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ABSTRACT

The mammary epithelial cell (MEC) system is a bi-layered ductal epithelial network
consisting of luminal and basal cells, which is maintained by a lineage of stem and
progenitor cell populations. Here, we used integrated single-cell transcriptomics and
chromatin accessibility analysis to reconstruct the cell types of the mouse MEC system
and their underlying gene regulatory features in an unbiased manner. We define
previously unrealized differentiation states within the secretory type of luminal cells, which
can be divided into distinct clusters of progenitor and mature secretory cells. By integrating
single-cell transcriptomics and chromatin accessibility landscapes, we identified novel cis-
and trans-regulatory elements that are differentially activated in the specific epithelial cell
types and our newly defined luminal differentiation states. Our work provides an
unprecedented resource to reveal novel cis/trans regulatory elements associated with
MEC identity and differentiation that will serve as a valuable reference to determine how

the chromatin accessibility landscape changes during breast cancer.
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INTRODUCTION

Breast cancer is a heterogeneous disease that can be classified into at least six different
intrinsic subtypes, namely luminal A, luminal B, HER2-enriched, basal-like, normal breast
and claudin-low (Perou et al., 2000). Breast cancer arises from the breast epithelium,
which —in both humans and mice - forms a ductal epithelial network consisting of two main
cellular compartments, an inner layer of luminal cells and an outer layer of
basal/myoepithelial cells (Visvader, 2009). A series of recent reports have indicated that
further heterogeneity exists within these two cell layers in mice. For example, several
studies have identified a functionally distinct subpopulation of mammary stem cells within
the basal compartment (Shackleton et al., 2006; Stingl et al., 2006). Within the luminal
compartment, a subpopulation of progenitor cells has been identified by high expression
of Kit, and in addition a population of mature luminal cells have been identified using flow
cytometry isolation strategies (Shehata et al., 2012).

Advances in next generation sequencing and microfluidic-based handling of cells
and reagents now enable us to explore cellular heterogeneity in an unbiased manner using
single-cell MRNA sequencing (scRNAseq) to reconstruct transcriptional programs in
individual cells (Pollen et al., 2014). Recent studies have utilized this approach to describe
the cell types and states within the human (Nguyen et al., 2018) and mouse mammary
epithelium (Bach et al., 2017; Pal et al., 2017) generally yielding three main cell types,
namely basal (marked by Krt14), secretory luminal or also called luminal progenitors (L-
Sec; marked by EIf5) and mature, hormone-responsive luminal cells (L-HR; marked by
Prir). 1t remains elusive whether additional cellular diversity exists within these three cell
types.

In addition to transcriptional programs, cellular identity may be strongly influenced
by the epigenetic wiring of the cell, which is not detectable in scRNAseq data. Some of
these features may be interrogated systematically by the Assay for Transposase-

Accessible Chromatin using sequencing (ATACseq) to reconstruct cis/trans regulatory



elements associated with cellular identity (Buenrostro et al., 2015a). Recent advances
enabled single cell-level ATACseq (scATACseq) to profile cellular heterogeneity on an
epigenetic level (Buenrostro et al., 2015b). This approach enabled unprecedented insights
into the differentiation trajectories of the hematopoietic system (Buenrostro et al., 2018;
Satpathy et al.,, 2019), and has recently elucidated transcriptional regulators of
developmental lineages of the fetal mammary gland (Chung et al., 2019).

The goal of the present study is to elucidate the molecular underpinnings mediating
cellular identity within the mouse mammary epithelium by integrating massively parallel
single-cell transcriptomics (scRNAseq) and chromatin accessibility (scCATACseq) profiling
of isolated mammary epithelial cells (MECs). Our combined single-cell RNA/ATACseq
analysis allowed us to identify previously unrealized cell state distribution within the luminal
mammary epithelial compartment, and revealed novel cis- and trans-regulatory elements
that are associated with cellular identity and differentiation from luminal progenitor into
mature, secretory cells. Our work provides novel insights into the spectrum of cellular
heterogeneity within the mouse mammary epithelial system under normal homeostasis
and will serve as a valuable resource to understand how the system changes during early

tumorigenesis and tumor progression.

RESULTS AND DISCUSSION

Single-cell chromatin accessibility reveals previously unrealized luminal epithelial
cell states in the mouse mammary epithelium

Our recent single-cell transcriptomics analysis of the human MEC system described three
distinct cell types of epithelial cells (Nguyen et al., 2018). This pattern is largely conserved
in the murine system, as shown in recent scRNAseq analyses of isolated mouse MECs
describing three main cell types, namely basal (marked by Krt14), secretory luminal (L-
sec; marked by EIf5) and mature, hormone-responsive luminal cells (L-HR; marked by

Prir) (Bach et al., 2017; Pal et al., 2017). Here, we used massively parallel, droplet-enabled



scATACseq analysis (10X Genomics Chromium) to determine whether additional cell
types and states can be observed on an epigenetic level, and to determine whether cis-
regulatory elements and transcription factor motif accessibility are systematically linked
with cellular identity in the mammary epithelium. We profiled in total 23,338 individual cells
for their chromatin accessibility landscapes. For initial quality validation purposes, we
purified basal and luminal MECs by flow cytometry and subjected them to scATACseq
analysis in three separate samples each (Figure 1A; Figure S1A-B). After processing the
sequencing data using the Cell Ranger pipeline (10X Genomics), we performed unbiased
clustering analysis on all peaks using Seurat, which revealed 4 main clusters (0-3) of
MECs (Figure 1B), as well as minor populations of contaminating stromal cells that were
excluded from this visualization. To identify cell types, we generated a gene activity matrix
to serve as pseudo-expression data as previously described (Stuart et al., 2019). This
enabled us to identify basal cells (cluster 0; marked by Krt714), L-Sec (Clusters 2-3; marked
by Kit) and L-HR (cluster 1; marked by FoxA1) (Figure 1C; Figure S1C).

Interestingly, we observed two previously unrealized distinct clusters within the L-
Sec cell type, which contained cluster 2 marked by Tm4sf1 encoding a tetraspanin
transmembrane molecule involved in breast cancer metastasis through regulation of PI3K
pathway (Sun et al., 2015), while cluster 3 displays accessibility of the gene Rspo1
encoding the regulator of Wnt signaling R-Spondin 1 that plays an important role in
mediating mammary stem cell renewal (Cai et al., 2014). Further gene activity analysis
enabled us to define numerous specific marker loci that are specifically accessible in the
clusters (Figure S1C). Interestingly, cluster 3 also showed moderate accessibility of the
basal marker gene Krt14 (Figure 1C), suggesting that - although of luminal epithelial
nature according to flow cytometry and other hallmark gene activity such as Krt8/18 - this
cell state within L-Sec shows some similarity to basal cells. This was particularly intriguing
to us, since it could indicate a bipotent progenitor cell state that possesses the capacity to

differentiate into both basal and luminal lineages, or a transitory luminal progenitor cell



type that is directly derived from a basal mammary stem cell as previously proposed
(Shackleton et al., 2006; Stingl et al., 2006).

Finally, we generated pseudo-bulk profiles to visualize genomic regions that were
differentially accessible between basal and luminal MECs to reveal the substructure of
chromatin accessibility variation between the two main basal and luminal compartments.
Focusing on Wnt10a, which was found to be specifically open in basal cells based on our
gene activity analysis (Figure 1D), we found that the main difference between basal and
luminal MECs was observed around the immediate gene promoter region, while there was
no difference observed around the terminal region of Wnt710a. Similarly, the luminal-
restricted gene Cldn3 displayed one major peak of high accessibility in proximity to the
gene promoter in all three clusters of luminal cells, which was essentially absent in the
basal pseudo-bulk analysis (Figure 1E). Taken together, these initial analyses showed
that our scATACseq dataset represents a valuable resource to explore the chromatin
accessibility landscape in individual mouse mammary epithelial cells. Using our dataset,
we define two previously unrealized distinct cell states characterized by differential
chromatin accessibility features (e.g. Rspo1) within the secretory luminal epithelial cell

type (L-Sec).

Defining the distinct gene expression signatures within MEC cell types and states
using single-cell RNA sequencing

To further explore the distinct gene expression signatures underlying the cell types and
states revealed by scATACseq, we performed scRNAseq on FACS-isolated MECs from
age- and background-matched 10-week old, female FVB/NJ mice yielding a dataset of
26,859 single-cell transcriptome libraries (Figure 2A; Figure S2A-B). Using unbiased
Seurat clustering, we detected three main clusters of epithelial cells (Figure 2B) that
correspond to basal (Krt14+), secretory luminal (L-Sec; Kit/Elf5+) and luminal, hormone-

responsive cells (L-HR; Prir+), which is in line with previous single-cell transcriptomics



analyses of mouse MECs (Bach et al., 2017; Pal et al., 2017). All clusters were evenly
composed of cells from all three individual experiments, which confirms that the cell states
defined here are highly reproducible (Figure S2C). We also detected a small cluster of
contaminating stromal cells expressing various non-epithelial genes, and minor clusters
of proliferating cells mainly between L-Sec and basal clusters (Mki67+; Figure S2C). In
addition, we noticed small clusters of cells expressing both luminal and basal keratins and
displayed high levels of genes per cells suggesting that these represent doublets (D).
Interestingly, we detected two distinct cell states within the L-Sec cluster of MECs (Figure
2B), which emerged as one homogeneous cluster in previous scRNAseq studies of mouse
MECs (Bach et al., 2017; Pal et al., 2017). Further interrogation of specific marker gene
expression (Figure S2C; Table S1) revealed that one of these clusters expressed several
genes associated with milk production (Lipa, Csn2, Lalba), while the second cluster
expressed high levels of genes associated with epithelial progenitor cell capacity
(Aldh1a3, Rspo1). We therefore named these sub-clusters “L-sec Progenitor” and “L-sec
Mature” (Figure 2B-C). These designations were further supported by the top Gene
Ontology (GO) terms associated with their marker gene signatures, namely “secretory
granule (GO: 0034774)” and “ribosome (GO: 0005840)”, which is in line with observation
that progenitor cell populations are characterized by increased ribosomal gene expression
in the absence of cell proliferation (Athanasiadis et al., 2017). Since aldehyde
dehydrogenase expression was previously shown to mark a subset of luminal-restricted
progenitor cells in the human breast (Eirew et al., 2012), we next used Aldh1a3 as a
marker for in situ validation of this cell population. Using a specific RNA-based probe
(RNAscope) for Aldh1a3 in combination with anti-KRT14 antibody staining to label the
basal cell compartment, we detected a subset of luminal epithelial cells (KRT14-negative)
with pronounced expression of Aldh1a3 located in both ductal and lobular regions of the
mammary gland (Figure 2D). Quantification of cells and numbers of Aldh1a3 transcripts

detected by RNAscope revealed a frequency of high-expressing cells that was very similar



to our scRNAseq results (Figure 2E). Taken together, these findings confirm the existence
of two distinct states within the L-sec cell type as predicted by scATACseq, and allowed
us to integrate these results with previously proposed functional designation as luminal

progenitor and mature secretory luminal cells.

Integration of single-cell RNA and ATAC sequencing reveals novel cell type-specific
transcriptional regulators and cis-regulatory elements

We next sought to integrate our scRNAseq and scATACseq datasets to gain deeper
biological understanding about the link between chromatin accessibility and gene
expression within mammary epithelial cell types. To this end, we utilized a previously
described approach to “anchor” diverse datasets together for comprehensive integration
of single-cell modalities (Stuart et al., 2019). In short, transfer anchors were learned
between the scRNAseq dataset and scATACseg-based gene activity matrix, using
scRNAseq as the reference. Cluster labels from scRNAseq were predicted using these
anchors in the scATACseq cells yielding a high degree of overlap between expected labels
based on markers and the previously assigned cluster labeling (Figure S3A). Next, the
integration anchors were used to generate an imputed expression matrix for the
scATACseq cells, and the resulting data was merged with our scRNAseq analysis.
Visualization of this integrated dataset yielded consistent overlap between both modalities
within each of the main cell types, and nicely recapitulated the two clusters of progenitor
and mature cells within the L-Sec cell type (Figure 3A, Figure S3B). We observed overall
high correlation between ATACseq and RNAseq data in each of the defined cell types
(Figure S3C). We next explored several known hallmark genes for cell types in the
mammary gland (e.g. Krt5, Krt8, Kit, Foxa1) using this integrated analysis, which showed
strong correspondence between chromatin accessibility and gene expression in each cell

type (Figure 3B). To further corroborate the progenitor and mature cell state within L-Sec,



we observed striking consistency for Rspo1 in progenitor cells and Lalba in mature L-Sec
cells in terms of chromatin accessibility paired with gene expression (Figure 3C).

To identify cis-regulatory elements that may contribute to cell type distinction, we
used the Cicero pipeline for co-accessibility analysis to determine cell type-specific
genomic connections (Pliner et al., 2018). This analysis generates a data frame of pairs
of peak regions and calculates a score of how frequently these are both accessible in the
same cells. The resulting connections were subset by those in which one peak of each
pair corresponded to an enhancer region from EnhancerDB’s mouse mammary putative
enhancer list (Gao et al., 2016). Connections above a co-accessibility score of 0.5 were
selected, and the closest protein coding regions of the non-enhancer genomic region were
annotated. Directly comparing L-Sec Mature and L-Sec Progenitor cells, we found
enhancer-specific connections near the Folr1 locus that were specific to the L-Sec Mature
population, but not the L-Sec progenitors (Figure 3D). Further interrogation of gene
expression and chromatin accessibility revealed specific signal for Folr1 in L-Sec mature
(Figure 3E). Interestingly, Folr1 was recently identified as a putative regulator of milk
protein synthesis in cow mammary glands (Menzies et al., 2009), which is in line with the
high degree of secretory and lactation-associated genes in the L-Sec mature cells (Figure
2). Together, this suggests that this enhancer region on Chromosome 7 represents a key
regulatory element that becomes active during differentiation into mature secretory luminal
MECs. In addition, our approach also revealed a basal-specific enhancer region
connected with the Cnn2 gene locus that had no connections present in any of the other
cell types, and showed basal restricted expression of Cnn2 (Figure S3D-E). Since
calponin isoforms CNN1, CNN2 and CNN3 regulate cytoskeleton functions in smooth
muscle cells (Liu and Jin, 2016), this may be a critical feature for mediating the
myoepithelial nature associated with basal MECs. Future experiments will pursue
functional evaluation of the significance of these enhancer regions for mammary epithelial

differentiation and cell type identity.



We next sought to identify transcription factors (TFs) that may be critical for
regulating mammary epithelial cell type identity. We utilized the ChromVar analysis
pipeline (Schep et al., 2017) to analyze accessibility of TF motifs in our scATACseq
dataset that are specific for each cell type (Table S2). Trimming the output to those TF’s
that were significantly associated with a cell type through logistic regression, we performed
co-correlation analysis to pinpoint down TF modules in the MEC system (Figure 4A). This
approach revealed three major modules: Module 1 contained predominantly Jun and Fos-
related TF motifs indicating that this feature is related to a subset of cells showing stress-
response most likely due to tissue dissociation and FACS isolation; Module 2 contained
numerous TFs previously associated with basal epithelial biology such as Tp63 (Forster
et al., 2014), but in addition Gata3 and other Gata family TFs were observed, which have
been linked with regulating luminal cell fate decisions (Kouros-Mehr et al., 2006); finally
Module 3 contained mostly TFs associated with luminal epithelial biology such as Foxa1
(Liu et al., 2016) and EIf5 (Zhou et al., 2005), but also included a cluster of EMT-related
TFs such as Tcf4, Snai2 and ID4 (Stemmler et al., 2019).

To devise TFs that may play a central role in regulating MEC identity, we next
focused on TFs that within the same cell type display both motif accessibility as well as
high scores for an active downstream target gene expression as determined by Enrichr
analysis (Table S3). Very reassuringly, the master regulator of basal/myoepithelial cell
biology Tp63 (Forster et al., 2014) emerged as one of the top TF motifs that was
specifically accessible in basal cells, and also showed distinct gene expression as
calculated using gene score for a set of target genes (Figure S4). Several SMAD TFs
yielded top motif scores within basal cells, however, SMAD3 showed highest target gene
expression scores in basal cells indicating that SMAD3 represents a key TF in the
regulation of basal cell identity. SMAD family TFs are critical mediators of transforming
growth factor p1 (TGF-B), which has wide implications in regulating mammary epithelial

biology and cancer (Moses and Barcellos-Hoff, 2011). Our findings place particular
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importance of SMAD TFs in the context of basal MEC biology. Interestingly, the luminal
progenitor-associated TF ELF5 (Zhou et al., 2005) showed highest motif accessibility in
both luminal clusters (L-Sec and L-HR), however, expression of ELF5 target genes is most
predominantly detected in L-Sec cells. This can be explained by the fact that EIf5 gene
expression is almost exclusively found in the L-Sec cluster (Figure 2C) indicating that
while the ELF5 TF motif is accessible in L-HR cells, its downstream gene program is not
activated unless the TF itself is expressed. Finally, we explored FOXA1 as a known
regulator of luminal differentiation, which indeed showed strong correspondence between
high TF motif accessibility and elevated target gene expression scores specifically in L-
HR cells corroborating the notion that FOXA1 is a master regulator of the hormone-
responsive luminal cell type (Bernardo et al., 2010).

To define the differences between the newly established L-Sec Mature and
Progenitor cell states, we specifically compared these clusters for differential TF motif
accessibility (Figure 4B), which yielded numerous Wnt signaling-related TFs such as
LEF1 and TCF7L2 upregulated in L-Sec Progenitors. This is in line with increased
expression of the potentiator of canonical Wnt signaling Rspo1 in this cluster. In addition,
we noticed accessibility for several basal cell-specific TFs such as TP63, which is
supported by our observation of increased accessibility of the hallmark basal keratin Krt14
in this cluster (Figure 1C). To systematically explore the relationship of the MEC cell types
and states, we next performed hierarchical clustering based on TF motif accessibility
showing that L-Sec Progenitors cluster closely with Basal cells and share many TF
modules between each other, while L-Sec Mature more closely align with L-HR cells.
These shared features between basal cells and luminal progenitors support the concept
that luminal progenitors may be directly derived from basal mammary stem cells that
possess the capacity to differentiate into luminal cells (Visvader, 2009). This will need to

be further corroborated using functional or targeted lineage tracing experiments.
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Taken together, our integrated single-cell transcriptomics and chromatin
accessibility analysis of the MEC system revealed a previously unrealized cell type
hierarchy within the luminal epithelial compartment, and defined novel transcriptional and
epigenetic underpinnings regulating cellular identity in the mammary epithelium. In
particular, we define distinct maturation states within the secretory type of luminal cells (L-
Sec), which can be divided into progenitor (Rspo1, Aldh1a3) and mature secretory cells
(Lalba, Csn2). By directly integrating transcriptomics and chromatin accessibility datasets,
we were able to provide a framework to devise putative key transcription factors by
combining motif accessibility with positive downstream target gene expression. We also
identified novel enhancer regions that are systematically associated with gene
accessibility and expression of effector genes associated with secretory luminal
maturation (Folr1) as well as with basal, myoepithelial cell identity (CnnZ2). Our findings lay
the groundwork for future studies to functionally address the biological significance of
these cis/trans regulatory elements in mediating mammary stem and progenitor cell
function, and to determine how the chromatin accessibility landscape changes during

breast cancer.
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METHODS

Cell Isolation and single-cell RNA and ATAC sequencing library generation

Mice: FVB/NJ mice are from Jackson Laboratory (Stock Number: 001800). In both
scRNAseq and scATACseq experiment, 10 weeks old female mice were used for tissues
collection. All experiments have been approved and abide by regulatory guidelines of the
International Animal Care and Use Committee (IACUC) of the University of California,
Irvine.

scRNAseq/scATACseq: Mammary glands number 4 were collected and pooled from a

total of four 10-week old, female FVB/NJ mice. Glands were minced into pieces ~1mm in
diameter and processed as previously described (Kessenbrock et al., 2013). In brief,
minced glands were incubated with a 2mg/ml collagenase type IV solution at 37C while
shaking for 1 hour. Digested organoids were collected by differential centrifugation.
Collected organoids were further dissociated with trypsin into single cells. Cells were
stained for flow cytometry using fluorescently labeled antibodies for CD49f, EpCAM,
CD31, CD45, Ter119, and SytoxBlue. For scRNAseq, live epithelial cells were collected
for sequencing. For scATACseq, basal and luminal cells were collected separately.
Library generation for 10x Genomics v2 chemistry was performed following the
Chromium Single Cell 3' Reagents Kits v2 User Guide: CG00052 Rev B. Library
generation for single cell ATACseq were performed following the Chromium Single Cell
ATAC Reagent Kits User Guide: CG000168 Rev B. Single cell RNAseq and ATACseq
libraries were sequenced on the lllumina HiSeq4000 platform targeting approximately

50,000 reads per cells.

Sequence alignment and data processing
Alignment of scRNAseq analyses was completed utilizing 10x Genomics Cell Ranger
pipeline (version 2.1.0). Alignment of scATACseq analyses was completed utilizing 10x

13



Genomics Cell Ranger ATAC pipeline (version 1.1.0). Each library was aligned to an
indexed mm10 genome using Cell Ranger Count and Cell Ranger ATAC Count. “Cell
Ranger Aggr” function was used to normalize the number of confidently mapped reads
per cells across the libraries from different libraries for scRNAseq and scATACseq

separately.

Cell-type clustering analysis and marker identification using Seurat

The aggregated peak-by-cell data matrix was read into R (R version 3.6.0) and processed
using the Seurat single cell analysis package version 3.0.2 (Macosko et al., 2015). Along
with the peak matrix, the Cicero-generated gene activity matrix (see below) and ChromVar
deviations score matrix (see below) were added as assays to the Seurat object. A quality
control cutoff of a minimum of 2500 fragments per cell was applied to trim the data set of
low-quality cells. Next, variable features of the peak matrix were set to peak regions of
>100 across the matrix. These variable features were used to perform Latent Semantic
Indexing (LSI), and the first 50 components were calculated. These components were then
used to generate a Uniform Manifold Approximation and Projection (UMAP) dimensionality
reduction. Post UMAP, a Shared-Nearest-Neighbor graph was generated from the first 14
LSI components chosen via the elbow plot method and was used to cluster the cells via
Seurat’s Louvain algorithm.

Marker genes for peak-based clustering were generated using Seurat’s default
FindAllMarkers() function on the gene activity matrix. Pseudobulk profiles by cluster
highlighting fragment stack ups at particular genomic regions were generated using
Signac (version 0.1.0).

Post label transfer, cell type-specific transcription factor motifs were calculated
using the logistic regression method option implemented in Seurat’s FindAllMarkers()

function. Those TF motifs that had an average log fold change greater than one were used
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to generate the correlation heatmap to find co-correlated modules of transcription factor

motif enrichment.

scRNAseq Analysis

Each of the scRNAseq data libraries were independently read into R version 3.6.0 and
processed using the Seurat pipeline version 3.0.2. Genes had to be expressed in at least
three cells to be considered for analysis. Cells were trimmed to those that had at least 200
minimum unique genes expressed, no more than 6000 unique genes, and less than 30%
of counts aligning to the mitochondrial genome. Libraries were anchored and integrated
using the top 2000 variable features per library calculated via the “vst” method in Seurat.
CCA on these 2000 features between the libraries was calculated, and the first 20
dimensions used as input for anchoring. Post anchoring, PCA was performed and the first
10 PC’s were used for UMAP dimensionality reduction and subsequent clustering using
the default Louvain implementation. Marker genes per cluster were calculated using
Seurat’s FindAlIMarkers() function and the “wilcox” test option. GO term enrichment was

performed using Enrichr (Kuleshov et al., 2016).

Gene activity matrix generation

The aggregated peak-by-cell data matrix was read into R version 3.6.0, binarized, and
processed with the Cicero analysis package version 1.2.0 and the monocle 3 alpha version
2.99.3 to generate a gene activity matrix for all cells sequenced in the study. The
generation of the matrix took into account not only fragments that aligned to regions
proximal to the promoter site of each protein coding gene in the genome took into account
peak co-accessibility scores also generated through Cicero for all cells to factor in distal

genomic relationships to the promoter site of each gene.

Cis-regulatory regions by cluster
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Post label transfer, scATACseq cell libraries were subset by their predicted ID label,
whereupon the Cicero pipeline was utilized on each subset. Co-accessibility networks
were generated, with pairs of peak regions and their corresponding score in a data frame.
This data frame was subset to only those pairs that overlapped with regions in the
Enhancer Atlas mouse mammary list as the first peak of the connection (Gao et al., 2016).
This trimmed connection matrix was then thresholded for each cell type to those that had
a co-accessibility score greater than 0.5. Next, the second non-enhancer peak in the pair
was annotated to its closest protein coding gene. Conserved expression markers between
technology (RNA and ATAC in the RNA-imputed matrix) were found by cell type and the
respective co-accessible gene regions that were both highly connected to an enhancer

region, and represented a marker for a cell type were selected.

Transcription factor (TF) motif analysis using ChromVar

Motif enrichment analysis was performed using an R package ChromVAR version 1.4.1
(Schep et al., 2017). Open chromatin peaks and read counts at open chromatin were
defined by the Cell Ranger pipeline as described above. After correction of GC bias, TF
deviation score was calculated using a total of 579 TF motif position weight matrices
provided with the 10X Genomics Cell Ranger package. For TF clustering analysis, only
cells corresponding to epithelial clusters post label transfer (0,1,2,3) were selected. TF
enrichment scores were averaged by cluster and hierarchically clustered using hclust()

and pheatmap() in R.

Combined scATACseq and scRNAseq analysis
To generate a coembedding of cells from both scATACseq and scRNAseq libraries, cells
from the scRNAseq analysis were used as a reference dataset to predict cluster labels in

the scATACseq dataset and transfer them. This prediction used the variable features of
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the scRNAseq analysis on the RNA assay, and the gene activity matrix of the scATACseq
analysis as the query data. Transfer anchors were learned using FindTransferAnchors()
and the cluster labels were predicted using the TransferData() function together with the
peak-based scATACseq LSI reduction as the weight.reduction function option input. Next,
an imputed gene activity matrix was generated by using the TransferData() function again,
with the previously learned transfer anchors and a matrix consisting of only the variable
features of the scRNAseq analysis and its corresponding cells as the reference. This
imputed expression matrix was then used to merge the two Seurat objects, allowing for
co-visualization of cells labeled by the scRNAseq cluster labels or their predicted cluster
labels for the scRNAseq based or scATACseq respectively.

For combined TF motif accessibility and target gene expression analysis, we first
identified cell type-specific TF motifs in our ChromVar analysis (see above), and then
performed Enrichr analysis using cell type marker genes from scRNAseq to identify
“‘ENCODE and ChEA Consensus TFs from ChIP-X" for each cell type. Transcription factor
targets came from the Enrichr analysis (Table S3), where marker genes by cluster were
analyzed and those genes that had pathway hits in the Encode database annotation for
particular transcription factors were used to score all cells using Seurat’s

AddModuleScore() function.

In situ RNA analysis using RNAscope

Mammary glands were harvested from a 10-week old C57BL/6 mouse and frozen in O.C.T
Compound (4583, Sakura). 10-micron sections were fixed with fresh 4% PFA made from
40% PFA (15715-S, Electron Microscopy Sciences) diluted in PBS (21-031-CV, Corning)
for 1 hour at RT. The RNAscope assay for the Aldh1a3 probe (501201, ACDBio) was
performed according to the manufacturer’s protocol for fresh frozen sections. The images
were acquired with a Zeiss LSM 700 confocal microscope. Fiji was used to calculate the

number of Aldh1a3 foci (RNA molecules) per nuclei manually. Nuclei enveloped in Krt14
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protein are called basal for this analysis. Nuclei adjacent to, but not enveloped, are called

luminal.
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FIGURE LEGENDS

Figure 1:

(A) Schematic of experimental workflow for scATACseq analysis. (B) UMAP visualization
of scATACseq libraries, colored by Seurat clustering performed on aggregated peak
matrix. Cell types are outlined in dotted lines with Basal in red, Luminal-Hormone
Responsive (L-HR) in light green, and Luminal-Secretory (L-Sec) outlined in dark green.
(C) Violin plots of Cicero-generated gene accessibility matrix-based marker genes of each
cluster, with boxes colored by cell type-specific accessibility. (D-E) UMAP of scATACseq
analysis on the left, with cells colored by gene accessibility expression level of Wnt10a
and Cldn3. Pseudo-bulk profiles of library fragments on the right, subset by cluster at

genomic regions corresponding to Wnt10a and Cldn3.
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Figure 2:

(A) Schematic of experimental workflow for scRNAseq analysis of isolated mouse MECs.
(B) UMAP visualization of scRNAseq libraries anchored by sample, with colors
corresponding to unbiased clustering and annotated by cell type and state. Basal cells are
in red, L-HR in light green, and L-Sec outlined in dark green. Putative doublets are marked
by the letter D, and proliferative cells are marked by the letter P. Within L-Sec cell type,
two distinct clusters emerged that were labeled as Mature and Progenitor based on gene
expression signatures. (C) Focused analysis of L-Sec cluster and corresponding marker
gene is shown, where expression is scaled such that dark red corresponds to high
expression of the gene and light grey corresponds low expression of the gene in question;
top GO-term including accession number is listed for Progenitor and Mature cell states.
(D-E) Fluorescence images from in situ RNAscope analysis for Aldh1a3 in combination
with immunostaining for basal-specific KRT14 is shown and luminal and basal
compartments are outlined in blown up image. Quantification of transcript counts per basal
and luminal cells is shown; data was combined from three independent ductal regions of

mouse mammary gland sections.
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Figure 3:

(A) Schematic of Seurat-based label transfer of sScRNAseq cell clusters onto scATACseq
cells, and subsequent coembedding into a single UMAP visualization. (B) Split Dot Plot of
cell type markers, with imputed RNA expression intensity in the scATACseq cells scaled
from grey to dark blue, and expression intensity in scRNAseq cells displayed in a scale
from grey to dark red. The size of the dot corresponds to the percentage of cells within
that cluster have positive expression of the gene. (C) Coembedded UMAP faceted by
library type, with cells from scATACseq libraries on the left and cells from scRNAseq
libraries on the right. Cells are colored based on scaled expression, with grey
corresponding to low and dark red corresponding to high expression. (D) Cicero
connection data at enhancer region chr7_101932449 101936345 generated by subset
analysis by cluster. Connections from L-sec Mature cells shown in top panel, and
connections from L-sec Progenitor shown in bottom, with a minimum co-accessibility score
of 0.2 visualized. (E) Violin plot of Folr1 expression in the coembedded analysis, split by

technology type.
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Figure 4:

(A) Heatmap displaying co-correlation of TF motif accessibility shown as z-scores (blue =
low; red = high). Transcription factors were subset to those that were found through logistic
regression to be significantly associated with a particular cluster post label transfer from
scRNAseq data onto scATACseq data, and had an average log-fc greater than one. Key
TFs are highlighted in relation to putative function on the box to the right. (B) Comparison
of TF Motif z-scores between L_Sec_Mat vs. L_Sec_Prog cell populations. Selected TFs
are labeled. (C) Hierarchical clustering of cell type-specific TF Motif z-scores is shown;

blue = low and red = high.
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Figure S1:

(A) UMAP of scATACseq cell libraries, with cells colored by library of origin. (B)
Sequencing and alignment statistics for the six scATACseq libraries. (C) Gene
Accessibility matrix top marker gene expression heatmap, with yellow corresponding to

high expression and purple corresponding to low.
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Figure S2:

(A) Cell Ranger UMI-based cutoff to determine cell-associated barcodes. (B) Sequencing
and alignment statistics for the three scRNAseq libraries. (C) UMAP of scRNA-seq cells,
with cells colored by library of origin. Proliferative cells are marked by high Mki67 gene
expression, with dark red corresponding to high expression and light grey to low. (D)
Heatmap showing top 10 marker genes per cluster (yellow = high expression and purple
= low expression). (E) Feature plots in UMAP visualization of scRNAseq cells with boxes

colored by cell type (Dark red = high expression; light grey = low expression).
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Figure S3
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Figure S3:

(A) UMAP representation of scATACseq data, with cells colored by predicted cell type
label transferred from scRNAseq data clustering. (B) Coembedded UMAP representation
of both scATACseq cells and scRNAseq cells, with colors corresponding to the data type
of origin. (C) Correlation of gene activity matrix from scATACseq cells and gene
expression in cells from scRNAseq, split by cell type. (D) Cicero connection data at
enhancer region in proximity to Cnn2 locus. Connections within Basal cells are shown,
with a minimum co-access score of 0.2 visualized. (E) Violin plot of Cnn2 expression in

the coembeded analysis, split by technology type.
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Figure S4:

Faceted UMAP visualization of coembedded analysis, with scATACseq cells on the left,
and scRNAseq on the right. scATACseq data is colored by z-scored deviations of TF motif
accessibility, and scRNAseq data is colored by gene scoring of downstream targets of the
TF signaling as annotated through GO Terms. Yellow corresponds to high values, and

dark blue to low.

31





