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Abstract

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with 
millisecond resolution providing reliable markers of healthy and disease states. Relating these 
macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains 
using MEG/EEG to reveal novel principles of information processing or to translate findings into new 
therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, 
https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and 
clinicians interpret the neural origins of MEG/EEG. HNN’s core is a neocortical circuit model that 
accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly 
compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a 
signal’s origin.  Tutorials teach users to simulate commonly measured signals, including event related 
potentials and brain rhythms. HNN’s ability to associate signals across scales makes it a unique tool for 
translational neuroscience research. 

Introduction 

Modern neuroscience is in the midst of a revolution in understanding the cellular and genetic substrates 
of healthy brain dynamics and disease due to advances in cellular- and circuit-level approaches in 
animal models, e.g., two-photon imaging and optogenetics. However, the translation of new discoveries 
to human neuroscience is significantly lacking (Badre, Frank, & Moore, 2015; Sahin et al., 2018). To 
understand human disease, and more generally the human condition, we must study humans. To date, 
EEG and MEG are the only noninvasive methods to study electrical neural activity in humans with fine 
temporal resolution. Despite the fact that EEG/MEG provide biomarkers of almost all healthy and 
abnormal brain dynamics, these so called “macro-scale” techniques suffer from difficulty in 
interpretability in terms of the underlying cellular- and circuit-level events. As such, there is a need for a 
translator that can bridge the “micro-scale” animal data with the “macro-scale” human recordings in a 
principled way. This is the ideal problem for computational neural modeling, where the model can have 
specificity at different scales. 

To address this need, we developed the Human Neocortical Neurosolver (HNN), a modeling tool 
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designed to provide researchers and clinicians an easy-to-use software platform to develop and test 
hypotheses regarding the neural origin of their data. The foundation of the HNN software is a neocortical
model that accounts for the biophysical origin of macroscale extracranial EEG/MEG recordings with 
enough detail to translate to the underlying cellular- and network-level activity. HNN’s graphical user 
interface (GUI) provides users with an interactive tool to interpret the neural underpinnings of EEG/MEG
data and changes in these signals with behavior or neuropathology.

HNN’s underlying model represents a canonical neocortical circuit based on generalizable features of 
cortical circuitry, with individual pyramidal neurons and interneurons arranged across the cortical layers, 
and layer-specific input pathways that relay spiking information from other parts of the brain, which are 
not explicitly modeled. Based on known electromagnetic biophysics underlying macroscale EEG/MEG 
signals (Jones, 2015), the elementary current generators of EEG/MEG (current dipoles) are simulated 
from the intracellular current flow in the long and spatially-aligned pyramidal neuron dendrites 
(Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993; Ikeda, Wang, & Okada, 2005; Jones, 
2015; Murakami, Hirose, & Okada, 2003; Murakami & Okada, 2006; Okada, Wu, & Kyuhou, 1997). This 
unique construction produces equal units between the model output and source-localized data 
(nanoampere-meters, nAm) allowing one-to-one comparison between model and data to guide 
interpretation. 

The extracranial macroscale nature of EEG/MEG limits the space of signals that are typically observed 
and studied. The majority of studies focus on quantification of event related potentials (ERPs) and low-
frequency brain rhythms (<100Hz), and there are commonalities in these signals across tasks and 
species (Buzsáki, Logothetis, & Singer, 2013; Shin, Law, Tsutsui, Moore, & Jones, 2017).  HNN’s 
underlying mathematical model has been successfully applied to interpret the mechanisms and meaning
of these common signals, including sensory evoked responses and oscillations in the alpha (7-14 Hz), 
beta (15-29Hz) and gamma bands (30-80Hz) (Jones et al., 2009; Jones, Pritchett, Stufflebeam, 
Hämäläinen, & Moore, 2007; Lee & Jones, 2013; Sherman et al., 2016; Ziegler et al., 2010), and 
changes with perception (Jones et al., 2007) and aging (Ziegler et al., 2010). The model has also been 
used to study the impact of non-invasive brain stimulation on circuit dynamics measured with EEG (Sliva
et al., 2018), and to constrain more reduced “neural mass models” of laminar activity (Pinotsis et al., 
2017). In the clinical domain, HNN’s model has also been applied to study MEG-measured circuit 
deficits in Autism (Khan et al., 2015).  

Despite these examples of use, the complexity of the original model and code hindered use by the 
general community.  The innovation in the new HNN software is the construction of an intuitive graphical
user interface to interact with the model without any coding. We offer several free and publicly-available 
resources to assist the broad EEG/MEG community in using the software and applying the model to 
their studies. These resources include an example workflow and several tutorials to study ERPs and 
oscillations, based on the prior studies cited above, and community sharing resources. 

HNN’s GUI is designed so that researchers can simultaneously view the model's net current dipole 
output and microscale features (including layer-specific responses, individual cell spiking activity, and 
somatic voltages) in both the time and frequency domains. HNN is constructed to be a hypothesis 
development and testing tool to produce circuit-level predictions that can then be directly tested and 
informed by invasive recordings and/or other imaging modalities. This level of scalability provides a 
unique tool for translational neuroscience research. 
 
In this paper, we outline biophysiological and physiological background information that is the basis of 
the development of HNN, give an overview of tutorials and available data and parameter sets to 
simulate ERPs and low-frequency oscillations in the alpha, beta, and gamma range, and describe 
current distribution and online resources (https://hnn.brown.edu). We discuss the differences between 
HNN and other EEG/MEG modeling software packages, as well as limitations and future directions. 
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Results

Background information on the generation of EEG/MEG signals and uniqueness of HNN 

Primary currents and the relation to forward and inverse modeling : Extracranial “macroscale” 
EEG/MEG are generated by large electrical currents in the brain known as primary currents Jp (Figure 
1).  HNN is designed to bridge the “macroscale” recordings to the underlying cellular- and circuit-level 
activity based on the biophysical origin of the primary electrical currents, which are assumed to be 
generated by the post-synaptic, intracellular longitudinal current flow in the long and spatially-aligned 
dendrites of a large population of synchronously-activated neocortical pyramidal neurons (Hämäläinen 
et al., 1993; Ikeda et al., 2005; Jones, 2015; Murakami et al., 2003; Murakami & Okada, 2006; Okada et 
al., 1997). Before describing how to infer the neural origin of the primary currents with HNN, we first 
briefly review the process of forward and inverse modeling. 

The task of computing EEG and MEG given Jp is commonly called forward modeling, governed by 
Maxwell’s equations. The primary currents set up a potential distribution, measurable on the scalp as 
EEG, and volume currents (Jv)  that extend through the brain tissue, the cerebrospinal fluid (CSF), the 
skull, and the scalp. MEG, in general, is generated by both the Jp and Jv. However, in the geometry of 
the head, the integral effect of the volume currents to the magnetic field can be relatively easily taken 
into account and, therefore, modeling of MEG is in general more straightforward than the precise 
calculation of the electric potentials measured in EEG.

The availability of these forward models opens up the possibility to estimate the locations (r) and time 
course of the activity, Jp = Jp(r,t), from MEG and EEG data. However, this inverse problem is 
fundamentally ill-posed and constraints are needed to render the problem unique. The different source 
localization methods, such as current dipole fitting, minimum-norm estimates, sparse source estimation 
methods, and beamformer approaches, differ in their capability to approximate the extent of the source 
activity and in their localization accuracy. However, all of these methods are capable of inferring both the
location and direction of the neural currents and their time courses. Importantly, due to physiological 
considerations, the appropriate elementary source in all of these methods is a current dipole. When 
used in combination of geometrical models of the cortex constructed from anatomical MRI, the current 
direction can be related to the direction of the outer normal of the cortex: one is thus able to tell whether 
the estimated current is flowing outwards or inwards at a particular cortical site at a particular point in 
time. As such, the direction of the current flow can be related to orientation of the pyramidal neuron 
apical dendrites and inferred as currents flow from soma to apical tuft (up the dendrites) or apical tuft to 
soma (down the dendrites). There are presently several open source software packages for MEG/EEG 
source estimation, e.g., the MNE software, which can be employed in conjunction with HNN (Gramfort et
al., 2013). 

Inferring the neural origin of the primary currents with HNN: The focus of HNN is on the “bottom-up 
problem”, i.e., to study how Jp is generated by the neural circuits in the brain. Currently, the process of 
estimating the primary current sources (i.e., current dipoles) with inverse methods, or calculating the 
forward solution from Jp to the measured sensor level signal,  is separate from HNN.  A future direction 
is to integrate the top-down source estimation software with our bottom-up HNN model for all-in-one 
source estimation and circuit interpretation (see Discussion). 

HNN’s underlying neural model contains elements that can simulate the primary current dipoles (Jp) 
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creating EEG/MEG signals in a biophysically principled manner. Specifically, HNN simulates the primary
current from a canonical model of a layered neocortical column via the net intracellular electrical current 
flow in the pyramidal neuron dendrites in a direction parallel to the apical dendrites (see red arrow in 
Figures 1 and 2, and further discussion in Materials and Methods) (Hämäläinen et al., 1993; Ikeda et al.,
2005; Jones, 2015; Murakami et al., 2003; Murakami & Okada, 2006; Okada et al., 1997). With this 
construction, the units of measure produced by the model are the same as those estimated from source 
localization methods, namely, nanoampere-meters (nAm), enabling one-to-one comparison of results. 
This construction is unique compared to other EEG/MEG modeling software (see Discussion). A 
necessary step in comparing model results with source localized signals is an understanding of the 
direction of the estimated net current in or out of the cortex, which corresponds to current flow down or 
up the pyramidal neuron dendrites, respectively, as discussed above. Estimation of current flow 
orientation at any point in time is an option in most inverse solution software that helps guide the neural 
interpretation, as does prior knowledge of the relay of sensory information in the cortex, see further 
discussion in the Tutorials part of the Results section. 

By keeping model output in close agreement with the data, HNN’s underlying model has led to new and 
generative predictions on the origin of sensory evoked responses and low-frequency rhythms, and 
changes in these signals across experimental conditions (Jones et al., 2009, 2007; Khan et al., 2015; 
Lee & Jones, 2013; Sherman et al., 2016; Sliva et al., 2018; Ziegler et al., 2010), described further 
below. The macro- to micro-scale nature of the HNN software is designed to develop and test 
hypotheses that can be directly validated with invasive recordings or other imaging modalities (see 
further discussion in tutorial on Alpha and Beta rhythms). 

HNN is currently constructed to dissect the cell and network contributions to signals from one source 
localized region of interest.  Specifically, the HNN GUI is designed to simulate sensory evoked response
and low-frequency brain rhythms from a single region, based on the local network dynamics and the 
layer-specific thalamo-cortical and cortico-cortical inputs that contribute to the local activity. As such, 
HNN’s underlying neocortical network represents a scalable patch of neocortex containing canonical 
features of neocortical circuitry (Figure 2). Ongoing expansions will include the ability to import other 
user-defined cell types and circuit models into HNN, as well as the ability to simulate the interactions 
among multiple neocortical areas (see Discussion). Of note, users can still benefit from our software if 
they are working with data directly from EEG/MEG sensor rather than source localized signals. The 
primary currents are the foundation of the sensor signal and, as such, can have similar activity profiles 
(e.g., compare source localized tactile evoked response in Figure 4 and sensor level response in Figure 
5). 

Overview of HNN’s default canonical neocortical column template network

Neocortical column structure: Here, we give an overview of the main features that are important to 
understand in order to begin exploring the origin of macroscale evoked responses and brain rhythms, 
and we provide details on how these features are implemented in HNN’s template model. Further details
can be found in the Materials and Methods section, in our prior publications (e.g., Jones et al., 2009), 
and on our website https://hnn.brown.edu. 

Given that the primary electrical current that generates EEG/MEG signals comes from synchronous 
activity in pyramidal neuron (PN) dendrites across a large population, there are several key features of 
neocortical circuitry that are essential to consider when simulating these currents. While there are 
known differences in microscale circuitry across cortical areas and species, many features of neocortical
circuits are remarkably similar. We assume these conserved features are minimally sufficient to account 
for the generation of evoked responses and brain rhythms measured with EEG/MEG, and we have 
harnessed this generalization into HNN’s foundational model, with success in simulating many of these 
signals using the same template model (see Introduction). These canonical features include:  
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(I) A 3-layered structure with pyramidal neurons in the supragranular and infragranular layers whose 
dendrites span across the layers and are synaptically coupled to inhibitory interneurons in a 3-to-1 ratio, 
of pyramidal to inhibitory cells (Figure 3A). Of note, cells in the granular layer are not explicitly included 
in the template circuit. This initial design choice was based on the fact that macroscale current dipoles 
are dominated by PN activity in supragranular, and infragranular layers. Thalamic input to granular 
layers is presumed to propagate directly to basal and oblique dendrites of PN in the supragranular and 
infragranular layers. In the model, the thalamic input synapses directly onto these dendrites.   

The number of cells in the network is adjustable in the Local Network Parameters window via the Cells 
tab, while maintaining at 3-to-1 pyramidal to inhibitory interneuron ratio in each layer. The connectivity 
pattern is fixed, but the synaptic weights between cell types can be adjusted in the Local Network menu 
and the Synaptic Gains menu. Macroscale EEG/MEG signals are generated by the synchronous activity
in large populations of PN neurons. Evoked responses are typically on the order of 10-100nAm, and are 
estimated to be generated by the synchronous spiking activity of the order of tens of thousands of 
pyramidal neurons. Low-frequency oscillations are larger in magnitude and are on the order of 100-
1000nAm, and are estimated to be generated by the subthreshold activity of on the order of a million 
pyramidal neurons (Jones et al., 2009, 2007; Murakami & Okada, 2006) While HNN is constructed with 
the ability to adjust local network size, the magnitude of these signals can also be conveniently matched
by applying a scaling factor to the model output, providing an estimate on the number of neurons that 
contributed to the signal.  

(II) Exogenous driving input through two known layer-specific pathways. One type of input represents 
excitatory synaptic drive that comes from the lemniscal thalamus and contacts the cortex in the granular 
layers, which then propagates to the proximal PN dendrites in the supragranular and infragranular layers
and somata of the inhibitory neurons; this input is referred to as proximal drive (Figure 3B). The other 
input represents excitatory synaptic drive from higher-order cortex or non-specific thalamic nuclei that 
synapses directly into the supragranular layers and contacts the distal PN dendrites and somata of the 
inhibitory neuron; this input is referred to as distal drive (Figure 3C). The networks that provide proximal 
and distal input to the local circuit (e.g., thalamus and higher order cortex) are not explicitly modelled, 
but rather these inputs are represented by simulated trains of action potentials that activate excitatory 
post-synaptic receptors in the local network. The temporal profile of these action potentials is adjustable 
depending on the simulation experiment and can be represented as single spikes, bursts of input, or 
rhythmic bursts of input. There are several ways to change the pattern of action potential drive through 
different buttons built into the HNN GUI: Evoked Inputs, Rhythmic Proximal Inputs and Rhythmic Distal 
Inputs. The dialog boxes that open with these buttons allow creation and adjustment of patterns of 
evoked response drive or rhythmic drive to the network (see tutorials described in Results section for 
further details).

(III) Exogenous drive to the network can also be generated as excitatory synaptic drives following a 
Poisson process to the somata of chosen cell classes or as tonic input simulated as a somatic current 
clamp with a fixed current injection. The timing and duration of these drives is adjustable. 

Further details of the biophysics and morphology of the cells and architecture of the local synaptic 
connectivity profiles in the template network can be found in the Materials and Methods section. As the 
use of our software grows, we anticipate other cells and network configurations will be made available 
as template models to work with via open source sharing (see Discussion). 

Parameter tuning in HNN’s template network model: HNN’s template model is a large-scale model 
simulated with thousands of differential equations and parameters, making the parameter optimization 
process challenging. The process for tuning this canonical model and constraining the space of 
parameters to investigate the origin of ERPs and low-frequency oscillations was as follows. First, the 
individual cell morphologies and physiologies were constrained so individual cells produced realistic 
spiking patterns to somatic injected current (detailed in Methods). Second, the local connectivity within 
and among cortical layers was constructed based on a large body of literature from animal studies 
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(detailed in Methods). All of these equations and parameters were then fixed, and the only parameters 
that were originally tuned to simulate ERPs and oscillations were the timing and the strength of the 
exogenous drive to the local network. This drive represented our “simulation experiment” and was based
on our hypotheses on the origin of these signals motivated by literature and on matching model output 
to features of the data (see tutorials described in Results). The HNN GUI was constructed assuming 
ERPs and low-frequency oscillations depend on layer-specific exogenous drives to the network. The 
simulation experiment workflow and tutorials described below are in large part based on “activating the 
network” by defining the characteristics of this layer-specific drive. Default parameter sets are provided 
as a starting point from which the underlying parameters can be interactively manipulated using the GUI,
and additional exogenous driving inputs can be created or removed.
 
Automated parameter optimization is also available in HNN and is specifically designed to accurately 
reproduce features of an ERP waveform based on the temporal spacing and strength of the exogenous 
driving inputs assumed to generate the ERP. Before taking advantage of HNN’s automated parameter 
optimization, we strongly encourage users to begin by understanding our ERP tutorial, and hand-tuning 
parameters using one of our default parameter sets to get an initial representation of the recorded data. 
The identification of an appropriate number of driving inputs and their approximate timings and strengths
serves as a starting point for the optimization procedure (described in the ERP Model Optimization 
section below). Hand tuning of parameters and visualizing the resultant changes in the GUI will enable 
users to understand how specific parameter changes impact features of the current dipole waveform.  
 
Importantly, the biophysical constraints on the origin of the current dipoles signal (discussed above) will 
dictate the output of the model and necessarily limits the space of parameter adjustments that can 
accurately account for the recorded data.  The same principle underlies the fact that a limited space of 
signals are typically studied at the macroscale (ERPs and low frequency oscillations). A parameter 
sensitivity analysis on perturbations around the default ERP parameter sets confirmed that a subset of 
the parameters have the strongest influence on features of the ERP waveform (see Supplementary 
Materials).  Insights from GUI interactive hand tuning and sensitivity analyses can help narrow the 
number of parameters to include in the subsequent optimization procedure and greatly decrease the 
number of simulations required for optimization.

HNN GUI overview and interactive simulation experiment workflow  

The HNN GUI is designed to allow researchers to link macro-scale EEG/MEG recordings to the 
underlying cellular- and network-level generators. Currently available visualizations include, a direct 
comparison of simulated electrical sources to recorded data with calculated goodness of fit estimates, 
layer-specific current dipole activity, individual cell spiking activity, and individual cell somatic voltages 
(Figure 4B-D). Results can be visualized in both the time and frequency domain. Based on its 
biophysically detailed design, the output of HNN’s model and recorded source-localized data have the 
same units of measure, nAm. By closely matching the output of the model to recorded data in an 
interactive manner, users can test and develop hypotheses on the cell and network origin of their 
signals. 

The process for simulating evoked responses or brain rhythms from a single region of interest is to first 
define the network structure, and then to “activate” the network with exogenous driving input based on 
your hypotheses and simulation experiment.  HNN’s template model provides the initial network 
structure.  The choice of “activation” to the network depends on the simulation experiment. The GUI 
design is motivated by our prior published studies and was built specifically to simulate sensory evoked 
responses or spontaneous rhythms, or a combination of the two (Jones et al., 2009, 2007; Khan et al., 
2015; Lee & Jones, 2013; Sherman et al., 2016; Sliva et al., 2018; Ziegler et al., 2010).  The tutorials 
described in the Results section below details examples of how to “activate” the network to simulate 
sensory evoked responses and spontaneous rhythms. Here, we outline a typical simulation experiment 
workflow. 
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In practice, users apply the following interactive workflow, as in Figure 4 and detailed further in the 
tutorials with an example tactile evoked response from somatosensory cortex (data from Jones et al., 
2007).  

(Step 1) Load EEG/MEG data (blue). (Step 1 is optional.)

(Step 2) Define the cortical column network structure. The default template network is automatically 
loaded when HNN starts. Default parameters describing the local network can be adjusted by clicking 
the Set Parameters button on the GUI and then Local Network Parameters, or directly from the Local 
Network Parameters button on the GUI (Figure 4A).  

(Step 3) “Activate” the local network by defining layer-specific, exogenous driving inputs (Figure 3 B,C).
The drive represents input to the local circuit from thalamus and/or other cortical areas and can be in the
form of (i) spike trains (single spikes or bursts of rhythmic input) that activate post-synaptic targets in the
local network, (ii) current clamps (tonic drive), or (iii) noisy (Poisson) synaptic drive. The choice of input
parameters  depends  on  your  hypotheses  and “simulation  experiment”.  In  the  example  simulation,
predefined evoked response parameters where loaded in via the Set Parameters From File button and
choosing the file  “ERPYes100Trials.param”;  this  is also the default  evoked response parameter set
loaded  when starting  HNN (Figure  4B).  The  Evoked  Input  parameters  are  then viewed in  the Set
Parameters dialog box under Evoked Inputs (Figure 4C). The Evoked Inputs parameters are described
further in the tutorials below. 

(Step 4) Run simulation and directly compare model output (black) and data (purple) with goodness of
fit calculations (root mean squared error, RMSE, between data and averaged simulation) (Figure 4D).  

(Step 5) Visualize microcircuit details, including layer-specific responses, cell membrane voltages, and
spiking profiles by choosing from the View pull down menu (Figure 4D, E, F). 

(Step 6) Adjust parameters through the Set Parameters dialog box to develop and test predictions on
the circuit mechanisms that provide the best fit to the data. With any parameter adjustment, the change
in  the  dipole  signal  can  be  viewed  and  compared  with  the  prior  simulation  to  infer  how  specific
parameters impact  the current  dipole waveform.  Prior  simulations can be maintained in  the GUI or
removed. For ERPs, automatic parameter optimization can be iteratively applied to tune the parameters
of the exogenous driving inputs to find those that provide the best initial fit between the simulated dipole
waveform and the EEG/MEG data (see further details below). 

(Step 7) To infer circuit differences across experimental conditions, once a fit to one condition is found, 
adjustments to relevant cell and network parameters can be made (guided by user-defined hypotheses),
and the simulation can be re-run to see if predicted changes account for the observed differences in the 
data.  A list of the GUI-adjustable parameters in the model can be found in the “Tour of the GUI” section 
of the tutorials on our website. HNN’s GUI was designed so that users could easily find the adjustable 
parameters from buttons and pull down menus on the main GUI leading to dialogue boxes with 
explanatory labels. 

As a specific example on how to use HNN as a hypothesis testing tool, we have used HNN to evaluate 
hypothesized changes in EEG measured neural circuit dynamics with non-invasive brain stimulation 
(Figure 5). We measured somatosensory evoked responses from brief threshold-level taps to the middle
finger tip before and after 10 minutes of ~10Hz transcranial alternating current stimulation (tACS) over 
contralateral somatosensory cortex (see Sliva et al., 2018 for details). The magnitude of an early peak 
near ~70ms in the tactile evoked response increased after the tACS session (Figure 5, top left).  Based 
on prior literature, we hypothesized that the observed difference was due to changes in synaptic efficacy
in the local network induced by the tACS (Kronberg, Bridi, Abel, Bikson, & Parra, 2017; Rahman, Lafon, 
Parra, & Bikson, 2017). To test this hypothesis, we first used HNN to simulate the pre-tACS evoked 
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responses, following the evoked response tutorial in our software (see Tutorial below). Once the pre-
tACS condition was accounted for, we then adjusted the synaptic gain between the excitatory and 
inhibitory cells in the network using the HNN GUI and re-simulated the tactile evoked responses. We 
tested several possible gain changes between the populations. HNN showed that a two-fold increase in 
synaptic strength of the inhibitory connections, as opposed to an increase in the excitatory connections 
or in total synaptic efficacy, could best account for the observed differences in the data (compare blue in 
red curves in Figure 5). By viewing the cell spiking profiles in each condition (Figure 5, bottom right), 
HNN further predicted that the increase in the magnitude of the ~70ms peak coincided with increased 
firing in the inhibitory neuron population and decreased firing in the excitatory pyramidal neurons in the 
post-tACS compared to the pre-tACS window. These detailed predictions can guide further experiments 
and follow-up testing in animal models or with other human imaging experiments. Follow up testing of 
model derived predictions is described further in the alpha/beta tutorial below. 

Tutorials on ERPs and low-frequency oscillations  

HNN’s tutorials are designed to teach users how to simulate the most commonly studied EEG/MEG 
signals, including sensory evoked responses and low-frequency oscillations (alpha, beta, and gamma 
rhythms) by walking users through the workflow we applied in our prior studies of these signals. The 
data and parameter sets used in these studies are distributed with the software, and the interactive GUI 
design was motivated by this workflow. In completing each tutorial, users will have a sense of the basic 
structure of the GUI and the process for manipulating relevant parameters and viewing results. From 
there, users can begin to develop and test hypotheses on the origin of their own data. Below we give a 
basic overview of each tutorial. The HNN website (https://hnn.brown.edu) provides additional 
information and example exercises for further exploration. 

Sensory evoked responses: We have applied HNN to study the neural origin of tactile evoked 
responses localized with inverse methods to primary somatosensory cortex from MEG data (Jones et 
al., 2007). In this study, the tactile evoked response was elicited from a brief perceptual threshold level 
tap - stimulus strength maintained at 50% detection -- to the contralateral middle finger tip during a 
tactile detection experiment (experimental details in Jones et al., 2007, 2009). The average tactile 
evoked response during detected trials is shown in Figure 4. The data from this study is distributed with 
HNN installation.

Following the workflow described above, the process for reproducing these results in HNN is as follows. 

Steps 1 & 2: Load the evoked response data distributed with HNN, “yes_trial_SI_ERP_all_avg.txt”. The 
data shown in Figure 4B will be displayed. Adjust parameters defining the automatically loaded default 
local network, if desired. 

Step 3: “Activate” the local network. In prior publications, we showed that this tactile evoked response 
could be reproduced in HNN by “activating” the network with a sequence of layer-specific proximal and 
distal spike train drive to the local network, which is distributed with HNN in the file 
“ERPYes100Trials.param“. 

The sequence described below was motivated by intracranial recordings in non-human primates, which 
guided the initial hypothesis testing in the model.  Additionally, we established with inverse methods that 
at the prominent ~70ms negative peak (Figure 4D), the orientation of the current was into the cortex 
(e.g. down the pyramidal neuron dendrites), consistent with prior intracranial recordings (see Jones et 
al., 2007). As such, in this example, negative current dipole values correspond to current flow down the 
dendrites, and positive values up the dendrites. In sensory cortex, the earliest evoked response peak 
corresponds to excitatory synaptic input from the lemniscal thalamus that leads to current flow out of the
cortex (e.g. up the dendrites). This earliest evoked response in somatosensory cortex occurs at ~25ms. 
The corresponding current dipole positive peak is small for the threshold tactile response in Figure 4D, 
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but clearly visible in Figure 10 for a suprathreshold (100% detection) level tactile response.  
The drive sequence that accurately reproduced the tactile evoked response consisted of “feedforward” / 
proximal input at ~25 ms post stimulus, followed by “feedback” / distal input at ~60 ms, followed by a 
subsequent “feedforward” / proximal input at ~125 ms (Gaussian distribution of input times on each 
simulated trial, Figure 4C). This “activation” of the network generated spiking activity and a pattern of 
intracellular dendritic current flow in the pyramidal neuron dendrites in the local network to reproduce the
current dipole waveform, many features of which fell naturally out of the local network dynamics (details 
in Jones et al., 2007). This sequence can be interpreted as initial “feedforward” input from the lemniscal 
thalamus followed by “feedback” input from higher-order cortex or non-lemniscal thalamus, followed by a
re-emergent leminsical thalamic drive. A similar sequence of information flow likely applies to most 
sensory evoked signals. The inputs are distinguished with red and green arrows (corresponding to 
proximal and distal input, respectively) in the main GUI window. The number, timing, and strength (post-
synaptic conductance) of the driving spikes were manually adjusted in the model until a close 
representation of the data was found (see section on parameter tuning above). To account for some 
variability across trials, the exact time of the driving spikes for each input was chosen from a Gaussian 
distribution with a mean and standard deviation (see Evoked Inputs dialog box, Figure 4C, and green 
and red histograms on the top of the GUI in Figure 4D). The gray curves in Figure 4D show 25 trials of 
the simulation (decreased from 100 trials in the Set Parameters, Run dialog box) and the black curve is 
the average across simulations. The top of the GUI windows displays histograms of the temporal profile 
of the spiking activity providing the sequence of proximal (red) and distal (green) synaptic input to the 
local network across the 25 trials. Note, a scaling factor was applied to net dipole output to match to the 
magnitude of the recorded ERP data and used to predict the number of neurons contributing to the 
recorded ERP. This scaling factor is chosen from Set Parameters, Run dialog box, and is shown as 
3000 on the y-axis of the main GUI window in Figure 4D. Note that the scaling factor is used to predict 
the number of pyramidal neurons contributing to the observed signal. In this case, since there are 100 
pyramidal neurons in each of layers 2/3 and 5, that amounts to 600,000 neurons (200 neurons x 3000 
scaling factor) contributing to the evoked response, consistent with the experimental literature 
(described in Jones et al., 2007, 2009). 

Based on the assumption that sensory evoked responses will be generated by a layer-specific sequence
of drive to the local network similar to that described above, HNN’s GUI was designed for users to begin
simulating evoked responses by starting with the aforementioned default sequence of drive that is 
defined when starting HNN and by loading in the parameter set from the “ERPYes100Trials.param” file, 
as described above. The Evoked Inputs dialog box (Figure 4C) shows the parameters of the proximal 
and distal drive (number, timing, and strength) used to produce the evoked response in Figure 4D. Here,
there were two proximal drives and one distal drive to the network. These parameters were found by 
first hand tuning the inputs to get a close representation of the data and then running the parameter 
optimization procedure described below. 

Step 4 The evoked response shown in Figure 4 is reproduced by clicking the “Run Simulation” button at 
the top of the GUI, and the RMSE of the goodness of fit to the data is automatically calculated and 
displayed. Additional network features can also be visualized through pull down menus (Step 5). 

Evoked response parameters can now be adjusted, and additional inputs can be created or removed to 
account for the user-defined “simulation experiment” and hypothesis testing goals (Step 6). With each 
parameter change, a new parameter file will be saved by renaming the simulation under “Simulation 
Name” in the “Set Parameters” dialog box (see Figure 4C). From here, other cell or network parameters 
can be adjusted to compare across conditions (Step 7).

Alpha and beta rhythms: We have applied HNN to study the neural origin of spontaneous rhythms 
localized to the primary somatosensory cortex from MEG data; it is often referred to as the mu-rhythm, 
and it contains a complex of (7-14Hz) alpha and (15-29Hz) beta frequency components (Jones et al., 
2009). A 1-second time frequency spectrogram of the spontaneous unaveraged SI rhythm from this 
study is shown in Figure 6. This data is distributed on the HNN website (“SI_ongoing.txt”), and contains 
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1000 1-second epochs of spontaneous data (100 trials each from 10 subjects). The data is plotted in 
HNN through the “View → View Spectrograms” menu item, followed by “Load Data” and then 
selecting the “SI_ongoing.txt” file. Note that it may take a few minutes to calculate the wavelet 
transforms for all 1000 1-second trials included. Next, select an individual trial (e.g. trial 32) from the 
drop-down menu. The dipole waveform from a single 1-second epoch will then be shown in the top and 
the corresponding time-frequency spectrogram. The spectrogram is automatically calculated and 
displayed at the bottom, as seen in Figure 6. Notice that this rhythm contains brief bouts of alpha or beta
activity that will occur at different times in different trials due to the spontaneous, non-stationary nature 
of the signals. As such, when averaged across trials, bands of alpha and beta activity appear continuous
in the spectrogram (data not shown, see Jones et al., 2007; Jones, 2016) and will create peaks at alpha 
and beta in a power spectral density (Figure 8C). Since the alpha and beta components of this rhythm 
are not time locked across trials, it is difficult to directly compare the waveform of the recorded data with 
model output. Rather, to assess the goodness of fit of the model, we compared features of the simulated
rhythm to the data (see Jones et al., 2009), including peaks in the power spectral density, as described 
below. Since we can not directly compare the waveform of this rhythm with the model output, rather than
first loading the data, we begin this tutorial with Step 3, “activating” the network, using the default local 
network defined when starting HNN. 

Step 3: “Activate” the local network. In prior publications, we have simulated low-frequency alpha and 
beta rhythms through patterns of rhythmic drive (repeated bursts of spikes) through proximal and distal 
projection pathways. These patterns of drive were again motivated by literature and by tuning the 
parameters to match features of the model output to the recorded data (see Jones et al., 2009; Sherman
et al., 2016). 

We begin by describing the process for simulating a pure alpha frequency rhythm only, and we then 
describe how a novel prediction for the origin of beta events emerged (Sherman et al. PNAS 2016). 
Motivated by a long history of research showing alpha rhythms in neocortex rely on ~10Hz bursting in 
the thalamus, we tested the hypothesis that ~10Hz bursts of drive through proximal and distal projection
pathways (representing lemniscal and non-lemniscal thalamic drive) could reproduce an alpha rhythm in
the local circuit. The burst statistics (number of spikes and inter-burst interval chosen from a Gaussian 
distribution), strength of the input (post-synaptic conductance), and delay between the proximal and 
distal input, were manually adjusted until a pure alpha rhythm sharing features of the data was found. 
We showed that when ~10Hz bursts of proximal and distal drives are subthreshold and arrive to the 
local network in anti-phase (~50ms delay) a pure alpha rhythm emerges (Jones et al., 2009; Ziegler et 
al., 2010). 

The parameters of this drive are distributed with HNN in the file “Alpha.param”, loaded through the Set 
Parameters From File button and viewed in the Set Parameters dialog box under Rhythmic Proximal 
and Rhythmic Distal inputs (Figure 7A). Note that the start time mean of the ~10Hz Rhythmic Proximal 
and Rhythmic Distal Inputs are delayed by 50ms. The HNN GUI in Figure 7B displays the simulated 
current dipole output from this drive (middle), the histogram of the proximal and distal driving spike trains
(top), and the corresponding time-frequency domain response (bottom). This GUI window is 
automatically constructed when rhythmic inputs are given to the network, and HNN is designed to easily 
define rhythmic input to the network via the Set Parameters dialog box. A scaling factor was also applied
to this signal (via Set Parameters, Run dialog box) and is shown as 300,000 on the y-axis of the main 
GUI window example in Figure 7B. The 300,000 scaling factor predicts that 60,000,000 PNs (300,000 x 
200 PNs) contribute to the measured signal.

Step 4 The alpha rhythm shown in Figure 7B is reproduced by clicking the “Run Simulation” button at 
the top of the GUI, Additional network features, including power-spectral density plots, can also be 
visualized through the pull down menus (Step 5). 

Steps 6 and 7: Rhythmic input parameters can be adjusted to account for the user defined “simulation 
experiment” and hypothesis testing goals. 
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The goal in our prior study was to reproduce the alpha / beta complex of the SI mu-rhythm. By hand 
tuning the parameters we were able to match the output of the model to several features of the recorded
data, including symmetric amplitude modulation around zero and PSD plots as shown in Figures 7 and 8
(see further feature matching in Jones et al., 2009; Sherman et al., 2016), we arrived at the hypothesis 
that brief bouts of beta activity (“beta events”) non-time locked to alpha events could be generated by 
decreasing the mean delay between the proximal and distal drive to 0ms and increasing the strength of 
the distal drive relative to the proximal drive. This parameter set is also distributed with HNN 
(“AlphaandBeta.param”) and viewed in Figure 8A . With this mechanism, beta events emerged on 
cycles when the two stochastic drives hit the network simultaneously and when the distal drive was 
strong enough to break the upward flowing current and create a prominent ~50ms downward deflection 
(see red box in  Figure 8B). The stronger the distal drive the more prominent the beta activity (data not 
shown, see Sherman et al., 2016).

This beta event hypothesis was purely model derived and was based on matching several features of 
the SI mu rhythm between the model output and data (detailed in Jones et al., 2009; Sherman et al., 
2016). One such feature was a direct comparison of the PSD between the model and data. This can be 
viewed in the HNN GUI though the “View PSD” pull down menu (see Figure 4, Step 5), where this data 
provided with HNN (“SI_ongoing.txt”) can be automatically compared the model output in the PSD 
window (Figure 8C).

The model derived predictions on mechanisms underlying alpha and beta where motivated by literature 
and further refined by tuning the parameters to match the output of the model with various features of 
the recorded data.  While the mechanisms of the alpha rhythm described above were motivated by 
literature showing cortical alpha rhythms arise in part from alpha frequency drive from the thalamus and 
supported by animal studies (Hughes & Crunelli, 2005; for example, see Figure 2 in Bollimunta, Mo, 
Schroeder, & Ding, 2011), the beta event hypothesis was novel. The level of circuit detail in the model 
led to specific predictions on the laminar profile of synaptic activity occurring during beta events that 
could be directly tested with invasive recordings in animal models. One specific prediction was that the 
orientation of the current during the prominent ~50ms deflection defining a beta event (red box, Figure 
8B) was down the pyramidal neuron dendrites (e.g. into the cortex). This prediction, along with several 
others, were subsequently tested and validated with laminar recordings in both mice and monkeys, 
where it was also confirmed that features of beta events are conserved across species and recording 
modalities (Sherman et al., 2016; Shin et al., 2017). 

Gamma rhythms: Gamma rhythms can encompass a wide band of frequencies from 30-150 Hz. Here, 
we will focus on the generation of so-called “low gamma” rhythms in the 30-80 Hz range. It has been 
well established through experiments and computational modeling that these rhythms can emerge in 
local spiking networks through excitatory and inhibitory cell interactions. The period of the low gamma 
oscillation is set by the time constant of decay of GABAA-mediated inhibitory currents (Buzsáki & Wang,
2012; Cardin et al., 2009; Vierling-Claassen, Cardin, Moore, & Jones, 2010), a mechanism that has 
been referred to as pyramidal-interneuron gamma (PING). In normal regimes, the decay time constant 
of GABAA-mediated synapses (~25 ms) bounds oscillations to the low gamma frequency band (~40 Hz).
In general, PING rhythms are initiated by “excitation” to the excitatory (PN) cells, and this initial 
excitation causes PN spiking that, in turn, synaptically activates a spiking population of inhibitory (I) 
cells. These (I) cells then inhibit the PN cells, preventing further PN activity until the PN cells can 
overcome the effects of the inhibition ~25 ms later. The pattern is repeated, creating a gamma frequency
oscillation (~40 Hz; 40 spikes/second).  

We have applied HNN to determine if features in the current dipole signal could distinguish PING-
mediated gamma from other possible mechanisms such as exogenous rhythmic drive (Lee & Jones, 
2013). Here, we describe the process for generating gamma rhythms via the canonical PING 
mechanisms in HNN. We have not observed strong gamma rhythms in any of our prior studies. As such,
while default parameters sets creating the example below are distributed with the software, no data are 
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currently provided. We thus begin this tutorial with Step 3, “activating” the network using a slightly 
altered local network configuration, as described below. 

Step 3: “Activate” the local network by loading in the parameter set defining the local network and initial 
input parameters ”gamma_L5weak_L2weak.param”.  In this example, the input was noisy excitatory 
synaptic drive to the pyramidal neurons. Additionally, all synaptic connections within the network are 
turned off (synaptic weight = 0), except for reciprocal connections between the excitatory (AMPA only) 
and inhibitory (GABAA only) cells within the same layer. This is not biologically realistic, but was done for
illustration purposes and to prevent pyramidal-to-pyramidal interactions from disrupting the gamma 
rhythm.  To view the local network connections click the “local network” button in the Set Parameters 
dialog box. Figure 9B shows the corresponding dialog box where the values of adjustable parameters 
are displayed. Notice that the L2/3 and L5 cells are not connected to each other, the inhibitory 
conductance weights within layers are stronger than the excitatory conductances, and there are also 
strong inhibitory-to-inhibitory (i.e., basket-to-basket) connections. This strong autonomous inhibition will 
cause synchrony among the basket cells, and hence strong inhibition onto the PNs.

To reproduce the ~40Hz gamma oscillation described by the PING mechanism above, we drove the 
pyramidal neuron somas in L2/3 and L5 with noisy excitatory AMPA synaptic input, distributed in time as 
a Poisson process with a rate of 140Hz. This noisy input can be viewed in the “Set Parameters” menu 
by clicking on the “Poisson Inputs” button (see Figure 9A). Setting the stop time of the Poisson drive to 
-1, under the Timing tab, keeps it active throughout the simulation duration. 

Step 4 The gamma rhythm shown in Figure 9C is reproduced by clicking the “Run Simulation” button at 
the top of the main HNN GUI. The top panel shows a histogram of Poisson distributed times of input to 
the pyramidal neurons, the middle panel the net current dipole across the entire network and the bottom 
the corresponding time frequency spectrogram showing strong gamma band activity.  Additional network
features, including spiking activity in each cell in the population (Figure 9D), somatic voltages (Figure 
9E), and PSD plots for each layer and the entire network (Figure 9F), can also be visualized through the
“View” pull down menu (Step 5). Notice the PING mechanisms described above in the spiking activity of
the cells (Figure 9F), where in each layer the excitatory pyramidal neurons fire before the inhibitory 
basket cells. The line plots, which show spike counts over time, also demonstrate rhythmicity. The 
pyramidal neurons are firing periodically but with lower synchrony due to the Poisson drive (orange 
histogram at the top), which creates randomized spike times across the populations (once the inhibition 
sufficiently wears off). Notice also that the power in the gamma band is much smaller in Layers 2/3 than 
in Layer 5 (Figure 9F). This is reflective, in part, of the fact that the length of the L2/3 PNs is smaller than
the L5 PNs, and hence the L2/3 cells produce smaller current dipole moments that can be masked by 
activity in Layer 5 (see Lee & Jones, 2013 for further discussion).

Steps 6 and 7: Local network and/or driving input parameters can be adjusted to explore alternate 
mechanisms of gamma generation and to develop and test hypotheses based on user defined data.

ERP Model Optimization

To ease the process of narrowing in on parameter values representing a user’s hypothesized model, we 
have added a model optimization tool in HNN. Currently, this tool automatically estimates parameter 
values that minimize the error between model output and features of ERP waveforms from experiments.
Parameter estimation is a computationally demanding task for any large-scale model. To reduce this 
complexity, we have leveraged insight of key parameters essential to ERP generation, along with a 
parameter sensitivity analysis, to create an optimization procedure that reduces the computational 
demand to a level that can be satisfied by a common multi-core laptop.

Two primary insights guided development of the optimization tool. First, exogenous proximal and distal 
driving inputs are the essential parameters to first tune to get an initial accurate representation of an 
ERP waveform. Thus, the model optimization is currently designed to estimate the parameters of these 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/740597doi: bioRxiv preprint 

http://hnn.brown.edu/wp-content/uploads/2018/04/gamma.zip
https://doi.org/10.1101/740597
http://creativecommons.org/licenses/by-nc-nd/4.0/


driving inputs defined by their synaptic connection strengths, and the Gaussian distribution of their 
timing (see dialog box in Figure 10B). In optimizing the parameters of the evoked response simulations 
to reproduce ERP data distributed with HNN (e.g. see ERP tutorial), we performed sensitivity analyses 
that estimated the relative contributions of each parameter to model uncertainty, where a low 
contribution indicated that a parameter could be fixed in the model and excluded from the estimation 
process to decrease compute time (see Supplementary Materials).

Second, an intuitive insight that was confirmed by parameter sensitivity analysis is that the influence of 
each exogenous input on the simulated dipole varies over time, with the highest influence during and 
just after the time of the input (see Supplementary Material). We used this knowledge to create a 
stepwise optimization process, only estimating parameter values for one input at a time, where the 
objective of each optimization is to minimize a weighted root mean squared error (RMSE) measure 
between simulated and experimental data only during the relevant time window (see Materials and 
Methods). This stepwise estimation reduces the complexity of the optimization problem and saves time. 
Each step in the process searches for parameter estimates using the COBYLA optimization algorithm 
(Powell, 1994) (see Materials and Methods for detailed explanation of the stepwise optimization 
procedure). 

Example model optimization for the suprathreshold sensory evoked response data set

In this example, we describe an application of the model optimization tool for estimating parameters to 
simulate data representing the SI evoked response to a brief suprathreshold level tactile stimulation -- 
which is 100% detected (Figure 10A). This evoked response is similar to that shown in Figure 4, where 
the signal was elicited from a perceptual threshold level stimulation - at 50% detection. We start from the
parameter file fitted to the 50% detection scenario, and use HNN’s model optimization feature to find 
parameter estimates that provide a better fit the suprathreshold-level experimental data. The data from 
this study is also included in the HNN distribution (“SI_SupraT.txt”). 

Steps 1-4: Similar to steps 1-4 above, first load the supra-threshold experimental data file 
“S1_SupraT.txt” via the “Load data file” menu option and the example starting parameters to activate the
network provided in the parameter file “ERPYes100Trials.param” via the “Load parameter file” menu 
option. Note that in this example, the network is also “activated” by a sequence of three exogenous 
inputs defined in the parameter file. The parameters for these inputs serve as a baseline for model 
optimization. The supplied parameter file (used above) runs 100 trials by default for each simulation. For
model optimization, this can be reduced to 3 trials. Click on the “Set Parameters” button, then the “Run” 
button, and replace 100 trials with 3. In the previous Set Parameters dialog box change the simulation 
name to “ERPYes3Trials” to reflect this change (Figure 4C). By clicking the “Run Simulation” button the 
evoked response using this initial parameter set as in Figure 10A will be displayed.  As described above,
in practice with user defined data, users should apply their own hypotheses related to the number, 
timing and synaptic input strengths of the exogenous inputs that activate the network to obtain an initial 
representation of the recorded waveform before beginning the parameter estimation process.

Step 5: Before running the optimization, rename the simulation to “ERPYes3Trials_opt” in the Set 
Parameters dialog box as described above, so that the parameter results of the optimization will be 
saved in a new file. 

Step 6: In the Simulation pull down menu, choose the “Configure Optimization” option. This option is 
only selectable once data and parameter files have been loaded. A new dialog box pre-populated with 
values from the parameter file will appear, as shown in Figure 10B.  All parameters describing the timing
and strength of defined exogenous inputs will be available for optimization. Users can generate their 
own evoked response parameter files with as many exogenous inputs as desired and they will be 
automatically populated into the “Configure Optimization” dialog box. 

Select which parameters to treat as free variables for optimization; parameters that will be fixed in the 
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optimization process are grayed out. By default, all parameters are selected, but it may be desirable to 
limit the number of free parameters to only the most influential set based on a parameter sensitivity 
analysis. Fixing non-influential parameters will decrease the complexity of an optimization step, and 
increase the likelihood of the optimization algorithm converging on parameter estimates after a relatively
low number of simulations. Results of a sensitivity analysis using Uncertainpy (Tennøe, Halnes, & 
Einevoll, 2018) on this example data are provided in Supplementary Table 1 and may help guide model 
optimization for similar data. Sensitivity analysis is not yet included in HNN (see Future Directions). 

The number of simulations per optimization step is configurable in the top section of the “Configure 
Optimization” dialog box (Figure 10B). The default values shown in Figure 10B were based on results 
from our studies where the fit obtained was significantly improved from a single optimization. This value 
can be decreased as the number of free parameters is reduced.

The parameter ranges defining the bound constraints given to the optimization algorithm are shown in 
the right-most column of the dialog box in Figure 10B. The displayed range is calculated as plus or 
minus a specified number of standard deviations for input start time or plus or minus a percentage of the
initial value for all other parameters. If a parameter has an initial value of 0, its range is defined by a 
user-specified maximum value rather than percentage. The “Recalculate Ranges” button will display 
updated values.

Step 7: Click the “Run Optimization” button to start the stepwise optimization process.After each input 
has been optimized in sequence and a final optimization pass over all parameters has completed, the 
final optimized fit will be shown in gray in the main HNN window along with the lowest obtained RMSE 
(Figure 10C/D).

Step 8 (optional): To perform a second optimization using the results of the first procedure as a starting 
point, select the optimized simulation parameter set drop-down menu. This will update the values in the 
Configure Optimization dialog box and pressing Run Optimization will start a new optimization process. 
For this example, the RMSE improved from 14.60 (Figure 10D) after the first optimization to 10.79 after 
a second round (data not shown).

Discussion

The Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) is a neural modeling software tool 
developed to help researchers and clinicians interpret the neural origin of their human EEG or MEG 
data.  HNN’s interactive GUI is designed for users with no formal computational neural modeling or 
software development experience to be able to develop and test hypotheses on the cellular- and circuit-
level generators of their human data. Based on prior applications of HNN’s underlying template neural 
model on these signals (Jones et al., 2009, 2007; Khan et al., 2015; Lee & Jones, 2013; Sherman et al., 
2016; Sliva et al., 2018; Ziegler et al., 2010), the tutorials and the example workflow focus on studying 
the neural origin of ERPs and low-frequency oscillations from a single brain region. The template 
network model contains features of a canonical neocortical circuit, with layer-specific thalamocortical 
and cortico-cortical drive, where the net primary current dipoles are simulated from the intracellular 
current across the network of pyramidal neurons. HNN enables visualization and direct comparison of 
the primary current dipole produced by the network to source-localized data in units of nAm, under 
various parameter manipulations. This comparison, along with simultaneous visualization of microcircuit 
activity, including cell spiking and somatic voltage responses, guides interpretation of the cellular- and 
circuit-level origin of EEG/MEG data.  

HNN was created based on the biophysical origin of EEG/MEG primary currents to be a hypothesis 
development and testing tool, where specific predictions on the microcircuit-level underpinnings of 
recorded data can be produced. The circuit-level predictions can guide further validation with invasive 
recordings or with other imaging modalities (e.g., spectroscopy or tractography, see Khan et al., 2015). 
As one specific example, HNN led to a novel prediction on the origin of transient neocortical beta 
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oscillations, and the prediction was later tested and supported by laminar recordings in mice and 
monkeys (Sherman et al., 2016). In turn, established cellular- or circuit-level details known to contribute 
to healthy brain dynamics and/or disease states can be adapted into HNN to predict corresponding 
signatures in macroscale signals. 

HNN is particularly timely given the rapidly expanding wealth of genetic insights and phenotype data in 
animal model systems.  As disease-specific genetic mutations and corresponding cellular/circuit 
outcomes in mouse models are identified, they can be implemented in HNN, and their impact on 
EEG/MEG measured brain dynamics, ranging from ongoing state properties (e.g., alpha oscillations) to 
sensory-evoked responses, can be simulated. The outputs from HNN would then provide specific and 
principled predictions to be compared against real EEG/MEG data obtained in the relevant population, 
leading to valid bi-directional inference. Overall, the scalability of HNN provides an unprecedented 
framework for translational neuroscience research. 

Comparison to other EEG/MEG modeling software

Although other models and software packages aimed at providing researchers tools to simulate 
macroscale EEG/MEG signals are available (e.g., https://thevirtualbrain.org; 
https://www.fil.ion.ucl.ac.uk/spm/ (Barrès, Simons, & Arbib, 2013; Hagen, Næss, Ness, & Einevoll, 2018;
Kiebel, Garrido, Moran, & Friston, 2008; Sanz Leon et al., 2013). HNN’s model, goals, and capabilities 
are unique in this realm. To our knowledge, HNN is the only software able to simulate the primary 
electrical currents underlying EEG/MEG signals from the intracellular dendritic current flow in multi-
compartmental pyramidal neurons embedded in a detailed model of layered cortical circuitry that 
contains individual spiking neurons and layer-specific drive from thalamocortical and cortico-cortical 
networks. This construction was specifically designed for interpreting microscale cellular- and circuit-
level activity from single regions of interest. 

Other models typically rely on reduced representations of neural activity, including neural mass 
representations and/or mean field approximations (Breakspear, Williams, & Stam, 2004; Jansen & Rit, 
1995; Jirsa & Haken, 1996; Kiebel et al., 2008; Sanz Leon et al., 2013; Woolrich & Stephan, 2013). 
Such simplifications may be necessary to ensure mathematical or computational tractability of models 
that address whole brain activity or interactions between multiple areas (Breakspear, 2017), but that 
tractability comes at the cost of suppressing or eliminating the ability to evaluate the roles of cellular-
level details of individual spiking units or particular network architectures, or to perform one-to-one 
comparisons between model and data.   

In contrast to the more simplified models mentioned above, the biophysical detail included in HNN’s 
model enables direct comparison between model output and source-localized data in the same units of 
measure (nAm), facilitating GUI-driven hypothesis development and testing. Additionally, unlike other 
software, HNN’s GUI, workflow, and tutorials are uniquely designed to train users to stimulate ERPs and
oscillations based on layer-specific exogenous drive to the network, as validated in prior studies (see 
Introduction). Although HNN’s level of detail can be prohibitive for studying more global network 
interactions where the computations are more tractable with reduced neural representations, the level of
detail built into HNN is necessary to make predictions on local microscale cellular and circuit elements 
contributing to EEG/MEG that can guide targeted testing and direct connection to studies in animal 
models. 

Limitations and Future directions 

One of the greatest challenges in computational neural modeling is deciding the appropriate scale of 
model to use to answer the question at hand. There is always a tradeoff between model complexity and 
computational efficiency, ease of use, and interpretability. As discussed above, this tradeoff underlies 
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different scales of modeling in various EEG/MEG modeling software. HNN’s model was chosen to be 
minimally sufficient to accurately account for the biophysical origin of the primary currents that underlie 
EEG/MEG signals; namely, the net intracellular current flow in the apical dendrites of pyramidal neurons 
that span across the cortical layers and receive layer-specific synaptic input from other brain areas. 
While HNN’s model is a reduction of the full complexity of neocortical circuits, it has been successful in 
interpreting the origin of extracranially measured macro-scale EEG/MEG signals that likely rely on 
canonical features of neocortical circuitry and do not provide access to finer details of the underlying 
structure. That said, any conclusions made with HNN are based on the underlying model assumptions 
that are important for users to understand. These assumptions are outlined in detail in the methods, in 
our prior publications, and on our website.  

Parameter optimization is a computationally challenging problem in any large-scale model. The process 
for parameter tuning to study ERPs and oscillations in HNN’s underlying model is detailed above. Based
on our prior studies and sensitivity analyses (see Supplementary Materials), we have identified that the 
timing and strength of the layer specific exogenous drive to the local network is critical in defining the 
timing and peaks of sensory evoked responses. As such, HNN currently includes a tool to optimize 
these parameters based on reducing the error between simulated evoked response waveforms and 
recorded data. Due to the non-stationary nature of spontaneous brain rhythms (e.g. Figure 6) error 
reduction based on matching waveform features is not as straightforward, and other signal features may
be necessary to consider for optimization (e.g. PSD peak amplitudes, see Figure 8 and Jones et al., 
2009). Future expansions of HNN will include the ability to optimize over other user defined parameters, 
and to minimize errors between model output and various features of recorded data, with an estimate of 
the sensitivity of various parameters to these features. Given enough compute power, large parameter 
sweeps could be implemented in HNN to generate families of models could that could then be template 
matched to given waveforms via machine learning algorithms, as an alternative means for circuit 
interpretation without interactive hypothesis development and testing. At present, HNN can be run on 
high performance computers through the Neuroscience Gateway Portal (www.nsgportal.org) and 
Amazon Web Services (https://aws.amazon.com), see also Dissemination in Materials and Methods. 

Currently, all conclusions made in HNN are derived from the template neocortical column model 
provided. Another important step in expanding HNN’s utility will be to enable users to define their own 
cells and circuits to use within the HNN framework. While the HNN code is open source and adaptable 
for advanced users, it is difficult for those without expertise in computational neural modeling in 
Neuron/Python to expand. Therefore, work is in progress to convert HNN’s underlying neural model to 
the NetPyNe simulation language (www.netpyne.org) (Dura-Bernal et al., 2019). NetPyNe is a neural 
modeling platform enabling flexible cell and network development. This conversion will also facilitate the 
ability to expand HNN to the study of activity from and between multiple cortical areas and the thalamus.

HNN is designed to simulate source-localized current dipole signals produced by neurons. Source 
localization is currently viewed as an independent process. The output from any source localization 
algorithm can be compared to HNN’s simulated output. In future expansions of HNN, we plan to 
integrate HNN’s “bottom up” simulations, with “top down” source localization estimates using minimum-
norm-estimate (MNE) software (www.martinos.org/mne) (Gramfort et al., 2013, 2014), providing an all-
in-one software tool for source localization and circuit-based interpretation. In doing so, parameter 
estimation in each software package may benefit from direct knowledge and constraints from the other.  
Additionally, HNN’s utility will be expanded to include estimation of forward fields through the brain to 
simulate and visualize local field potential, current-source density, and sensor-level signals, facilitating 
comparison to these recording modalities. 

We have shown that HNN can be a useful tool to interpret the impact of noninvasive brain stimulation 
(NIBS) on EEG-measured circuit dynamics (Figure 5, Sliva et al., 2018). HNN was used to test specific 
hypotheses on tACS-induced modulation of synaptic dynamics by accounting for EEG signal differences
in pre-tACS compared to post-tACS periods. A useful expansion of HNN will be to include simulations of 
the fields induced in the brain by NIBS (e.g., with finite-element-estimates (Windhoff, Opitz, & 
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Thielscher, 2013)) and to directly couple these fields to the modeled neurons. This integration would 
facilitate studying the effects of NIBS on real-time EEG signals and could lead to improved NIBS 
paradigms. 

In total, HNN’s present distribution and planned expansions are aimed at providing a one-of-a-kind, 
user-friendly software tool for translational neuroscience research that is accessible to a wide scientific 
and clinical community. 

Materials and Methods 

Dissemination HNN is distributed online at https://hnn.brown.edu. The menu bar at the top of the HNN 
homepage (Figure 11) links to installation instructions, documentation, tutorials, troubleshooting 
information, and a user forum. HNN can be installed locally on Linux, Windows, and macOS operating 
systems, and it can be run as well online through Amazon Web Services (AWS) or the Neuroscience 
Gateway Portal (NGP).  Since HNN is an open-source project, the code for our software, as well as the 
local installation instructions, are hosted on GitHub (see https://github.com/jonescompneurolab/hnn).

Template Model Construction

Overview The template neocortical model provided with HNN is based on prior publications using the 
model without a graphical user interface, as described in Jones et al., 2009, and available on ModelDB 
(https://senselab.med.yale.edu/modeldb). All current parameter files included in the software, and 
described in the tutorials above, are based on this model, except for the gamma tutorial whose 
parameter file has local network modifications as described above. 

HNN’s underlying neocortical model is simulated using the NEURON simulation environment with the 
Python interpreter. HNN’s model is simulated across multiple cores in parallel using the message-
passing interface (MPI). HNN’s Run Parameters dialog box can be accessed through the GUI and 
provides access to commonly used simulation parameters, including integration time-step (dt), 
simulation duration (milliseconds), number of trials, neuronal firing threshold (mV), and number of cores 
over which to parallelize the model. 

The model represents a canonical neocortical circuit. It contains multi-compartment pyramidal neurons 
(PN) in supragranular and infragranular layers (layers 2/3 and 5, respectively), whose apical dendrites 
are spatially aligned and span the cortical layers. In both layers, the PNs have two basal, one oblique, 
and one apical dendrite branch, and the layer 2/3 PNs have shorter apical dendrites than layer 5 PNs.

The PNs are synaptically coupled to each other and to a subset of inhibitory neurons in each layer, and 
are included in the model in a 3/1 PN-to-interneuron ratio, with a scalable number of PNs. The inhibitory 
neurons are simulated with single compartments representing fast spiking basket cells, and are shown 
in yellow in (Figure 2). Note that the granular layer is not explicitly included in the template circuit. This 
design choice was based on the fact that macroscale current dipoles are dominated by PN activity in 
supragranular, and infragranular layers, due to their alignment (see Calculation of Primary Electrical 
Current). Thalamic input to granular layers is presumed to propagate directly to basal and oblique 
dendrites of PN in layer 2/3 and 5. 

Detailed Neuronal Morphology and Physiology 

Morphology
The morphology of the PN in each layer (see Figure 3, and Table 1) were adapted from the morphology 
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reduction procedure in (Bush & Sejnowski, 1993), which was based on conserving the axial 
conductance between compartments in the cells. The axial conductance is the basis of the primary 
current dipole calculation (see below). 

Layer 2/3
 PN: 8 compartments including 4 apical dendrites, 3 basal dendrites, 1 soma
 Inhibitory basket neurons: single compartment (soma)

Layer 5
 PN: 9 compartments including 5 apical dendrites, 3 basal dendrites, 1 soma. 
 As shown below, L5 PNs have longer dendrites than L2/3 PNs. L5 PN somas are 

based in L5 with long apical dendrites reaching into L2/3.
 Inhibitory Basket neurons: single compartment (soma). 
 L2/3 and L5 basket interneurons are identical but their synaptic parameters and 

local circuit connectivity differs. 

Type Soma Adend 
trunk

Adend1 Adend2 Adend 
tuft

Adend 
oblique

Bdend1 Bdend2 Bdend3

L2/3 PN 22.1, 
23.4

59.5, 
4.3

306.0, 
4.1

N/A 238.0, 
3.4

340.0, 
3.9

85.0, 
4.3

255.0, 
2.7

255.0, 
2.7

L2/3 
basket

39.0, 
20.0

N/A N/A N/A N/A N/A N/A N/A N/A

L5 PN 39.0, 
28.9

102.0, 
10.2

680.0, 
7.5

680.0, 
4.9

425.0, 
3.4

255.0, 
5.1

85.0, 
6.8

255.0, 
8.5

255.0, 
8.5

L5 
basket

39.0, 
20.0

N/A N/A N/A N/A N/A N/A N/A N/A

Table 1. Length ( μm ), diameter ( μm ) of compartments in each modeled neuron type. 
Adend (Bdend) represent apical (basal) dendrite. Note the following connectivity for 
compartments of PNs. The non-oblique Adends of PNs are connected vertically along the Z 
axis (cortical layer axis from supra- to infragranular layers) from soma → Adend trunk → 
Adend1 → Adend2 → Adend tuft. The smaller L2/3 PNs do not have an Adend2 
compartment. PN Adend oblique are connected to the soma and perpendicular to the Z 
axis. Bdend1 connects to the soma along the Z axis, and Bdend2 and Bdend3 branch from 
Bdend1 at a 45 degree angle from the Z axis. L2/3 and L5 basket interneurons have a 
single somatic compartment. N/A indicates non-applicable, since that specific compartment
not present in the neuron type. Geometry illustrated in Figure 3 above.

Physiology

Membrane voltages in each simulated compartment were calculated using the standard Hodgkin-Huxley
parallel conductance equations, and current flow between compartments follows from cable theory as 
accounted for in NEURON. 

Active ionic currents were included in both the somatic and dendritic compartment of the cells. The 
parameters regulating these currents were tuned to replicate known in vitro firing patterns in response to
somatic current injection. The L5 PNs produced bursts of action potentials after sufficient depolarization 
and the L2/3 PNs produced adapting spike trains. 
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The following table displays the ion channels and mechanisms in each cell type in the model (X) 
indicates the presence of the channel/mechanism in the cell type, see online code for full equations. 

Cell Type (rows)
Channel/

mechanism Type
(columns)

Na
(fast)

K
(fast)

Km KCa Ca (L-
type)

Ca (T-
type)

Ca
decay

HCN leak dipole

Basket X X X

L2/3 Pyramidal X X X X X

L5 Pyramidal X X X X X X X X X X

In the table above, Na (fast) / K (fast) are the fast sodium and potassium channels responsible for 
generating action potentials. Km is the muscarine sensitive potassium channel, with a relatively slow 
time-constant and KCa is the calcium-dependent potassium channel, which contributes to 
hyperpolarization after calcium influx into the cell. The L- and T-type calcium (Ca) channels represent 
the high-threshold and low-threshold activated calcium channels which together with the 
hyperpolarization-activated cyclic nucleotide gated channel (HCN) contribute to bursting. Ca decay 
represents the calcium extrusion pump, which causes intracellular calcium to decay towards a baseline 
level. Leak represents the passive channel, with constant conductance. Dipole represents the 
mechanism that takes into account the primary axial current flow within pyramidal neuron dendrites, 
responsible for the generation of simulated signals comparable to MEG/EEG recordings. For more 
details see Jones et al., 2009.

Local Network Connections

HNN’s default template neocortical model includes neurons arranged in three dimensions. The XY plane
is used to array cells on a regular grid while the Z-axis specifies cortical layer. HNN’s default model 
contains a regular 10 x 10 grid (arbitrary units) of pyramidal neurons in layer 2/3 and layer 5 for a total of
200 pyramidal neurons, with interneurons interleaved regularly in a 3-1 ratio (see Figure 3D). 

Synaptic dynamics were modeled with bi-exponential functions. The rise and decay time constants and 
reversal potentials were based on experiments and the original neocortical model in Jones et al., 2009, 
and are generally as follows: AMPA (0.5 ms, 1.0 ms, 0 mV); NMDA (1.0 ms, 20.0 ms, 0 mV); GABAA 
(0.5 ms, 5.0 ms, -80 mV), GABAB (1.0 ms, 20.0 ms, -80 mV). Within a cortical layer there is recurrent 
connectivity between neurons of a given type (PN to PN, interneuron to interneuron), PN to interneuron 
connectivity, and synaptic inhibition from interneurons onto PNs. The following synaptic connections are 
present across cortical layers: layer 2/3 PNs to layer 5 PNs, layer 2/3 interneurons to layer 5 PNs, layer 
2/3 PNs to layer 5 interneurons. 

There is all-to-all connectivity between any two populations of synaptically-coupled neurons. Synaptic 
weights between the neurons are scaled inversely by the distance in the XY plane (arbitrary units) 
between the neurons ( d ) using exponential fall-off following e−d 2

/ λ 2

, and space constant λ , 
which depends on pre- and post-synaptic type (Table 2 below).
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(From ↓, To → ) L2/3 PN L2/3 Basket L5 PN L5 Basket

L2/3 PN 3 3 3 3

L2/3 Basket 50 20 50 N/A

L5 PN 3 N/A 3 3

L5 Basket N/A N/A 70 20

Table 2. Space constant (arbitrary units) for synaptic connection strengths and delays between different 
populations of neurons (rows are pre-synaptic type, columns are post-synaptic type). 

The synaptic delays are scaled in proportion to the XY plane distance ( d ) between the neurons 
following 1/e−d2

/ λ2

, to account for the larger propagation distance (note that the λ value is 
determined using values in Table 2). With increasing d  between neurons, the synaptic weights 
decay, while the synaptic delays increase. The connectivity details are based on known neocortical 
anatomy and local circuit wiring patterns, as derived from the literature. Further details on connectivity 
are available on HNN’s website and prior publications.

Exogenous Driving Inputs 

At rest, the default model does not generate activity. HNN provides several ways to activate the local 
cortical column with layer specific excitatory synaptic input representing thalamo-cortical, and/or cortical-
cortical and noisy/tonic drive. The user defines the choice of driving input to the network, based on their 
simulation experiment, as described in Results. 

Exogenous driving networks are not explicitly modeled, rather the user defines trains or bursts of action 
potentials representing these inputs that excite the local network via AMPA or NMDA synaptic 
connections to distinct layers and cellular compartments. These inputs are referred to as proximal and 
distal drive based on the PN dendritic contact location. Proximal inputs contact basal and oblique 
dendrites of PN and somas of the inhibitory neurons in L2/3 and L5, and distal inputs contact distal 
dendrites of the PN in L2/3 and L5 and somas of the inhibitory neurons in L2/3 only, as shown in Figure 
3. 

The trains of action potentials, or tonic/noisy input, that the user defines are created in specific dialog 
boxes in the GUI and represent either Evoked, Rhythmic, Tonic, or Poisson Inputs, as motivated by our 
prior studies and tutorials described in Results. 

Evoked Input: Evoked inputs are trains of synaptic inputs to the local network during a sensory stimulus
that creates an event related potential (ERP). Parameter choices for defining these inputs are shown in 
Figure 4A. The following parameter values are used to define each proximal or distal evoked input:

 Start time mean (ms) - average start time
 Start time stdev (ms) - standard deviation of start time
 Number spikes - number of inputs provided to each synapse
 L2/3 Pyr weight AMPA/NMDA ( μS ) - weight of AMPA/NMDA synaptic inputs to layer 2/3 

pyramidal neurons
 L2/3 Basket weight AMPA/NMDA ( μS ) - weight of AMPA/NMDA synaptic inputs to layer /32 
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basket cells
 L5 Pyr weight AMPA/NMDA ( μS ) - weight of AMPA/NMDA synaptic inputs to layer 5 

pyramidal neurons
 L5 Basket weight AMPA/NMDA ( μS ) - weight of AMPA/NMDA synaptic inputs to layer 5 

basket cells (only used for proximal inputs)

Each evoked input also has a “Synchronous Inputs” option, indicating whether for a specific evoked 
proximal/distal input each neuron receives the input at the same time, or if instead each neuron receives
the evoked input events independently drawn from the same distribution. Increment input (ms) indicates 
whether to increment the Start time of all evoked inputs on each trial. In the studies described above, 
the evoked input strengths are suprathreshold generating action potentials in the local network. 

Rhythmic Input: Rhythmic Inputs are typically bursts of action potentials that drive the local network 
rhythmically. Parameter choices for defining these inputs are shown in Figure 7A.  Each rhythmic input 
is defined as a series of “population bursts”, consisting of a set number of “burst units” which drive post-
synaptic conductances in the local network with a set frequency and mean delay between proximal and 
distal projections. Rhythmic proximal and distal inputs target different cortical layers, as described 
above. HNN allows setting proximal and distal rhythmic synaptic input start/stop times and frequencies 
using the following specification:

 Start time mean (ms) - specifies the average start time for rhythmic inputs

 Start time stdev (ms) - specifies the standard deviation of start times for rhythmic inputs

 Stop time (ms) - specifies when the rhythmic inputs should be turned off

 Burst frequency (Hz) - average frequency of bursts

 Burst stdev (ms) - standard deviation of input events

 Spikes/burst - provides n synaptic events at each selected time

 Number bursts - number of times the full Burst sequence is repeated (each repeat adds 

variability and more inputs)

In addition, HNN’s Rhythmic Input dialog box allows setting the weights of the rhythmic synaptic inputs 
(units of conductance) to individual neuron types in layers 2/3 and 5, and adding synaptic delays (ms) 
before the neurons receive the synaptic inputs. In the studies described above, rhythmic inputs are set 
to sub-threshold synaptic strengths, and therefore do not lead to neuronal action potentials.

Tonic/Noisy Input: Tonic inputs are modeled as somatic current clamps with a fixed current amplitude 
(nA). These clamps can be used to adjust the resting membrane potential of a neuron, and bring it 
closer (with positive amplitude injection) or further from firing threshold (with a negative amplitude 
injection). Parameter choices for defining these inputs are shown in Figure 9A and include setting the 
current clamp amplitude, and start/stop time for each modeled neuron type separately. 

Noisy Inputs are trains of action potentials that follow a Poisson Process and create excitatory AMPA or 
NMDA synaptic inputs to the somata of all neurons of a given type. Parameter choices for defining these
inputs are shown in Figure 9A and include, setting the average frequency of the Poisson drive, synaptic 
strength to somatic AMPA or NMDA synapses, and start/stop times of all Poisson inputs.
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Calculation of Primary Electrical Current (Net Current Dipole)

Axial current flow between any two neighboring model compartments i,j is defined as iaxial = (vi - vj) / raxial ,
where vi , vj , and raxial are the voltages in compartment i, j, and the resistance between the 
compartments, respectively. In order to convert this axial current into a dipole signal, we apply a length 
scaling where the axial current is scaled by the inter-compartment distance along the vertical axis. The 
length scaling means that for the longer apical dendrites of layer 5 pyramidal neurons, the contribution 
will be larger than from the shorter layer 2/3 pyramidal neuron apical dendrites. Note that the orientation 
of the dendrites relative to the vertical axis also influences the contribution to the dipole signal. For 
example, the horizontally-oriented oblique dendrites which do not have any vertical length component, 
do not contribute to the dipole signal, whereas for basal dendrites oriented at 45 degrees from the 
vertical axis, the scaling is -√2/2 (note the negative sign is because these dendrites are pointing 
downward). The contribution from all neighboring compartments within a neuron is integrated and then 
added to a value across the set of all pyramidal neurons. As a result of the multiplication between axial 
current and length, the model dipole output signal has the same units of measure as the experimental 
data in units of nanoAmpere-meters: nAm (Okada   et al.,   1997).

ERP Optimization Tools

HNN includes a method to optimize ERP simulations. The optimization procedure was uniquely 
designed to minimize the RMSE between model output and ERP waveforms in a stepwise manner that 
decreases parameter exploration and saves compute time. This procedure takes advantage of the 
assumption that the exogenous proximal and distal driving inputs are essential parameters to tune to get
an accurate representation of an ERP waveform. Additionally, it applies the knowledge that, with 
probabilistic certainty, features of the dipole waveform at a particular point in time cannot be influenced 
by an exogenous driving input that begins after that point in time.

Since exogenous inputs are modeled as Gaussian processes, the likelihood of occurrence can be 
modeled by a probability distribution function (PDF) normally distributed with a given mean and standard
deviation. Figure 10 Supplemental Figure 1A shows the PDFs of the inputs for the suprathreshold 
example described in the results Figure 10. An input’s contribution to the ERP will begin when there is a 
non-zero probability of occurrence and persist for a duration commensurate with the input’s cumulative 
distribution function (CDF), shown in Figure 10 Supplemental Figure 1B. This clearly illustrates that from
20-50 ms, the input labeled “Proximal 1” is the unique contributor to the waveform. After 50 ms, effects 
from Distal 1 begin, thus adding new parameters that contribute to the waveform fit and reduce the 
relative contribution of Proximal 1 (from full to partial). It follows that each successive driving input will 
have a time window where it is most likely to have a unique and dominant effect. As such, our approach 
to model optimization is to divide the process into smaller steps where only a single input’s parameters 
are estimated before proceeding to optimize the next input.

To implement this procedure, we developed a new goodness of fit measure that amplifies the 
importance of maximizing the fit at points of unique contribution (e.g. 20-50 ms for Proximal 1, Figure 10
Supplemental Figure 1C) and diminished the importance of fitting to later points where other inputs 
contribute more to the fit. We began with standard root mean squared error (RMSE)

where t is the current simulation time, from 0 to simulation completion (T), and x1,t is the simulated dipole
at t, and x2,t is the experimental data point. Then we adapted RMSE to include weight functions specific 
for input k at time t,
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where an assignment of wk(t) = 1 for all t would be equivalent to RMSE.

For each input k, we first defined a weight distribution function, wk(t), as the Unique Contribution Index 
(UCI), which starts from the CDF of input k and simply subtracts the CDF of subsequent inputs, with a 
lower bound of 0 (Figure 10 Supplemental Figure 1C). Equivalently,

where N is the number of exogenous driving inputs in the simulation. Figure 10 Supplemental Figure 1C 
shows that Proximal 1’s influence is unique up to 50ms, Distal 1 has a dominant, but not unique 
contribution near 70 ms, and Proximal 2 is dominant after ~100 ms. When the UCI is applied as a 
weighting function in the wRMSE equation above, we observed that some optimization steps would 
negatively impact the fit in regions after the peak in UCI, where the errors had been down-weighted, 
requiring subsequent optimization steps to attempt to “correct” the fit. Our solution was to instead define 
the weight function using the Extended Contribution Index (ECI), which includes a term that delays the 
weight function’s return to 0, extending the window of data points that have an impact on wRMSE further
into the simulation. This achieves a balance between optimal parameter estimates for the current step 
and providing a good starting point for following optimization steps. ECI is defined by

where μi and μk are the mean start times of the next input and the current input, respectively. Simulation 
length is represented by T and A is an empirically derived constant. We arrived at a value of 1.6 for A as
a factor that appropriately minimized the contribution of inputs proportional to the delay between their 
onset and the kth input currently being optimized. The effect of the ECI’s decay term can be seen in 
Figure 10 Supplemental Figure 1D where the ECI for Proximal 1 extends further than the corresponding 
UCI, and the ECI of Distal 1 remains significant through the end of the simulation. Since points where 
ECIk,t approximately equal 0 will have a negligible impact on wRMSEk, we define a threshold of 0.01 
where wRMSEk is calculated for the window starting when ECIk,t rises above 0.01 and ending when 
ECIk,t drops below 0.01. For the first exogenous driving input, it is likely that the window will end before 
the completion of the simulation. In that first step, simulations can be stopped early, reducing the time 
required for simulating each candidate parameter set in that step.

The final step in our model optimization process is to vary all free parameters from all inputs using 
regular RMSE to measure goodness of fit. Like each previous step, the number of simulations run is 
limited. So this primary purpose of this final step is to make small corrections, not perform all-at-once 
optimization (which would likely require thousands of simulations). It also provides an opportunity to 
rebalance the contributions from multiple inputs in regions where there is a high degree of parameter 
inter-dependence. However, if the user is certain that they want to perform all-at-once optimization 
(which would likely require many more simulations), they could set the number of simulations for all 
steps except the last one to 0, and  specify a very large number of simulations for the final step.

For each optimization step, HNN uses the COBYLA optimization algorithm (Powell, 1994), which 
supports bound constraints as defined by the user for each parameter. We have found COBYLA 
converges at a local minimum faster than the PRAXIS algorithm (Brent, 1973) as implemented in 
NEURON’s multiple run fitter.
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Supplementary Materials

Sensitivity Analyses of ERP Simulations

To reduce the computational demands of performing model optimization of HNN ERP simulations, we 
used variance based sensitivity analysis to identify parameters that were less significant to the simulated
dipole waveform. As discussed above, HNN’s model optimization feature focuses on estimating 
parameters of the exogenous driving inputs. Of those parameters, we sought to find ones that did not 
vary model output significantly and were not necessary to include in parameter estimation.

The method of variance based sensitivity analysis through Monte Carlo estimation (Sobol, 2001) 
provides Sobol sensitivity indices that can be used to explain the relative contribution of individual 
parameters on model variance. The total Sobol sensitivity index for each parameter serves as a 
measure that represents that parameter’s contribution to the variance, and also the contributions 
resulting from interactions with other parameters being varied (Homma & Saltelli, 1996). So a parameter
with a low total Sobol sensitivity index can be characterized as an overall insignificant contributor to 
variance and can be fixed at its default value during model optimization.

We used Uncertainpy (Tennøe, Halnes, & Einevoll, 2018) to perform sensitivity analyses of parameters 
belonging to the exogenous driving inputs in the perceptual threshold-level 
(“yes_trial_SI_ERP_all_avg.txt”) and suprathreshold-level (“ERPYesSupraT.txt”) evoked response 
examples provided with HNN and described in the Results (Figure 4 and Figure 10). These analyses 
were performed using a modified simulation interface to run the simulations in parallel on a high-
performance computing cluster, which is not currently included with HNN distribution. The results from 
our sensitivity analyses are shown in Figure 4 Supplementary Figure 1, Figure 10 Supplementary Figure
2, and Figure 10 Supplementary Table 1. Each analysis consisted of varying all parameters (except 
input timing standard deviation) of a driving input over 55,000 simulations using a quasi-Monte Carlo 
method that sampled from parameter distributions we specified. The input time distribution was defined 
as a normal distribution with mean and standard deviation from the default parameter file. The values for
various synaptic weights were chosen from a uniform distribution ranging from the default value plus or 
minus 500%. For synaptic weight parameters with a default value of 0, the uniform distribution ranged 
from 0 to 1.0.
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Because the calculation of the total Sobol sensitivity index is carried out at each point in time, and is 
relative to the variance at that point, total Sobol indices at different time points cannot be directly 
compared, and an average across the entire simulation is not appropriate. We were interested in 
comparing the contribution of each parameter to the dipole waveform (in units of nAM) across the whole 
simulation, so we computed a weighted total Sobol index at each point in time (weighted by a scaled  
std. deviation ranging from 0 to 1). The plots in Figure 4 Supplementary Figure 1 and Figure 10 
Supplementary Figure 2 show weighted total Sobol indices for each parameter over the duration of the 
simulation. Supplementary Table 1 ranks the parameters with the greatest contribution to model output 
using the arithmetic means of weighted total Sobol indices across the entire simulation, for each driving 
input.

The results from our sensitivity analyses of sensory evoked response examples illustrate that there are 
several candidate parameters for excluding from model optimization. Not surprisingly input timing is an 
important parameter to optimize. In most cases NMDA weights have a greater contribution than AMPA, 
as do connections to Layer 5 neurons compared to Layer 2/3 neurons.
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Figures

Figure 1: HNN bridges the “macroscale” extracranial EEG/MEG recordings to the underlying cellular- 
and circuit-level activity by simulating the primary electrical currents (JP) underlying EEG/MEG, which 
are generated by the postsynaptic, intracellular current flow in the long and spatially-aligned dendrites of
a large population of synchronously-activated pyramidal neurons. Adapted from Jones SR, Encycl. 
Comput. Neurosci. 2015. 
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Figure 2: A schematic illustration of a canonical patch of neocortex that is represented by HNN’s 
underlying neural model. Left) 3D visualization of HNN’s model (pyramidal neurons drawn in blue, 
interneurons drawn in yellow). Right) Commonly measured EEG/MEG signals (ERPs and low frequency
rhythms) from a single brain area that can be studied with HNN. 
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Figure 3: Schematic illustrations of HNN’s underlying neocortical network model.  (A) Local Network 
Connectivity: GABAergic (GABAA/GABAB; lines) and glutamatergic (AMPA/NMDA; circles) synaptic 
connectivity between single-compartment inhibitory neurons (orange circles) and multi-compartment 
layer 2/3 and layer 5 pyramidal neurons (blue neurons). Excitatory to excitatory connections not shown, 
see Materials and Methods. (B) Exogenous proximal drive representing lemniscal thalamic drive to 
cortex.  User defined trains or bursts of action potentials (see tutorials described in Results) are 
simulated and activate post-synaptic excitatory synapses on the basal and oblique dendrites of layer 2/3
and layer 5 pyramidal neurons as well as the somata of layer 2/3 and layer 5 interneurons. These 
excitatory synaptic inputs drive current flow up the dendrites towards supragranular layers (red arrows). 
(D) Exogenous distal drive representing cortical-cortical inputs or non-lemniscal thalamic drive that 
synapses directly into the supragranular layer.  User defined trains of action potentials are simulated and
activate post-synaptic excitatory synapses on the distal apical dendrites of layer 5 and layer 2/3 
pyramidal neurons as well as the somata of layer 2/3 interneurons. These excitatory synaptic inputs 
push the current flow down towards the infragranular layers (green arrows). (D) The full network 
contains a scalable number of pyramidal neurons in layer 2/3 and layer 5 in a 3-to-1 ratio with inhibitory 
interneurons, activated by user defined layer specific proximal and distal drive (see Materials and 
Methods for full details). 
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Figure 4: An example workflow showing how HNN can be used to link the macroscale current dipole 
signal to the underlying cell and circuit activity. The example shown is for a perceptual threshold level 
tactile evoked response (50% detected) from SI (Jones et al 2007; see ERP Tutorial text for details). (A) 
Steps 1 and 2: load data and define the local network structure. (B) Step 3: activate the local network, 
starting with a predefined parameter set; shown here for the parameter set for perceptual threshold-level
evoked response (ERPYes100Trials.param) (C) Step 3 and 4: adjust the evoked input parameters 
according to user defined hypotheses and simulation experiment, and run the simulation. (D) Step 5: 
visualize model output; the net current dipole will be displayed in the main GUI window and microcircuit 
details, including layer-specific responses, cell membrane voltages, and spiking profiles (E and F) are 
shown by choosing them from the View pull down menu.  Parameters can be adjusted to hypothesized 
circuit changes under different experimental conditions (e.g. see Figure 5). 
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Figure 5: Application of HNN to test alternative hypotheses on the circuit level impact of tACS on the 
somatosensory tactile evoked response (adapted from Sliva et al 2018). (A)  The early tactile evoked 
response from above somatosensory cortex before and after 10 minutes of 10Hz alternating current 
stimulation over SI shows that the ~70ms peak is more prominent in the post-tACS condition. Note that 
the timing of this peak in the sensor level signal is analogous to the 70ms peak in the source localized 
signal in Figure 4B, since the tactile stimulation was the same in both studies and the early signal from 
SI is similar both at the source and sensor level. (B) HNN was applied to investigate the impact of 
several possible tACS induced changes in local synaptic efficacy and identify which could account for 
the observed evoked response data. The parameters in HNN were first adjusted to account for the pre-
tACS response using the default HNN parameter set (solid blue line). The synaptic gains between the 
different cell types was then adjusted through the Set Parameters dialog box to predict that 2x gain in 
the local inhibitory synaptic weights best accounted for the post-tACS evoked response. (C) 
Simultaneous viewing of the cell spiking activity further predicted that there is less pyramidal neuron 
spiking at 70ms post-tACS, despite the more prominent 70ms current dipole peak. 
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Figure 6: Example spontaneous data from a current dipole source in SI showing transient 
alpha (~12 Hz) and beta (~15-30 Hz) components (data as in Jones et al 2009). The data 
file (“SI_ongoing.txt”) used to generate these outputs is provided with HNN and plotted 
through the “View → View Spectrograms” menu item, followed by “Load Data”, and then 
selecting the file.
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Figure 7: An example workflow for simulating alpha frequency rhythm (Jones et al 2009; Ziegler et al 
2010; see Alpha and Beta Rhythms Tutorial text for details). (A) Here we are using the default HNN 
network configuration and not directly comparing the waveform to data, so begin with Step 3: activate 
the local network. Motivated by prior studies (see text), in this example alpha rhythms were simulated by
driving the network with ~10 Hz bursts (presumed to be generated by thalamus) to the local network 
through proximal and distal projection pathways. The parameter set describing these burst is provided in
the Alpha.param file and loaded through the Set Parameters From File button. Adjustable burst drive 
parameter are shown and here were set with a 50ms delay between the ~10 proximal and distal drive 
(red boxes). (B) Step 4: running the simulation with the “Run Simulation” button, shows that a 
continuous alpha rhythm emerged in the current dipole signal (middle dipole time trace; bottom time-
frequency representation). Green and red histograms at the top display the defined distal and proximal 
burst drive patterns, respectively. (C) Step 5: additional network features, including layer specific power 
spectral density plots as shown can be visualized through the “View” pull down menu, and compared to 
data (here compared to the spontaneous SI data shown in Figure 6).  Features of the burst drive can be 
adjusted (panel A) and corresponding changes in the current dipole signals studied (Steps 6 and 7, see 
Figure 8). 
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Figure 8: An example workflow for simulating transient alpha and beta frequency rhythm as in the 
spontaneous SI rhythms shown in Figure 6 (Jones et al 2009; Ziegler et al 2010; see Alpha and Beta 
Rhythms Tutorial text for details). (A) Here we are using the default HNN network configuration and not 
directly comparing the waveform to data, so begin with Step 3: activate the local network. In this 
example, a beta component emerged when the parameters of two ~10Hz bursts to the local network 
through proximal and distal project pathways, as described in Figure 7, were adjusted so that on 
average they arrived to the network at the same time (see red boxes). This parameter set is provided in 
the “AlphaAndBeta.params” file. (B) Step 4: running the simulation with the “Run Simulation” button, 
shows that intermittent and transient alpha and beta rhythms emerge in the current dipole signal (middle
dipole time trace; bottom time-frequency representation). Green and red histograms at the top display 
the defined distal and proximal burst drive patterns, respectively. Due to the stochastic nature of the 
bursts, on some cycles of the drive, the distal burst was simultaneous with the proximal burst and strong
enough to push current flow down the dendrites to create a beta event (see red box). This model 
derived prediction reproduced several features of the data, including alpha and beta peaks in the 
corresponding PSD that were more closely matched to the recorded data (C). Model predictions were 
subsequently validated with invasive recordings in mice and monkeys (Sherman et al 2016, see further 
discussion in text).     
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Figure 9: An example workflow for simulating pyramidal-interneuron gamma (PING) rhythms (Lee and 
Jones 2013; see Gamma Rhythms Tutorial text for details). (A) Here we are using the default HNN 
network configuration (with some parameter adjustments as shown in panel B) and we are not directly 
comparing the waveform to data, so begin with Step 3: activate the local network. Motivated by prior 
studies on PING mechanisms (see text), in this example PING rhythms were simulated by driving the 
pyramidal neuron somas with noisy excitatory synaptic input following a Poisson process. The 
parameters defining this noisy drive are viewed and adjusted through the Set Parameters button as 
shown, see text and Materials and Methods for parameter details. This parameter set for this example is
provided in the “gamma_L5weak_L2weak.param” file.  In this example, all synaptic connections within 
the network are turned off (synaptic weight = 0), except for reciprocal connections between the 
excitatory (AMPA only) and inhibitory (GABAA only) cells within the same layer.  The local network 
connectivity can be viewed and adjusted through the Set Network Connection button or pull down menu,
as shown in (B). (C) Step 4: running the simulation with the “Run Simulation” button, shows that a 
~50Hz gamma rhythm is produced in the current dipole signal (middle dipole time trace; bottom time-
frequency representation). The black histogram at the top displays the noisy excitatory drive to the 
network. (D-F) Step 5: additional network features, including cell spiking responses, somatic voltages, 
and layer specific power spectral density plots as shown can be visualized through the “View” pull down 
menu.  
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Figure 10: Example of the ERP parameter optimization procedure for a suprathreshold tactile evoked 
response. (A) Source localized SI data from a suprathreshold tactile evoked response (100% detection; 
purple) is shown overlaid with the corresponding HNN evoked response (black) using the threshold level
evoked response parameter set detailed in Figure 4, as in initial parameter set.  The RMSE between the
data and the model is initially high at 30.53. (B) To improve the fit to the data, a serial procedure for 
optimizing the strengths of the proximal and distal drive input generating the evoked response can be 
run, by choosing the “Configure Optimization” option through the “Simulation” pull down menu. A dialog 
box allows users to choose and set a range over free optimization parameters, see text for details. (C) 
The GUI displays an intermediate fit after the first optimization step, specific to the first proximal drive. 
(D) The final fit is displayed once the optimization is complete. Here, the simulation from the optimized 
parameter set for the suprathreshold evoked response is shown in gray with an improved RMSE of 
14.60 compared to 30.53 for the initial model.  See Figure 10 Supplementary Figure 1 and 2 for further 
description of the optimization routine and a parameter sensitivity analysis. 
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Figure 11: The homepage of the HNN website http://hnn.brown.edu and menu items containing 
installation instructions, documentation, tutorials, and troubleshooting information. 
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Supplementary Figures and Tables

Figure 10 Supplementary Figure 1: Weighted scoring of stepwise optimization procedure for 
suprathreshold level evoked response example, see text for details. (A) Probability distribution of input 
timing for each input. (B) Corresponding cumulative distribution as a contribution index. (C) Unique 
Contribution Index that is reduced by subsequent input’s CDFs. (D) Extended Contribution Index in 
which the subtracted CDFs are subject to a decay factor.
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Figure 10 Supplementary Figure 2: Sensitivity analysis results of the suprathreshold level evoked 
response example showing the relative contribution of each input’s parameters on variance. Total Sobol 
indices at each point have been weighted by the std. deviation scaled from 0 to 1.
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Figure 4 Supplementary Figure 1: Sensitivity analysis results of the perceptual threshold level evoked 
response example showing the relative contribution of each input’s parameters on variance. Total Sobol 
indices at each point have been weighted by the std. deviation scaled from 0 to 1.
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Supplementary Table 1: Summary of weighted total Sobol sensitivity index values averaged across the
entire simulation for each exogenous driving input in two sensory evoked response models: 
suprathreshold (Figure 10) and 50% detected (Figure 4). The ranking of an input’s parameters remains 
similar between models.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/740597doi: bioRxiv preprint 

https://doi.org/10.1101/740597
http://creativecommons.org/licenses/by-nc-nd/4.0/

