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Abstract

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with
millisecond resolution providing reliable markers of healthy and disease states. Relating these
macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains
using MEG/EEG to reveal novel principles of information processing or to translate findings into new
therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN,
https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and
clinicians interpret the neural origins of MEG/EEG. HNN’s core is a neocortical circuit model that
accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly
compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a
signal’s origin. Tutorials teach users to simulate commonly measured signals, including event related
potentials and brain rhythms. HNN'’s ability to associate signals across scales makes it a unique tool for
translational neuroscience research.

Introduction

Modern neuroscience is in the midst of a revolution in understanding the cellular and genetic substrates
of healthy brain dynamics and disease due to advances in cellular- and circuit-level approaches in
animal models, e.g., two-photon imaging and optogenetics. However, the translation of new discoveries
to human neuroscience is significantly lacking (Badre, Frank, & Moore, 2015; Sahin et al., 2018). To
understand human disease, and more generally the human condition, we must study humans. To date,
EEG and MEG are the only noninvasive methods to study electrical neural activity in humans with fine
temporal resolution. Despite the fact that EEG/MEG provide biomarkers of almost all healthy and
abnormal brain dynamics, these so called “macro-scale” techniques suffer from difficulty in
interpretability in terms of the underlying cellular- and circuit-level events. As such, there is a need for a
translator that can bridge the “micro-scale” animal data with the “macro-scale” human recordings in a
principled way. This is the ideal problem for computational neural modeling, where the model can have
specificity at different scales.

To address this need, we developed the Human Neocortical Neurosolver (HNN), a modeling tool
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designed to provide researchers and clinicians an easy-to-use software platform to develop and test
hypotheses regarding the neural origin of their data. The foundation of the HNN software is a neocortical
model that accounts for the biophysical origin of macroscale extracranial EEG/MEG recordings with
enough detail to translate to the underlying cellular- and network-level activity. HNN’s graphical user
interface (GUI) provides users with an interactive tool to interpret the neural underpinnings of EEG/MEG
data and changes in these signals with behavior or neuropathology.

HNN’s underlying model represents a canonical neocortical circuit based on generalizable features of
cortical circuitry, with individual pyramidal neurons and interneurons arranged across the cortical layers,
and layer-specific input pathways that relay spiking information from other parts of the brain, which are
not explicitly modeled. Based on known electromagnetic biophysics underlying macroscale EEG/MEG
signals (Jones, 2015), the elementary current generators of EEG/MEG (current dipoles) are simulated
from the intracellular current flow in the long and spatially-aligned pyramidal neuron dendrites
(Hamalainen, Hari, limoniemi, Knuutila, & Lounasmaa, 1993; |keda, Wang, & Okada, 2005; Jones,
2015; Murakami, Hirose, & Okada, 2003; Murakami & Okada, 2006; Okada, Wu, & Kyuhou, 1997). This
unique construction produces equal units between the model output and source-localized data
(nanoampere-meters, nAm) allowing one-to-one comparison between model and data to guide
interpretation.

The extracranial macroscale nature of EEG/MEG limits the space of signals that are typically observed
and studied. The majority of studies focus on quantification of event related potentials (ERPs) and low-
frequency brain rhythms (<100Hz), and there are commonalities in these signals across tasks and
species (Buzsaki, Logothetis, & Singer, 2013; Shin, Law, Tsutsui, Moore, & Jones, 2017). HNN’s
underlying mathematical model has been successfully applied to interpret the mechanisms and meaning
of these common signals, including sensory evoked responses and oscillations in the alpha (7-14 Hz),
beta (15-29Hz) and gamma bands (30-80Hz) (Jones et al., 2009; Jones, Pritchett, Stufflebeam,
Hamalainen, & Moore, 2007; Lee & Jones, 2013; Sherman et al., 2016; Ziegler et al., 2010), and
changes with perception (Jones et al., 2007) and aging (Ziegler et al., 2010). The model has also been
used to study the impact of non-invasive brain stimulation on circuit dynamics measured with EEG (Sliva
et al., 2018), and to constrain more reduced “neural mass models” of laminar activity (Pinotsis et al.,
2017). In the clinical domain, HNN’s model has also been applied to study MEG-measured circuit
deficits in Autism (Khan et al., 2015).

Despite these examples of use, the complexity of the original model and code hindered use by the
general community. The innovation in the new HNN software is the construction of an intuitive graphical
user interface to interact with the model without any coding. We offer several free and publicly-available
resources to assist the broad EEG/MEG community in using the software and applying the model to
their studies. These resources include an example workflow and several tutorials to study ERPs and
oscillations, based on the prior studies cited above, and community sharing resources.

HNN’s GUI is designed so that researchers can simultaneously view the model's net current dipole
output and microscale features (including layer-specific responses, individual cell spiking activity, and
somatic voltages) in both the time and frequency domains. HNN is constructed to be a hypothesis
development and testing tool to produce circuit-level predictions that can then be directly tested and
informed by invasive recordings and/or other imaging modalities. This level of scalability provides a
unique tool for translational neuroscience research.

In this paper, we outline biophysiological and physiological background information that is the basis of
the development of HNN, give an overview of tutorials and available data and parameter sets to
simulate ERPs and low-frequency oscillations in the alpha, beta, and gamma range, and describe
current distribution and online resources (https://hnn.brown.edu). We discuss the differences between
HNN and other EEG/MEG modeling software packages, as well as limitations and future directions.
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Results

Background information on the generation of EEG/MEG signals and uniqueness of HNN

Primary currents and the relation to forward and inverse modeling : Extracranial “macroscale”
EEG/MEG are generated by large electrical currents in the brain known as primary currents J° (Figure
1). HNN is designed to bridge the “macroscale” recordings to the underlying cellular- and circuit-level
activity based on the biophysical origin of the primary electrical currents, which are assumed to be
generated by the post-synaptic, intracellular longitudinal current flow in the long and spatially-aligned
dendrites of a large population of synchronously-activated neocortical pyramidal neurons (Hamalainen
et al., 1993; Ikeda et al., 2005; Jones, 2015; Murakami et al., 2003; Murakami & Okada, 2006; Okada et
al., 1997). Before describing how to infer the neural origin of the primary currents with HNN, we first
briefly review the process of forward and inverse modeling.

The task of computing EEG and MEG given J° is commonly called forward modeling, governed by
Maxwell’'s equations. The primary currents set up a potential distribution, measurable on the scalp as
EEG, and volume currents (JY) that extend through the brain tissue, the cerebrospinal fluid (CSF), the
skull, and the scalp. MEG, in general, is generated by both the J* and J". However, in the geometry of
the head, the integral effect of the volume currents to the magnetic field can be relatively easily taken
into account and, therefore, modeling of MEG is in general more straightforward than the precise
calculation of the electric potentials measured in EEG.

The availability of these forward models opens up the possibility to estimate the locations (r) and time
course of the activity, J° = J°(r,t), from MEG and EEG data. However, this inverse problem is
fundamentally ill-posed and constraints are needed to render the problem unique. The different source
localization methods, such as current dipole fitting, minimum-norm estimates, sparse source estimation
methods, and beamformer approaches, differ in their capability to approximate the extent of the source
activity and in their localization accuracy. However, all of these methods are capable of inferring both the
location and direction of the neural currents and their time courses. Importantly, due to physiological
considerations, the appropriate elementary source in all of these methods is a current dipole. When
used in combination of geometrical models of the cortex constructed from anatomical MRI, the current
direction can be related to the direction of the outer normal of the cortex: one is thus able to tell whether
the estimated current is flowing outwards or inwards at a particular cortical site at a particular point in
time. As such, the direction of the current flow can be related to orientation of the pyramidal neuron
apical dendrites and inferred as currents flow from soma to apical tuft (up the dendrites) or apical tuft to
soma (down the dendrites). There are presently several open source software packages for MEG/EEG
source estimation, e.g., the MNE software, which can be employed in conjunction with HNN (Gramfort et
al., 2013).

Inferring the neural origin of the primary currents with HNN: The focus of HNN is on the “bottom-up
problem”, i.e., to study how J® is generated by the neural circuits in the brain. Currently, the process of
estimating the primary current sources (i.e., current dipoles) with inverse methods, or calculating the
forward solution from JPto the measured sensor level signal, is separate from HNN. A future direction
is to integrate the top-down source estimation software with our bottom-up HNN model for all-in-one
source estimation and circuit interpretation (see Discussion).

HNN'’s underlying neural model contains elements that can simulate the primary current dipoles (J°)
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creating EEG/MEG signals in a biophysically principled manner. Specifically, HNN simulates the primary
current from a canonical model of a layered neocortical column via the net intracellular electrical current
flow in the pyramidal neuron dendrites in a direction parallel to the apical dendrites (see red arrow in
Figures 1 and 2, and further discussion in Materials and Methods) (Hamalainen et al., 1993; Ikeda et al.,
2005; Jones, 2015; Murakami et al., 2003; Murakami & Okada, 2006; Okada et al., 1997). With this
construction, the units of measure produced by the model are the same as those estimated from source
localization methods, namely, nanoampere-meters (nAm), enabling one-to-one comparison of results.
This construction is unique compared to other EEG/MEG modeling software (see Discussion). A
necessary step in comparing model results with source localized signals is an understanding of the
direction of the estimated net current in or out of the cortex, which corresponds to current flow down or
up the pyramidal neuron dendrites, respectively, as discussed above. Estimation of current flow
orientation at any point in time is an option in most inverse solution software that helps guide the neural
interpretation, as does prior knowledge of the relay of sensory information in the cortex, see further
discussion in the Tutorials part of the Results section.

By keeping model output in close agreement with the data, HNN’s underlying model has led to new and
generative predictions on the origin of sensory evoked responses and low-frequency rhythms, and
changes in these signals across experimental conditions (Jones et al., 2009, 2007; Khan et al., 2015;
Lee & Jones, 2013; Sherman et al., 2016; Sliva et al., 2018; Ziegler et al., 2010), described further
below. The macro- to micro-scale nature of the HNN software is designed to develop and test
hypotheses that can be directly validated with invasive recordings or other imaging modalities (see
further discussion in tutorial on Alpha and Beta rhythms).

HNN is currently constructed to dissect the cell and network contributions to signals from one source
localized region of interest. Specifically, the HNN GUI is designed to simulate sensory evoked response
and low-frequency brain rhythms from a single region, based on the local network dynamics and the
layer-specific thalamo-cortical and cortico-cortical inputs that contribute to the local activity. As such,
HNN'’s underlying neocortical network represents a scalable patch of neocortex containing canonical
features of neocortical circuitry (Figure 2). Ongoing expansions will include the ability to import other
user-defined cell types and circuit models into HNN, as well as the ability to simulate the interactions
among multiple neocortical areas (see Discussion). Of note, users can still benefit from our software if
they are working with data directly from EEG/MEG sensor rather than source localized signals. The
primary currents are the foundation of the sensor signal and, as such, can have similar activity profiles
(e.g., compare source localized tactile evoked response in Figure 4 and sensor level response in Figure
5).

Overview of HNN’s default canonical neocortical column template network

Neocortical column structure: Here, we give an overview of the main features that are important to
understand in order to begin exploring the origin of macroscale evoked responses and brain rhythms,
and we provide details on how these features are implemented in HNN’s template model. Further details
can be found in the Materials and Methods section, in our prior publications (e.g., Jones et al., 2009),
and on our website https://hnn.brown.edu.

Given that the primary electrical current that generates EEG/MEG signals comes from synchronous
activity in pyramidal neuron (PN) dendrites across a large population, there are several key features of
neocortical circuitry that are essential to consider when simulating these currents. While there are
known differences in microscale circuitry across cortical areas and species, many features of neocortical
circuits are remarkably similar. We assume these conserved features are minimally sufficient to account
for the generation of evoked responses and brain rhythms measured with EEG/MEG, and we have
harnessed this generalization into HNN’s foundational model, with success in simulating many of these
signals using the same template model (see Introduction). These canonical features include:
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() A 3-layered structure with pyramidal neurons in the supragranular and infragranular layers whose
dendrites span across the layers and are synaptically coupled to inhibitory interneurons in a 3-to-1 ratio,
of pyramidal to inhibitory cells (Figure 3A). Of note, cells in the granular layer are not explicitly included
in the template circuit. This initial design choice was based on the fact that macroscale current dipoles
are dominated by PN activity in supragranular, and infragranular layers. Thalamic input to granular
layers is presumed to propagate directly to basal and oblique dendrites of PN in the supragranular and
infragranular layers. In the model, the thalamic input synapses directly onto these dendrites.

The number of cells in the network is adjustable in the Local Network Parameters window via the Cells
tab, while maintaining at 3-to-1 pyramidal to inhibitory interneuron ratio in each layer. The connectivity
pattern is fixed, but the synaptic weights between cell types can be adjusted in the Local Network menu
and the Synaptic Gains menu. Macroscale EEG/MEG signals are generated by the synchronous activity
in large populations of PN neurons. Evoked responses are typically on the order of 10-100nAm, and are
estimated to be generated by the synchronous spiking activity of the order of tens of thousands of
pyramidal neurons. Low-frequency oscillations are larger in magnitude and are on the order of 100-
1000nAm, and are estimated to be generated by the subthreshold activity of on the order of a million
pyramidal neurons (Jones et al., 2009, 2007; Murakami & Okada, 2006) While HNN is constructed with
the ability to adjust local network size, the magnitude of these signals can also be conveniently matched
by applying a scaling factor to the model output, providing an estimate on the number of neurons that
contributed to the signal.

(1) Exogenous driving input through two known layer-specific pathways. One type of input represents
excitatory synaptic drive that comes from the lemniscal thalamus and contacts the cortex in the granular
layers, which then propagates to the proximal PN dendrites in the supragranular and infragranular layers
and somata of the inhibitory neurons; this input is referred to as proximal drive (Figure 3B). The other
input represents excitatory synaptic drive from higher-order cortex or non-specific thalamic nuclei that
synapses directly into the supragranular layers and contacts the distal PN dendrites and somata of the
inhibitory neuron; this input is referred to as distal drive (Figure 3C). The networks that provide proximal
and distal input to the local circuit (e.g., thalamus and higher order cortex) are not explicitly modelled,
but rather these inputs are represented by simulated trains of action potentials that activate excitatory
post-synaptic receptors in the local network. The temporal profile of these action potentials is adjustable
depending on the simulation experiment and can be represented as single spikes, bursts of input, or
rhythmic bursts of input. There are several ways to change the pattern of action potential drive through
different buttons built into the HNN GUI: Evoked Inputs, Rhythmic Proximal Inputs and Rhythmic Distal
Inputs. The dialog boxes that open with these buttons allow creation and adjustment of patterns of
evoked response drive or rhythmic drive to the network (see tutorials described in Results section for
further details).

(1l1) Exogenous drive to the network can also be generated as excitatory synaptic drives following a
Poisson process to the somata of chosen cell classes or as tonic input simulated as a somatic current
clamp with a fixed current injection. The timing and duration of these drives is adjustable.

Further details of the biophysics and morphology of the cells and architecture of the local synaptic
connectivity profiles in the template network can be found in the Materials and Methods section. As the
use of our software grows, we anticipate other cells and network configurations will be made available
as template models to work with via open source sharing (see Discussion).

Parameter tuning in HNN’s template network model: HNN'’s template model is a large-scale model
simulated with thousands of differential equations and parameters, making the parameter optimization
process challenging. The process for tuning this canonical model and constraining the space of
parameters to investigate the origin of ERPs and low-frequency oscillations was as follows. First, the
individual cell morphologies and physiologies were constrained so individual cells produced realistic
spiking patterns to somatic injected current (detailed in Methods). Second, the local connectivity within
and among cortical layers was constructed based on a large body of literature from animal studies
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(detailed in Methods). All of these equations and parameters were then fixed, and the only parameters
that were originally tuned to simulate ERPs and oscillations were the timing and the strength of the
exogenous drive to the local network. This drive represented our “simulation experiment” and was based
on our hypotheses on the origin of these signals motivated by literature and on matching model output
to features of the data (see tutorials described in Results). The HNN GUI was constructed assuming
ERPs and low-frequency oscillations depend on layer-specific exogenous drives to the network. The
simulation experiment workflow and tutorials described below are in large part based on “activating the
network” by defining the characteristics of this layer-specific drive. Default parameter sets are provided
as a starting point from which the underlying parameters can be interactively manipulated using the GUI,
and additional exogenous driving inputs can be created or removed.

Automated parameter optimization is also available in HNN and is specifically designed to accurately
reproduce features of an ERP waveform based on the temporal spacing and strength of the exogenous
driving inputs assumed to generate the ERP. Before taking advantage of HNN’s automated parameter
optimization, we strongly encourage users to begin by understanding our ERP tutorial, and hand-tuning
parameters using one of our default parameter sets to get an initial representation of the recorded data.
The identification of an appropriate number of driving inputs and their approximate timings and strengths
serves as a starting point for the optimization procedure (described in the ERP Model Optimization
section below). Hand tuning of parameters and visualizing the resultant changes in the GUI will enable
users to understand how specific parameter changes impact features of the current dipole waveform.

Importantly, the biophysical constraints on the origin of the current dipoles signal (discussed above) will
dictate the output of the model and necessarily limits the space of parameter adjustments that can
accurately account for the recorded data. The same principle underlies the fact that a limited space of
signals are typically studied at the macroscale (ERPs and low frequency oscillations). A parameter
sensitivity analysis on perturbations around the default ERP parameter sets confirmed that a subset of
the parameters have the strongest influence on features of the ERP waveform (see Supplementary
Materials). Insights from GUI interactive hand tuning and sensitivity analyses can help narrow the
number of parameters to include in the subsequent optimization procedure and greatly decrease the
number of simulations required for optimization.

HNN GUI overview and interactive simulation experiment workflow

The HNN GUI is designed to allow researchers to link macro-scale EEG/MEG recordings to the
underlying cellular- and network-level generators. Currently available visualizations include, a direct
comparison of simulated electrical sources to recorded data with calculated goodness of fit estimates,
layer-specific current dipole activity, individual cell spiking activity, and individual cell somatic voltages
(Figure 4B-D). Results can be visualized in both the time and frequency domain. Based on its
biophysically detailed design, the output of HNN’s model and recorded source-localized data have the
same units of measure, nAm. By closely matching the output of the model to recorded data in an
interactive manner, users can test and develop hypotheses on the cell and network origin of their
signals.

The process for simulating evoked responses or brain rhythms from a single region of interest is to first
define the network structure, and then to “activate” the network with exogenous driving input based on
your hypotheses and simulation experiment. HNN'’s template model provides the initial network
structure. The choice of “activation” to the network depends on the simulation experiment. The GUI
design is motivated by our prior published studies and was built specifically to simulate sensory evoked
responses or spontaneous rhythms, or a combination of the two (Jones et al., 2009, 2007; Khan et al.,
2015; Lee & Jones, 2013; Sherman et al., 2016; Sliva et al., 2018; Ziegler et al., 2010). The tutorials
described in the Results section below details examples of how to “activate” the network to simulate
sensory evoked responses and spontaneous rhythms. Here, we outline a typical simulation experiment
workflow.
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In practice, users apply the following interactive workflow, as in Figure 4 and detailed further in the
tutorials with an example tactile evoked response from somatosensory cortex (data from Jones et al.,
2007).

(Step 1) Load EEG/MEG data (blue). (Step 1 is optional.)

(Step 2) Define the cortical column network structure. The default template network is automatically
loaded when HNN starts. Default parameters describing the local network can be adjusted by clicking
the Set Parameters button on the GUI and then Local Network Parameters, or directly from the Local
Network Parameters button on the GUI (Figure 4A).

(Step 3) “Activate” the local network by defining layer-specific, exogenous driving inputs (Figure 3 B,C).
The drive represents input to the local circuit from thalamus and/or other cortical areas and can be in the
form of (i) spike trains (single spikes or bursts of rhythmic input) that activate post-synaptic targets in the
local network, (ii) current clamps (tonic drive), or (iii) noisy (Poisson) synaptic drive. The choice of input
parameters depends on your hypotheses and “simulation experiment’. In the example simulation,
predefined evoked response parameters where loaded in via the Set Parameters From File button and
choosing the file “ERPYes100Trials.param”; this is also the default evoked response parameter set
loaded when starting HNN (Figure 4B). The Evoked Input parameters are then viewed in the Set
Parameters dialog box under Evoked Inputs (Figure 4C). The Evoked Inputs parameters are described
further in the tutorials below.

(Step 4) Run simulation and directly compare model output (black) and data (purple) with goodness of
fit calculations (root mean squared error, RMSE, between data and averaged simulation) (Figure 4D).

(Step 5) Visualize microcircuit details, including layer-specific responses, cell membrane voltages, and
spiking profiles by choosing from the View pull down menu (Figure 4D, E, F).

(Step 6) Adjust parameters through the Set Parameters dialog box to develop and test predictions on
the circuit mechanisms that provide the best fit to the data. With any parameter adjustment, the change
in the dipole signal can be viewed and compared with the prior simulation to infer how specific
parameters impact the current dipole waveform. Prior simulations can be maintained in the GUI or
removed. For ERPs, automatic parameter optimization can be iteratively applied to tune the parameters
of the exogenous driving inputs to find those that provide the best initial fit between the simulated dipole
waveform and the EEG/MEG data (see further details below).

(Step 7) To infer circuit differences across experimental conditions, once a fit to one condition is found,
adjustments to relevant cell and network parameters can be made (guided by user-defined hypotheses),
and the simulation can be re-run to see if predicted changes account for the observed differences in the
data. Alist of the GUI-adjustable parameters in the model can be found in the “Tour of the GUI” section
of the tutorials on our website. HNN’s GUI was designed so that users could easily find the adjustable
parameters from buttons and pull down menus on the main GUI leading to dialogue boxes with
explanatory labels.

As a specific example on how to use HNN as a hypothesis testing tool, we have used HNN to evaluate
hypothesized changes in EEG measured neural circuit dynamics with non-invasive brain stimulation
(Figure 5). We measured somatosensory evoked responses from brief threshold-level taps to the middle
finger tip before and after 10 minutes of ~10Hz transcranial alternating current stimulation (tACS) over
contralateral somatosensory cortex (see Sliva et al., 2018 for details). The magnitude of an early peak
near ~70ms in the tactile evoked response increased after the tACS session (Figure 5, top left). Based
on prior literature, we hypothesized that the observed difference was due to changes in synaptic efficacy
in the local network induced by the tACS (Kronberg, Bridi, Abel, Bikson, & Parra, 2017; Rahman, Lafon,
Parra, & Bikson, 2017). To test this hypothesis, we first used HNN to simulate the pre-tACS evoked
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responses, following the evoked response tutorial in our software (see Tutorial below). Once the pre-
tACS condition was accounted for, we then adjusted the synaptic gain between the excitatory and
inhibitory cells in the network using the HNN GUI and re-simulated the tactile evoked responses. We
tested several possible gain changes between the populations. HNN showed that a two-fold increase in
synaptic strength of the inhibitory connections, as opposed to an increase in the excitatory connections
or in total synaptic efficacy, could best account for the observed differences in the data (compare blue in
red curves in Figure 5). By viewing the cell spiking profiles in each condition (Figure 5, bottom right),
HNN further predicted that the increase in the magnitude of the ~70ms peak coincided with increased
firing in the inhibitory neuron population and decreased firing in the excitatory pyramidal neurons in the
post-tACS compared to the pre-tACS window. These detailed predictions can guide further experiments
and follow-up testing in animal models or with other human imaging experiments. Follow up testing of
model derived predictions is described further in the alpha/beta tutorial below.

Tutorials on ERPs and low-frequency oscillations

HNN’s tutorials are designed to teach users how to simulate the most commonly studied EEG/MEG
signals, including sensory evoked responses and low-frequency oscillations (alpha, beta, and gamma
rhythms) by walking users through the workflow we applied in our prior studies of these signals. The
data and parameter sets used in these studies are distributed with the software, and the interactive GUI
design was motivated by this workflow. In completing each tutorial, users will have a sense of the basic
structure of the GUI and the process for manipulating relevant parameters and viewing results. From
there, users can begin to develop and test hypotheses on the origin of their own data. Below we give a
basic overview of each tutorial. The HNN website (https://hnn.brown.edu) provides additional
information and example exercises for further exploration.

Sensory evoked responses: We have applied HNN to study the neural origin of tactile evoked
responses localized with inverse methods to primary somatosensory cortex from MEG data (Jones et
al., 2007). In this study, the tactile evoked response was elicited from a brief perceptual threshold level
tap - stimulus strength maintained at 50% detection -- to the contralateral middle finger tip during a
tactile detection experiment (experimental details in Jones et al., 2007, 2009). The average tactile
evoked response during detected trials is shown in Figure 4. The data from this study is distributed with
HNN installation.

Following the workflow described above, the process for reproducing these results in HNN is as follows.

Steps 1 & 2: Load the evoked response data distributed with HNN, “yes_trial_SI_ERP_all_avg.txt’. The
data shown in Figure 4B will be displayed. Adjust parameters defining the automatically loaded default
local network, if desired.

Step 3: “Activate” the local network. In prior publications, we showed that this tactile evoked response
could be reproduced in HNN by “activating” the network with a sequence of layer-specific proximal and
distal spike train drive to the local network, which is distributed with HNN in the file
“ERPYes100Trials.param®.

The sequence described below was motivated by intracranial recordings in non-human primates, which
guided the initial hypothesis testing in the model. Additionally, we established with inverse methods that
at the prominent ~70ms negative peak (Figure 4D), the orientation of the current was into the cortex
(e.g. down the pyramidal neuron dendrites), consistent with prior intracranial recordings (see Jones et
al., 2007). As such, in this example, negative current dipole values correspond to current flow down the
dendrites, and positive values up the dendrites. In sensory cortex, the earliest evoked response peak
corresponds to excitatory synaptic input from the lemniscal thalamus that leads to current flow out of the
cortex (e.g. up the dendrites). This earliest evoked response in somatosensory cortex occurs at ~25ms.
The corresponding current dipole positive peak is small for the threshold tactile response in Figure 4D,
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but clearly visible in Figure 10 for a suprathreshold (100% detection) level tactile response.

The drive sequence that accurately reproduced the tactile evoked response consisted of “feedforward” /
proximal input at ~25 ms post stimulus, followed by “feedback” / distal input at ~60 ms, followed by a
subsequent “feedforward” / proximal input at ~125 ms (Gaussian distribution of input times on each
simulated trial, Figure 4C). This “activation” of the network generated spiking activity and a pattern of
intracellular dendritic current flow in the pyramidal neuron dendrites in the local network to reproduce the
current dipole waveform, many features of which fell naturally out of the local network dynamics (details
in Jones et al., 2007). This sequence can be interpreted as initial “feedforward” input from the lemniscal
thalamus followed by “feedback” input from higher-order cortex or non-lemniscal thalamus, followed by a
re-emergent leminsical thalamic drive. A similar sequence of information flow likely applies to most
sensory evoked signals. The inputs are distinguished with red and green arrows (corresponding to
proximal and distal input, respectively) in the main GUI window. The number, timing, and strength (post-
synaptic conductance) of the driving spikes were manually adjusted in the model until a close
representation of the data was found (see section on parameter tuning above). To account for some
variability across trials, the exact time of the driving spikes for each input was chosen from a Gaussian
distribution with a mean and standard deviation (see Evoked Inputs dialog box, Figure 4C, and green
and red histograms on the top of the GUI in Figure 4D). The gray curves in Figure 4D show 25 trials of
the simulation (decreased from 100 trials in the Set Parameters, Run dialog box) and the black curve is
the average across simulations. The top of the GUI windows displays histograms of the temporal profile
of the spiking activity providing the sequence of proximal (red) and distal (green) synaptic input to the
local network across the 25 trials. Note, a scaling factor was applied to net dipole output to match to the
magnitude of the recorded ERP data and used to predict the number of neurons contributing to the
recorded ERP. This scaling factor is chosen from Set Parameters, Run dialog box, and is shown as
3000 on the y-axis of the main GUI window in Figure 4D. Note that the scaling factor is used to predict
the number of pyramidal neurons contributing to the observed signal. In this case, since there are 100
pyramidal neurons in each of layers 2/3 and 5, that amounts to 600,000 neurons (200 neurons x 3000
scaling factor) contributing to the evoked response, consistent with the experimental literature
(described in Jones et al., 2007, 2009).

Based on the assumption that sensory evoked responses will be generated by a layer-specific sequence
of drive to the local network similar to that described above, HNN’s GUI was designed for users to begin
simulating evoked responses by starting with the aforementioned default sequence of drive that is
defined when starting HNN and by loading in the parameter set from the “ERPYes100Trials.param” file,
as described above. The Evoked Inputs dialog box (Figure 4C) shows the parameters of the proximal
and distal drive (number, timing, and strength) used to produce the evoked response in Figure 4D. Here,
there were two proximal drives and one distal drive to the network. These parameters were found by
first hand tuning the inputs to get a close representation of the data and then running the parameter
optimization procedure described below.

Step 4 The evoked response shown in Figure 4 is reproduced by clicking the “Run Simulation” button at
the top of the GUI, and the RMSE of the goodness of fit to the data is automatically calculated and
displayed. Additional network features can also be visualized through pull down menus (Step 5).

Evoked response parameters can now be adjusted, and additional inputs can be created or removed to
account for the user-defined “simulation experiment” and hypothesis testing goals (Step 6). With each
parameter change, a new parameter file will be saved by renaming the simulation under “Simulation
Name” in the “Set Parameters” dialog box (see Figure 4C). From here, other cell or network parameters
can be adjusted to compare across conditions (Step 7).

Alpha and beta rhythms: We have applied HNN to study the neural origin of spontaneous rhythms
localized to the primary somatosensory cortex from MEG data; it is often referred to as the mu-rhythm,
and it contains a complex of (7-14Hz) alpha and (15-29Hz) beta frequency components (Jones et al.,
2009). A 1-second time frequency spectrogram of the spontaneous unaveraged Sl rhythm from this
study is shown in Figure 6. This data is distributed on the HNN website (“SI_ongoing.txt”), and contains
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1000 1-second epochs of spontaneous data (100 trials each from 10 subjects). The data is plotted in
HNN through the “View - View Spectrograms” menu item, followed by “Load Data” and then
selecting the “SI_ongoing.txt” file. Note that it may take a few minutes to calculate the wavelet
transforms for all 1000 1-second trials included. Next, select an individual trial (e.g. trial 32) from the
drop-down menu. The dipole waveform from a single 1-second epoch will then be shown in the top and
the corresponding time-frequency spectrogram. The spectrogram is automatically calculated and
displayed at the bottom, as seen in Figure 6. Notice that this rhythm contains brief bouts of alpha or beta
activity that will occur at different times in different trials due to the spontaneous, non-stationary nature
of the signals. As such, when averaged across trials, bands of alpha and beta activity appear continuous
in the spectrogram (data not shown, see Jones et al., 2007; Jones, 2016) and will create peaks at alpha
and beta in a power spectral density (Figure 8C). Since the alpha and beta components of this rhythm
are not time locked across trials, it is difficult to directly compare the waveform of the recorded data with
model output. Rather, to assess the goodness of fit of the model, we compared features of the simulated
rhythm to the data (see Jones et al., 2009), including peaks in the power spectral density, as described
below. Since we can not directly compare the waveform of this rhythm with the model output, rather than
first loading the data, we begin this tutorial with Step 3, “activating” the network, using the default local
network defined when starting HNN.

Step 3: “Activate” the local network. In prior publications, we have simulated low-frequency alpha and
beta rhythms through patterns of rhythmic drive (repeated bursts of spikes) through proximal and distal
projection pathways. These patterns of drive were again motivated by literature and by tuning the
parameters to match features of the model output to the recorded data (see Jones et al., 2009; Sherman
et al., 2016).

We begin by describing the process for simulating a pure alpha frequency rhythm only, and we then
describe how a novel prediction for the origin of beta events emerged (Sherman et al. PNAS 2016).
Motivated by a long history of research showing alpha rhythms in neocortex rely on ~10Hz bursting in
the thalamus, we tested the hypothesis that ~10Hz bursts of drive through proximal and distal projection
pathways (representing lemniscal and non-lemniscal thalamic drive) could reproduce an alpha rhythm in
the local circuit. The burst statistics (number of spikes and inter-burst interval chosen from a Gaussian
distribution), strength of the input (post-synaptic conductance), and delay between the proximal and
distal input, were manually adjusted until a pure alpha rhythm sharing features of the data was found.
We showed that when ~10Hz bursts of proximal and distal drives are subthreshold and arrive to the
local network in anti-phase (~50ms delay) a pure alpha rhythm emerges (Jones et al., 2009; Ziegler et
al., 2010).

The parameters of this drive are distributed with HNN in the file “Alpha.param”, loaded through the Set
Parameters From File button and viewed in the Set Parameters dialog box under Rhythmic Proximal
and Rhythmic Distal inputs (Figure 7A). Note that the start time mean of the ~10Hz Rhythmic Proximal
and Rhythmic Distal Inputs are delayed by 50ms. The HNN GUI in Figure 7B displays the simulated
current dipole output from this drive (middle), the histogram of the proximal and distal driving spike trains
(top), and the corresponding time-frequency domain response (bottom). This GUI window is
automatically constructed when rhythmic inputs are given to the network, and HNN is designed to easily
define rhythmic input to the network via the Set Parameters dialog box. A scaling factor was also applied
to this signal (via Set Parameters, Run dialog box) and is shown as 300,000 on the y-axis of the main
GUI window example in Figure 7B. The 300,000 scaling factor predicts that 60,000,000 PNs (300,000 x
200 PNs) contribute to the measured signal.

Step 4 The alpha rhythm shown in Figure 7B is reproduced by clicking the “Run Simulation” button at
the top of the GUI, Additional network features, including power-spectral density plots, can also be
visualized through the pull down menus (Step 5).

Steps 6 and 7: Rhythmic input parameters can be adjusted to account for the user defined “simulation
experiment” and hypothesis testing goals.
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The goal in our prior study was to reproduce the alpha / beta complex of the SI mu-rhythm. By hand
tuning the parameters we were able to match the output of the model to several features of the recorded
data, including symmetric amplitude modulation around zero and PSD plots as shown in Figures 7 and 8
(see further feature matching in Jones et al., 2009; Sherman et al., 2016), we arrived at the hypothesis
that brief bouts of beta activity (“beta events”) non-time locked to alpha events could be generated by
decreasing the mean delay between the proximal and distal drive to Oms and increasing the strength of
the distal drive relative to the proximal drive. This parameter set is also distributed with HNN
(“AlphaandBeta.param”) and viewed in Figure 8A . With this mechanism, beta events emerged on
cycles when the two stochastic drives hit the network simultaneously and when the distal drive was
strong enough to break the upward flowing current and create a prominent ~50ms downward deflection
(see red box in Figure 8B). The stronger the distal drive the more prominent the beta activity (data not
shown, see Sherman et al., 2016).

This beta event hypothesis was purely model derived and was based on matching several features of
the SI mu rhythm between the model output and data (detailed in Jones et al., 2009; Sherman et al.,
2016). One such feature was a direct comparison of the PSD between the model and data. This can be
viewed in the HNN GUI though the “View PSD” pull down menu (see Figure 4, Step 5), where this data
provided with HNN (“SI_ongoing.txt”) can be automatically compared the model output in the PSD
window (Figure 8C).

The model derived predictions on mechanisms underlying alpha and beta where motivated by literature
and further refined by tuning the parameters to match the output of the model with various features of
the recorded data. While the mechanisms of the alpha rhythm described above were motivated by
literature showing cortical alpha rhythms arise in part from alpha frequency drive from the thalamus and
supported by animal studies (Hughes & Crunelli, 2005; for example, see Figure 2 in Bollimunta, Mo,
Schroeder, & Ding, 2011), the beta event hypothesis was novel. The level of circuit detail in the model
led to specific predictions on the laminar profile of synaptic activity occurring during beta events that
could be directly tested with invasive recordings in animal models. One specific prediction was that the
orientation of the current during the prominent ~50ms deflection defining a beta event (red box, Figure
8B) was down the pyramidal neuron dendrites (e.g. into the cortex). This prediction, along with several
others, were subsequently tested and validated with laminar recordings in both mice and monkeys,
where it was also confirmed that features of beta events are conserved across species and recording
modalities (Sherman et al., 2016; Shin et al., 2017).

Gamma rhythms: Gamma rhythms can encompass a wide band of frequencies from 30-150 Hz. Here,
we will focus on the generation of so-called “low gamma” rhythms in the 30-80 Hz range. It has been
well established through experiments and computational modeling that these rhythms can emerge in
local spiking networks through excitatory and inhibitory cell interactions. The period of the low gamma
oscillation is set by the time constant of decay of GABAA-mediated inhibitory currents (Buzsaki & Wang,
2012; Cardin et al., 2009; Vierling-Claassen, Cardin, Moore, & Jones, 2010), a mechanism that has
been referred to as pyramidal-interneuron gamma (PING). In normal regimes, the decay time constant
of GABAx-mediated synapses (~25 ms) bounds oscillations to the low gamma frequency band (~40 Hz).
In general, PING rhythms are initiated by “excitation” to the excitatory (PN) cells, and this initial
excitation causes PN spiking that, in turn, synaptically activates a spiking population of inhibitory (1)
cells. These (l) cells then inhibit the PN cells, preventing further PN activity until the PN cells can
overcome the effects of the inhibition ~25 ms later. The pattern is repeated, creating a gamma frequency
oscillation (~40 Hz; 40 spikes/second).

We have applied HNN to determine if features in the current dipole signal could distinguish PING-
mediated gamma from other possible mechanisms such as exogenous rhythmic drive (Lee & Jones,
2013). Here, we describe the process for generating gamma rhythms via the canonical PING
mechanisms in HNN. We have not observed strong gamma rhythms in any of our prior studies. As such,
while default parameters sets creating the example below are distributed with the software, no data are
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currently provided. We thus begin this tutorial with Step 3, “activating” the network using a slightly
altered local network configuration, as described below.

Step 3: “Activate” the local network by loading in the parameter set defining the local network and initial
input parameters "gamma_L5weak_L2weak.param”. In this example, the input was noisy excitatory
synaptic drive to the pyramidal neurons. Additionally, all synaptic connections within the network are
turned off (synaptic weight = 0), except for reciprocal connections between the excitatory (AMPA only)
and inhibitory (GABAA only) cells within the same layer. This is not biologically realistic, but was done for
illustration purposes and to prevent pyramidal-to-pyramidal interactions from disrupting the gamma
rhythm. To view the local network connections click the “local network” button in the Set Parameters
dialog box. Figure 9B shows the corresponding dialog box where the values of adjustable parameters
are displayed. Notice that the L2/3 and L5 cells are not connected to each other, the inhibitory
conductance weights within layers are stronger than the excitatory conductances, and there are also
strong inhibitory-to-inhibitory (i.e., basket-to-basket) connections. This strong autonomous inhibition will
cause synchrony among the basket cells, and hence strong inhibition onto the PNs.

To reproduce the ~40Hz gamma oscillation described by the PING mechanism above, we drove the
pyramidal neuron somas in L2/3 and L5 with noisy excitatory AMPA synaptic input, distributed in time as
a Poisson process with a rate of 140Hz. This noisy input can be viewed in the “Set Parameters” menu
by clicking on the “Poisson Inputs” button (see Figure 9A). Setting the stop time of the Poisson drive to
-1, under the Timing tab, keeps it active throughout the simulation duration.

Step 4 The gamma rhythm shown in Figure 9C is reproduced by clicking the “Run Simulation” button at
the top of the main HNN GUI. The top panel shows a histogram of Poisson distributed times of input to
the pyramidal neurons, the middle panel the net current dipole across the entire network and the bottom
the corresponding time frequency spectrogram showing strong gamma band activity. Additional network
features, including spiking activity in each cell in the population (Figure 9D), somatic voltages (Figure
9E), and PSD plots for each layer and the entire network (Figure 9F), can also be visualized through the
“View” pull down menu (Step 5). Notice the PING mechanisms described above in the spiking activity of
the cells (Figure 9F), where in each layer the excitatory pyramidal neurons fire before the inhibitory
basket cells. The line plots, which show spike counts over time, also demonstrate rhythmicity. The
pyramidal neurons are firing periodically but with lower synchrony due to the Poisson drive (orange
histogram at the top), which creates randomized spike times across the populations (once the inhibition
sufficiently wears off). Notice also that the power in the gamma band is much smaller in Layers 2/3 than
in Layer 5 (Figure 9F). This is reflective, in part, of the fact that the length of the L2/3 PNs is smaller than
the L5 PNs, and hence the L2/3 cells produce smaller current dipole moments that can be masked by
activity in Layer 5 (see Lee & Jones, 2013 for further discussion).

Steps 6 and 7: Local network and/or driving input parameters can be adjusted to explore alternate
mechanisms of gamma generation and to develop and test hypotheses based on user defined data.

ERP Model Optimization

To ease the process of narrowing in on parameter values representing a user’s hypothesized model, we
have added a model optimization tool in HNN. Currently, this tool automatically estimates parameter
values that minimize the error between model output and features of ERP waveforms from experiments.
Parameter estimation is a computationally demanding task for any large-scale model. To reduce this
complexity, we have leveraged insight of key parameters essential to ERP generation, along with a
parameter sensitivity analysis, to create an optimization procedure that reduces the computational
demand to a level that can be satisfied by a common multi-core laptop.

Two primary insights guided development of the optimization tool. First, exogenous proximal and distal
driving inputs are the essential parameters to first tune to get an initial accurate representation of an
ERP waveform. Thus, the model optimization is currently designed to estimate the parameters of these
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driving inputs defined by their synaptic connection strengths, and the Gaussian distribution of their
timing (see dialog box in Figure 10B). In optimizing the parameters of the evoked response simulations
to reproduce ERP data distributed with HNN (e.g. see ERP tutorial), we performed sensitivity analyses
that estimated the relative contributions of each parameter to model uncertainty, where a low
contribution indicated that a parameter could be fixed in the model and excluded from the estimation
process to decrease compute time (see Supplementary Materials).

Second, an intuitive insight that was confirmed by parameter sensitivity analysis is that the influence of
each exogenous input on the simulated dipole varies over time, with the highest influence during and
just after the time of the input (see Supplementary Material). We used this knowledge to create a
stepwise optimization process, only estimating parameter values for one input at a time, where the
objective of each optimization is to minimize a weighted root mean squared error (RMSE) measure
between simulated and experimental data only during the relevant time window (see Materials and
Methods). This stepwise estimation reduces the complexity of the optimization problem and saves time.
Each step in the process searches for parameter estimates using the COBYLA optimization algorithm
(Powell, 1994) (see Materials and Methods for detailed explanation of the stepwise optimization
procedure).

Example model optimization for the suprathreshold sensory evoked response data set

In this example, we describe an application of the model optimization tool for estimating parameters to
simulate data representing the Sl evoked response to a brief suprathreshold level tactile stimulation --
which is 100% detected (Figure 10A). This evoked response is similar to that shown in Figure 4, where
the signal was elicited from a perceptual threshold level stimulation - at 50% detection. We start from the
parameter file fitted to the 50% detection scenario, and use HNN’s model optimization feature to find
parameter estimates that provide a better fit the suprathreshold-level experimental data. The data from
this study is also included in the HNN distribution (“SI_SupraT.txt”).

Steps 1-4: Similar to steps 1-4 above, first load the supra-threshold experimental data file
“S1_SupraT.ixt” via the “Load data file” menu option and the example starting parameters to activate the
network provided in the parameter file “ERPYes100Trials.param” via the “Load parameter file” menu
option. Note that in this example, the network is also “activated” by a sequence of three exogenous
inputs defined in the parameter file. The parameters for these inputs serve as a baseline for model
optimization. The supplied parameter file (used above) runs 100 trials by default for each simulation. For
model optimization, this can be reduced to 3 trials. Click on the “Set Parameters” button, then the “Run”
button, and replace 100 trials with 3. In the previous Set Parameters dialog box change the simulation
name to “ERPYes3Trials” to reflect this change (Figure 4C). By clicking the “Run Simulation” button the
evoked response using this initial parameter set as in Figure 10A will be displayed. As described above,
in practice with user defined data, users should apply their own hypotheses related to the number,
timing and synaptic input strengths of the exogenous inputs that activate the network to obtain an initial
representation of the recorded waveform before beginning the parameter estimation process.

Step 5: Before running the optimization, rename the simulation to “ERPYes3Trials_opt” in the Set
Parameters dialog box as described above, so that the parameter results of the optimization will be
saved in a new file.

Step 6: In the Simulation pull down menu, choose the “Configure Optimization” option. This option is
only selectable once data and parameter files have been loaded. A new dialog box pre-populated with
values from the parameter file will appear, as shown in Figure 10B. All parameters describing the timing
and strength of defined exogenous inputs will be available for optimization. Users can generate their
own evoked response parameter files with as many exogenous inputs as desired and they will be
automatically populated into the “Configure Optimization” dialog box.

Select which parameters to treat as free variables for optimization; parameters that will be fixed in the
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optimization process are grayed out. By default, all parameters are selected, but it may be desirable to
limit the number of free parameters to only the most influential set based on a parameter sensitivity
analysis. Fixing non-influential parameters will decrease the complexity of an optimization step, and
increase the likelihood of the optimization algorithm converging on parameter estimates after a relatively
low number of simulations. Results of a sensitivity analysis using Uncertainpy (Tennge, Halnes, &
Einevoll, 2018) on this example data are provided in Supplementary Table 1 and may help guide model
optimization for similar data. Sensitivity analysis is not yet included in HNN (see Future Directions).

The number of simulations per optimization step is configurable in the top section of the “Configure
Optimization” dialog box (Figure 10B). The default values shown in Figure 10B were based on results
from our studies where the fit obtained was significantly improved from a single optimization. This value
can be decreased as the number of free parameters is reduced.

The parameter ranges defining the bound constraints given to the optimization algorithm are shown in
the right-most column of the dialog box in Figure 10B. The displayed range is calculated as plus or
minus a specified number of standard deviations for input start time or plus or minus a percentage of the
initial value for all other parameters. If a parameter has an initial value of 0, its range is defined by a
user-specified maximum value rather than percentage. The “Recalculate Ranges” button will display
updated values.

Step 7: Click the “Run Optimization” button to start the stepwise optimization process.After each input
has been optimized in sequence and a final optimization pass over all parameters has completed, the
final optimized fit will be shown in gray in the main HNN window along with the lowest obtained RMSE
(Figure 10C/D).

Step 8 (optional): To perform a second optimization using the results of the first procedure as a starting
point, select the optimized simulation parameter set drop-down menu. This will update the values in the
Configure Optimization dialog box and pressing Run Optimization will start a new optimization process.

For this example, the RMSE improved from 14.60 (Figure 10D) after the first optimization to 10.79 after

a second round (data not shown).

Discussion

The Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) is a neural modeling software tool
developed to help researchers and clinicians interpret the neural origin of their human EEG or MEG
data. HNN’s interactive GUI is designed for users with no formal computational neural modeling or
software development experience to be able to develop and test hypotheses on the cellular- and circuit-
level generators of their human data. Based on prior applications of HNN’s underlying template neural
model on these signals (Jones et al., 2009, 2007; Khan et al., 2015; Lee & Jones, 2013; Sherman et al.,
2016; Sliva et al., 2018; Ziegler et al., 2010), the tutorials and the example workflow focus on studying
the neural origin of ERPs and low-frequency oscillations from a single brain region. The template
network model contains features of a canonical neocortical circuit, with layer-specific thalamocortical
and cortico-cortical drive, where the net primary current dipoles are simulated from the intracellular
current across the network of pyramidal neurons. HNN enables visualization and direct comparison of
the primary current dipole produced by the network to source-localized data in units of nAm, under
various parameter manipulations. This comparison, along with simultaneous visualization of microcircuit
activity, including cell spiking and somatic voltage responses, guides interpretation of the cellular- and
circuit-level origin of EEG/MEG data.

HNN was created based on the biophysical origin of EEG/MEG primary currents to be a hypothesis
development and testing tool, where specific predictions on the microcircuit-level underpinnings of
recorded data can be produced. The circuit-level predictions can guide further validation with invasive
recordings or with other imaging modalities (e.g., spectroscopy or tractography, see Khan et al., 2015).
As one specific example, HNN led to a novel prediction on the origin of transient neocortical beta
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oscillations, and the prediction was later tested and supported by laminar recordings in mice and
monkeys (Sherman et al., 2016). In turn, established cellular- or circuit-level details known to contribute
to healthy brain dynamics and/or disease states can be adapted into HNN to predict corresponding
signatures in macroscale signals.

HNN is particularly timely given the rapidly expanding wealth of genetic insights and phenotype data in
animal model systems. As disease-specific genetic mutations and corresponding cellular/circuit
outcomes in mouse models are identified, they can be implemented in HNN, and their impact on
EEG/MEG measured brain dynamics, ranging from ongoing state properties (e.g., alpha oscillations) to
sensory-evoked responses, can be simulated. The outputs from HNN would then provide specific and
principled predictions to be compared against real EEG/MEG data obtained in the relevant population,
leading to valid bi-directional inference. Overall, the scalability of HNN provides an unprecedented
framework for translational neuroscience research.

Comparison to other EEG/MEG modeling software

Although other models and software packages aimed at providing researchers tools to simulate
macroscale EEG/MEG signals are available (e.g., hitps://thevirtualbrain.org;

https://www fil.ion.ucl.ac.uk/spm/ (Barrés, Simons, & Arbib, 2013; Hagen, Naess, Ness, & Einevoll, 2018;
Kiebel, Garrido, Moran, & Friston, 2008; Sanz Leon et al., 2013). HNN’s model, goals, and capabilities
are unique in this realm. To our knowledge, HNN is the only software able to simulate the primary
electrical currents underlying EEG/MEG signals from the intracellular dendritic current flow in multi-
compartmental pyramidal neurons embedded in a detailed model of layered cortical circuitry that
contains individual spiking neurons and layer-specific drive from thalamocortical and cortico-cortical
networks. This construction was specifically designed for interpreting microscale cellular- and circuit-
level activity from single regions of interest.

Other models typically rely on reduced representations of neural activity, including neural mass
representations and/or mean field approximations (Breakspear, Williams, & Stam, 2004; Jansen & Rit,
1995; Jirsa & Haken, 1996; Kiebel et al., 2008; Sanz Leon et al., 2013; Woolrich & Stephan, 2013).
Such simplifications may be necessary to ensure mathematical or computational tractability of models
that address whole brain activity or interactions between multiple areas (Breakspear, 2017), but that
tractability comes at the cost of suppressing or eliminating the ability to evaluate the roles of cellular-
level details of individual spiking units or particular network architectures, or to perform one-to-one
comparisons between model and data.

In contrast to the more simplified models mentioned above, the biophysical detail included in HNN’s
model enables direct comparison between model output and source-localized data in the same units of
measure (nAm), facilitating GUI-driven hypothesis development and testing. Additionally, unlike other
software, HNN’s GUI, workflow, and tutorials are uniquely designed to train users to stimulate ERPs and
oscillations based on layer-specific exogenous drive to the network, as validated in prior studies (see
Introduction). Although HNN’s level of detail can be prohibitive for studying more global network
interactions where the computations are more tractable with reduced neural representations, the level of
detail built into HNN is necessary to make predictions on local microscale cellular and circuit elements
contributing to EEG/MEG that can guide targeted testing and direct connection to studies in animal
models.

Limitations and Future directions
One of the greatest challenges in computational neural modeling is deciding the appropriate scale of

model to use to answer the question at hand. There is always a tradeoff between model complexity and
computational efficiency, ease of use, and interpretability. As discussed above, this tradeoff underlies
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different scales of modeling in various EEG/MEG modeling software. HNN’s model was chosen to be
minimally sufficient to accurately account for the biophysical origin of the primary currents that underlie
EEG/MEG signals; namely, the net intracellular current flow in the apical dendrites of pyramidal neurons
that span across the cortical layers and receive layer-specific synaptic input from other brain areas.
While HNN’s model is a reduction of the full complexity of neocortical circuits, it has been successful in
interpreting the origin of extracranially measured macro-scale EEG/MEG signals that likely rely on
canonical features of neocortical circuitry and do not provide access to finer details of the underlying
structure. That said, any conclusions made with HNN are based on the underlying model assumptions
that are important for users to understand. These assumptions are outlined in detail in the methods, in
our prior publications, and on our website.

Parameter optimization is a computationally challenging problem in any large-scale model. The process
for parameter tuning to study ERPs and oscillations in HNN’s underlying model is detailed above. Based
on our prior studies and sensitivity analyses (see Supplementary Materials), we have identified that the
timing and strength of the layer specific exogenous drive to the local network is critical in defining the
timing and peaks of sensory evoked responses. As such, HNN currently includes a tool to optimize
these parameters based on reducing the error between simulated evoked response waveforms and
recorded data. Due to the non-stationary nature of spontaneous brain rhythms (e.g. Figure 6) error
reduction based on matching waveform features is not as straightforward, and other signal features may
be necessary to consider for optimization (e.g. PSD peak amplitudes, see Figure 8 and Jones et al.,
2009). Future expansions of HNN will include the ability to optimize over other user defined parameters,
and to minimize errors between model output and various features of recorded data, with an estimate of
the sensitivity of various parameters to these features. Given enough compute power, large parameter
sweeps could be implemented in HNN to generate families of models could that could then be template
matched to given waveforms via machine learning algorithms, as an alternative means for circuit
interpretation without interactive hypothesis development and testing. At present, HNN can be run on
high performance computers through the Neuroscience Gateway Portal (www.nsgportal.org) and
Amazon Web Services (https://aws.amazon.com), see also Dissemination in Materials and Methods.

Currently, all conclusions made in HNN are derived from the template neocortical column model
provided. Another important step in expanding HNN'’s utility will be to enable users to define their own
cells and circuits to use within the HNN framework. While the HNN code is open source and adaptable
for advanced users, it is difficult for those without expertise in computational neural modeling in
Neuron/Python to expand. Therefore, work is in progress to convert HNN’s underlying neural model to
the NetPyNe simulation language (www.netpyne.org) (Dura-Bernal et al., 2019). NetPyNe is a neural
modeling platform enabling flexible cell and network development. This conversion will also facilitate the
ability to expand HNN to the study of activity from and between multiple cortical areas and the thalamus.

HNN is designed to simulate source-localized current dipole signals produced by neurons. Source
localization is currently viewed as an independent process. The output from any source localization
algorithm can be compared to HNN’s simulated output. In future expansions of HNN, we plan to
integrate HNN’s “bottom up” simulations, with “top down” source localization estimates using minimum-
norm-estimate (MNE) software (www.martinos.org/mne) (Gramfort et al., 2013, 2014), providing an all-
in-one software tool for source localization and circuit-based interpretation. In doing so, parameter
estimation in each software package may benefit from direct knowledge and constraints from the other.
Additionally, HNN’s utility will be expanded to include estimation of forward fields through the brain to
simulate and visualize local field potential, current-source density, and sensor-level signals, facilitating
comparison to these recording modalities.

We have shown that HNN can be a useful tool to interpret the impact of noninvasive brain stimulation
(NIBS) on EEG-measured circuit dynamics (Figure 5, Sliva et al., 2018). HNN was used to test specific
hypotheses on tACS-induced modulation of synaptic dynamics by accounting for EEG signal differences
in pre-tACS compared to post-tACS periods. A useful expansion of HNN will be to include simulations of
the fields induced in the brain by NIBS (e.g., with finite-element-estimates (Windhoff, Opitz, &
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Thielscher, 2013)) and to directly couple these fields to the modeled neurons. This integration would
facilitate studying the effects of NIBS on real-time EEG signals and could lead to improved NIBS
paradigms.

In total, HNN’s present distribution and planned expansions are aimed at providing a one-of-a-kind,

user-friendly software tool for translational neuroscience research that is accessible to a wide scientific
and clinical community.

Materials and Methods

Dissemination HNN is distributed online at https://hnn.brown.edu. The menu bar at the top of the HNN
homepage (Figure 11) links to installation instructions, documentation, tutorials, troubleshooting
information, and a user forum. HNN can be installed locally on Linux, Windows, and macOS operating
systems, and it can be run as well online through Amazon Web Services (AWS) or the Neuroscience
Gateway Portal (NGP). Since HNN is an open-source project, the code for our software, as well as the
local installation instructions, are hosted on GitHub (see https://github.com/jonescompneurolab/hnn).

Template Model Construction

Overview The template neocortical model provided with HNN is based on prior publications using the
model without a graphical user interface, as described in Jones et al., 2009, and available on ModelDB
(https://senselab.med.yale.edu/modeldb). All current parameter files included in the software, and
described in the tutorials above, are based on this model, except for the gamma tutorial whose
parameter file has local network modifications as described above.

HNN’s underlying neocortical model is simulated using the NEURON simulation environment with the
Python interpreter. HNN’s model is simulated across multiple cores in parallel using the message-
passing interface (MPI). HNN’s Run Parameters dialog box can be accessed through the GUI and
provides access to commonly used simulation parameters, including integration time-step (dt),
simulation duration (milliseconds), number of trials, neuronal firing threshold (mV), and number of cores
over which to parallelize the model.

The model represents a canonical neocortical circuit. It contains multi-compartment pyramidal neurons
(PN) in supragranular and infragranular layers (layers 2/3 and 5, respectively), whose apical dendrites
are spatially aligned and span the cortical layers. In both layers, the PNs have two basal, one oblique,
and one apical dendrite branch, and the layer 2/3 PNs have shorter apical dendrites than layer 5 PNs.

The PNs are synaptically coupled to each other and to a subset of inhibitory neurons in each layer, and
are included in the model in a 3/1 PN-to-interneuron ratio, with a scalable number of PNs. The inhibitory
neurons are simulated with single compartments representing fast spiking basket cells, and are shown
in yellow in (Figure 2). Note that the granular layer is not explicitly included in the template circuit. This
design choice was based on the fact that macroscale current dipoles are dominated by PN activity in
supragranular, and infragranular layers, due to their alignment (see Calculation of Primary Electrical
Current). Thalamic input to granular layers is presumed to propagate directly to basal and oblique
dendrites of PN in layer 2/3 and 5.

Detailed Neuronal Morphology and Physiology

Morphology
The morphology of the PN in each layer (see Figure 3, and Table 1) were adapted from the morphology


https://github.com/jonescompneurolab/hnn)
https://hnn.brown.edu/
https://doi.org/10.1101/740597
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/740597; this version posted August 26, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

reduction procedure in (Bush & Sejnowski, 1993), which was based on conserving the axial
conductance between compartments in the cells. The axial conductance is the basis of the primary
current dipole calculation (see below).

Layer 2/3
® PN: 8 compartments including 4 apical dendrites, 3 basal dendrites, 1 soma
® |nhibitory basket neurons: single compartment (soma)
Layer 5
® PN: 9 compartments including 5 apical dendrites, 3 basal dendrites, 1 soma.
® As shown below, L5 PNs have longer dendrites than L2/3 PNs. L5 PN somas are
based in L5 with long apical dendrites reaching into L2/3.
® |nhibitory Basket neurons: single compartment (soma).
® | 2/3 and L5 basket interneurons are identical but their synaptic parameters and
local circuit connectivity differs.
Type Soma Adend |Adend1 [ Adend2 [ Adend |Adend |Bdend1 |Bdend2 |Bdend3
trunk tuft oblique
L2/3 PN | 221, 59.5, 306.0, N/A 238.0, 340.0, 85.0, 255.0, 255.0,
234 4.3 4.1 3.4 3.9 4.3 2.7 2.7
L2/3 39.0, N/A N/A N/A N/A N/A N/A N/A N/A
basket |20.0
L5SPN |[39.0, 102.0, 680.0, 680.0, 425.0, |255.0, 85.0, 255.0, 255.0,
28.9 10.2 7.5 4.9 3.4 5.1 6.8 8.5 8.5
L5 39.0, N/A N/A N/A N/A N/A N/A N/A N/A
basket |20.0

Table 1. Length ( pm ), diameter ( pm ) of compartments in each modeled neuron type.
Adend (Bdend) represent apical (basal) dendrite. Note the following connectivity for
compartments of PNs. The non-oblique Adends of PNs are connected vertically along the Z
axis (cortical layer axis from supra- to infragranular layers) from soma - Adend trunk —
Adendl -» Adend2 - Adend tuft. The smaller L2/3 PNs do not have an Adend2
compartment. PN Adend oblique are connected to the soma and perpendicular to the Z
axis. Bdend1l connects to the soma along the Z axis, and Bdend2 and Bdend3 branch from
Bdendl at a 45 degree angle from the Z axis. L2/3 and L5 basket interneurons have a
single somatic compartment. N/A indicates non-applicable, since that specific compartment
not present in the neuron type. Geometry illustrated in Figure 3 above.

Physiology

Membrane voltages in each simulated compartment were calculated using the standard Hodgkin-Huxley
parallel conductance equations, and current flow between compartments follows from cable theory as
accounted for in NEURON.

Active ionic currents were included in both the somatic and dendritic compartment of the cells. The
parameters regulating these currents were tuned to replicate known in vitro firing patterns in response to
somatic current injection. The L5 PNs produced bursts of action potentials after sufficient depolarization
and the L2/3 PNs produced adapting spike trains.
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The following table displays the ion channels and mechanisms in each cell type in the model (X)

indicates the presence of the channel/mechanism in the cell type, see online code for full equations.

Cell Type (rows) Na K Km |KCa| Ca (L- Ca (T- Ca HCN | leak | dipole
Channel/ (fast) fast type) type) decay
mechanism Type
(columns)
Basket X X X
L2/3 Pyramidal X X X X X
L5 Pyramidal X X X X X X X X X X

In the table above, Na (fast) / K (fast) are the fast sodium and potassium channels responsible for
generating action potentials. Km is the muscarine sensitive potassium channel, with a relatively slow
time-constant and KCa is the calcium-dependent potassium channel, which contributes to
hyperpolarization after calcium influx into the cell. The L- and T-type calcium (Ca) channels represent

the high-threshold and low-threshold activated calcium channels which together with the

hyperpolarization-activated cyclic nucleotide gated channel (HCN) contribute to bursting. Ca decay

represents the calcium extrusion pump, which causes intracellular calcium to decay towards a baseline
level. Leak represents the passive channel, with constant conductance. Dipole represents the

mechanism that takes into account the primary axial current flow within pyramidal neuron dendrites,
responsible for the generation of simulated signals comparable to MEG/EEG recordings. For more
details see Jones et al., 2009.

Local Network Connections

HNN'’s default template neocortical model includes neurons arranged in three dimensions. The XY plane

is used to array cells on a regular grid while the Z-axis specifies cortical layer. HNN’s default model

contains a regular 10 x 10 grid (arbitrary units) of pyramidal neurons in layer 2/3 and layer 5 for a total of

200 pyramidal neurons, with interneurons interleaved regularly in a 3-1 ratio (see Figure 3D).

Synaptic dynamics were modeled with bi-exponential functions. The rise and decay time constants and
reversal potentials were based on experiments and the original neocortical model in Jones et al., 2009,

and are generally as follows: AMPA (0.5 ms, 1.0 ms, 0 mV); NMDA (1.0 ms, 20.0 ms, 0 mV); GABAA

(0.5 ms, 5.0 ms, -80 mV), GABAB (1.0 ms, 20.0 ms, -80 mV). Within a cortical layer there is recurrent

connectivity between neurons of a given type (PN to PN, interneuron to interneuron), PN to interneuron
connectivity, and synaptic inhibition from interneurons onto PNs. The following synaptic connections are
present across cortical layers: layer 2/3 PNs to layer 5 PNs, layer 2/3 interneurons to layer 5 PNs, layer
2/3 PNs to layer 5 interneurons.

There is all-to-all connectivity between any two populations of synaptically-coupled neurons. Synaptic

weights between the neurons are scaled inversely by the distance in the XY plane (arbitrary units)
between the neurons ( d ) using exponential fall-off following ¢
which depends on pre- and post-synaptic type (Table 2 below).

-d*Ix?

, and space constant A
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(From {,To-) |[L2/3PN L2/3 Basket L5 PN L5 Basket
L2/3 PN 3 3 3 3

L2/3 Basket 50 20 50 N/A

L5 PN 3 N/A 3 3

L5 Basket N/A N/A 70 20

Table 2. Space constant (arbitrary units) for synaptic connection strengths and delays between different
populations of neurons (rows are pre-synaptic type, columns are post-synaptic type).

The synaptic delays are scaled in proportion to the XY plane distance ( d ) between the neurons
following 1/e"mz , to account for the larger propagation distance (note thatthe A value is
determined using values in Table 2). With increasing d between neurons, the synaptic weights
decay, while the synaptic delays increase. The connectivity details are based on known neocortical
anatomy and local circuit wiring patterns, as derived from the literature. Further details on connectivity
are available on HNN'’s website and prior publications.

Exogenous Driving Inputs

At rest, the default model does not generate activity. HNN provides several ways to activate the local
cortical column with layer specific excitatory synaptic input representing thalamo-cortical, and/or cortical-
cortical and noisy/tonic drive. The user defines the choice of driving input to the network, based on their
simulation experiment, as described in Results.

Exogenous driving networks are not explicitly modeled, rather the user defines trains or bursts of action
potentials representing these inputs that excite the local network via AMPA or NMDA synaptic
connections to distinct layers and cellular compartments. These inputs are referred to as proximal and
distal drive based on the PN dendritic contact location. Proximal inputs contact basal and oblique
dendrites of PN and somas of the inhibitory neurons in L2/3 and L5, and distal inputs contact distal
dendrites of the PN in L2/3 and L5 and somas of the inhibitory neurons in L2/3 only, as shown in Figure
3.

The trains of action potentials, or tonic/noisy input, that the user defines are created in specific dialog
boxes in the GUI and represent either Evoked, Rhythmic, Tonic, or Poisson Inputs, as motivated by our
prior studies and tutorials described in Results.

Evoked Input: Evoked inputs are trains of synaptic inputs to the local network during a sensory stimulus
that creates an event related potential (ERP). Parameter choices for defining these inputs are shown in
Figure 4A. The following parameter values are used to define each proximal or distal evoked input:

® Start time mean (ms) - average start time
Start time stdev (ms) - standard deviation of start time
Number spikes - number of inputs provided to each synapse
L2/3 Pyr weight AMPA/NMDA ( uS ) - weight of AMPA/NMDA synaptic inputs to layer 2/3
pyramidal neurons
L2/3 Basket weight AMPA/NMDA ( uS ) - weight of AMPA/NMDA synaptic inputs to layer /32
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basket cells

® L5 Pyrweight AMPA/NMDA ( uS ) - weight of AMPA/NMDA synaptic inputs to layer 5
pyramidal neurons

® |5 Basket weight AMPA/INMDA ( uS ) - weight of AMPA/NMDA synaptic inputs to layer 5
basket cells (only used for proximal inputs)

Each evoked input also has a “Synchronous Inputs” option, indicating whether for a specific evoked
proximal/distal input each neuron receives the input at the same time, or if instead each neuron receives
the evoked input events independently drawn from the same distribution. Increment input (ms) indicates
whether to increment the Start time of all evoked inputs on each ftrial. In the studies described above,
the evoked input strengths are suprathreshold generating action potentials in the local network.

Rhythmic Input: Rhythmic Inputs are typically bursts of action potentials that drive the local network
rhythmically. Parameter choices for defining these inputs are shown in Figure 7A. Each rhythmic input
is defined as a series of “population bursts”, consisting of a set number of “burst units” which drive post-
synaptic conductances in the local network with a set frequency and mean delay between proximal and
distal projections. Rhythmic proximal and distal inputs target different cortical layers, as described
above. HNN allows setting proximal and distal rhythmic synaptic input start/stop times and frequencies
using the following specification:

® Start time mean (ms) - specifies the average start time for rhythmic inputs

Start time stdev (ms) - specifies the standard deviation of start times for rhythmic inputs
Stop time (ms) - specifies when the rhythmic inputs should be turned off

Burst frequency (Hz) - average frequency of bursts

Burst stdev (ms) - standard deviation of input events

Spikes/burst - provides n synaptic events at each selected time

Number bursts - number of times the full Burst sequence is repeated (each repeat adds
variability and more inputs)

In addition, HNN’s Rhythmic Input dialog box allows setting the weights of the rhythmic synaptic inputs
(units of conductance) to individual neuron types in layers 2/3 and 5, and adding synaptic delays (ms)
before the neurons receive the synaptic inputs. In the studies described above, rhythmic inputs are set
to sub-threshold synaptic strengths, and therefore do not lead to neuronal action potentials.

Tonic/Noisy Input: Tonic inputs are modeled as somatic current clamps with a fixed current amplitude
(nA). These clamps can be used to adjust the resting membrane potential of a neuron, and bring it
closer (with positive amplitude injection) or further from firing threshold (with a negative amplitude
injection). Parameter choices for defining these inputs are shown in Figure 9A and include setting the
current clamp amplitude, and start/stop time for each modeled neuron type separately.

Noisy Inputs are trains of action potentials that follow a Poisson Process and create excitatory AMPA or
NMDA synaptic inputs to the somata of all neurons of a given type. Parameter choices for defining these
inputs are shown in Figure 9A and include, setting the average frequency of the Poisson drive, synaptic
strength to somatic AMPA or NMDA synapses, and start/stop times of all Poisson inputs.
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Calculation of Primary Electrical Current (Net Current Dipole)

Axial current flow between any two neighboring model compartments i,j is defined as iaxa = (Vi - Vj) / aial ,
where vi, v, and raiia are the voltages in compartment i, j, and the resistance between the
compartments, respectively. In order to convert this axial current into a dipole signal, we apply a length
scaling where the axial current is scaled by the inter-compartment distance along the vertical axis. The
length scaling means that for the longer apical dendrites of layer 5 pyramidal neurons, the contribution
will be larger than from the shorter layer 2/3 pyramidal neuron apical dendrites. Note that the orientation
of the dendrites relative to the vertical axis also influences the contribution to the dipole signal. For
example, the horizontally-oriented oblique dendrites which do not have any vertical length component,
do not contribute to the dipole signal, whereas for basal dendrites oriented at 45 degrees from the
vertical axis, the scaling is -V2/2 (note the negative sign is because these dendrites are pointing
downward). The contribution from all neighboring compartments within a neuron is integrated and then
added to a value across the set of all pyramidal neurons. As a result of the multiplication between axial
current and length, the model dipole output signal has the same units of measure as the experimental
data in units of nanoAmpere-meters: nAm (Okada et al., 1997).

ERP Optimization Tools

HNN includes a method to optimize ERP simulations. The optimization procedure was uniquely
designed to minimize the RMSE between model output and ERP waveforms in a stepwise manner that
decreases parameter exploration and saves compute time. This procedure takes advantage of the
assumption that the exogenous proximal and distal driving inputs are essential parameters to tune to get
an accurate representation of an ERP waveform. Additionally, it applies the knowledge that, with
probabilistic certainty, features of the dipole waveform at a particular point in time cannot be influenced
by an exogenous driving input that begins after that point in time.

Since exogenous inputs are modeled as Gaussian processes, the likelihood of occurrence can be
modeled by a probability distribution function (PDF) normally distributed with a given mean and standard
deviation. Figure 10 Supplemental Figure 1A shows the PDFs of the inputs for the suprathreshold
example described in the results Figure 10. An input’s contribution to the ERP will begin when there is a
non-zero probability of occurrence and persist for a duration commensurate with the input’'s cumulative
distribution function (CDF), shown in Figure 10 Supplemental Figure 1B. This clearly illustrates that from
20-50 ms, the input labeled “Proximal 1”7 is the unique contributor to the waveform. After 50 ms, effects
from Distal 1 begin, thus adding new parameters that contribute to the waveform fit and reduce the
relative contribution of Proximal 1 (from full to partial). It follows that each successive driving input will
have a time window where it is most likely to have a unique and dominant effect. As such, our approach
to model optimization is to divide the process into smaller steps where only a single input’s parameters
are estimated before proceeding to optimize the next input.

To implement this procedure, we developed a new goodness of fit measure that amplifies the
importance of maximizing the fit at points of unique contribution (e.g. 20-50 ms for Proximal 1, Figure 10
Supplemental Figure 1C) and diminished the importance of fitting to later points where other inputs
contribute more to the fit. We began with standard root mean squared error (RMSE)

RMSE = “Z’Lo(xl,r — Xxp4)?
T

where t is the current simulation time, from 0 to simulation completion (T), and x1 is the simulated dipole
at t, and x.: is the experimental data point. Then we adapted RMSE to include weight functions specific
for input k at time {,



https://paperpile.com/c/E6GbTo/4Hgg
https://paperpile.com/c/E6GbTo/4Hgg
https://paperpile.com/c/E6GbTo/4Hgg
https://doi.org/10.1101/740597
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/740597; this version posted August 26, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

WRMSE, = 23;0 wk](f)(xl,z - xz,t)2
Yo Wi ()

where an assignment of wi(t) = 1 for all { would be equivalent to RMSE.

For each input k, we first defined a weight distribution function, wi(t), as the Unique Contribution Index
(UCI), which starts from the CDF of input k and simply subtracts the CDF of subsequent inputs, with a
lower bound of 0 (Figure 10 Supplemental Figure 1C). Equivalently,

N
UCIy(t) = CDF () — Y CDF;(t),

i=k+1

where N is the number of exogenous driving inputs in the simulation. Figure 10 Supplemental Figure 1C
shows that Proximal 1’s influence is unique up to 50ms, Distal 1 has a dominant, but not unique
contribution near 70 ms, and Proximal 2 is dominant after ~100 ms. When the UClI is applied as a
weighting function in the wRMSE equation above, we observed that some optimization steps would
negatively impact the fit in regions after the peak in UCI, where the errors had been down-weighted,
requiring subsequent optimization steps to attempt to “correct” the fit. Our solution was to instead define
the weight function using the Extended Contribution Index (ECI), which includes a term that delays the
weight function’s return to 0, extending the window of data points that have an impact on wRMSE further
into the simulation. This achieves a balance between optimal parameter estimates for the current step
and providing a good starting point for following optimization steps. ECI is defined by

N
ECI(t) = CDFe(t)— )’ CDF;(1) A(’“";—m‘)’

i=k+1

where pi and i« are the mean start times of the next input and the current input, respectively. Simulation
length is represented by T and A is an empirically derived constant. We arrived at a value of 1.6 for A as
a factor that appropriately minimized the contribution of inputs proportional to the delay between their
onset and the k™ input currently being optimized. The effect of the ECI's decay term can be seen in
Figure 10 Supplemental Figure 1D where the ECI for Proximal 1 extends further than the corresponding
UCI, and the ECI of Distal 1 remains significant through the end of the simulation. Since points where
ECly: approximately equal O will have a negligible impact on wWRMSE, we define a threshold of 0.01
where wWRMSE is calculated for the window starting when ECly; rises above 0.01 and ending when
ECIy; drops below 0.01. For the first exogenous driving input, it is likely that the window will end before
the completion of the simulation. In that first step, simulations can be stopped early, reducing the time
required for simulating each candidate parameter set in that step.

The final step in our model optimization process is to vary all free parameters from all inputs using
regular RMSE to measure goodness of fit. Like each previous step, the number of simulations run is
limited. So this primary purpose of this final step is to make small corrections, not perform all-at-once
optimization (which would likely require thousands of simulations). It also provides an opportunity to
rebalance the contributions from multiple inputs in regions where there is a high degree of parameter
inter-dependence. However, if the user is certain that they want to perform all-at-once optimization
(which would likely require many more simulations), they could set the number of simulations for all
steps except the last one to 0, and specify a very large number of simulations for the final step.

For each optimization step, HNN uses the COBYLA optimization algorithm (Powell, 1994), which
supports bound constraints as defined by the user for each parameter. We have found COBYLA
converges at a local minimum faster than the PRAXIS algorithm (Brent, 1973) as implemented in
NEURON’s multiple run fitter.
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Supplementary Materials

Sensitivity Analyses of ERP Simulations

To reduce the computational demands of performing model optimization of HNN ERP simulations, we
used variance based sensitivity analysis to identify parameters that were less significant to the simulated
dipole waveform. As discussed above, HNN’s model optimization feature focuses on estimating
parameters of the exogenous driving inputs. Of those parameters, we sought to find ones that did not
vary model output significantly and were not necessary to include in parameter estimation.

The method of variance based sensitivity analysis through Monte Carlo estimation (Sobol, 2001)
provides Sobol sensitivity indices that can be used to explain the relative contribution of individual
parameters on model variance. The total Sobol sensitivity index for each parameter serves as a
measure that represents that parameter’s contribution to the variance, and also the contributions
resulting from interactions with other parameters being varied (Homma & Saltelli, 1996). So a parameter
with a low total Sobol sensitivity index can be characterized as an overall insignificant contributor to
variance and can be fixed at its default value during model optimization.

We used Uncertainpy (Tennge, Halnes, & Einevoll, 2018) to perform sensitivity analyses of parameters
belonging to the exogenous driving inputs in the perceptual threshold-level
(“yes_trial_SI_ERP_all_avg.txt”) and suprathreshold-level (‘ERPYesSupraT.txt”) evoked response
examples provided with HNN and described in the Results (Figure 4 and Figure 10). These analyses
were performed using a modified simulation interface to run the simulations in parallel on a high-
performance computing cluster, which is not currently included with HNN distribution. The results from
our sensitivity analyses are shown in Figure 4 Supplementary Figure 1, Figure 10 Supplementary Figure
2, and Figure 10 Supplementary Table 1. Each analysis consisted of varying all parameters (except
input timing standard deviation) of a driving input over 55,000 simulations using a quasi-Monte Carlo
method that sampled from parameter distributions we specified. The input time distribution was defined
as a normal distribution with mean and standard deviation from the default parameter file. The values for
various synaptic weights were chosen from a uniform distribution ranging from the default value plus or
minus 500%. For synaptic weight parameters with a default value of 0, the uniform distribution ranged
from 0 to 1.0.
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Because the calculation of the total Sobol sensitivity index is carried out at each point in time, and is
relative to the variance at that point, total Sobol indices at different time points cannot be directly
compared, and an average across the entire simulation is not appropriate. We were interested in
comparing the contribution of each parameter to the dipole waveform (in units of nAM) across the whole
simulation, so we computed a weighted total Sobol index at each point in time (weighted by a scaled
std. deviation ranging from 0 to 1). The plots in Figure 4 Supplementary Figure 1 and Figure 10
Supplementary Figure 2 show weighted total Sobol indices for each parameter over the duration of the
simulation. Supplementary Table 1 ranks the parameters with the greatest contribution to model output
using the arithmetic means of weighted total Sobol indices across the entire simulation, for each driving
input.

The results from our sensitivity analyses of sensory evoked response examples illustrate that there are
several candidate parameters for excluding from model optimization. Not surprisingly input timing is an
important parameter to optimize. In most cases NMDA weights have a greater contribution than AMPA,
as do connections to Layer 5 neurons compared to Layer 2/3 neurons.
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Figure 1: HNN bridges the “macroscale” extracranial EEG/MEG recordings to the underlying cellular-
and circuit-level activity by simulating the primary electrical currents (J) underlying EEG/MEG, which
are generated by the postsynaptic, intracellular current flow in the long and spatially-aligned dendrites of
a large population of synchronously-activated pyramidal neurons. Adapted from Jones SR, Encycl.

Comput. Neurosci. 2015.
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ERPs

Rhythms

Figure 2: A schematic illustration of a canonical patch of neocortex that is represented by HNN'’s
underlying neural model. Left) 3D visualization of HNN’s model (pyramidal neurons drawn in blue,
interneurons drawn in yellow). Right) Commonly measured EEG/MEG signals (ERPs and low frequency
rhythms) from a single brain area that can be studied with HNN.
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Figure 3: Schematic illustrations of HNN’s underlying neocortical network model. (A) Local Network
Connectivity: GABAergic (GABAA/GABAB,; lines) and glutamatergic (AMPA/NMDA; circles) synaptic
connectivity between single-compartment inhibitory neurons (orange circles) and multi-compartment
layer 2/3 and layer 5 pyramidal neurons (blue neurons). Excitatory to excitatory connections not shown,
see Materials and Methods. (B) Exogenous proximal drive representing lemniscal thalamic drive to
cortex. User defined trains or bursts of action potentials (see tutorials described in Results) are
simulated and activate post-synaptic excitatory synapses on the basal and oblique dendrites of layer 2/3
and layer 5 pyramidal neurons as well as the somata of layer 2/3 and layer 5 interneurons. These
excitatory synaptic inputs drive current flow up the dendrites towards supragranular layers (red arrows).
(D) Exogenous distal drive representing cortical-cortical inputs or non-lemniscal thalamic drive that
synapses directly into the supragranular layer. User defined trains of action potentials are simulated and
activate post-synaptic excitatory synapses on the distal apical dendrites of layer 5 and layer 2/3
pyramidal neurons as well as the somata of layer 2/3 interneurons. These excitatory synaptic inputs
push the current flow down towards the infragranular layers (green arrows). (D) The full network
contains a scalable number of pyramidal neurons in layer 2/3 and layer 5 in a 3-to-1 ratio with inhibitory
interneurons, activated by user defined layer specific proximal and distal drive (see Materials and
Methods for full details).
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Figure 4: An example workflow showing how HNN can be used to link the macroscale current dipole
signal to the underlying cell and circuit activity. The example shown is for a perceptual threshold level
tactile evoked response (50% detected) from Sl (Jones et al 2007; see ERP Tutorial text for details). (A)
Steps 1 and 2: load data and define the local network structure. (B) Step 3: activate the local network,
starting with a predefined parameter set; shown here for the parameter set for perceptual threshold-level
evoked response (ERPYes100Trials.param) (C) Step 3 and 4: adjust the evoked input parameters
according to user defined hypotheses and simulation experiment, and run the simulation. (D) Step 5:
visualize model output; the net current dipole will be displayed in the main GUI window and microcircuit
details, including layer-specific responses, cell membrane voltages, and spiking profiles (E and F) are
shown by choosing them from the View pull down menu. Parameters can be adjusted to hypothesized
circuit changes under different experimental conditions (e.g. see Figure 5).
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Figure 5: Application of HNN to test alternative hypotheses on the circuit level impact of tACS on the
somatosensory tactile evoked response (adapted from Sliva et al 2018). (A) The early tactile evoked
response from above somatosensory cortex before and after 10 minutes of 10Hz alternating current
stimulation over Sl shows that the ~70ms peak is more prominent in the post-tACS condition. Note that
the timing of this peak in the sensor level signal is analogous to the 70ms peak in the source localized
signal in Figure 4B, since the tactile stimulation was the same in both studies and the early signal from
Sl is similar both at the source and sensor level. (B) HNN was applied to investigate the impact of
several possible tACS induced changes in local synaptic efficacy and identify which could account for
the observed evoked response data. The parameters in HNN were first adjusted to account for the pre-
tACS response using the default HNN parameter set (solid blue line). The synaptic gains between the
different cell types was then adjusted through the Set Parameters dialog box to predict that 2x gain in
the local inhibitory synaptic weights best accounted for the post-tACS evoked response. (C)
Simultaneous viewing of the cell spiking activity further predicted that there is less pyramidal neuron
spiking at 70ms post-tACS, despite the more prominent 70ms current dipole peak.
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Figure 6: Example spontaneous data from a current dipole source in Sl showing transient
alpha (~12 Hz) and beta (~15-30 Hz) components (data as in Jones et al 2009). The data
file (“Sl_ongoing.txt”) used to generate these outputs is provided with HNN and plotted
through the “View — View Spectrograms” menu item, followed by “Load Data”, and then
selecting the file.
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Figure 7: An example workflow for simulating alpha frequency rhythm (Jones et al 2009; Ziegler et al
2010; see Alpha and Beta Rhythms Tutorial text for details). (A) Here we are using the default HNN
network configuration and not directly comparing the waveform to data, so begin with Step 3: activate
the local network. Motivated by prior studies (see text), in this example alpha rhythms were simulated by
driving the network with ~10 Hz bursts (presumed to be generated by thalamus) to the local network
through proximal and distal projection pathways. The parameter set describing these burst is provided in
the Alpha.param file and loaded through the Set Parameters From File button. Adjustable burst drive
parameter are shown and here were set with a 50ms delay between the ~10 proximal and distal drive
(red boxes). (B) Step 4: running the simulation with the “Run Simulation” button, shows that a
continuous alpha rhythm emerged in the current dipole signal (middle dipole time trace; bottom time-
frequency representation). Green and red histograms at the top display the defined distal and proximal
burst drive patterns, respectively. (C) Step 5: additional network features, including layer specific power
spectral density plots as shown can be visualized through the “View” pull down menu, and compared to
data (here compared to the spontaneous Sl data shown in Figure 6). Features of the burst drive can be
adjusted (panel A) and corresponding changes in the current dipole signals studied (Steps 6 and 7, see
Figure 8).
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Figure 8: An example workflow for simulating transient alpha and beta frequency rhythm as in the
spontaneous Sl rhythms shown in Figure 6 (Jones et al 2009; Ziegler et al 2010; see Alpha and Beta
Rhythms Tutorial text for details). (A) Here we are using the default HNN network configuration and not
directly comparing the waveform to data, so begin with Step 3: activate the local network. In this
example, a beta component emerged when the parameters of two ~10Hz bursts to the local network
through proximal and distal project pathways, as described in Figure 7, were adjusted so that on
average they arrived to the network at the same time (see red boxes). This parameter set is provided in
the “AlphaAndBeta.params” file. (B) Step 4: running the simulation with the “Run Simulation” button,
shows that intermittent and transient alpha and beta rhythms emerge in the current dipole signal (middle
dipole time trace; bottom time-frequency representation). Green and red histograms at the top display
the defined distal and proximal burst drive patterns, respectively. Due to the stochastic nature of the
bursts, on some cycles of the drive, the distal burst was simultaneous with the proximal burst and strong
enough to push current flow down the dendrites to create a beta event (see red box). This model
derived prediction reproduced several features of the data, including alpha and beta peaks in the
corresponding PSD that were more closely matched to the recorded data (C). Model predictions were
subsequently validated with invasive recordings in mice and monkeys (Sherman et al 2016, see further
discussion in text).
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Figure 9: An example workflow for simulating pyramidal-interneuron gamma (PING) rhythms (Lee and
Jones 2013; see Gamma Rhythms Tutorial text for details). (A) Here we are using the default HNN
network configuration (with some parameter adjustments as shown in panel B) and we are not directly
comparing the waveform to data, so begin with Step 3: activate the local network. Motivated by prior
studies on PING mechanisms (see text), in this example PING rhythms were simulated by driving the
pyramidal neuron somas with noisy excitatory synaptic input following a Poisson process. The
parameters defining this noisy drive are viewed and adjusted through the Set Parameters button as
shown, see text and Materials and Methods for parameter details. This parameter set for this example is
provided in the “gamma_L5weak L 2weak.param” file. In this example, all synaptic connections within
the network are turned off (synaptic weight = 0), except for reciprocal connections between the
excitatory (AMPA only) and inhibitory (GABAA only) cells within the same layer. The local network
connectivity can be viewed and adjusted through the Set Network Connection button or pull down menu,
as shown in (B). (C) Step 4: running the simulation with the “Run Simulation” button, shows that a
~50Hz gamma rhythm is produced in the current dipole signal (middle dipole time trace; bottom time-
frequency representation). The black histogram at the top displays the noisy excitatory drive to the
network. (D-F) Step 5: additional network features, including cell spiking responses, somatic voltages,
and layer specific power spectral density plots as shown can be visualized through the “View” pull down
menu.
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Figure 10: Example of the ERP parameter optimization procedure for a suprathreshold tactile evoked
response. (A) Source localized Sl data from a suprathreshold tactile evoked response (100% detection;
purple) is shown overlaid with the corresponding HNN evoked response (black) using the threshold level
evoked response parameter set detailed in Figure 4, as in initial parameter set. The RMSE between the
data and the model is initially high at 30.53. (B) To improve the fit to the data, a serial procedure for
optimizing the strengths of the proximal and distal drive input generating the evoked response can be
run, by choosing the “Configure Optimization” option through the “Simulation” pull down menu. A dialog
box allows users to choose and set a range over free optimization parameters, see text for details. (C)
The GUI displays an intermediate fit after the first optimization step, specific to the first proximal drive.
(D) The final fit is displayed once the optimization is complete. Here, the simulation from the optimized
parameter set for the suprathreshold evoked response is shown in gray with an improved RMSE of
14.60 compared to 30.53 for the initial model. See Figure 10 Supplementary Figure 1 and 2 for further
description of the optimization routine and a parameter sensitivity analysis.
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Figure 11: The homepage of the HNN website http://hnn.brown.edu and menu items containing
installation instructions, documentation, tutorials, and troubleshooting information.
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Figure 10 Supplementary Figure 1: Weighted scoring of stepwise optimization procedure for
suprathreshold level evoked response example, see text for details. (A) Probability distribution of input
timing for each input. (B) Corresponding cumulative distribution as a contribution index. (C) Unique
Contribution Index that is reduced by subsequent input’'s CDFs. (D) Extended Contribution Index in
which the subtracted CDFs are subject to a decay factor.
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Figure 10 Supplementary Figure 2: Sensitivity analysis results of the suprathreshold level evoked
response example showing the relative contribution of each input’'s parameters on variance. Total Sobol
indices at each point have been weighted by the std. deviation scaled from 0 to 1.
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Figure 4 Supplementary Figure 1: Sensitivity analysis results of the perceptual threshold level evoked
response example showing the relative contribution of each input’'s parameters on variance. Total Sobol
indices at each point have been weighted by the std. deviation scaled from 0 to 1.
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ERP Model -- 50% detected ERP Model -- 100% detected
Average Weighted Average Weighted
Driving Input Parameter name Total Sobol Index | Rank Total Sobol Index Rank
Proximal Input1 |Mean start time 0.2326 3 0.3059 2
L2 Pyramidal NMDA Strength 0.1458 5 0.1349 6
L2 Pyramidal AMPA Strength 0.0111 9 0.0519 8
L5 Pyramidal NMDA Strength 0.5952 1 0.6243 1
LS Pyramidal AMPA Strength 0.0289 8 0.0449 9
L2 Basket NMDA Strength 0.0982 6 0.1702 4
L2 Basket AMPA Strength 0.0486 7 0.1055 7
L5 Basket NMDA Strength 0.2998 2 0.2748 3
L5 Basket AMPA Strength 0.1561 4 0.1672 5
Distal Input 1 Mean start time 0.4442 2 0.4545 2
L2 Pyramidal NMDA Strength 0.0681 3 0.0781 4
L2 Pyramidal AMPA Strength 0.0000 7 0.0202 6
L5 Pyramidal NMDA Strength 0.5631 1 0.5163 1
L5 Pyramidal AMPA Strength 0.0292 5 0.0099 7
L2 Basket NMDA Strength 0.0432 4 0.0615 5
L2 Basket AMPA Strength 0.0149 6 0.0924 3
Proximal Input 2 |Mean start time 0.8424 1 0.9018 1
L2 Pyramidal NMDA Strength 0.0068 6 0.0101 6
L2 Pyramidal AMPA Strength 0.0121 5 0.0045 7
LS Pyramidal NMDA Strength 0.1667 2 0.0475 3
LS Pyramidal AMPA Strength 0.0514 3 0.0726 2
L2 Basket NMDA Strength 0.0041 7 0.0115 5
L2 Basket AMPA Strength 0.0000 9 0.0001 9
L5 Basket NMDA Strength 0.0223 4 0.0128 4
L5 Basket AMPA Strength 0.0032 8 0.0026 8

Supplementary Table 1: Summary of weighted total Sobol sensitivity index values averaged across the
entire simulation for each exogenous driving input in two sensory evoked response models:
suprathreshold (Figure 10) and 50% detected (Figure 4). The ranking of an input’s parameters remains
similar between models.
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