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ABSTRACT 

The mammary epithelial cell (MEC) system is a bi-layered ductal epithelial network 

consisting of luminal and basal cells, which is maintained by a lineage of stem and 

progenitor cell populations. Here, we used integrated single-cell transcriptomics and 

chromatin accessibility analysis to reconstruct the cell types of the mouse MEC system 

and their underlying gene regulatory features in an unbiased manner. We define 

previously unrealized differentiation states within the secretory type of luminal cells, which 

can be divided into distinct clusters of progenitor and mature secretory cells. By integrating 

single-cell transcriptomics and chromatin accessibility landscapes, we identified novel cis- 

and trans-regulatory elements that are differentially activated in the specific epithelial cell 

types and our newly defined luminal differentiation states. Our work provides an 

unprecedented resource to reveal novel cis/trans regulatory elements associated with 

MEC identity and differentiation that will serve as a valuable reference to determine how 

the chromatin accessibility landscape changes during breast cancer.   
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INTRODUCTION  

Breast cancer is a heterogeneous disease that can be classified into at least six different 

intrinsic subtypes, namely luminal A, luminal B, HER2-enriched, basal-like, normal breast 

and claudin-low (Perou et al., 2000). Breast cancer arises from the breast epithelium, 

which – in both humans and mice - forms a ductal epithelial network consisting of two main 

cellular compartments, an inner layer of luminal cells and an outer layer of 

basal/myoepithelial cells (Visvader, 2009). A series of recent reports have indicated that 

further heterogeneity exists within these two cell layers in mice. For example, several 

studies have identified a functionally distinct subpopulation of mammary stem cells within 

the basal compartment (Shackleton et al., 2006; Stingl et al., 2006). Within the luminal 

compartment, a subpopulation of progenitor cells has been identified by high expression 

of Kit, and in addition a population of mature luminal cells have been identified using flow 

cytometry isolation strategies (Shehata et al., 2012).  

 Advances in next generation sequencing and microfluidic-based handling of cells 

and reagents now enable us to explore cellular heterogeneity in an unbiased manner using 

single-cell mRNA sequencing (scRNAseq) to reconstruct transcriptional programs in 

individual cells (Pollen et al., 2014). Recent studies have utilized this approach to describe 

the cell types and states within the human (Nguyen et al., 2018) and mouse mammary 

epithelium (Bach et al., 2017; Pal et al., 2017) generally yielding three main cell types, 

namely basal (marked by Krt14), secretory luminal or also called luminal progenitors (L-

Sec; marked by Elf5) and mature, hormone-responsive luminal cells (L-HR; marked by 

Prlr). It remains elusive whether additional cellular diversity exists within these three cell 

types.  

 In addition to transcriptional programs, cellular identity may be strongly influenced 

by the epigenetic wiring of the cell, which is not detectable in scRNAseq data. Some of 

these features may be interrogated systematically by the Assay for Transposase-

Accessible Chromatin using sequencing (ATACseq) to reconstruct cis/trans regulatory 
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elements associated with cellular identity (Buenrostro et al., 2015a). Recent advances 

enabled single cell-level ATACseq (scATACseq) to profile cellular heterogeneity on an 

epigenetic level (Buenrostro et al., 2015b). This approach enabled unprecedented insights 

into the differentiation trajectories of the hematopoietic system (Buenrostro et al., 2018; 

Satpathy et al., 2019), and has recently elucidated transcriptional regulators of 

developmental lineages of the fetal mammary gland (Chung et al., 2019).   

 The goal of the present study is to elucidate the molecular underpinnings mediating 

cellular identity within the mouse mammary epithelium by integrating massively parallel 

single-cell transcriptomics (scRNAseq) and chromatin accessibility (scATACseq) profiling 

of isolated mammary epithelial cells (MECs). Our combined single-cell RNA/ATACseq 

analysis allowed us to identify previously unrealized cell state distribution within the luminal 

mammary epithelial compartment, and revealed novel cis- and trans-regulatory elements 

that are associated with cellular identity and differentiation from luminal progenitor into 

mature, secretory cells. Our work provides novel insights into the spectrum of cellular 

heterogeneity within the mouse mammary epithelial system under normal homeostasis 

and will serve as a valuable resource to understand how the system changes during early 

tumorigenesis and tumor progression.  

 

RESULTS AND DISCUSSION 

Single-cell chromatin accessibility reveals previously unrealized luminal epithelial 

cell states in the mouse mammary epithelium 

Our recent single-cell transcriptomics analysis of the human MEC system described three 

distinct cell types of epithelial cells (Nguyen et al., 2018). This pattern is largely conserved 

in the murine system, as shown in recent scRNAseq analyses of isolated mouse MECs 

describing three main cell types, namely basal (marked by Krt14), secretory luminal (L-

sec; marked by Elf5) and mature, hormone-responsive luminal cells (L-HR; marked by 

Prlr) (Bach et al., 2017; Pal et al., 2017). Here, we used massively parallel, droplet-enabled 
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scATACseq analysis (10X Genomics Chromium) to determine whether additional cell 

types and states can be observed on an epigenetic level, and to determine whether cis-

regulatory elements and transcription factor motif accessibility are systematically linked 

with cellular identity in the mammary epithelium. We profiled in total 23,338 individual cells 

for their chromatin accessibility landscapes. For initial quality validation purposes, we 

purified basal and luminal MECs by flow cytometry and subjected them to scATACseq 

analysis in three separate samples each (Figure 1A; Figure S1A-B). After processing the 

sequencing data using the Cell Ranger pipeline (10X Genomics), we performed unbiased 

clustering analysis on all peaks using Seurat, which revealed 4 main clusters (0-3) of 

MECs (Figure 1B), as well as minor populations of contaminating stromal cells that were 

excluded from this visualization. To identify cell types, we generated a gene activity matrix 

to serve as pseudo-expression data as previously described (Stuart et al., 2019). This 

enabled us to identify basal cells (cluster 0; marked by Krt14), L-Sec (Clusters 2-3; marked 

by Kit) and L-HR (cluster 1; marked by FoxA1) (Figure 1C; Figure S1C).  

Interestingly, we observed two previously unrealized distinct clusters within the L-

Sec cell type, which contained cluster 2 marked by Tm4sf1 encoding a tetraspanin 

transmembrane molecule involved in  breast cancer metastasis through regulation of PI3K 

pathway (Sun et al., 2015), while cluster 3 displays accessibility of the gene Rspo1 

encoding the regulator of Wnt signaling R-Spondin 1 that plays an important role in 

mediating mammary stem cell renewal (Cai et al., 2014). Further gene activity analysis 

enabled us to define numerous specific marker loci that are specifically accessible in the 

clusters (Figure S1C). Interestingly, cluster 3 also showed moderate accessibility of the 

basal marker gene Krt14 (Figure 1C), suggesting that - although of luminal epithelial 

nature according to flow cytometry and other hallmark gene activity such as Krt8/18 - this 

cell state within L-Sec shows some similarity to basal cells. This was particularly intriguing 

to us, since it could indicate a bipotent progenitor cell state that possesses the capacity to 

differentiate into both basal and luminal lineages, or a transitory luminal progenitor cell 
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type that is directly derived from a basal mammary stem cell as previously proposed 

(Shackleton et al., 2006; Stingl et al., 2006).  

Finally, we generated pseudo-bulk profiles to visualize genomic regions that were 

differentially accessible between basal and luminal MECs to reveal the substructure of 

chromatin accessibility variation between the two main basal and luminal compartments. 

Focusing on Wnt10a, which was found to be specifically open in basal cells based on our 

gene activity analysis (Figure 1D), we found that the main difference between basal and 

luminal MECs was observed around the immediate gene promoter region, while there was 

no difference observed around the terminal region of Wnt10a. Similarly, the luminal-

restricted gene Cldn3 displayed one major peak of high accessibility in proximity to the 

gene promoter in all three clusters of luminal cells, which was essentially absent in the 

basal pseudo-bulk analysis (Figure 1E). Taken together, these initial analyses showed 

that our scATACseq dataset represents a valuable resource to explore the chromatin 

accessibility landscape in individual mouse mammary epithelial cells. Using our dataset, 

we define two previously unrealized distinct cell states characterized by differential 

chromatin accessibility features (e.g. Rspo1) within the secretory luminal epithelial cell 

type (L-Sec).  

 

Defining the distinct gene expression signatures within MEC cell types and states 

using single-cell RNA sequencing 

To further explore the distinct gene expression signatures underlying the cell types and 

states revealed by scATACseq, we performed scRNAseq on FACS-isolated MECs from 

age- and background-matched 10-week old, female FVB/NJ mice yielding a dataset of 

26,859 single-cell transcriptome libraries (Figure 2A; Figure S2A-B). Using unbiased 

Seurat clustering, we detected three main clusters of epithelial cells (Figure 2B) that 

correspond to basal (Krt14+), secretory luminal (L-Sec; Kit/Elf5+) and luminal, hormone-

responsive cells (L-HR; Prlr+), which is in line with previous single-cell transcriptomics 
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analyses of mouse MECs (Bach et al., 2017; Pal et al., 2017). All clusters were evenly 

composed of cells from all three individual experiments, which confirms that the cell states 

defined here are highly reproducible (Figure S2C). We also detected a small cluster of 

contaminating stromal cells expressing various non-epithelial genes, and minor clusters 

of proliferating cells mainly between L-Sec and basal clusters (Mki67+; Figure S2C). In 

addition, we noticed small clusters of cells expressing both luminal and basal keratins and 

displayed high levels of genes per cells suggesting that these represent doublets (D). 

Interestingly, we detected two distinct cell states within the L-Sec cluster of MECs (Figure 

2B), which emerged as one homogeneous cluster in previous scRNAseq studies of mouse 

MECs (Bach et al., 2017; Pal et al., 2017). Further interrogation of specific marker gene 

expression (Figure S2C; Table S1) revealed that one of these clusters expressed several 

genes associated with milk production (Lipa, Csn2, Lalba), while the second cluster 

expressed high levels of genes associated with epithelial progenitor cell capacity 

(Aldh1a3, Rspo1). We therefore named these sub-clusters “L-sec Progenitor” and “L-sec 

Mature” (Figure 2B-C). These designations were further supported by the top Gene 

Ontology (GO) terms associated with their marker gene signatures, namely “secretory 

granule (GO: 0034774)” and “ribosome (GO: 0005840)”, which is in line  with observation 

that progenitor cell populations are characterized by increased ribosomal gene expression 

in the absence of cell proliferation (Athanasiadis et al., 2017). Since aldehyde 

dehydrogenase expression was previously shown to mark a subset of luminal-restricted 

progenitor cells in the human breast (Eirew et al., 2012), we next used Aldh1a3 as a 

marker for in situ validation of this cell population. Using a specific RNA-based probe 

(RNAscope) for Aldh1a3 in combination with anti-KRT14 antibody staining to label the 

basal cell compartment, we detected a subset of luminal epithelial cells (KRT14-negative) 

with pronounced expression of Aldh1a3 located in both ductal and lobular regions of the 

mammary gland (Figure 2D). Quantification of cells and numbers of Aldh1a3 transcripts 

detected by RNAscope revealed a frequency of high-expressing cells that was very similar 
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to our scRNAseq results (Figure 2E). Taken together, these findings confirm the existence 

of two distinct states within the L-sec cell type as predicted by scATACseq, and allowed 

us to integrate these results with previously proposed functional designation as luminal 

progenitor and mature secretory luminal cells. 

 

Integration of single-cell RNA and ATAC sequencing reveals novel cell type-specific 

transcriptional regulators and cis-regulatory elements 

We next sought to integrate our scRNAseq and scATACseq datasets to gain deeper 

biological understanding about the link between chromatin accessibility and gene 

expression within mammary epithelial cell types. To this end, we utilized a previously 

described approach to “anchor” diverse datasets together for comprehensive integration 

of single-cell modalities (Stuart et al., 2019). In short, transfer anchors were learned 

between the scRNAseq dataset and scATACseq-based gene activity matrix, using 

scRNAseq as the reference. Cluster labels from scRNAseq were predicted using these 

anchors in the scATACseq cells yielding a high degree of overlap between expected labels 

based on markers and the previously assigned cluster labeling (Figure S3A). Next, the 

integration anchors were used to generate an imputed expression matrix for the 

scATACseq cells, and the resulting data was merged with our scRNAseq analysis. 

Visualization of this integrated dataset yielded consistent overlap between both modalities 

within each of the main cell types, and nicely recapitulated the two clusters of progenitor 

and mature cells within the L-Sec cell type (Figure 3A, Figure S3B). We observed overall 

high correlation between ATACseq and RNAseq data in each of the defined cell types 

(Figure S3C). We next explored several known hallmark genes for cell types in the 

mammary gland (e.g. Krt5, Krt8, Kit, Foxa1) using this integrated analysis, which showed 

strong correspondence between chromatin accessibility and gene expression in each cell 

type (Figure 3B). To further corroborate the progenitor and mature cell state within L-Sec, 
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we observed striking consistency for Rspo1 in progenitor cells and Lalba in mature L-Sec 

cells in terms of chromatin accessibility paired with gene expression (Figure 3C).  

To identify cis-regulatory elements that may contribute to cell type distinction, we 

used the Cicero pipeline for co-accessibility analysis to determine cell type-specific 

genomic connections (Pliner et al., 2018). This analysis generates a data frame of pairs 

of peak regions and calculates a score of how frequently these are both accessible in the 

same cells. The resulting connections were subset by those in which one peak of each 

pair corresponded to an enhancer region from EnhancerDB’s mouse mammary putative 

enhancer list (Gao et al., 2016). Connections above a co-accessibility score of 0.5 were 

selected, and the closest protein coding regions of the non-enhancer genomic region were 

annotated. Directly comparing L-Sec Mature and L-Sec Progenitor cells, we found 

enhancer-specific connections near the Folr1 locus that were specific to the L-Sec Mature 

population, but not the L-Sec progenitors (Figure 3D). Further interrogation of gene 

expression and chromatin accessibility revealed specific signal for Folr1 in L-Sec mature 

(Figure 3E). Interestingly, Folr1 was recently identified as a putative regulator of milk 

protein synthesis in cow mammary glands (Menzies et al., 2009), which is in line with the 

high degree of secretory and lactation-associated genes in the L-Sec mature cells (Figure 

2). Together, this suggests that this enhancer region on Chromosome 7 represents a key 

regulatory element that becomes active during differentiation into mature secretory luminal 

MECs.  In addition, our approach also revealed a basal-specific enhancer region 

connected with the Cnn2 gene locus that had no connections present in any of the other 

cell types, and showed basal restricted expression of Cnn2 (Figure S3D-E). Since 

calponin isoforms CNN1, CNN2 and CNN3 regulate cytoskeleton functions in smooth 

muscle cells (Liu and Jin, 2016), this may be a critical feature for mediating the 

myoepithelial nature associated with basal MECs. Future experiments will pursue 

functional evaluation of the significance of these enhancer regions for mammary epithelial 

differentiation and cell type identity.  
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We next sought to identify transcription factors (TFs) that may be critical for 

regulating mammary epithelial cell type identity. We utilized the ChromVar analysis 

pipeline (Schep et al., 2017) to analyze accessibility of TF motifs in our scATACseq 

dataset that are specific for each cell type (Table S2). Trimming the output to those TF’s 

that were significantly associated with a cell type through logistic regression, we performed 

co-correlation analysis to pinpoint down TF modules in the MEC system (Figure 4A). This 

approach revealed three major modules: Module 1 contained predominantly Jun and Fos-

related TF motifs indicating that this feature is related to a subset of cells showing stress-

response most likely due to tissue dissociation and FACS isolation; Module 2 contained 

numerous TFs previously associated with basal epithelial biology such as Tp63 (Forster 

et al., 2014), but in addition Gata3 and other Gata family TFs were observed, which have 

been linked with regulating luminal cell fate decisions (Kouros-Mehr et al., 2006); finally 

Module 3 contained mostly TFs associated with luminal epithelial biology such as Foxa1 

(Liu et al., 2016) and Elf5 (Zhou et al., 2005), but also included a cluster of EMT-related 

TFs such as Tcf4, Snai2 and ID4 (Stemmler et al., 2019).  

To devise TFs that may play a central role in regulating MEC identity, we next 

focused on TFs that within the same cell type display both motif accessibility as well as 

high scores for an active downstream target gene expression as determined by Enrichr 

analysis (Table S3). Very reassuringly, the master regulator of basal/myoepithelial cell 

biology Tp63 (Forster et al., 2014) emerged as one of the top TF motifs that was 

specifically accessible in basal cells, and also showed distinct gene expression as 

calculated using gene score for a set of target genes (Figure S4). Several SMAD TFs 

yielded top motif scores within basal cells, however, SMAD3 showed highest target gene 

expression scores in basal cells indicating that SMAD3 represents a key TF in the 

regulation of basal cell identity. SMAD family TFs are critical mediators of transforming 

growth factor b1 (TGF-b), which has wide implications in regulating mammary epithelial 

biology and cancer (Moses and Barcellos-Hoff, 2011). Our findings place particular 
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importance of SMAD TFs in the context of basal MEC biology. Interestingly, the luminal 

progenitor-associated TF ELF5 (Zhou et al., 2005) showed highest motif accessibility in 

both luminal clusters (L-Sec and L-HR), however, expression of ELF5 target genes is most 

predominantly detected in L-Sec cells. This can be explained by the fact that Elf5 gene 

expression is almost exclusively found in the L-Sec cluster (Figure 2C) indicating that 

while the ELF5 TF motif is accessible in L-HR cells, its downstream gene program is not 

activated unless the TF itself is expressed. Finally, we explored FOXA1 as a known 

regulator of luminal differentiation, which indeed showed strong correspondence between 

high TF motif accessibility and elevated target gene expression scores specifically in L-

HR cells corroborating the notion that FOXA1 is a master regulator of the hormone-

responsive luminal cell type (Bernardo et al., 2010).  

To define the differences between the newly established L-Sec Mature and 

Progenitor cell states, we specifically compared these clusters for differential TF motif 

accessibility (Figure 4B), which yielded numerous Wnt signaling-related TFs such as 

LEF1 and TCF7L2 upregulated in L-Sec Progenitors. This is in line with increased 

expression of the potentiator of canonical Wnt signaling Rspo1 in this cluster. In addition, 

we noticed accessibility for several basal cell-specific TFs such as TP63, which is 

supported by our observation of increased accessibility of the hallmark basal keratin Krt14 

in this cluster (Figure 1C). To systematically explore the relationship of the MEC cell types 

and states, we next performed hierarchical clustering based on TF motif accessibility 

showing that L-Sec Progenitors cluster closely with Basal cells and share many TF 

modules between each other, while L-Sec Mature more closely align with L-HR cells. 

These shared features between basal cells and luminal progenitors support the concept 

that luminal progenitors may be directly derived from basal mammary stem cells that 

possess the capacity to differentiate into luminal cells (Visvader, 2009). This will need to 

be further corroborated using functional or targeted lineage tracing experiments.  



 12 

Taken together, our integrated single-cell transcriptomics and chromatin 

accessibility analysis of the MEC system revealed a previously unrealized cell type 

hierarchy within the luminal epithelial compartment, and defined novel transcriptional and 

epigenetic underpinnings regulating cellular identity in the mammary epithelium. In 

particular, we define distinct maturation states within the secretory type of luminal cells (L-

Sec), which can be divided into progenitor (Rspo1, Aldh1a3) and mature secretory cells 

(Lalba, Csn2). By directly integrating transcriptomics and chromatin accessibility datasets, 

we were able to provide a framework to devise putative key transcription factors by 

combining motif accessibility with positive downstream target gene expression. We also 

identified novel enhancer regions that are systematically associated with gene 

accessibility and expression of effector genes associated with secretory luminal 

maturation (Folr1) as well as with basal, myoepithelial cell identity (Cnn2). Our findings lay 

the groundwork for future studies to functionally address the biological significance of 

these cis/trans regulatory elements in mediating mammary stem and progenitor cell 

function, and to determine how the chromatin accessibility landscape changes during 

breast cancer.   
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METHODS 

 

Cell Isolation and single-cell RNA and ATAC sequencing library generation 

Mice: FVB/NJ mice are from Jackson Laboratory (Stock Number: 001800). In both 

scRNAseq and scATACseq experiment, 10 weeks old female mice were used for tissues 

collection. All experiments have been approved and abide by regulatory guidelines of the 

International Animal Care and Use Committee (IACUC) of the University of California, 

Irvine.  

scRNAseq/scATACseq: Mammary glands number 4 were collected and pooled from a 

total of four 10-week old, female FVB/NJ mice. Glands were minced into pieces ~1mm in 

diameter and processed as previously described (Kessenbrock et al., 2013). In brief, 

minced glands were incubated with a 2mg/ml collagenase type IV solution at 37C while 

shaking for 1 hour. Digested organoids were collected by differential centrifugation. 

Collected organoids were further dissociated with trypsin into single cells. Cells were 

stained for flow cytometry using fluorescently labeled antibodies for CD49f, EpCAM, 

CD31, CD45, Ter119, and SytoxBlue. For scRNAseq, live epithelial cells were collected 

for sequencing. For scATACseq, basal and luminal cells were collected separately.  

Library generation for 10x Genomics v2 chemistry was performed following the 

Chromium Single Cell 3’ Reagents Kits v2 User Guide: CG00052 Rev B. Library 

generation for single cell ATACseq were performed following the Chromium Single Cell 

ATAC Reagent Kits User Guide: CG000168 Rev B. Single cell RNAseq and ATACseq 

libraries were sequenced on the Illumina HiSeq4000 platform targeting approximately 

50,000 reads per cells.  

 

Sequence alignment and data processing 

 Alignment of scRNAseq analyses was completed utilizing 10x Genomics Cell Ranger 

pipeline (version 2.1.0). Alignment of scATACseq analyses was completed utilizing 10x 
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Genomics Cell Ranger ATAC pipeline (version 1.1.0). Each library was aligned to an 

indexed mm10 genome using Cell Ranger Count and Cell Ranger ATAC Count. “Cell 

Ranger Aggr” function was used to normalize the number of confidently mapped reads 

per cells across the libraries from different libraries for scRNAseq and scATACseq 

separately.   

 

Cell-type clustering analysis and marker identification using Seurat 

The aggregated peak-by-cell data matrix was read into R (R version 3.6.0) and processed 

using the Seurat single cell analysis package version 3.0.2 (Macosko et al., 2015). Along 

with the peak matrix, the Cicero-generated gene activity matrix (see below) and ChromVar 

deviations score matrix (see below) were added as assays to the Seurat object. A quality 

control cutoff of a minimum of 2500 fragments per cell was applied to trim the data set of 

low-quality cells. Next, variable features of the peak matrix were set to peak regions of 

>100 across the matrix. These variable features were used to perform Latent Semantic 

Indexing (LSI), and the first 50 components were calculated. These components were then 

used to generate a Uniform Manifold Approximation and Projection (UMAP) dimensionality 

reduction. Post UMAP, a Shared-Nearest-Neighbor graph was generated from the first 14 

LSI components chosen via the elbow plot method and was used to cluster the cells via 

Seurat’s Louvain algorithm.  

Marker genes for peak-based clustering were generated using Seurat’s default 

FindAllMarkers() function on the gene activity matrix. Pseudobulk profiles by cluster 

highlighting fragment stack ups at particular genomic regions were generated using 

Signac (version 0.1.0). 

Post label transfer, cell type-specific transcription factor motifs were calculated 

using the logistic regression method option implemented in Seurat’s FindAllMarkers() 

function. Those TF motifs that had an average log fold change greater than one were used 
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to generate the correlation heatmap to find co-correlated modules of transcription factor 

motif enrichment. 

 

scRNAseq Analysis 

Each of the scRNAseq data libraries were independently read into R version 3.6.0 and 

processed using the Seurat pipeline version 3.0.2. Genes had to be expressed in at least 

three cells to be considered for analysis. Cells were trimmed to those that had at least 200 

minimum unique genes expressed, no more than 6000 unique genes, and less than 30% 

of counts aligning to the mitochondrial genome. Libraries were anchored and integrated 

using the top 2000 variable features per library calculated via the “vst” method in Seurat. 

CCA on these 2000 features between the libraries was calculated, and the first 20 

dimensions used as input for anchoring. Post anchoring, PCA was performed and the first 

10 PC’s were used for UMAP dimensionality reduction and subsequent clustering using 

the default Louvain implementation. Marker genes per cluster were calculated using 

Seurat’s FindAllMarkers() function and the “wilcox” test option. GO term enrichment was 

performed using Enrichr (Kuleshov et al., 2016).  

 

Gene activity matrix generation 

The aggregated peak-by-cell data matrix was read into R version 3.6.0, binarized, and 

processed with the Cicero analysis package version 1.2.0 and the monocle 3 alpha version 

2.99.3 to generate a gene activity matrix for all cells sequenced in the study. The 

generation of the matrix took into account not only fragments that aligned to regions 

proximal to the promoter site of each protein coding gene in the genome took into account 

peak co-accessibility scores also generated through Cicero for all cells to factor in distal 

genomic relationships to the promoter site of each gene. 

 

Cis-regulatory regions by cluster 
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Post label transfer, scATACseq cell libraries were subset by their predicted ID label, 

whereupon the Cicero pipeline was utilized on each subset. Co-accessibility networks 

were generated, with pairs of peak regions and their corresponding score in a data frame. 

This data frame was subset to only those pairs that overlapped with regions in the 

Enhancer Atlas mouse mammary list as the first peak of the connection (Gao et al., 2016). 

This trimmed connection matrix was then thresholded for each cell type to those that had 

a co-accessibility score greater than 0.5. Next, the second non-enhancer peak in the pair 

was annotated to its closest protein coding gene. Conserved expression markers between 

technology (RNA and ATAC in the RNA-imputed matrix) were found by cell type and the 

respective co-accessible gene regions that were both highly connected to an enhancer 

region, and represented a marker for a cell type were selected. 

 

Transcription factor (TF) motif analysis using ChromVar 

Motif enrichment analysis was performed using an R package ChromVAR version 1.4.1 

(Schep et al., 2017). Open chromatin peaks and read counts at open chromatin were 

defined by the Cell Ranger pipeline as described above. After correction of GC bias, TF 

deviation score was calculated using a total of 579 TF motif position weight matrices 

provided with the 10X Genomics Cell Ranger package. For TF clustering analysis, only 

cells corresponding to epithelial clusters post label transfer (0,1,2,3) were selected. TF 

enrichment scores were averaged by cluster and hierarchically clustered using hclust() 

and pheatmap() in R. 

 

Combined scATACseq and scRNAseq analysis 

To generate a coembedding of cells from both scATACseq and scRNAseq libraries, cells 

from the scRNAseq analysis were used as a reference dataset to predict cluster labels in 

the scATACseq dataset and transfer them. This prediction used the variable features of 
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the scRNAseq analysis on the RNA assay, and the gene activity matrix of the scATACseq 

analysis as the query data. Transfer anchors were learned using FindTransferAnchors() 

and the cluster labels were predicted using the TransferData() function together with the 

peak-based scATACseq LSI reduction as the weight.reduction function option input. Next, 

an imputed gene activity matrix was generated by using the TransferData() function again, 

with the previously learned transfer anchors and a matrix consisting of only the variable 

features of the scRNAseq analysis and its corresponding cells as the reference. This 

imputed expression matrix was then used to merge the two Seurat objects, allowing for 

co-visualization of cells labeled by the scRNAseq cluster labels or their predicted cluster 

labels for the scRNAseq based or scATACseq respectively. 

 For combined TF motif accessibility and target gene expression analysis, we first 

identified cell type-specific TF motifs in our ChromVar analysis (see above), and then 

performed Enrichr analysis using cell type marker genes from scRNAseq to identify 

“ENCODE and ChEA Consensus TFs from ChIP-X” for each cell type. Transcription factor 

targets came from the Enrichr analysis (Table S3), where marker genes by cluster were 

analyzed and those genes that had pathway hits in the Encode database annotation for 

particular transcription factors were used to score all cells using Seurat’s 

AddModuleScore() function. 

 

In situ RNA analysis using RNAscope 

Mammary glands were harvested from a 10-week old C57BL/6 mouse and frozen in O.C.T 

Compound (4583, Sakura). 10-micron sections were fixed with fresh 4% PFA made from 

40% PFA (15715-S, Electron Microscopy Sciences) diluted in PBS (21-031-CV, Corning) 

for 1 hour at RT. The RNAscope assay for the Aldh1a3 probe (501201, ACDBio) was 

performed according to the manufacturer’s protocol for fresh frozen sections. The images 

were acquired with a Zeiss LSM 700 confocal microscope. Fiji was used to calculate the 

number of Aldh1a3 foci (RNA molecules) per nuclei manually. Nuclei enveloped in Krt14 
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protein are called basal for this analysis. Nuclei adjacent to, but not enveloped, are called 

luminal. 

 

Acknowledgements 

We thank Devon Lawson for carefully reading the manuscript. This study was supported 

by funds from the NIH/NCI (1R01CA234496; 4R00CA181490 to K.K.), the American 

Cancer Society (132551-RSG-18-194-01-DDC to K.K.), and the NIH/NIGMS 

(R01GM123731 to X.D.). Grant-in-Aid for Scientific Research (KAKENHI) on Innovative 

Areas “Cellular Diversity” (JP18H05106 to K.W.).   

 

Author Contributions:  

K.K. and K.W. designed research and supervised research; Q.H.N., K.W., G.G., P.S.,  

D.J., performed research; X.D., J.R., G.X.Y.Z. and C.M.N. contributed new reagents  and 

analytic tools; N.P., Q.H.N.  and K.W. performed bioinformatic analyses; N.P., K.W., and 

K.K. wrote the paper manuscript, and all authors discussed the results and provided 

comments and feedback. 

 

COMPETING FINANCIAL INTERESTS 

Darisha Jhutty, Grace X.Y. Zheng and Corey M. Nemec are employed by 10X Genomics. 

 

Data Availability: 

All data will be accessible at Gene Expression Omnibus (GEO accession number 

#PLACEHOLDER), including raw .fastq files and quantified data matrices along with their 

associated meta data.      

Code Availability: All code will be made available upon request.  



 19 

 
REFERENCES 

 

Athanasiadis, E.I., Botthof, J.G., Andres, H., Ferreira, L., Lio, P., and Cvejic, A. (2017). 

Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in 

haematopoiesis. Nat. Commun. 8, 2045. 

Bach, K., Pensa, S., Grzelak, M., Hadfield, J., Adams, D.J., Marioni, J.C., and Khaled, 

W.T. (2017). Differentiation dynamics of mammary epithelial cells revealed by single-cell 

RNA sequencing. Nat. Commun. 8. 

Bernardo, G.M., Lozada, K.L., Miedler, J.D., Harburg, G., Hewitt, S.C., Mosley, J.D., 

Godwin, A.K., Korach, K.S., Visvader, J.E., Kaestner, K.H., et al. (2010). FOXA1 is an 

essential determinant of ER  expression and mammary ductal morphogenesis. 

Development 137, 2045–2054. 

Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015a). ATAC-seq: A 

method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015, 

21.29.1-21.29.9. 

Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., 

Chang, H.Y., and Greenleaf, W.J. (2015b). Single-cell chromatin accessibility reveals 

principles of regulatory variation. Nature 523, 486–490. 

Buenrostro, J.D., Corces, M.R., Lareau, C.A., Wu, B., Schep, A.N., Aryee, M.J., Majeti, 

R., Chang, H.Y., and Greenleaf, W.J. (2018). Integrated Single-Cell Analysis Maps the 

Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell 173, 

1535-1548.e16. 

Cai, C., Yu, Q.C., Jiang, W., Liu, W., Song, W., Yu, H., Zhang, L., Yang, Y., and Zeng, 

Y.A. (2014). R-spondin1 is a novel hormone mediator for mammary stem cell self-

renewal. Genes Dev. 28, 2205–2218. 



 20 

Chung, C.-Y., Ma, Z., Dravis, C., Preissl, S., Poirion, O., Luna, G., Hou, X., Giraddi, 

R.R., Ren, B., and Wahl, G.M. (2019). Single-cell chromatin accessibility analysis of 

mammary gland development reveals cell state transcriptional regulators and cellular 

lineage relationships. BioRxiv 624957. 

Eirew, P., Kannan, N., Knapp, D.J.H.F., Vaillant, F., Emerman, J.T., Lindeman, G.J., 

Visvader, J.E., and Eaves, C.J. (2012). Brief report: Aldehyde dehydrogenase activity is 

a biomarker of primitive normal human mammary luminal cells. Stem Cells 30, 344–348. 

Forster, N., Saladi, S.V., vanBragt, M., Sfondouris, M.E., Jones, F.E., Li, Z., and Ellisen, 

L.W. (2014). Basal Cell Signaling by p63 Controls Luminal Progenitor Function and 

Lactation via NRG1. Dev. Cell 28, 147–160. 

Gao, T., He, B., Liu, S., Zhu, H., Tan, K., and Qian, J. (2016). EnhancerAtlas: A resource 

for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics 32, 

3543–3551. 

Kessenbrock, K., Dijkgraaf, G.J.P., Lawson, D.A., Littlepage, L.E., Shahi, P., Pieper, U., 

and Werb, Z. (2013). A Role for matrix metalloproteinases in regulating mammary stem 

cell function via the Wnt signaling pathway. Cell Stem Cell 13, 300–313. 

Kouros-Mehr, H., Slorach, E.M., Sternlicht, M.D., and Werb, Z. (2006). GATA-3 

Maintains the Differentiation of the Luminal Cell Fate in the Mammary Gland. Cell 127, 

1041–1055. 

Kuleshov, M. V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., 

Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a 

comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids 

Res. 44, W90–W97. 

Liu, R., and Jin, J.P. (2016). Calponin isoforms CNN1, CNN2 and CNN3: Regulators for 

actin cytoskeleton functions in smooth muscle and non-muscle cells. Gene 585, 143–

153. 



 21 

Liu, Y., Zhao, Y., Skerry, B., Wang, X., Colin-Cassin, C., Radisky, D.C., Kaestner, K.H., 

and Li, Z. (2016). Foxa1 is essential for mammary duct formation. Genesis 54, 277–285. 

Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., 

Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly parallel genome-wide 

expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214. 

Menzies, K.K., Lefèvre, C., Sharp, J.A., MacMillan, K.L., Sheehy, P.A., and Nicholas, 

K.R. (2009). A novel approach identified the FOLR1 gene, a putative regulator of milk 

protein synthesis. Mamm. Genome 20, 498–503. 

Moses, H., and Barcellos-Hoff, M.H. (2011). TGF-β Biology in mammary development 

and breast cancer. Cold Spring Harb. Perspect. Biol. 3, 1–14. 

Nguyen, Q.H., Pervolarakis, N., Blake, K., Ma, D., Davis, R.T., James, N., Phung, A.T., 

Willey, E., Kumar, R., Jabart, E., et al. (2018). Profiling human breast epithelial cells 

using single cell RNA sequencing identifies cell diversity. Nat. Commun. 9. 

Pal, B., Chen, Y., Vaillant, F., Jamieson, P., Gordon, L., Rios, A.C., Wilcox, S., Fu, N., 

Liu, K.H., Jackling, F.C., et al. (2017). Construction of developmental lineage 

relationships in the mouse mammary gland by single-cell RNA profiling. Nat. Commun. 

8. 

Perou, C.M., Sørile, T., Eisen, M.B., Van De Rijn, M., Jeffrey, S.S., Ress, C.A., Pollack, 

J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human 

breast tumours. Nature 406, 747–752. 

Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A., Daza, R.M., 

Aghamirzaie, D., Srivatsan, S., Qiu, X., Jackson, D., Minkina, A., et al. (2018). Cicero 

Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. 

Mol. Cell 71, 858-871.e8. 

Pollen, A.A., Nowakowski, T.J., Shuga, J., Wang, X., Leyrat, A.A., Lui, J.H., Li, N., 



 22 

Szpankowski, L., Fowler, B., Chen, P., et al. (2014). Low-coverage single-cell mRNA 

sequencing reveals cellular heterogeneity and activated signaling pathways in 

developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058. 

Satpathy, A.T., Granja, J.M., Yost, K.E., Qi, Y., Meschi, F., McDermott, G.P., Olsen, 

B.N., Mumbach, M.R., Pierce, S.E., Corces, M.R., et al. (2019). Massively parallel 

single-cell chromatin landscapes of human immune cell development and intratumoral T 

cell exhaustion. BioRxiv 1–45. 

Schep, A.N., Wu, B., Buenrostro, J.D., and Greenleaf, W.J. (2017). ChromVAR: Inferring 

transcription-factor-associated accessibility from single-cell epigenomic data. Nat. 

Methods 14, 975–978. 

Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., 

Wu, L., Lindeman, G.J., and Visvader, J.E. (2006). Generation of a functional mammary 

gland from a single stem cell. Nature 439, 84–88. 

Shehata, M., Teschendorff, A., Sharp, G., Novcic, N., Russell, I.A., Avril, S., Prater, M., 

Eirew, P., Caldas, C., and Watson, C.J. (2012). Phenotypic and functional 

characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer Res. 

14. 

Stemmler, M.P., Eccles, R.L., Brabletz, S., and Brabletz, T. (2019). Non-redundant 

functions of EMT transcription factors. Nat. Cell Biol. 21, 102–112. 

Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., Li, H.I., and 

Eaves, C.J. (2006). Purification and unique properties of mammary epithelial stem cells. 

Nature 439, 993–997. 

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., 

Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-

Cell Data. Cell 177, 1888-1902.e21. 



 23 

Sun, Y., Xu, Y., Xu, J., Lu, D., and Wang, J. (2015). Role of TM4SF1 in regulating breast 

cancer cell migration and apoptosis through PI3K/AKT/mTOR pathway. Int. J. Clin. Exp. 

Pathol. 8, 9081–9088. 

Visvader, J.E. (2009). Keeping abreast of the mammary epithelial hierarchy and breast 

tumorigenesis. Genes Dev. 23, 2563–2577. 

Watanabe, K., Liu, Y., Noguchi, S., Murray, M., Chang, J.C., Kishima, M., Nishimura, H., 

Hashimoto, K., Minoda, A., and Suzuki, H. (2019). OVOL2 induces mesenchymal-to-

epithelial transition in fibroblasts and enhances cell-state reprogramming towards 

epithelial lineages. Sci. Rep. 9. 

Zhou, J., Chehab, R., Tkalcevic, J., Naylor, M.J., Harris, J., Wilson, T.J., Tsao, S., Tellis, 

I., Zavarsek, S., Xu, D., et al. (2005). Elf5 is essential for early embryogenesis and 

mammary gland development during pregnancy and lactation. EMBO J. 24, 635–644. 

 

 

  



Tissue Dissociation FACS Isolation Droplet-enabled
scATACseq (n =23,338)

10 week old mice

CD49f

E
pC

A
M

B

A

C

Figure 1

Mammary
Glands

UM
AP

_2

UMAP_1

Basal

L-HR L-Sec

1
2

0

3

0

1

2

3

0

1

2

3

1

2

3

0

1

2

0

1

2

3

4

5

0

1

2

3

4

5Krt17 Krt14

Kit Rspo1

Foxa1

Tm4sf1

1 20 3

1 20 3 1 20 3 1 20 3

1 20 3 1 20 3

UM
AP

_2

UMAP_1

UM
AP

_2

UMAP_1

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

Cldn3

Wnt10a

Basal
Luminal

74790000 74805000chr1 position (bp)
Wnt10a

Wnt10a

Basal

L-HR

L-Sec

134982500 134990000chr5 position (bp)

Cldn3

Basal

L-HR

L-Sec

D

E



 24 

FIGURE LEGENDS 

 

Figure 1:  

(A) Schematic of experimental workflow for scATACseq analysis. (B) UMAP visualization 

of scATACseq libraries, colored by Seurat clustering performed on aggregated peak 

matrix. Cell types are outlined in dotted lines with Basal in red, Luminal-Hormone 

Responsive (L-HR) in light green, and Luminal-Secretory (L-Sec) outlined in dark green. 

(C) Violin plots of Cicero-generated gene accessibility matrix-based marker genes of each 

cluster, with boxes colored by cell type-specific accessibility. (D-E) UMAP of scATACseq 

analysis on the left, with cells colored by gene accessibility expression level of Wnt10a 

and Cldn3. Pseudo-bulk profiles of library fragments on the right, subset by cluster at 

genomic regions corresponding to Wnt10a and Cldn3.  
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Figure 2: 

(A) Schematic of experimental workflow for scRNAseq analysis of isolated mouse MECs. 

(B) UMAP visualization of scRNAseq libraries anchored by sample, with colors 

corresponding to unbiased clustering and annotated by cell type and state. Basal cells are 

in red, L-HR in light green, and L-Sec outlined in dark green. Putative doublets are marked 

by the letter D, and proliferative cells are marked by the letter P. Within L-Sec cell type, 

two distinct clusters emerged that were labeled as Mature and Progenitor based on gene 

expression signatures. (C) Focused analysis of L-Sec cluster and corresponding marker 

gene is shown, where expression is scaled such that dark red corresponds to high 

expression of the gene and light grey corresponds low expression of the gene in question; 

top GO-term including accession number is listed for Progenitor and Mature cell states. 

(D-E) Fluorescence images from in situ RNAscope analysis for Aldh1a3 in combination 

with immunostaining for basal-specific KRT14 is shown and luminal and basal 

compartments are outlined in blown up image. Quantification of transcript counts per basal 

and luminal cells is shown; data was combined from three independent ductal regions of 

mouse mammary gland sections.  

 

  



Figure 3

UM
AP

_2

UMAP_1

Basal

L-HR L-Sec

Basalmature

progenitor

L-HR

L-Sec

scATACseq

scRNAseq

Reference

Query

Seurat Integration
and Label Transfer

Krt1
7

Krt5 Krt8
Krt1

8 Kit
Elf5

Sbs
n
Fo

xa
1

Areg

Percent
Expressed

0
25
50
75
100

scRNAseqscATACseq

Basal

L-HR

L-Sec
prog.

L-Sec
mat.

Basal

Stroma

L-HR

L-Sec

scATACseq scRNAseq

Lalba

Rspo1

A

B C

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Folr1

101.5 mb
102 mb

102.5 mb

L-Sec Progenitor

L-Sec Mature
atac
rna

Ex
pr

es
si

on
 L

ev
el

0

1

2

3

Folr1

Basal L-HRL-Sec
prog.

L-Sec
mat.

E

Chr7

D

C
o-

Ac
ce

ss
ib

ilit
y 

Sc
or

e



 26 

Figure 3: 

(A) Schematic of Seurat-based label transfer of scRNAseq cell clusters onto scATACseq 

cells, and subsequent coembedding into a single UMAP visualization. (B) Split Dot Plot of 

cell type markers, with imputed RNA expression intensity in the scATACseq cells scaled 

from grey to dark blue, and expression intensity in scRNAseq cells displayed in a scale 

from grey to dark red. The size of the dot corresponds to the percentage of cells within 

that cluster have positive expression of the gene. (C) Coembedded UMAP faceted by 

library type, with cells from scATACseq libraries on the left and cells from scRNAseq 

libraries on the right. Cells are colored based on scaled expression, with grey 

corresponding to low and dark red corresponding to high expression. (D) Cicero 

connection data at enhancer region chr7_101932449_101936345 generated by subset 

analysis by cluster. Connections from L-sec Mature cells shown in top panel, and 

connections from L-sec Progenitor shown in bottom, with a minimum co-accessibility score 

of 0.2 visualized. (E) Violin plot of Folr1 expression in the coembedded analysis, split by 

technology type. 
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Figure 4: 

(A) Heatmap displaying co-correlation of TF motif accessibility shown as z-scores (blue = 

low; red = high). Transcription factors were subset to those that were found through logistic 

regression to be significantly associated with a particular cluster post label transfer from 

scRNAseq data onto scATACseq data, and had an average log-fc greater than one. Key 

TFs are highlighted in relation  to putative function on the box to the right. (B) Comparison 

of TF Motif z-scores between L_Sec_Mat vs. L_Sec_Prog cell populations. Selected TFs 

are labeled. (C) Hierarchical clustering of cell type-specific TF Motif z-scores is shown; 

blue = low and red = high. 
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Figure S1: 

(A) UMAP of scATACseq cell libraries, with cells colored by library of origin. (B) 

Sequencing and alignment statistics for the six scATACseq libraries. (C) Gene 

Accessibility matrix top marker gene expression heatmap, with yellow corresponding to 

high expression and purple corresponding to low. 
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Figure S2: 

(A) Cell Ranger UMI-based cutoff to determine cell-associated barcodes. (B) Sequencing 

and alignment statistics for the three scRNAseq libraries. (C) UMAP of scRNA-seq cells, 

with cells colored by library of origin. Proliferative cells are marked by high Mki67 gene 

expression, with dark red corresponding to high expression and light grey to low. (D) 

Heatmap showing top 10 marker genes per cluster (yellow = high expression and purple 

= low expression). (E) Feature plots in UMAP visualization of scRNAseq cells with boxes 

colored by cell type (Dark red = high expression;  light grey = low expression).  
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Figure S3: 

(A) UMAP representation of scATACseq data, with cells colored by predicted cell type 

label transferred from scRNAseq data clustering. (B) Coembedded UMAP representation 

of both scATACseq cells and scRNAseq cells, with colors corresponding to the data type 

of origin. (C) Correlation of gene activity matrix from scATACseq cells and gene 

expression in cells from scRNAseq, split by cell type. (D) Cicero connection data at 

enhancer region in proximity to Cnn2 locus. Connections within Basal cells are shown, 

with a minimum co-access score of 0.2 visualized. (E) Violin plot of Cnn2 expression in 

the coembeded analysis, split by technology type. 
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Figure S4: 

Faceted UMAP visualization of coembedded analysis, with scATACseq cells on the left, 

and scRNAseq on the right. scATACseq data is colored by z-scored deviations of TF motif 

accessibility, and scRNAseq data is colored by gene scoring of downstream targets of the 

TF signaling as annotated through GO Terms. Yellow corresponds to high values, and 

dark blue to low. 




