu XD. 2017. GRID-seq reveals the global RNA-
922 chromatin interactome. *Nat Biotechnol* **35**: 940-950.
- 923 Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal
924 V, May B, Kasschau KD et al. 2004. Role of transposable elements in heterochromatin
925 and epigenetic control. *Nature* **430**: 471-476.
- 926 Muerdter F, Guzzardo PM, Gillis J, Luo Y, Yu Y, Chen C, Fekete R, Hannon GJ. 2013. A
927 genome-wide RNAi screen draws a genetic framework for transposon control and
928 primary piRNA biogenesis in Drosophila. *Mol Cell* **50**: 736-748.
- 929 Pek JW, Kai T. 2011. DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway
930 promote mitotic chromosome segregation. *Proc Natl Acad Sci U S A* **108**: 12007-12012.
- 931 Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K,
932 Pagani M, Lachner M, Kohlmaier A et al. 2001. Loss of the Suv39h histone
933 methyltransferases impairs mammalian heterochromatin and genome stability. *Cell* **107**:
934 323-337.
- 935 Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ. 2004. A Dicer-2-dependent 80s
936 complex cleaves targeted mRNAs during RNAi in Drosophila. *Cell* **117**: 83-94.
- 937 Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai M, Shishkin A, Bhat
938 P, Trinh V et al. 2017. doi:10.1101/219683.
- 939 Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F,
940 Manke T. 2016. deepTools2: a next generation web server for deep-sequencing data
941 analysis. *Nucleic Acids Res* **44**: W160-165.
- 942 Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software
943 Suite. *Trends in genetics : TIG* **16**: 276-277.
- 944 Roberts RJ, Vincze T, Posfai J, Macelis D. 2015. REBASE--a database for DNA restriction and
945 modification: enzymes, genes and genomes. *Nucleic Acids Res* **43**: D298-299.
- 946 Rogers SL, Rogers GC. 2008. Culture of Drosophila S2 cells and their use for RNAi-mediated
947 loss-of-function studies and immunofluorescence microscopy. *Nature protocols* **3**: 606-
948 611.
- 949 Sridhar B, Rivas-Astroza M, Nguyen TC, Chen W, Yan Z, Cao X, Hebert L, Zhong S. 2017.
950 Systematic Mapping of RNA-Chromatin Interactions In Vivo. *Curr Biol* **27**: 610-612.

- 951 Stein P, Svoboda P, Anger M, Schultz RM. 2003. RNAi: Mammalian oocytes do it without
952 RNA-dependent RNA polymerase. *Rna* **9**: 187-192.
- 953 Sun FL, Cuaycong MH, Craig CA, Wallrath LL, Locke J, Elgin SC. 2000. The fourth
954 chromosome of *Drosophila melanogaster*: interspersed euchromatic and heterochromatic
955 domains. *Proc Natl Acad Sci U S A* **97**: 5340-5345.
- 956 Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G. 1994. The protein encoded by
957 the *Drosophila* position-effect variegation suppressor gene Su(var)3-9 combines domains
958 of antagonistic regulators of homeotic gene complexes. *EMBO J* **13**: 3822-3831.
- 959 Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. 2006. A distinct small RNA
960 pathway silences selfish genetic elements in the germline. *Science* **313**: 320-324.
- 961 Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D. 2004. RNAi-mediated
962 targeting of heterochromatin by the RITS complex. *Science* **303**: 672-676.
- 963 Volpe T, Martienssen RA. 2011. RNA interference and heterochromatin assembly. *Cold Spring
964 Harbor perspectives in biology* **3**: a003731.
- 965 Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. 2002. Regulation of
966 heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. *Science* **297**:
967 1833-1837.
- 968 Yu R, Wang X, Moazed D. 2018. Epigenetic inheritance mediated by coupling of RNAi and
969 histone H3K9 methylation. *Nature* **558**: 615-619.
- 970 Zhang YJ, Guo L, Gonzales PK, Gendron TF, Wu Y, Jansen-West K, O'Raw AD, Pickles SR,
971 Prudencio M, Carlomagno Y et al. 2019. Heterochromatin anomalies and double-
972 stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. *Science* **363**.

973