

1 **Distinct features of nucleolus-associated domains in mouse embryonic stem cells**

2

3 Aizhan Bizhanova, Aimin Yan, Jun Yu, Lihua Julie Zhu* and Paul D. Kaufman*

4

5

6 Department of Molecular, Cellular and Cancer Biology

7 University of Massachusetts Medical School

8 Worcester, MA 01605 USA

9

10

11

12

13 **Running title:** mouse embryonic stem cell NADs

14

15 **Key words:** nucleolus associated domains, NADs, embryonic stem cell, mouse, histone
16 modification

17

18 *Contact: Julie.zhu@umassmed.edu; paul.kaufman1@umassmed.edu

19 University of Massachusetts Medical School

20 Department of Molecular, Cellular and Cancer Biology

21 364 Plantation St.

22 Worcester, MA 01605 USA

23

24 **Abstract**

25 Background: Heterochromatin in eukaryotic interphase cells frequently localizes to the nucleolar
26 periphery (nucleolus-associated domains, NADs) and the nuclear lamina (lamina-associated
27 domains, LADs). Gene expression in somatic cell NADs is generally low, but NADs have not
28 been characterized in mammalian stem cells.

29 Results: Here, we generated the first genome-wide map of NADs in mouse embryonic stem cells
30 (mESCs) via deep sequencing of chromatin associated with biochemically-purified nucleoli.

31 As we had observed in mouse embryonic fibroblasts (MEFs), the large Type I subset of NADs
32 overlaps with constitutive LADs and is enriched for features of constitutive heterochromatin,
33 including late replication timing and low gene density and expression levels. Conversely, the
34 Type II NAD subset overlaps with loci that are not lamina-associated, but in mESCs, Type II
35 NADs are much less abundant than in MEFs. mESC NADs are also much less enriched in
36 H3K27me3 modified regions than are NADs in MEFs. Additionally, comparison of MEF and
37 mESC NADs revealed enrichment of developmentally regulated genes in cell type-specific
38 NADs. Together, these data indicate that NADs are a developmentally dynamic component of
39 heterochromatin.

40 Conclusions: These studies implicate association with the nucleolar periphery as a mechanism
41 for developmentally-regulated gene silencing, and will facilitate future studies of NADs during
42 mESC differentiation.

43

44 **Introduction**

45 Eukaryotic genomes are broadly subdivided into more accessible, transcriptionally active
46 euchromatin, and less accessible, less active heterochromatin. These functional classifications

47 are accompanied by spatial separation: heterochromatin is mainly found at the nuclear periphery
48 and nucleolar periphery, where they comprise nucleolus-associated domains (NADs) (Németh et
49 al. 2010; van Koningsbruggen et al. 2010) and lamina-associated domains (LADs) (Pickersgill et
50 al. 2006; Guelen et al. 2008; Peric-Hupkes et al. 2010), respectively. Studies in multiple
51 organisms indicate that sequestration of heterochromatin to the nuclear and nucleolar peripheries
52 contributes to gene silencing (Fedoriw et al. 2012b; Zullo et al. 2012; Jakociunas et al. 2013).
53 Therefore, there is great interest in discovering the molecular bases for these localizations.
54 Notably, some trans-acting factors that specifically affect lamina (Zullo et al. 2012; Harr et al.
55 2015) or nucleolar (Yusufzai et al. 2004; Zhang et al. 2007; Mohammad et al. 2008; Padeken and
56 Heun 2014; Smith et al. 2014; Matheson and Kaufman 2017; Singh et al. 2018) associations
57 have been reported, suggesting that distinct mechanisms contribute at the two locations.

58 Both NADs and LADs are enriched for silent genes and histone modifications
59 characteristic of constitutive heterochromatin, e.g. H3K9me2 and H3K9me3 (Matheson and
60 Kaufman 2016; van Steensel and Belmont 2017). LADs have been mapped and studied in
61 multiple species and cell types (Pickersgill et al. 2006; Guelen et al. 2008; Peric-Hupkes et al.
62 2010; Kind et al. 2013; Borsos et al. 2019). In contrast, NADs have been characterized in a few
63 human somatic cell lines (Németh et al. 2010; van Koningsbruggen et al. 2010; Dillinger et al.
64 2017), in the plant *Arabidopsis thaliana* (Pontvianne et al. 2016), and recently, in mouse
65 embryonic fibroblasts (MEFs) (Vertii et al. 2019). Several experiments indicate that LADs can
66 be redistributed to the nucleolar periphery after passage through mitosis, and vice versa (van
67 Koningsbruggen et al. 2010; Kind et al. 2013). However, the extent of overlap between LADs
68 and NADs is unknown in most organisms and cell types.

69 Here, we mapped and characterized NADs in mouse embryonic stem cells (mESC), a
70 tractable system for studying how NADs change during differentiation. As in MEFs (Vertii et al.
71 2019), we identified a large subset of mESC NADs that overlap with LADs (Type I NADs), and
72 a smaller subset of NADs that do not overlap LADs (Type II NADs). However, Type II NADs
73 are less prevalent in mESCs than in MEFs. mESC NADs are also notably less enriched in
74 H3K27me3 modifications. Comparisons of MEF and mESC NADs also revealed enrichment of
75 developmentally regulated genes in cell type-specific NADs. These analyses will facilitate future
76 studies of genome dynamics during stem cell differentiation.

77

78 **Results**

79 *Isolation of nucleoli from crosslinked F121-9 mESCs.* We isolated nucleoli from formaldehyde-
80 crosslinked hybrid F121-9 mES cells using methods previously shown to yield reproducible data
81 using MEF cells (Vertii et al. 2019). In those studies, crosslinked and non-crosslinked MEFs
82 were directly compared, and shown to yield highly overlapping results, with crosslinked samples
83 detecting a greater proportion of the genome associated with nucleoli (Vertii et al. 2019). This
84 suggests crosslinking could assist detection of weak or transient nucleolar interactions.
85 Therefore, we used crosslinking for all nucleoli isolation experiments here (Fig. 1A). The purity
86 of isolated nucleoli was confirmed using phase-contrast microscopy (Fig. 1B). Immunoblot
87 analysis of nucleolar fractions showed that they were enriched for nucleolar protein fibrillarin
88 relative to beta-actin (Fig. 1C). Quantitative PCR analysis revealed 9-18-fold enrichment of 45S
89 rDNA sequences in purified nucleolar DNA relative to genomic DNA (Fig 1D). These results
90 indicated the enrichment of nucleoli in our preparations, hence we proceeded with whole-
91 genome sequencing of nucleolar DNA.

92

93 *Bioinformatic analysis of NADs.* We performed two biological replicate preparations of
94 crosslinked F121-9 mESC nucleoli. In each replicate experiment, we extracted nucleolar-
95 associated DNA from nucleoli, along with genomic DNA from whole cells from the same
96 population of cells. We sequenced approximately 50 million reads from each nucleolar and
97 genomic DNA sample. We note that subsampling analyses of larger MEF datasets previously
98 showed that the number of peaks detected had reached a plateau at this sequencing depth (Vertii
99 et al. 2019). Genomic reads were mostly uniformly distributed across the genome, whereas
100 nucleolar reads contained well-defined peaks and valleys, with peaks overlapping known
101 heterochromatic regions, such as constitutive LADs (cLADs) (Peric-Hupkes et al. 2010) and late
102 replicating regions (Hiratani et al. 2010) (Fig 2A, B). cLADs were previously defined as LADs
103 that are lamina-associated in mESCs, and also in neural precursor cells (NPCs) and astrocytes
104 differentiated from these mESCs (Peric-Hupkes et al. 2010). Previous studies of NADs have
105 identified frequent overlap of NADs with LADs (van Koningsbruggen et al. 2010; Németh et al.
106 2010; Dillinger et al. 2017; Vertii et al. 2019) and with late-replicating regions (Dillinger et al.
107 2017; Vertii et al. 2019), thus we concluded that the nucleolar reads are enriched with bona fide
108 nucleolar heterochromatic regions in F121-9 mESCs.

109 Calculating the log ratio of nucleolar reads to genomic reads resulted in a raw metric of
110 nucleolar association across the genome (Nucleolus/gDNA ratio tracks in Fig. 2A, B). As in
111 MEFs, visual inspection of the nucleolus/genomic ratio in mESC revealed a negative slope
112 across chromosomes, especially noticeable on large chromosomes (Fig. 2B). Mouse
113 chromosomes are acrocentric, i.e. the centromere is found at one end of a chromosome, and by
114 convention these are annotated on the left. Because pericentromeric regions frequently associate

115 with nucleolar periphery (Ragoczy et al. 2014), nucleolar associations on centromeric end of
116 chromosomes are usually more frequent. As we have demonstrated previously using MEFs data,
117 peak calling based only on nucleolar/genomic ratio would result in identifying peaks mostly at
118 the centromeric end and missing the smaller peaks at the end of chromosome distal to the
119 centromere. For this reason, we used our previously described Bioconductor package named
120 *NADfinder* (Vertii et al. 2019) to call NAD peaks in F121-9 mESCs. This software uses local
121 background correction, which was important for detection of validated NAD peaks distal from
122 centromeres in MEFs (Vertii et al. 2019). *NADfinder* peak calling was performed using the
123 default settings with a 50kb window size, a testing threshold of $\log_2(1.5)$ for background
124 corrected $\log_2(\text{nucleolar/genomic})$ ratio to define the null hypothesis, and adjusted p-value <
125 0.05 (Vertii et al. 2019). Potential peaks were further filtered to be > 50 kb long and to have \log_2
126 ratio > 1.7.

127
128 *3D immuno-FISH confirmation of NAD peaks in F121-9 mESCs.* To validate associations of
129 NADs with nucleoli by an orthogonal method, we performed 3D immuno-FISH experiments,
130 scoring association of BAC DNA probes with nucleolar marker protein fibrillarin (Figs. 3-4). We
131 tested the association of a euchromatic negative control probe, pPK871, which lacks nucleolar
132 association in MEFs (Vertii et al., 2019) and did not contain a peak in our F121-9 NAD-seq data.
133 The frequency of nucleolar association for this probe was ~24% (Fig. 4A, B). Three additional
134 non-NAD BAC probes (pPK825, pPK1000, and pPK1003) displayed similar levels of nucleolar
135 association (Fig. 4A). The average association frequency for these non-NAD probes in F121-9
136 cells is 22%, similar to the 20% frequency observed in MEF cells (Vertii et al., 2019). These
137 observations result from stochastic positioning of loci within the nuclear volume. We note that

138 pPK825 was also not associated with nucleoli in MEFs, whereas pPK1000 and pPK1003 had not
139 been tested in MEFs (Vertii et al. 2019).

140 We also analyzed BAC probes pPK914 and pPK915 (Fig. 3A, B), which overlap NAD
141 peaks in both our F121-9 data and in MEFs (Vertii et al. 2019). In F121-9 cells, we observed that
142 both of these probes displayed more frequent nucleolar association than did the the set of non-
143 NAD probes (pPK914, $p < 0.0001$; pPK915, $p = 0.0002$, Welch's t-test), indicating that these
144 regions are NADs in both MEFs and F121-9 mESCs (Fig. 4A, B). Both the pPK914 and pPK915
145 probes overlap ciLAD regions, which means that these regions were not observed to associate
146 with lamina in mESCs or MEFs (Peric-Hupkes et al. 2010). However, recent LAD maps of early
147 mouse embryogenesis (Borsos et al. 2019) show that pPK914 probe is lamina-associated in 2-
148 cell and 8-cell embryos (Fig. 3A). Therefore, this region is nucleolar-associated in both mESCs
149 and somatic cells, but lamina-associated only during limited periods in very early development.
150 We also analyzed a region detected as a NAD in mESCs, but not in MEFs (pPK999, Fig. 3C).
151 FISH analysis showed that this probe indeed displayed increased nucleolar association compared
152 to non-NAD probes in F121-9 cells (Fig. 4A; $p = 0.0220$, Welch's t-test). We note that this probe
153 is lamina-associated throughout early embryonic stages (zygote, 2-cell, 8-cell embryos and
154 mESCs), but not in somatic MEF cells (Fig. 3C). Furthermore, pPK999 contains the *Egfr* gene,
155 for which transcript levels are higher in MEFs (FPKM value 51.5) (Delbarre et al. 2017)
156 compared to mESCs (FPKM value 0.2 (Supplemental Table 1)). This is an example of a genomic
157 locus that is nucleolar-associated and transcriptionally repressed in mESCs, and which is no
158 longer associated and becomes more active in MEFs. In sum, these FISH data demonstrate that
159 the identified NADs include bona fide nucleolar heterochromatic regions in F121-9 mESCs,
160 conserved or regulated during cell differentiation.

161 The length of F121-9 NADs ranges up to 8 Mb (Fig. 4C), with median length 1.1 Mb,
162 which is slightly larger than median length of MEF NADs, 0.7 Mb (Vertii et al. 2019). We noted
163 that NADs in F121-9 cells covered 31% of the non-repetitive genome, a smaller percentage than
164 observed in crosslinked MEF NADs (41%) (Vertii et al. 2019). The 31% fraction of the mESC
165 genome in NADs is also smaller than the fraction of the mouse genome in LADs, either for
166 embryonic stem cells or somatic cells (~40%) (Peric-Hupkes et al. 2010), or during early mouse
167 embryogenesis (~40-60%) (Borsos et al. 2019) (see Discussion).

168

169 *Two types of NADs in F121-9 mESCs.* In our previous analysis of MEF data, we had
170 defined a “Type I” class of NADs as those overlapping LADs (Vertii et al. 2019). Additionally, a
171 contrasting “Type II” class of NADs was defined which overlaps “constitutive interLADs”
172 (ciLADs), the regions defined as those which were not lamina-associated during multiple steps
173 of cellular differentiation (Peric-Hupkes et al. 2010). In MEFs, Type I NADs are approximately
174 five-fold more abundant, and tend to replicate late; in contrast, the less abundant Type II NADs
175 more frequently overlap with early replicating regions (Vertii et al. 2019). In F121-9 mESC
176 NADs, we also observed abundant Type I NADs that overlap with ciLADs (421 Mb of the total
177 845Mb NAD population; Fig. 5A). However, Type II NADs that overlap with ciLADs comprise
178 only 77 Mb, much less than the 147 Mb observed in similarly crosslinked MEFs (Fig. 5A; Vertii
179 et al. 2019). Visual inspection of the distribution of the two classes in a genome browser
180 illustrated the greater size of the Type I subset compared to Type II regions (Fig. 5B). Despite
181 the small size of the F121-9 Type II NAD subset, we note that we have validated nucleolar
182 association of two Type II NAD probes (pPK914, pPK915; Fig. 4A, B). These two probes have
183 previously been confirmed to lack significant lamina association in MEFs (Vertii et al. 2019).

184 Both overlap ciLAD regions (Fig. 3A, B), indicating that they lack lamina association during
185 multiple steps in the process of differentiation from mES cells to astrocytes (Peric-Hupkes et al.
186 2010; Meuleman et al. 2013). We conclude that in mES cells, as in MEFs, a large proportion of
187 NADs overlap LAD regions, but that the amount of ciLAD overlap in mES cells is smaller.

188 We then analyzed gene density and gene expression characteristics of the different NAD
189 subsets from F121-9 cells. As we had observed in MEFs (Vertii et al., 2019), gene density of
190 Type II NADs was greater than that of NADs as a whole, which in turn have higher gene density
191 compared to Type I NADs (Fig. 5C). Using RNA-seq data we obtained from the same
192 preparations of F121-9 cells that were used for nucleolar purification, we analyzed genomic
193 trends in steady-state mRNA levels by plotting the distributions of the FPKM values. As in
194 MEFs (Vertii et al. 2019), F121-9 NADs displayed lower FPKM values than the genome-wide
195 average ($p < 0.0001$). In addition, FPKM values for the Type I NAD subset were significantly
196 lower than those for NADs as a whole ($p < 0.0001$) (Fig. 5D). Thus, Type I NADs in both MEFs
197 and F121-9 cells display low gene expression levels characteristic of heterochromatin. In
198 contrast, in F121-9 cells Type II NADs displayed mean gene expression levels that are slightly
199 higher than those observed in the whole genome ($p < 0.0003$) or even in non-NAD regions ($p <$
200 0.0233) (Fig. 5D). Therefore, in both F121-9 cells and MEFs (Vertii et al., 2019), Type II NADs
201 can become associated with nucleoli without adopting the highly silenced status of Type I
202 NADs.

203 However, F121-9 NADs displayed a prominent difference from those in MEFs, regarding
204 overlap with H3K27me3 peaks. We note that H3K27me3 is functionally important for
205 heterochromatin localization because Ezh2 inhibitors that block this modification decrease
206 laminar and nucleolar associations by heterochromatin (Harr et al. 2015; Vertii et al. 2019). In

207 MEFs, we observe frequent overlap of H3K27me3 peaks (Delbarre et al. 2017) with both Type I
208 (117 Mb out of 567 Mb) and Type II NADs (101 Mb out of 147 Mb) (Fig. 5G, H; Vertii et al.
209 2019). In contrast, in F121-9 cells we observed that overlap of NADs with H3K27me3-enriched
210 domains (Cruz-Molina et al. 2017) was much smaller than observed in MEFs: only 9 Mb of the
211 421 Mb of Type I NADs and 22 Mb of 77 Mb of Type II NADs overlap with H3K27me3
212 domains (Fig. 5E, F). These differences likely reflect the lower abundance of repressive histone
213 marks in mESCs compared to differentiated cells; this includes H3K27me3, which becomes
214 more abundant during differentiation ((Martens et al. 2005; Hawkins et al. 2010; Atlasi and
215 Stunnenberg 2017); see Discussion). Indeed, our analysis of an F121-9 data set (Cruz-Molina et
216 al. 2017; see Methods) detected 517 Mb of H3K27me3 peak regions in F121 cells, and an almost
217 two-fold larger amount (990 Mb) was found in MEFs (GSM1621022; Delbarre et al. 2017)).
218 However, we note that the amount of H3K27me3 peaks in NADs is much more than two-fold
219 greater in MEFs (417 Mb, Fig. 5G, H) than in F121-9 cells (66 Mb, Fig. 5E,F). Together, these
220 data suggest that H3K27 methylation is a key aspect of NAD chromatin maturation that has not
221 yet occurred fully in mES cells (see Discussion).

222

223 *Cell type-specific and conserved NADs.* We compared F121-9 stem cell NADs with
224 crosslinked MEF NADs (Vertii et al. 2019), defining overlapped regions on a nucleotide-by-
225 nucleotide basis (e.g. Fig. 6A). Close to 80% (660 Mb) of nucleotides in stem cell NADs overlap
226 with nucleotides in MEF NADs (Fig. 5A). We designate NADs shared by MEFs and F121-9
227 stem cells as “conserved NADs”. Analysis of the intersection of conserved NADs with cLAD
228 and ciLAD regions revealed that more than half of conserved NADs overlap cLADs (370 Mb;
229 Fig. 5A), which are the most gene-poor subset of LADs and are generally poorly expressed,

230 constitutive heterochromatin (Peric-Hupkes et al. 2010; Meuleman et al. 2013; van Steensel and
231 Belmont 2017). Consistent with these trends, Jaccard similarity coefficient analysis indicated
232 high correlation of conserved NADs with cLADs and late replicating regions (Marchal et al.
233 2018) (Fig. 6B). Furthermore, the conserved NADs display the lowest transcript levels in both
234 cell types (Fig. 6C-F), as expected due to the constitutive heterochromatic features of these
235 regions.

236 We next turned our attention to NADs found only in one of the two analyzed cell types.
237 The Jaccard analysis indicated that these cell type-specific NAD regions (i.e. “MEF-specific
238 NADs” and “F121-9-specific NADs”) are distinct from the conserved NADs, clustering
239 separately from conserved NADs, cLAD and late replicating regions (Fig. 6B). We analyzed
240 steady-state mRNA levels in conserved and cell type-specific NADs by using FPKM values
241 from F121-9 and MEF (Delbarre et al. 2017) RNA-seq data (Fig. 6C, D). As we expected, MEF
242 RNA-seq data revealed lower levels of transcripts from genes within MEF-specific NADs than
243 from F121-9-specific NADs (p-value < 0.0001) (Fig. 6C), indicating that in MEFs, nucleolar
244 association correlates with transcriptional silencing. In contrast, our RNAseq data from F121-9
245 cells showed that transcript levels within both the MEF-specific NADs and the F121-9-specific
246 NADs are statistically indistinguishable (p-value = 0.82) (Fig. 6D). We observed similar trends
247 in independent sets of MEF and mESC RNA-seq data from the literature (Lowe et al. 2015;
248 Chronis et al. 2017) (Fig. 6 E, F). These observations were unexpected in that the MEF-specific
249 NADs are not nucleolar-associated in the F121-9 cells, yet are on average less highly expressed
250 than non-NAD genes in these cells. These data suggest that in F121-9 stem cells, gene repression
251 could precede localization to the nucleolar periphery that occurs later during cellular
252 differentiation (see Discussion).

253

254 *Gene Ontology analysis of conserved and cell-type specific NADs.* To further characterize the
255 conserved NADs, we next analyzed enriched GO-terms within these. The most significantly
256 enriched Molecular Functions term was “Response to smell detection” (Fig. 7A; Supplemental
257 Table 3), including olfactory receptor (OR) and vomeronasal receptor genes. These clustered
258 genes are not expressed in either stem cells or fibroblasts and are frequently within NADs in both
259 F121-9 stem cells and MEFs (e.g. the OR genes on chr11, Fig. 7B). Among other well-
260 represented gene families in conserved NADs were cytochrome P450 family members: *Cyp2a12*,
261 *Cyp2b10*, *Cyp2c50* (“heme-interacting genes” in Fig. 7A), which are responsible for breaking
262 down toxins, as well as synthesizing steroid hormones, fats and acids, and are most highly
263 expressed in liver (Hannemann et al. 2007). Neurotransmitter receptors were also enriched for
264 conserved NADs, for example, genes that encode for glutamate receptors (*Gria2*, *Grid2*, etc.),
265 GABA-A receptors (*Gabra5*, *Gabrb1*, etc.) and glycine receptors (*Glra1*, *Glrb*, etc.). The
266 common thread among these gene classes is in that they are developmentally regulated, and most
267 strongly induced in lineages not represented by embryonic stem cells or fibroblasts.

268 We next analyzed the F121-9-specific NADs. Among these, chemotactic cytokines were
269 the GO-derived “Molecular Functions” class with the lowest q-value (Fig. 7C; Supplemental
270 Table 4). The majority of these chemokines are represented by the CC chemokine ligand family,
271 a cluster of which is shown in Fig. 7D. This cluster of *Ccl2*, *Ccl12* and *Ccl1* genes has
272 heterochromatic features in the F121-9 cells: late replication timing, no steady-state mRNA
273 transcripts, presence within both LAD and NAD regions. In contrast, in MEFs this gene cluster is
274 within neither NAD nor LAD sequences and has euchromatic features, including early

275 replication timing and high gene transcript levels. This is an example of a genomic region in
276 which multiple features are altered, becoming more euchromatic upon differentiation.

277 We then considered the converse case, the MEF-specific NADs. Among these, the
278 “Biological Processes” GO classifications included genes responsible for differentiation along
279 the anterior-posterior axis (Fig. 7E; Supplemental Table 5), an example of which is *Pcska6* gene
280 (Fig. 7F). This genomic region displays euchromatic features (overlapping a ciLAD region, early
281 replicating timing and high transcript levels: FPKM value 22.2) in mESCs, befitting the need for
282 anterior-posterior axis establishment factors at this early developmental stage. In MEFs, this
283 locus displays altered features, becoming nucleolar-associated, and generating reduced transcript
284 levels (FPKM value 6.6) (Delbarre et al. 2017). In general, both conserved and cell type-specific
285 NADs generally include genes that display reduced expression levels, suggesting that nucleolar
286 localization could contribute to (or be a consequence of) the transcriptional silencing of resident
287 genes. A major question remains as to how functionally distinct classes of NADs (e.g. Type I
288 and Type II NADs) are targeted to nucleoli, and how this has distinct transcriptional
289 consequences in each case (e.g. Fig. 5D; see Discussion).

290

291 **Discussion**

292 **Heterochromatin formation during differentiation.** Several types of evidence indicate
293 that compared to differentiated cells, chromatin in mESCs is less condensed, and the ratio of
294 euchromatin to heterochromatin is higher (Gaspar-Maia et al. 2011). For example, fluorescence
295 recovery after photobleaching experiments demonstrated that mESCs display more highly
296 mobile core and linker histones, as well as Heterochromatin Protein 1 (HP1 α) than do
297 differentiated cells. These features are thought to contribute to the transcriptional hyperactivity in

298 pluripotent stem cells (Meshorer et al. 2006; Bhattacharya et al. 2009). For example, many
299 repetitive elements that are silent in somatic cells are transcribed in mESCs (Efroni et al. 2008).
300 Microscopy studies showed that electron-dense heterochromatic structures are less condensed
301 and less frequently localize near nuclear lamina in mESCs compared to heterochromatin in
302 differentiated cells (Hiratani et al. 2010; Ahmed et al. 2010; Mattout et al. 2015). Particularly
303 relevant to our studies, more prominent electron-dense perinucleolar heterochromatin-like
304 structures have been observed in differentiated cells, such as NPCs, compared to mESCs (Savić
305 et al. 2014). In concert with changes in the appearance and localization of heterochromatin, the
306 abundance of heterochromatic marks such as H3K27me3, and H3K9me3 increases during
307 differentiation (Lee et al. 2004; Martens et al. 2005; Meshorer et al. 2006; Wen et al. 2009;
308 Hawkins et al. 2010). Together, these data are consistent with our observation that NADs in
309 mESCs comprise a smaller fraction of the genome compared to MEFs (31 vs. 41%). Likewise,
310 genome coverage by LADs increases during differentiation. For example, a recent study shows
311 that LADs are first established immediately after fertilization, preceding TAD formation and
312 instructing A/B compartment establishment (Borsos et al. 2019).

313 **The Type II class of NADs is different in stem cells and fibroblasts.** Two functionally
314 distinct classes of NADs have recently been reported in mouse embryonic fibroblasts (Vertii et
315 al. 2019). Here, we show that in F121-9 mESCs, Type I NADs that overlap LAD regions are
316 frequently the same as those found in MEFs (Fig. 5A), and exhibit similar low gene expression
317 levels as expected for constitutive heterochromatin (Fig. 5D). In contrast, the Type II NADs
318 defined by their overlap with ciLAD regions is much smaller in F121-9 than in MEF cells (Fig.
319 5A). We also note that NADs in F121-9 cells display much less overlap with H3K27me3 peaks
320 than do MEF NADs (Fig. 5E-H). Together, these data suggest that acquisition of H3K27me3, the

321 hallmark of facultative heterochromatin (Trojer and Reinberg 2007) by NADs is part of the
322 process of cellular differentiation. Indeed, we note that GO analysis of MEF Type II NADs
323 showed enrichment for developmentally regulated GO terms, for example, organ morphogenesis
324 and sensory organ development (Vertii et al. 2019). Thus, stem cells prevent developmentally
325 important genes from acquiring characteristics of facultative heterochromatin including nucleolar
326 association, whereas these genes can become NADs after they are no longer required during
327 development.

328 **How are NADs targeted to nucleoli?** The precise mechanisms for targeting the two
329 distinct classes of NADs to nucleoli remain unclear. Several studies implicate phase separation in
330 the formation of heterochromatin domains (Larson et al. 2017; Strom et al. 2017; Shin et al.
331 2018) and nuclear bodies, such as nucleoli (Brangwynne et al.; Feric et al. 2016; Mitrea et al.
332 2016). Our recent data suggest that Type II NADs are more sensitive than Type I NADs to
333 hexanediol treatment (Vertii et al. 2019). Hexanediol perturbs phase separation, likely due to
334 interfering with weak hydrophobic interactions that are important for liquid-like condensate
335 formation (Ribbeck and Görlich 2002). Liquid-liquid demixing reactions frequently involve
336 proteins that have intrinsically disordered regions (IDR) and RNA recognition motifs (Feric et al.
337 2016), as found for example in nucleolar proteins fibrillarin (Fbl) and nucleophosmin (Npm1).
338 Notably, depletion of Nlp, the *Drosophila* homolog of Npm1, led to declustering of centromeres
339 and decreased association of centromeres with nucleolar periphery (Padeken et al. 2013).
340 Therefore, it is possible that Type II NADs are specifically targeted to nucleolar periphery
341 through the interactions between nucleolar proteins with IDRs (e.g. Npm1) with RNA species
342 that are yet to be identified. Additionally, Polycomb repressive complex 1 (PRC1) protein
343 chromobox 2 (CBX2) undergoes phase separation and forms liquid-like condensates in mESCs

344 (Tatavosian et al. 2019), and Polycomb proteins are part of the MiCee complex that together
345 with let-7 family miRNAs confers nucleolar association to specific loci (Singh et al. 2018).
346 Therefore, Polycomb group (PcG) proteins are good candidates for nucleolar targeting of Type II
347 NADs via phase separation. This may be especially important during differentiation, when PcG
348 proteins gain special importance (Aloia et al. 2013; Lavarone et al. 2019). However, inhibition of
349 PRC2 enzymatic activity decreases both nucleolar (Singh et al. 2018; Vertii et al. 2019) and
350 laminar heterochromatin localizations (Harr et al. 2015), making it unlikely that PRC2 can target
351 loci to a unique destination. Additionally, nucleolar localization of the *Kcnq1* locus can occur in
352 cells lacking functional Polycomb complexes (Fedoriw et al. 2012a), indicating that multiple
353 mechanisms likely exist. Other candidate trans-acting factors that could specifically target
354 genomic regions to the nucleolar periphery are the proteins Ki-67 and the p150 subunit of
355 Chromosome Assembly Factor-1 (CAF-1) (Smith et al. 2014; Matheson and Kaufman 2017),
356 and the *Kcnq1ot1* (Mohammad et al. 2008) and Firre (Yang et al. 2015) long non-coding RNAs.

357 **Anomalies of MEF-specific NADs in stem cells.** One question of interest is whether
358 nucleolar association leads to, or is a consequence of, transcriptional repression. Notably,
359 previous studies have shown that tethering of loci to the nucleolar periphery via 5S rDNA
360 sequences results in transcriptional silencing (Fedoriw et al. 2012b), so at least in that case a
361 causal relationship has been established.

362 In MEF cells, genes in the MEF-specific NADs display mean expression levels lower
363 than genes in the F121-9-specific NADs ($p < 0.0001$) (Fig. 6C, E). This is the expected situation,
364 in which genes that had been in NADs earlier in development (e.g. in stem cells) become
365 derepressed if that localization is lost. In contrast, in F121-9 cells, genes within MEF-specific
366 NADs showed similar transcript levels as genes within F121-9-specific NADs ($p = 0.82$, Fig.

367 6D); the same was true in other mES cells analyzed ($p = 0.13$, Fig. 6F). Why aren't the MEF-
368 specific NADs more transcriptionally active in stem cells, since they haven't yet acquired
369 nucleolar association? This could be due to other repressive mechanisms acting on regions
370 within MEF-specific NADs, for example, lamina association: 40% of MEFs-specific NADs
371 overlap with cLADs (Fig. 5A). Alternatively, additional factors contributing to transcriptional
372 repression may precede (and perhaps contribute to) nucleolar association. Development of
373 reagents allowing control of perinucleolar associations will be key to exploring the relationship
374 between nucleolar localization and transcriptional repression.

375

376 **Materials and Methods**

377 *F121-9 mESC nucleoli isolation.* For each preparation, cells were grown in eleven 15-cm plates
378 and harvested one or two days after seeding them, with total cell numbers of $3-5 \times 10^8$ per
379 preparation. One hour prior to nucleoli isolation, old cell culture medium was replaced with fresh
380 medium. Plates grown in parallel were used for genomic DNA extraction (DNeasy Blood &
381 Tissue kit, Qiagen), and RNA extraction (TRIzol, ThermoFisher Scientific and RNeasy mini kit,
382 Qiagen).

383

384 *Crosslinked isolation of nucleoli* was done as described previously (Vertii et al. 2019)).

385

386 *Cell culture.* F121 mouse embryonic stem cell (mESC) line is a female cell line derived from a
387 cross between male *Castaneus* and female *129* mice in Jaenisch lab (Rasmussen et al. 1999), and
388 F121-9 was subcloned in Gribnau lab. F121-9 cells were obtained from Gilbert lab at passage 8.
389 The cells were grown on gelatin-coated plates and cultured in 2i medium. Accutase (EMD

390 Millipore SF006) was used to detach cells from plates and passage into new dishes. Prior to
391 seeding cells, dishes were coated with 0.1% gelatin (EMD Millipore, SF008) for at least 25 min
392 at room temperature, after which gelatin was aspirated. Dishes were rinsed with DPBS (Gibco,
393 14190144), which was aspirated, and cells were seeded in these dishes. 2i medium was obtained
394 as described previously (Vertii et al. 2019). Cells were passaged at $3 \times 10^4/\text{cm}^2$ density. 2X
395 HyCryo-STEM cryopreservation medium (GE Healthcare, SR30002.02) was used to freeze cells.
396

397 *Quantitative PCR.* DNA was extracted from input whole cells and purified nucleoli using
398 DNeasy Blood & Tissue kit (Qiagen). Quantitative PCR analysis was done as outlined
399 previously (Vertii et al. 2019).

400
401 *Antibodies.* The following antibodies were used: fibrillarin (Abcam, ab5821), actin (Sigma-
402 Aldrich, A1978) and nucleophosmin (Abcam, ab10530). Secondary antibody for
403 immunofluorescence was Alexa 594-conjugated donkey anti-rabbit (ThermoFisher, A-21207)
404 and Alexa 594-conjugated goat anti-mouse (ThermoFisher, A-11020). For western blots,
405 horseradish peroxidase (HRP) anti-mouse and anti-rabbit secondary antibodies (Jackson
406 ImmunoResearch) were used.

407
408 *Immunoblotting.* Proteins from total cell lysates and purified nucleoli were analyzed as noted
409 previously (Vertii et al. 2019).

410
411 *DNA isolation, deep sequencing, and read preprocessing and mapping.* Total genomic and
412 nucleolar DNA was purified using DNeasy Blood & Tissue kit (Qiagen). Libraries were

413 generated using NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs).
414 The DNA was fragmented to a size of 350 bp, and these fragments were size selected with
415 sample purification beads. 150 bp paired-end sequencing was performed using Illumina reagents.
416 52.1 and 51.5 million reads were obtained for two replicates of genomic samples, and 49.4 and
417 52.8 million reads were obtained for two replicates of nucleolar samples. >95% of nucleolar
418 samples, and >96% of genomic samples were mappable. For more information regarding
419 sequencing, please see the files at data.4dnucleome.org under accession numbers
420 4DNESXE9K9DB, 4DNESUJZ5FL2. Trimming and alignment of mapped reads to the mouse
421 genome (mm10) was done as previously described (Vertii et al. 2019).

422

423 *RNA isolation, deep sequencing, and read preprocessing and mapping.* Total RNA from two
424 replicates of F121-9 mESC were extracted using TRIzol (ThermoFisher Scientific) and purified
425 using RNeasy mini kit (Qiagen). Libraries were constructed using NEBNext Ultra II RNA
426 Library Prep kit for Illumina (New England Biolabs). The mRNA was fragmented, and double-
427 stranded cDNA library synthesized, and completed through size selection and PCR enrichment.
428 150 bp paired-end sequencing was achieved using Illumina HiSeq 4000 platform. 22.2 and 26.7
429 million reads were obtained for each of the two replicates of mESC RNA. >92% of replicate 1,
430 and >86% of replicate 2 were mappable. For more information regarding sequencing, please see
431 the files at data.4dnucleome.org under accession number 4DNESDHILYLU. The quality of the
432 sequencing reads was evaluated with fastqc (0.11.5)
433 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) The paired-end reads were aligned
434 to the mouse genome (ensemble GRCm38) using STAR (version 2.5.3a) with ENCODE
435 standard options as --outFilterMultimapNmax 20, --alignSJoverhangMin 8, --

436 alignSJDBoverhangMin 1, --outFilterMismatchNmax 999, --alignIntronMin 20, --
437 alignIntronMax 1000000 and --alignMatesGapMax 1000000. Additional parameter settings are
438 --outFilterMismatchNoverReadLmax 0.04 and --outSAMattributes NH HI NM MDTo visualize
439 the mapped reads, bigwig files were generated using bamCoverage function in deepTools2 with
440 the parameter setting as --normalizeUsingRPKM
441
442 *DNA-FISH probes.* The bacterial artificial chromosomes (BACs) were obtained from the
443 BACPAC Resource Center of Children's Hospital Oakland Research Institute (Oakland, CA).
444 DNA was isolated using BAC DNA miniprep Kit (Zymo Research). BAC probes were labeled
445 using BioPrime Labeling Kit (ThermoFisher). Streptavidin, Alexa Fluor 488 conjugate
446 (ThermoFisher, S-32354) was used to stain biotin-labeled BAC probes. Probes are described in
447 Supplemental Table 2.
448
449 *3-D DNA FISH/ immunocytochemistry and microscopy.* 3-D DNA FISH/ immunocytochemistry-
450 labeling was performed as described previously (Vertii et al. 2019), except that DNA FISH-
451 labeling was done after immunocytochemistry, and coverslips were not treated with RNA
452 removal solution. F121-9 mESC were seeded on 0.1% gelatin-coated 22 x 22 mm coverslips
453 (Corning, 2850-22), with total cell number 150-250 x 10³ cells/coverslip, and permeabilized and
454 fixed the next day. Nucleoli were stained with anti-fibrillarin antibodies, except in the third
455 biological replicates of the pPK999 and pPK1000 analyses anti-nucleophosmin antibodies were
456 used instead.
457 Images were acquired using Zeiss LSM 700 laser scanning confocal microscope and PMT
458 detector (63x 1.40 Oil DIC M27 Plan-Apochromat objective). DNA-FISH probes were counted

459 through z-stacks manually and scored as “associated” if there was no gap between the probe and
460 the nucleolar marker. Each probe was analyzed in at least three biological replicates, with at least
461 100 alleles scored in each replicate. Z stacks are represented as 2D maximum projections using
462 Fiji software (Schindelin et al. 2012). Statistical analyses were done using GraphPad Prism
463 software. p-values were calculated using arcsine values of the square roots of nucleolus-
464 associated proportions.

465

466 *NAD identification and annotation.* We used the same workflow for NAD-seq data analysis as
467 described previously (Vertii et al. 2019), except that we removed 20 NAD peaks that are less
468 than 50 kb long (totaling 0.74 MB). Because there are 624 peaks totaling 845 Mb in the F121-9
469 NAD-seq data, this represents 0.087% of the NAD nucleotides. We used version 1.6.1 of
470 NADfinder for NAD identification in this manuscript.

471 Nucleotide-level overlap analyses of F121-9 NADs with cLADs, ciLADs (Peric-Hupkes et al.
472 2010), MEF NADs (Vertii et al. 2019), and H3K27me3-enriched domains (GSM2416833;
473 (Cruz-Molina et al. 2017); GSM1621022; (Delbarre et al. 2017)) were performed using
474 *GenomicRanges* (Lawrence et al. 2013) as described in detail in Vertii et al., 2019. These
475 nucleotide-based overlap analyses in some cases generated small overlapped regions, such that
476 single genes would end up with both Type I and Type II designations, or both MEF-specific and
477 F121-9-specific designations. Because the biology of NADs is centered on large (~1 MB-sized)
478 domains, we removed regions <50 kb in length from overlap analyses of Type I and II NADs and
479 from cell-type-specific NADs to avoid these confounding designations. GO enrichment analyses
480 of conserved and cell type-specific NADs derived from the overlap analysis were performed
481 using *ChIPpeakAnno*. mESC H3K27me3-enriched domains were identified based on

482 H3K27me3 ChIP-seq data (GSM2416833; Cruz-Molina et al. 2017) using RSEG (v0.4.9) with
483 20 iterations for Baum training . MEF H3K27me3-enriched domains were obtained from
484 GSM1621022 (Delbarre et al. 2017). FPKM values based on MEF RNA-seq data were obtained
485 from GSM1621026 (Delbarre et al. 2017) and GSE90894 (Chronis et al. 2017). FPKM values
486 from mES RNA-seq data were obtained from GSM1418813 (Lowe et al. 2015). Calculations of
487 the statistical significance of pairwise comparisons were performed using Welch's t-test in
488 GraphPad Prism.

489
490 The *NADfinder* software is available at:
491
492 https://urldefense.proofpoint.com/v2/url?u=https-3A__bioconductor.org_packages_release_bioc_vignettes_NADfinder_inst_doc_NADfinder.html&d=DwIFAw&c=WJBj9sUF1mbpVIAf3biu3CPHX4MeRjY_w4DerPlOmhQ&r=JqQ8_ClM34xp32rT3DzotqsofamUUUyNmo3M4_tIIEI&m=Lq6n57MH0XVDSSayaTs25TVTysYxezReg6cHQXKhVNk&s=BG-jkVe3qQRszk64lZLOGYCGqyYe-h9NoghI0r8I1bM&e=,
493
494 We calculated Jaccard indexes among NADs, cLAD/ciLAD (Peric-Hupkes et al. 2010), and
495 F121-9 early/late replication timing (GSE95091 (Marchal et al. 2018)). The Jaccard index is the
496 size of the intersect divided by the size of the union of two sets. The higher the Jaccard index, the
497 higher the extent of the overlap.
498
499 Boxplots and comparisons of gene densities (genes/Mb) and gene expression distributions were
500 performed using R For statistical comparisons, p-values were calculated using Welch's t-test.
501
502
503
504

505 **Declarations:**

506 **Ethics approval and consent to participate:** Not applicable.

507 **Consent for publication:** Not applicable.

508 **Availability of data and materials:** The datasets supporting the conclusions of this article are

509 publically available at the 4D Nucleome Data Portal (<https://data.4dnucleome.org/>). The

510 RNAseq data is at <https://data.4dnucleome.org/experiment-set->

511 [replicates/4DNESDHILYLU/#raw-files](https://data.4dnucleome.org/experiment-set-replicates/4DNESDHILYLU/#raw-files). The DNAseq data for the total genomic samples is at

512 <https://data.4dnucleome.org/experiment-set-replicates/4DNESUJZ5FL2/>, and the DNAseq data

513 for the nucleolar samples is at <https://data.4dnucleome.org/experiment-set->

514 [replicates/4DNESXE9K9DB/](https://data.4dnucleome.org/experiment-set-replicates/4DNESXE9K9DB/) .

515 **Competing interests:** The authors declare that they have no competing interests.

516 **Funding:** Research reported in this publication was supported by the National Institutes of

517 Health (National Institute on Drug Abuse, U01 DA040588 to P.D.K.) as part of the 4D

518 Nucleome Consortium.

519 **Authors contributions:** AB performed all the wet lab experiments, and analyzed and interpreted

520 the data. AY and JY performed bioinformatic analyses. LJZ directed and conducted the

521 bioinformatics analyses, and PDK directed and analyzed the wet lab experimentation. AB, LJZ

522 and PDK wrote the manuscript. All authors read and approved the final manuscript.

523 **Acknowledgements:** We thank Takayo Sasaki and David Gilbert (Florida State University) for

524 the kind gift of F121-9 cells, and Anastassia Vertii for guidance with the nucleolar preparation

525 and DNA-FISH experiments.

526

527 **Figure Legends**

528 **Figure 1. Isolation and characterization of purified nucleoli in mESC.**

529 A. Schematic diagram of nucleoli isolation from crosslinked cells.

530 B. Phase-contrast microscopy images of F121-9 mESC grown in colonies (left panel), and

531 nucleoli purified from them (right panel). 20x magnification, scale bar 200 μ m. The inset (lower

532 right) shows a 3x magnified image of the purified nucleoli.

533 C. Immunoblots of fractions generated during nucleoli isolation from two replicate experiments.

534 Fractions are labeled as shown in Fig. 1A. Fibrillarin was enriched, and beta-actin depleted, in

535 nucleolar fractions.

536 D. RT-qPCR measurement of 45S rDNA enrichment in nucleolar DNA from replicate

537 experiments 1 and 2. Two different primer sets were used. Data are represented as mean

538 enrichment relative to genomic DNA, error bars represent standard deviations for triplicate

539 technical measurements.

540

541 **Figure 2. Analysis of F121-9 NAD sequencing data and comparison with heterochromatin.**

542 A. All of chromosome 19 is shown, which contains strongly nucleoli-associated regions. From

543 the top, tracks shown are: Constitutive interLADs (ciLADs, cyan) and Constitutive LADs

544 (cLADs, red) (Peric-Hupkes et al. 2010); mESC replication timing (Hiratani et al. 2010, early

545 replicating regions in cyan and late replicating regions in red); F121-9 cell NAD peaks (“F121-9

546 NADs”, called using *NADfinder* software based on two replicate experiments); Nucleolar/gDNA

547 ratios, shown for both replicate experiments; raw read counts from both replicates for nucleoli-

548 associated (“Nucleolus”, brown) DNA and total genomic DNA (“gDNA”, dark blue).

549 B. As in panel A, with all of chromosome 9 shown.

550

551 **Figure 3. Genomic locations of BACs used for FISH experiments.**

552 For each panel, BAC locations are outlined by a black box and indicated with a red horizontal
553 bar above the top track. From the top, tracks include cLADs (red) and ciLADs (cyan) (Peric-
554 Hupkes et al. 2010), followed by mESC replication timing (Hiratani et al. 2010). Next are LADs
555 from the indicated early embryonic stages (magenta) (Borsos et al. 2019), followed by F121-9
556 cell NAD peaks (blue) and RNA-seq data from the same preparations of F121-9 cells used to
557 generate the NAD data. At the bottom are data from MEF cells for comparison: replication
558 timing (Hiratani et al. 2010), LADs (Peric-Hupkes et al. 2010), NAD peaks from crosslinked
559 cells (Vertii et al. 2019) and RNA-seq (GSM2453368 (ENCODE Project Consortium 2012)).
560 A. pPK914. This BAC is within a NAD in both F121-9 and MEF cells, and its overlap with a
561 ciLAD region (cyan) indicates a lack of lamina association in these cell types. However, it does
562 become lamina-associated in the 2-cell and 8-cell stages of early embryonic development
563 (Borsos et al. 2019). This NAD contains ion channel genes (Kcnj6, Kcnj15) and Ets-family
564 transcription factors (Erg, Ets2).
565 B. pPK915. This ciLAD-overlapped BAC is a NAD in both F121-9 and MEF cells, encoding
566 solute carrier membrane transport proteins (Slc22a1, 2, 3) and plasminogen (Plg).
567 C. pPK999. This BAC overlaps a late-replicating LAD that contains the genes encoding
568 epidermal growth factor receptor (Egfr), EGFR Long Non-coding Downstream RNA (Eldr),
569 pleckstrin (Plek), and cannabinoid receptor interacting protein 1 (Cnrip1). This NAD is part of a
570 LAD throughout early embryonic development, at zygote, 2-cell, 8-cell and mESC stages
571 (Borsos et al. 2019). Note that in MEF cells this region is not identified as a NAD, is early
572 replicating, and displays greater expression of Egfr.

573

574 **Figure 4. 3D DNA-FISH experiments validate nucleolar association of NADs in F121-9**

575 **mESC.**

576 A. *Left*: graph of percentage of alleles that are nucleolar-associated (mean \pm standard deviation

577 for $n = 3$ biological replicates) for the indicated (see Supplmental Table 2) non-NAD BAC

578 probes (blue bars) and NAD probes (red bars). *Right*: data from the left graph were grouped into

579 non-NADs (blue bar) and NADs (red bar). NADs display significantly greater nucleolar

580 association than non-NADs ($p < 0.0001$, Welch's t-test).

581 B. Maximum projection images from 3D immuno-FISH experiments with nuclear DAPI staining

582 in blue, anti-fibrillarin antibody staining in red, and DNA probes (pPK871, pPK914 and

583 pPK915) in green. 63x magnification, scale bar 10 μ m.

584 C. Length distribution of F121-9 NADs, compared to those from crosslinked MEF cells (Vertii et

585 al. 2019).

586

587 **Figure 5. Two types of NADs in F121-9 mESC.**

588 A. Venn diagram illustrating the overlaps among F121-9 NADs, MEF NADs (Vertii et al. 2019),

589 cLAD, and ciLAD regions (Peric-Hupkes et al. 2010). Numbers show the size of the indicated

590 regions in Mb.

591 B. Chromosomal view of F121-9 NADs overlapping cLADs and ciLADs. The entire

592 chromosome 19 is shown. Euchromatic features (early replication timing, ciLAD) are displayed

593 in cyan, and heterochromatic features (late replication timing, cLAD) are shown in red. From the

594 top, displayed tracks are mESC replication timing (Hiratani et al. 2010), cLAD (Peric-Hupkes et

595 al. 2010), NAD overlap with cLAD (i.e. Type I NADs, magenta), nucleolar/genomic ratio and

596 NAD peaks (blue), NAD overlap with ciLAD (i.e. Type II NADs, green), ciLAD (Peric-Hupkes

597 et al. 2010), H3K27me3 domains, and mESC H3K27me3 ChIP-seq data (Cruz-Molina et al.
598 2017) used for H3K27me3 domain identification (olive green).

599 C. Gene densities (genes/Mb) of the indicated regions, ranked left to right. “NAD” indicates all
600 F121-9 NADs.

601 D. A box plot of gene expression levels from F121-9 RNA-seq data, expressed as
602 $\log_{10}(\text{FPKM}+1)$ for the same indicated genomic regions as in panel C. The top of the red box
603 indicates the mean value for each population, and the standard deviation is marked by the red
604 error bar.

605 E. Venn diagram illustrating the overlaps among F121-9 NADs, cLADs (Peric-Hupkes et al.
606 2010) and mESC H3K27me3 domains (Cruz-Molina et al. 2017). Numbers indicate the size of
607 regions in Mb. The overlaps among all three sets (9 Mb) and between the cLAD and H3K27me3
608 sets (10 Mb) are left off the diagram because of their small sizes. Diagram was generated using
609 eulerAPE 3.0 .

610 F. As in panel E, except here the overlap analysis includes ciLADs (Peric-Hupkes et al. 2010)
611 instead of cLADs.

612 G. As in panel E, except here Venn diagram illustrates the overlaps among crosslinked MEF
613 NADs (Vertii et al. 2019), cLADs (Peric-Hupkes et al. 2010) and MEF H3K27me3 domains
614 (Delbarre et al. 2017).

615 H. As in panel G, except here the overlap analysis includes ciLADs (Peric-Hupkes et al. 2010)
616 instead of cLADs.

617

618

619 **Figure 6. Conserved and cell type-specific NADs.**

620 A. IGV browser view of entire chromosome 15. Euchromatic features (early replication timing,
621 ciLAD) are displayed in cyan, and heterochromatic features (late replication timing, cLAD) are
622 shown in red. From the top, tracks shown are cLAD, ciLAD (Peric-Hupkes et al. 2010), mESC
623 replication timing (Hiratani et al. 2010), F121-9 nucleolar/genomic ratio and F121-9 NAD peaks
624 (blue), “F121-9 specific NADs”, i.e. NADs found only in F121-9 cells (light blue), “conserved
625 NADs”, or NADs shared between F121-9 and MEFs (magenta), “MEF-specific NADs” (dark
626 green), MEF NAD peaks and MEF nucleolar/genomic ratio (Vertii et al. 2019) in green, and
627 MEF replication timing (Hiratani et al. 2010).

628 B. Jaccard similarity coefficients were grouped based on similarities among the indicated
629 regions. “F121-9 NAD” indicates all NADs identified in F121-9 cells in this study. “Conserved
630 NAD” indicates NADs shared between F121-9 and MEF NADs (Vertii et al. 2019), whereas
631 “F121-9-specific NAD” indicates NADs detected in F121-9, but not MEF cells. Conversely,
632 “MEF-specific NAD” indicates NADs found in MEFs, but not in F121-9 cells. “Type I NAD”
633 indicates F121-9 NADs that overlap with cLADs, and “Type II NAD” indicates F121-9 NADs
634 that overlap with ciLADs (Peric-Hupkes et al. 2010). “cLAD” and “ciLAD” regions are from
635 Peric-Hupkes et al. 2010, and F121-9 early replication timing and late replication timing regions
636 are from Marchal et al. 2018. Note that F121-9 NADs, conserved F121-9 NADs, cLADs and
637 Type I NADs are highly similar. In contrast, Type II NADs are most similar to F121-9-specific
638 NADs.

639 C. A box plot of gene expression levels from MEF RNA-seq data (GSM1621026; Delbarre et al.
640 2017), expressed as $\log_{10}(\text{FPKM}+1)$ for the indicated subsets of NAD, non-NAD and whole
641 genome regions. The statistical significance of pairwise comparisons were all $p < 0.0001$
642 (Welch’s t-test).

643 D. As in panel C, except our F121-9 RNA-seq data is used for FPKM analysis. The indicated
644 pairwise comparisons were all statistically significant ($p < 0.0001$), except for that between
645 F121-9 and MEF-specific NADs do not achieve statistical significance ($p = 0.82$).
646 E. As in panel C, except different MEF RNA-seq data (GSE90894; (Chronis et al. 2017)) was
647 used for FPKM analysis. The changes between cell type-specific NADs achieve statistical
648 significance ($p < 0.0001$, Welch's t-test).
649 F. As in panel C, except mESC RNA-seq data (GSM1418813; (Lowe et al. 2015)) is used for
650 FPKM analysis. The changes between F121-9 and MEF-specific NADs do not achieve statistical
651 significance ($p = 0.13$).

652

653 **Fig. 7. GO analysis of conserved and cell type-specific NADs**

654 A. Molecular Functions subset of GO enrichment analysis of conserved NADs, with $-\log_{10}(q$ -
655 values) shown.

656 B. Genomic region containing NAD peak (red box) conserved in both MEF and F121-9 cells.
657 This peak contains a cluster of olfactory genes on chromosome 11. ciLAD, mESC and MEF
658 replication timing tracks are displayed as in Fig. 5B. The other tracks shown from the top are
659 mESC LADs (Peric-Hupkes et al. 2010; red), F121-9 nucleolar/genomic ratio, NADs and RNA-
660 seq data (blue), MEF LADs (Peric-Hupkes et al. 2010), MEF nucleolar/genomic ratio, NADs
661 (Vertii et al. 2019) (green) and RNA-seq (GSM2453368 (ENCODE Project Consortium 2012))
662 (blue).

663 C. Molecular Functions subset of GO enrichment analysis of F121-9-specific NADs.

664 D. As in panel B, showing genomic region corresponding to F121-9-specific NAD (red box),
665 overlapping *Ccl* family of chemokine ligands.

666 E. Biological Functions subset of GO enrichment analysis of MEF-specific NADs.
667 F. As in panel B, showing genomic region containing MEF-specific NAD (red box), overlapping
668 the *Pcsk6* gene important for differentiation along anterior-posterior axis.

669

670 **Supplemental Tables**

671 Supplemental Table 1: Average RNA-seq FPKM values from two biological replicate RNA-seq
672 samples, made from the same preparations of F121-9 cells used for the nucleolar purifications.

673

674 Supplemental Table 2: mm10 genomic coordinates, laboratory BAC probe names, systematic
675 BACPAC names, FISH and NADfinder results for DNA-FISH probes.

676

677 Supplemental Table 3: GO-derived Molecular Functions terms of conserved NADs, with q-
678 values (termed “BH adjusted p-value” in the table) below 0.05.

679

680 Supplemental Table 4: GO-derived Molecular Functions terms of F121-9-specific NADs, with q-
681 values below 0.05.

682

683 Supplemental Table 5: GO-derived Biological Processes terms of MEF-specific NADs, with q-
684 values below 0.05.

685

686 Supplemental Table 6: mESC H3K27me3-enriched domains identified based on H3K27me3
687 ChIP-seq data (GSM2416833; Cruz-Molina et al. 2017) using RSEG software. The first three
688 columns show for each H3K27me3-enriched domains the chromosome name, start and end

689 nucleotides. The 4th column (Average Count) gives the average read count in the domain. The
690 5th column (Domain Score) is the sum of posterior scores of all bins within this domain; it
691 measures both the quality and size of the domain.

692

693

694 **References cited**

695 Ahmed K, Dehghani H, Rugg-Gunn P, et al (2010) Global Chromatin Architecture Reflects
696 Pluripotency and Lineage Commitment in the Early Mouse Embryo. *PLoS One* 5:e10531.
697 doi: 10.1371/journal.pone.0010531

698 Aloia L, Di Stefano B, Di Croce L (2013) Polycomb complexes in stem cells and embryonic
699 development. *Development* 140:2525–2534. doi: 10.1242/dev.091553

700 Atlasi Y, Stunnenberg HG (2017) The interplay of epigenetic marks during stem cell
701 differentiation and development. *Nat Rev Genet* 18:643–658. doi: 10.1038/nrg.2017.57

702 Bhattacharya D, Talwar S, Mazumder A, Shivashankar G V (2009) Spatio-temporal plasticity in
703 chromatin organization in mouse cell differentiation and during *Drosophila* embryogenesis.
704 *Biophys J* 96:3832–9. doi: 10.1016/j.bpj.2008.11.075

705 Borsos M, Perricone SM, Schauer T, et al (2019) Genome-lamina interactions are established de
706 novo in the early mouse embryo. *Nature* 569:729–733. doi: 10.1038/s41586-019-1233-0

707 Brangwynne CP, Mitchison TJ, Hyman AA Active liquid-like behavior of nucleoli determines
708 their size and shape in *Xenopus laevis* oocytes. doi: 10.1073/pnas.1017150108

709 Chronis C, Fiziev P, Papp B, et al (2017) Cooperative Binding of Transcription Factors
710 Orchestrates Reprogramming. *Cell* 168:442-459.e20. doi: 10.1016/j.cell.2016.12.016

711 Cruz-Molina S, Respuela P, Tebartz C, et al (2017) PRC2 Facilitates the Regulatory Topology

712 Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. *Cell*
713 *Stem Cell* 20:689-705.e9. doi: 10.1016/j.stem.2017.02.004

714 Delbarre E, Ivanauskiene K, Spirkoski J, et al (2017) PML protein organizes heterochromatin
715 domains where it regulates histone H3.3 deposition by ATRX/DAXX. *Genome Res*
716 27:913–921. doi: 10.1101/gr.215830.116

717 Dillinger S, Straub T, Nemeth A (2017) Nucleolus association of chromosomal domains is
718 largely maintained in cellular senescence despite massive nuclear reorganisation. *PLoS One*
719 12:1–28. doi: 10.1371/journal.pone.0178821

720 Dobin A, Davis CA, Schlesinger F, et al (2013) STAR: ultrafast universal RNA-seq aligner.
721 *Bioinformatics* 29:15–21. doi: 10.1093/bioinformatics/bts635

722 Efroni S, Duttagupta R, Cheng J, et al (2008) Global Transcription in Pluripotent Embryonic
723 Stem Cells. *Cell Stem Cell* 2:437–447. doi: 10.1016/j.stem.2008.03.021

724 ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the
725 human genome. *Nature* 489:57–74. doi: 10.1038/nature11247

726 Fedoriw AM, Calabrese JM, Mu W, et al (2012a) Differentiation-driven nucleolar association of
727 the mouse imprinted Kcnq1 locus. *G3 (Bethesda)* 2:1521–8. doi: 10.1534/g3.112.004226

728 Fedoriw AM, Starmer J, Yee D, Magnuson T (2012b) Nucleolar association and transcriptional
729 inhibition through 5S rDNA in mammals. *PLoS Genet* 8:. doi:
730 10.1371/journal.pgen.1002468

731 Feric M, Vaidya N, Harmon TS, et al (2016) Coexisting Liquid Phases Underlie Nucleolar
732 Subcompartments. *Cell* 165:1686–1697. doi: 10.1016/j.cell.2016.04.047

733 Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in
734 pluripotency and reprogramming. *Nat Rev Mol Cell Biol* 12:36–47. doi: 10.1038/nrm3036

735 Guelen L, Pagie L, Brasset E, et al (2008) Domain organization of human chromosomes revealed
736 by mapping of nuclear lamina interactions. *Nature* 453:948–951. doi: 10.1038/nature06947

737 Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological
738 variations of electron transport chains. *Biochim Biophys Acta - Gen Subj* 1770:330–344.
739 doi: 10.1016/j.bbagen.2006.07.017

740 Harr JC, Luperchio TR, Wong X, et al (2015) Directed targeting of chromatin to the nuclear
741 lamina is mediated by chromatin state and A-type lamins. *J Cell Biol* 208:33–52. doi:
742 10.1083/jcb.201405110

743 Hawkins RD, Hon GC, Lee LK, et al (2010) Distinct Epigenomic Landscapes of Pluripotent and
744 Lineage-Committed Human Cells. *Cell Stem Cell* 6:479–491. doi:
745 10.1016/j.stem.2010.03.018

746 Hiratani I, Ryba T, Itoh M, et al (2010) Genome-wide dynamics of replication timing revealed
747 by in vitro models of mouse embryogenesis. *Genome Res* 20:155–69. doi:
748 10.1101/gr.099796.109

749 Ihaka R, Gentleman R (1996) R: A Language for Data Analysis and Graphics. *J Comput Graph*
750 *Stat* 5:299–314. doi: 10.1080/10618600.1996.10474713

751 Jakociunas T, Domange Jordö M, Aït Mebarek M, et al (2013) Subnuclear relocalization and
752 silencing of a chromosomal region by an ectopic ribosomal DNA repeat. *Proc Natl Acad*
753 *Sci U S A* 110:E4465-73. doi: 10.1073/pnas.1315581110

754 Kind J, Pagie L, Ortabozkoyun H, et al (2013) Single-cell dynamics of genome-nuclear lamina
755 interactions. *Cell* 153:178–192. doi: 10.1016/j.cell.2013.02.028

756 Larson AG, Elnatan D, Keenen MM, et al (2017) Liquid droplet formation by HP1 α suggests a
757 role for phase separation in heterochromatin. *Nature* 547:236–240. doi:

758 10.1038/nature22822

759 Lavarone E, Barbieri CM, Pasini D (2019) Dissecting the role of H3K27 acetylation and
760 methylation in PRC2 mediated control of cellular identity. *Nat Commun* 10:1679. doi:
761 10.1038/s41467-019-09624-w

762 Lawrence M, Huber W, Pagès H, et al (2013) Software for Computing and Annotating Genomic
763 Ranges. *PLoS Comput Biol* 9:e1003118. doi: 10.1371/journal.pcbi.1003118

764 Lee J-H, Hart SRL, Skalnik DG (2004) Histone deacetylase activity is required for embryonic
765 stem cell differentiation. *genesis* 38:32–38. doi: 10.1002/gene.10250

766 Lowe R, Gemma C, Rakyan VK, Holland ML (2015) Sexually dimorphic gene expression
767 emerges with embryonic genome activation and is dynamic throughout development. *BMC*
768 *Genomics* 16:295. doi: 10.1186/s12864-015-1506-4

769 Marchal C, Sasaki T, Vera D, et al (2018) Genome-wide analysis of replication timing by next-
770 generation sequencing with E/L Repli-seq. *Nat Protoc* 13:819–839. doi:
771 10.1038/nprot.2017.148

772 Martens JHA, O’Sullivan RJ, Braunschweig U, et al (2005) The profile of repeat-associated
773 histone lysine methylation states in the mouse epigenome. *EMBO J* 24:800–12. doi:
774 10.1038/sj.emboj.7600545

775 Matheson TD, Kaufman PD (2017) The p150N domain of chromatin assembly factor-1 regulates
776 Ki-67 accumulation on the mitotic perichromosomal layer. *Mol Biol Cell* 28:21–29. doi:
777 10.1091/mbc.e16-09-0659

778 Matheson TD, Kaufman PD (2016) Grabbing the genome by the NADs. *Chromosoma* 125:361–
779 371. doi: 10.1007/s00412-015-0527-8

780 Mattout A, Cabianca DS, Gasser SM (2015) Chromatin states and nuclear organization in

781 development — a view from the nuclear lamina. *Genome Biol* 16:174. doi:
782 10.1186/s13059-015-0747-5

783 Meshorer E, Yellajoshula D, George E, et al (2006) Hyperdynamic plasticity of chromatin
784 proteins in pluripotent embryonic stem cells. *Dev Cell*. doi: 10.1016/j.devcel.2005.10.017

785 Meuleman W, Peric-Hupkes D, Kind J, et al (2013) Constitutive nuclear lamina-genome
786 interactions are highly conserved and associated with A/T-rich sequence. *Genome Res*
787 23:270–80. doi: 10.1101/gr.141028.112

788 Micallef L, Rodgers P (2014) eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using
789 Ellipses. *PLoS One* 9:e101717. doi: 10.1371/journal.pone.0101717

790 Mitrea DM, Cika JA, Guy CS, et al (2016) Nucleophosmin integrates within the nucleolus via
791 multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. *Elife* 5:..
792 doi: 10.7554/eLife.13571

793 Mohammad F, Pandey RR, Nagano T, et al (2008) Kcnq1ot1/Lit1 Noncoding RNA Mediates
794 Transcriptional Silencing by Targeting to the Perinucleolar Region. *Mol Cell Biol* 28:3713–
795 3728. doi: 10.1128/MCB.02263-07

796 Németh A, Conesa A, Santoyo-Lopez J, et al (2010) Initial genomics of the human nucleolus.
797 *PLoS Genet* 6:.. doi: 10.1371/journal.pgen.1000889

798 Padeken J, Heun P (2014) Nucleolus and nuclear periphery: Velcro for heterochromatin. *Curr*
799 *Opin Cell Biol* 28:54–60. doi: 10.1016/j.ceb.2014.03.001

800 Padeken J, Mendiburo MJ, Chlamydas S, et al (2013) The Nucleoplasmin Homolog NLP
801 Mediates Centromere Clustering and Anchoring to the Nucleolus. *Mol Cell* 50:236–249.
802 doi: 10.1016/j.molcel.2013.03.002

803 Peric-Hupkes D, Meuleman W, Pagie L, et al (2010) Molecular Maps of the Reorganization of

804 Genome-Nuclear Lamina Interactions during Differentiation. *Mol Cell* 38:603–613. doi:
805 10.1016/j.molcel.2010.03.016

806 Pickersgill H, Kalverda B, de Wit E, et al (2006) Characterization of the *Drosophila*
807 *melanogaster* genome at the nuclear lamina. *Nat Genet* 38:1005–1014. doi: 10.1038/ng1852

808 Pontvianne F, Carpentier MC, Durut N, et al (2016) Identification of Nucleolus-Associated
809 Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the *A. thaliana*
810 Genome. *Cell Rep* 16:1574–1587. doi: 10.1016/j.celrep.2016.07.016

811 Ragoczy T, Telling A, Scalzo D, et al (2014) Functional redundancy in the nuclear
812 compartmentalization of the Late-Replicating genome. *Nucleus* 5:626–635. doi:
813 10.4161/19491034.2014.990863

814 Ramírez F, Ryan DP, Grüning B, et al (2016) deepTools2: a next generation web server for
815 deep-sequencing data analysis. *Nucleic Acids Res* 44:W160–W165. doi:
816 10.1093/nar/gkw257

817 Rasmussen TP, Huang T, Mastrangelo M-A, et al (1999) Messenger RNAs encoding mouse
818 histone macroH2A1 isoforms are expressed at similar levels in male and female cells and
819 result from alternative splicing. *Nucleic Acids Res* 27:3685–3689. doi:
820 10.1093/nar/27.18.3685

821 Ribbeck K, Görlich D (2002) The permeability barrier of nuclear pore complexes appears to
822 operate via hydrophobic exclusion. *EMBO J* 21:2664–71. doi: 10.1093/emboj/21.11.2664

823 Savić N, Bär D, Leone S, et al (2014) lncRNA Maturation to Initiate Heterochromatin Formation
824 in the Nucleolus Is Required for Exit from Pluripotency in ESCs. *Cell Stem Cell* 15:720–
825 734. doi: 10.1016/j.stem.2014.10.005

826 Schindelin J, Arganda-Carreras I, Frise E, et al (2012) Fiji: an open-source platform for

827 biological-image analysis. *Nat Methods* 9:676–682. doi: 10.1038/nmeth.2019

828 Shin Y, Chang Y-C, Lee DSW, et al (2018) Liquid Nuclear Condensates Mechanically Sense
829 and Restructure the Genome. *Cell* 175:1481-1491.e13. doi: 10.1016/J.CELL.2018.10.057

830 Singh I, Contreras A, Cordero J, et al (2018) MiCEE is a ncRNA-protein complex that mediates
831 epigenetic silencing and nucleolar organization. *Nat Genet* 50:990–1001. doi:
832 10.1038/s41588-018-0139-3

833 Smith CL, Matheson TD, Trombly DJ, et al (2014) A separable domain of the p150 subunit of
834 human chromatin assembly factor-1 promotes protein and chromosome associations with
835 nucleoli. *Mol Biol Cell* 25:2866–2881. doi: 10.1091/mbc.e14-05-1029

836 Song Q, Smith AD (2011) Identifying dispersed epigenomic domains from ChIP-Seq data.
837 *Bioinformatics* 27:870–1. doi: 10.1093/bioinformatics/btr030

838 Strom AR, Emelyanov A V., Mir M, et al (2017) Phase separation drives heterochromatin
839 domain formation. *Nature* 547:241–245. doi: 10.1038/nature22989

840 Tatavosian R, Kent S, Brown K, et al (2019) Nuclear condensates of the Polycomb protein
841 chromobox 2 (CBX2) assemble through phase separation. *J Biol Chem* 294:1451–1463.
842 doi: 10.1074/jbc.RA118.006620

843 Trojer P, Reinberg D (2007) Facultative Heterochromatin: Is There a Distinctive Molecular
844 Signature? *Mol Cell* 28:1–13. doi: 10.1016/J.MOLCEL.2007.09.011

845 van Koningsbruggen S, Gierlinski M, Schofield P, et al (2010) High-resolution whole-genome
846 sequencing reveals that specific chromatin domains from most human chromosomes
847 associate with nucleoli. *Mol Biol Cell* 21:3735–48. doi: 10.1091/mbc.E10-06-0508

848 van Steensel B, Belmont AS (2017) Lamina-Associated Domains: Links with Chromosome
849 Architecture, Heterochromatin, and Gene Repression. *Cell* 169:780–791. doi:

850 10.1016/j.cell.2017.04.022

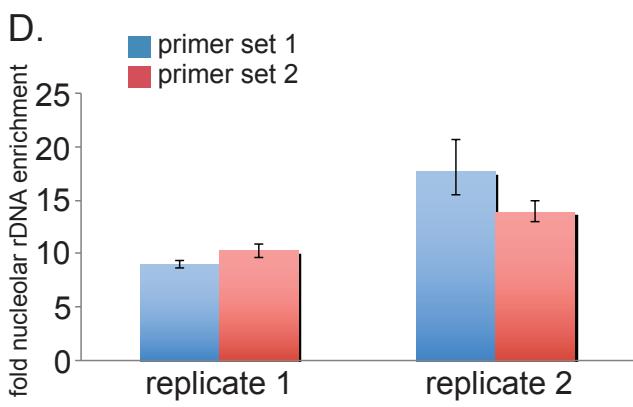
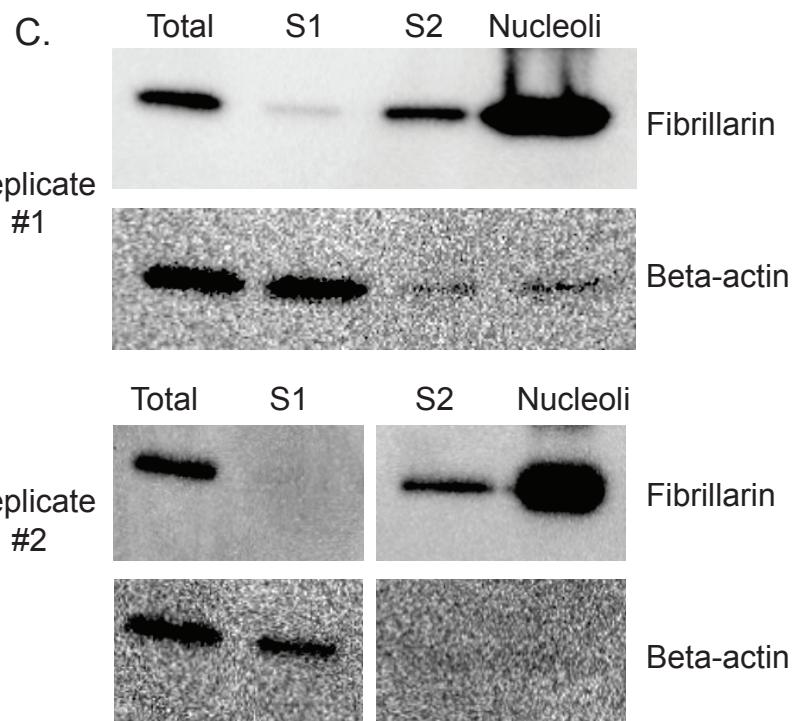
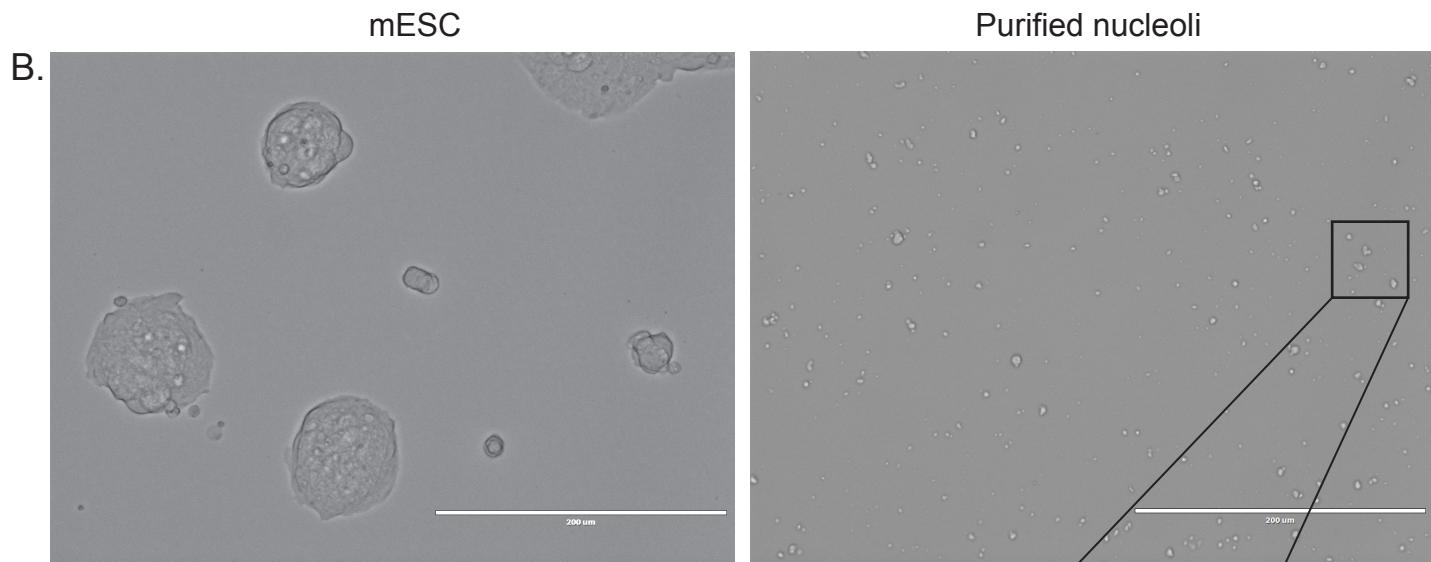
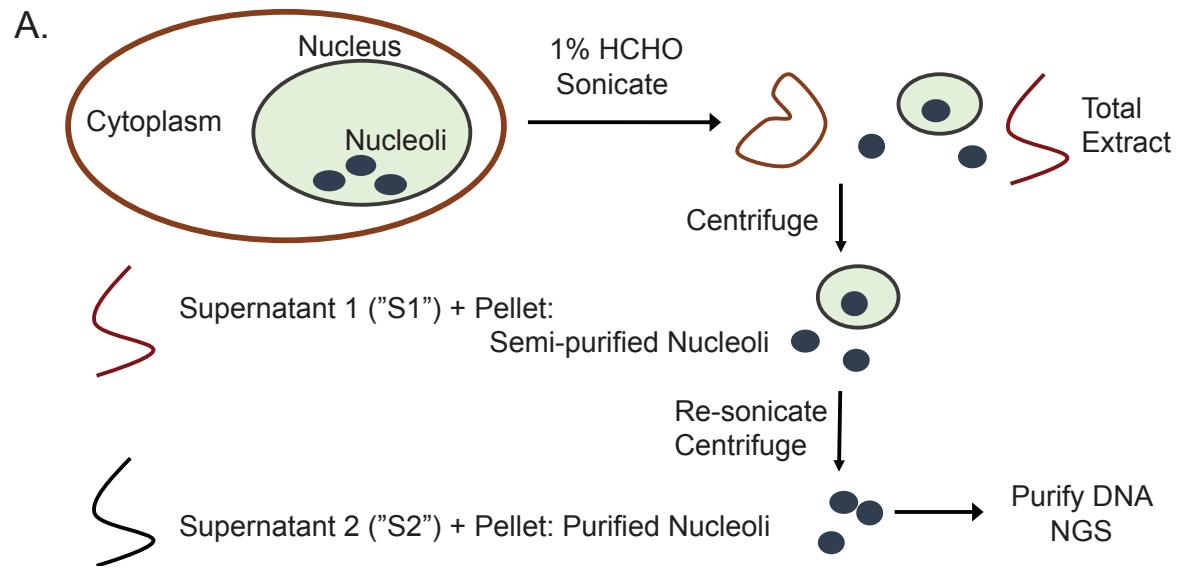
851 Vertii A, Ou J, Yu J, et al (2019) Two contrasting classes of nucleolus-associated domains in
852 mouse fibroblast heterochromatin. *Genome Res* gr.247072.118. doi: 10.1101/gr.247072.118

853 Wen B, Wu H, Shinkai Y, et al (2009) Large histone H3 lysine 9 dimethylated chromatin blocks
854 distinguish differentiated from embryonic stem cells. *Nat Genet* 41:246–250. doi:
855 10.1038/ng.297

856 Yang F, Deng X, Ma W, et al (2015) The lncRNA Firre anchors the inactive X chromosome to
857 the nucleolus by binding CTCF and maintains H3K27me3 methylation. *Genome Biol*
858 16:52. doi: 10.1186/s13059-015-0618-0

859 Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF Tethers an Insulator to
860 Subnuclear Sites, Suggesting Shared Insulator Mechanisms across Species. *Mol Cell*
861 13:291–298. doi: 10.1016/S1097-2765(04)00029-2

862 Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar Targeting of the Inactive X during S Phase:
863 Evidence for a Role in the Maintenance of Silencing. *Cell* 129:693–706. doi:
864 10.1016/j.cell.2007.03.036





865 Zhu LJ (2013) Integrative analysis of ChIP-chip and ChIP-seq dataset. *Methods Mol Biol*
866 1067:105–24. doi: 10.1007/978-1-62703-607-8_8

867 Zhu LJ, Gazin C, Lawson ND, et al (2010) ChIPpeakAnno: a Bioconductor package to annotate
868 ChIP-seq and ChIP-chip data. *BMC Bioinformatics* 11:237. doi: 10.1186/1471-2105-11-
869 237

870 Zullo JM, Demarco IA, Piqué-Regi R, et al (2012) DNA sequence-dependent
871 compartmentalization and silencing of chromatin at the nuclear lamina. *Cell* 149:1474–
872 1487. doi: 10.1016/j.cell.2012.04.035

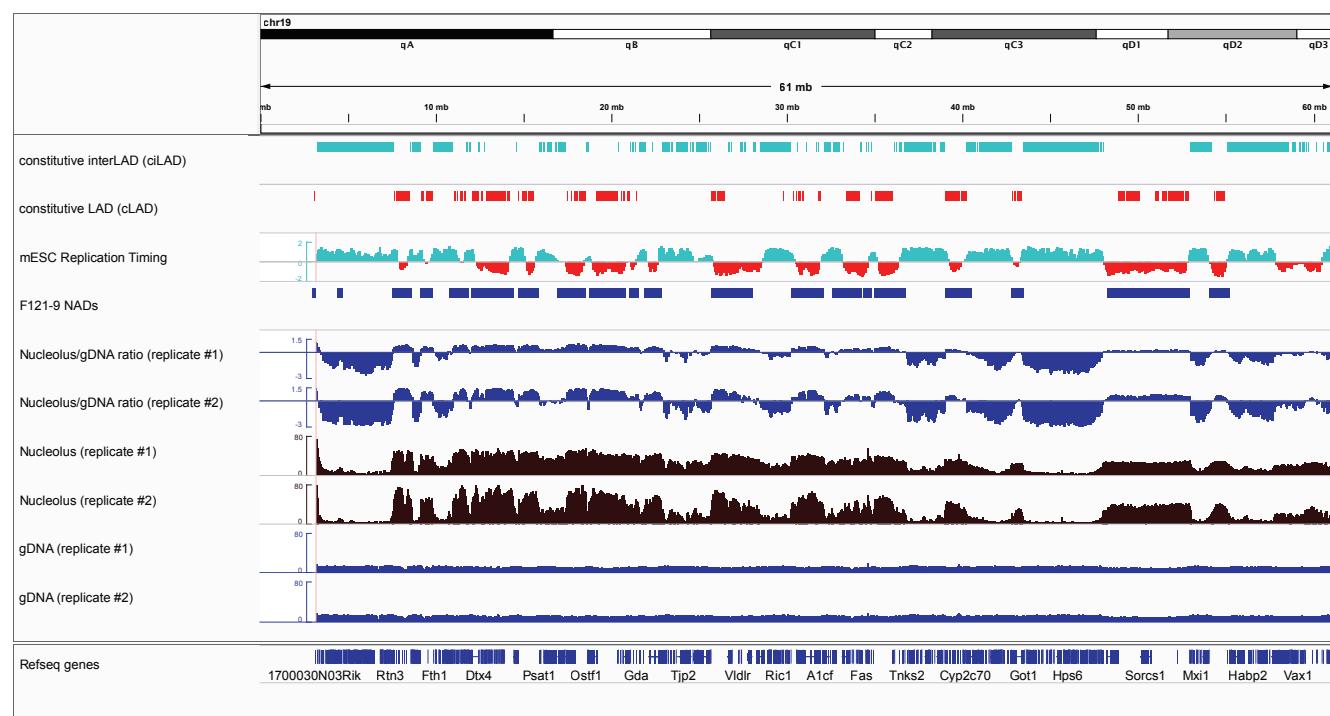

873

Figure 1

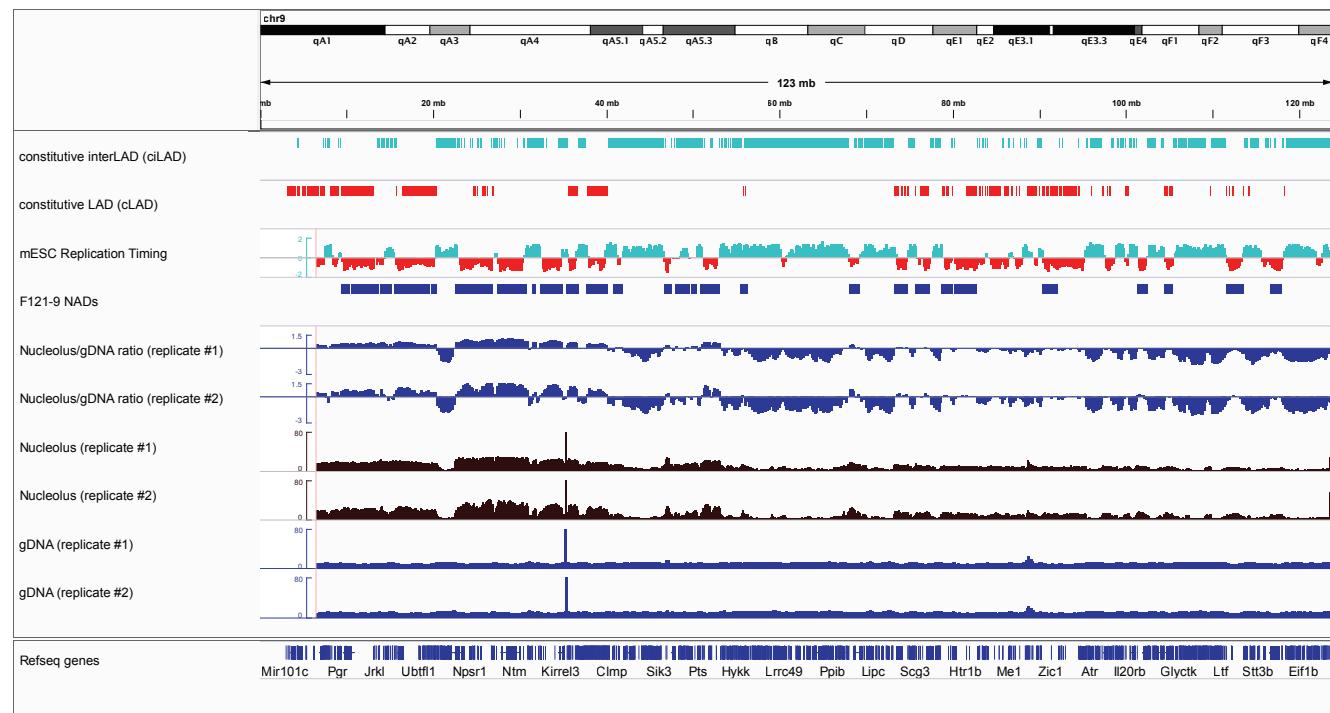


Figure 2

A.

B.

Figure 3

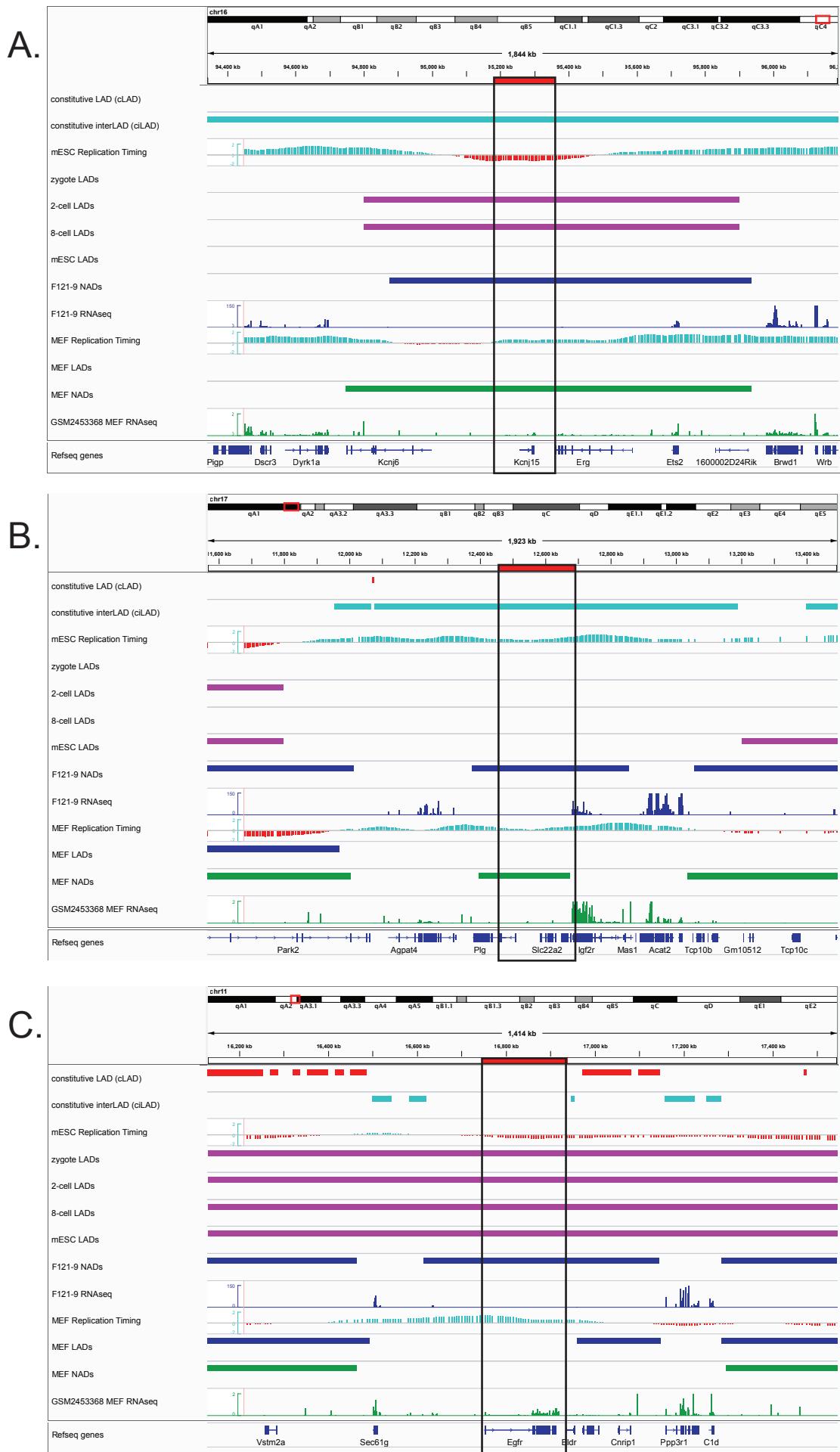


Figure 4

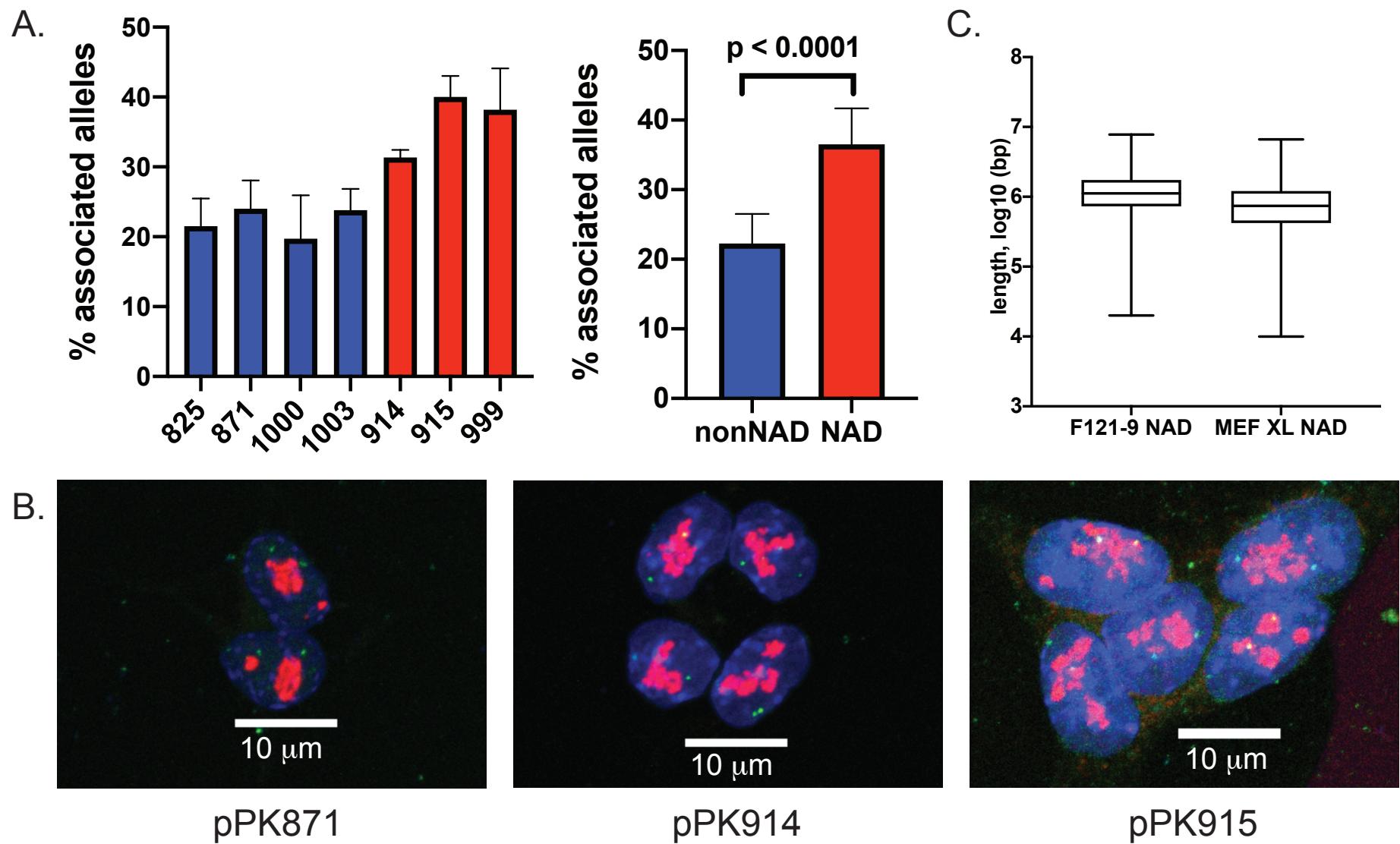


Figure 5

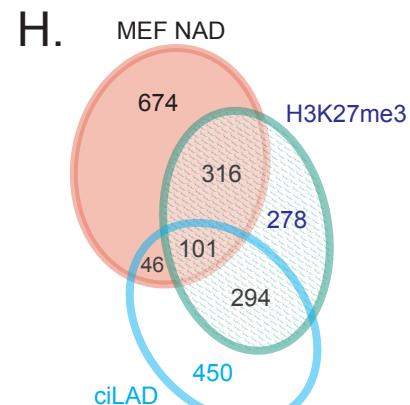
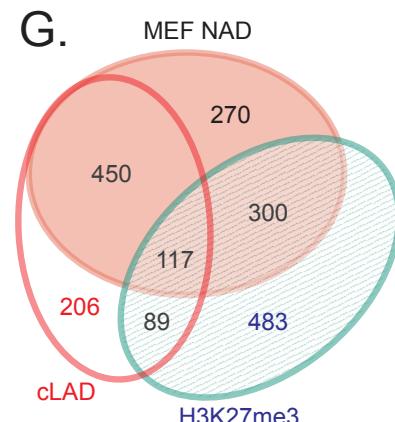
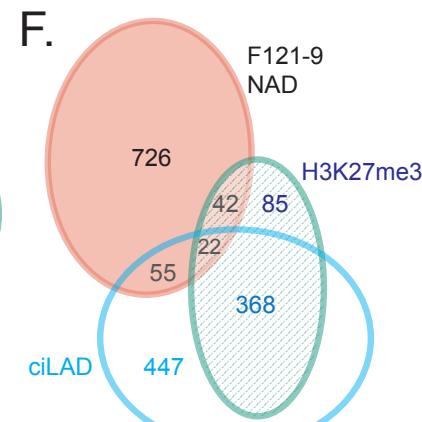
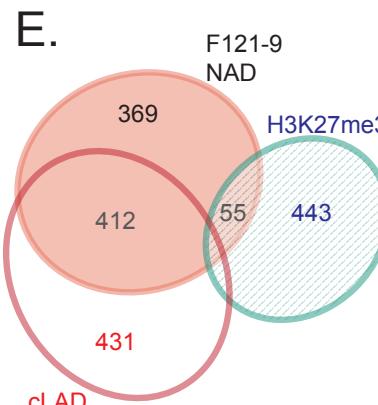
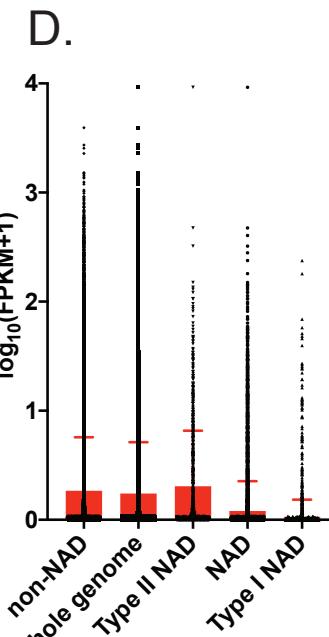
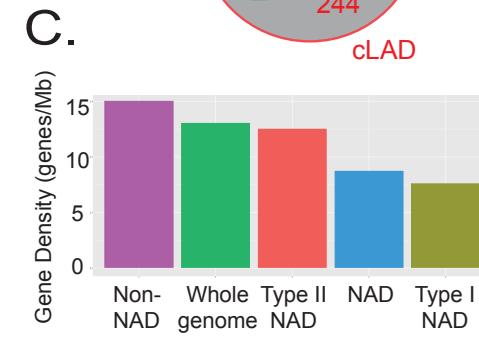
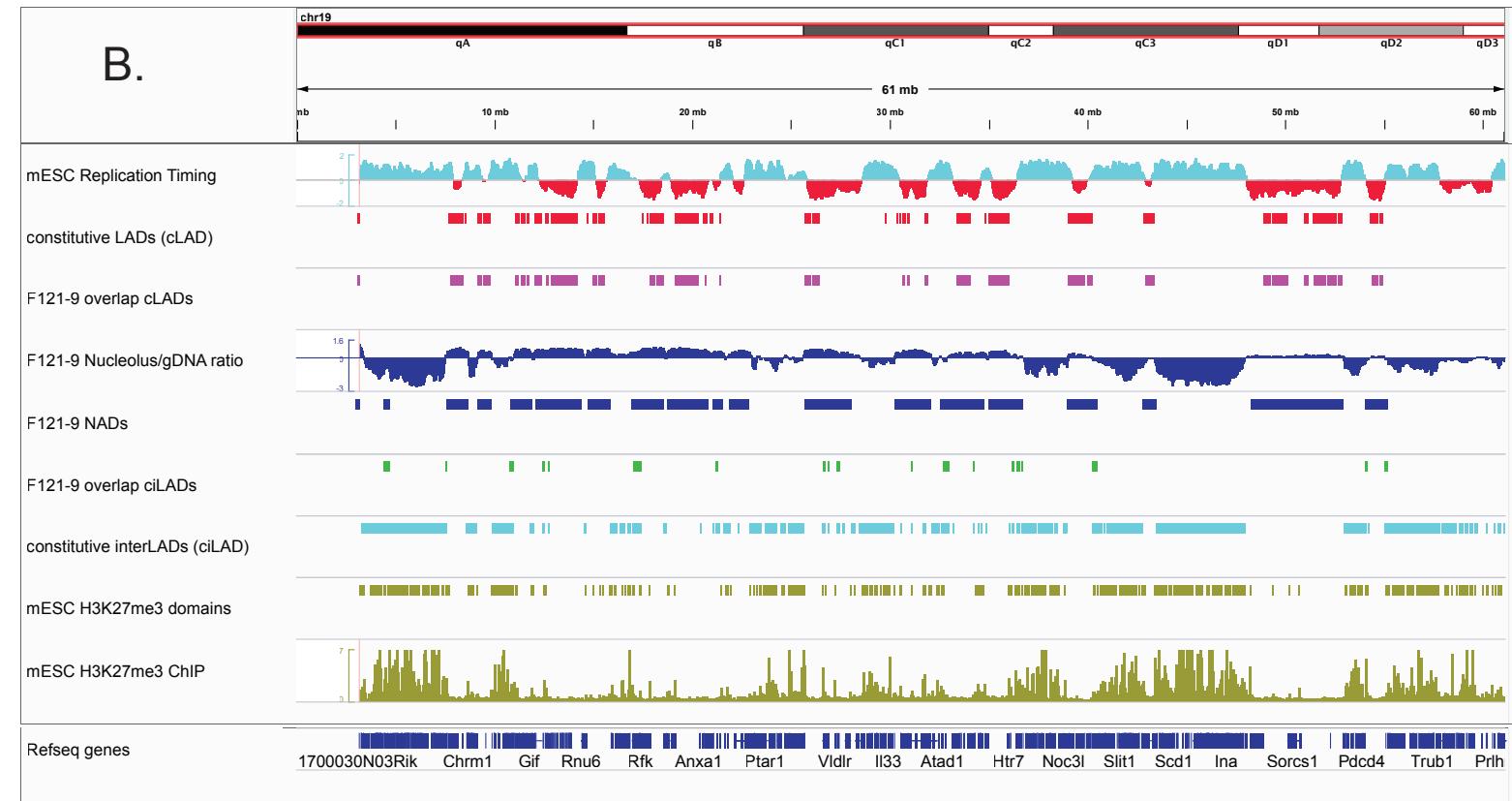
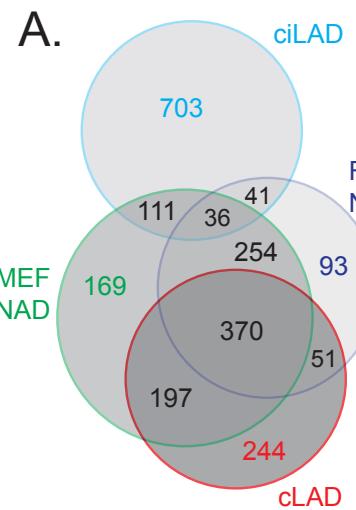
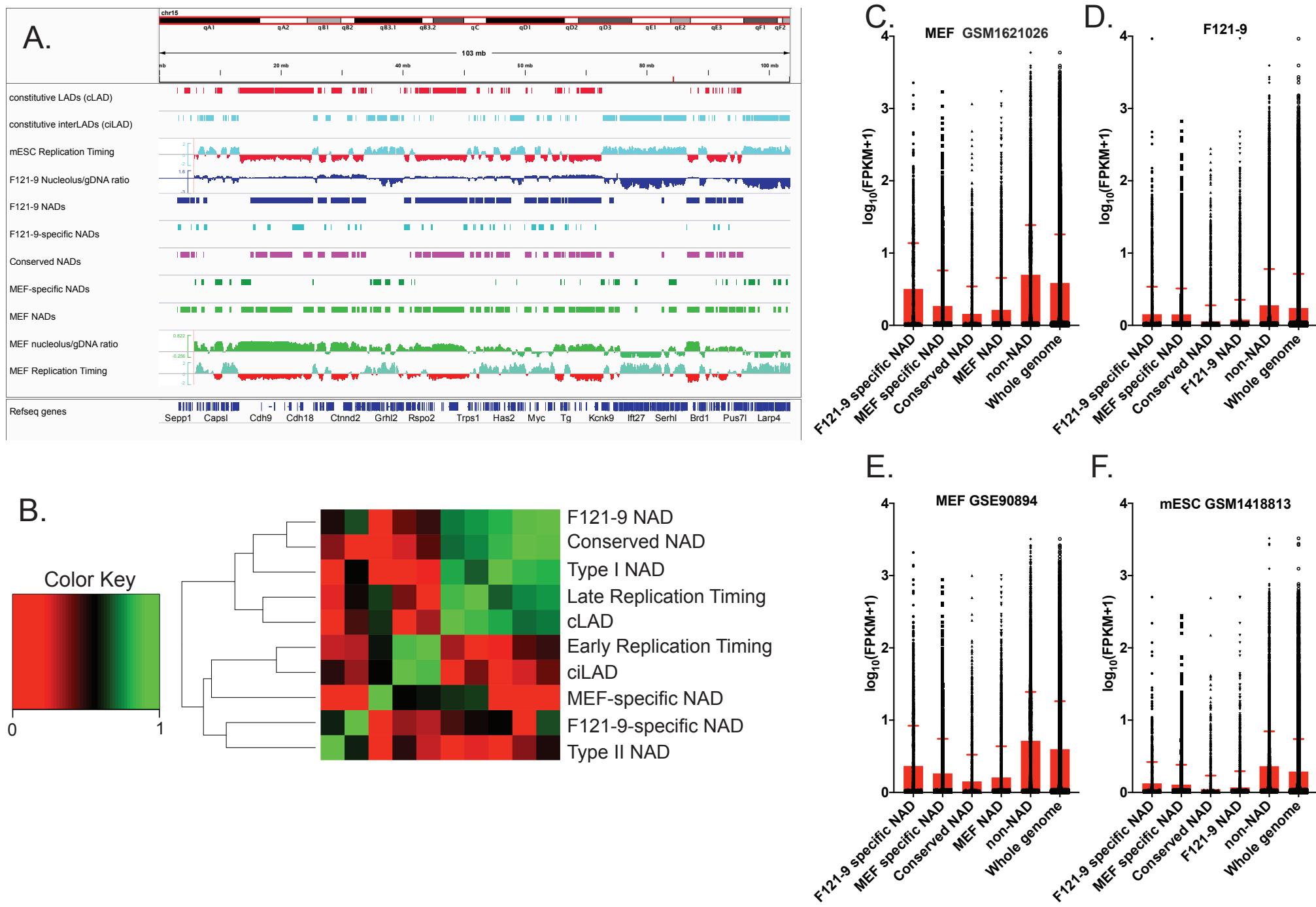
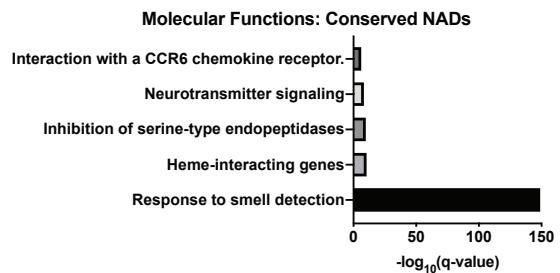











Figure 6

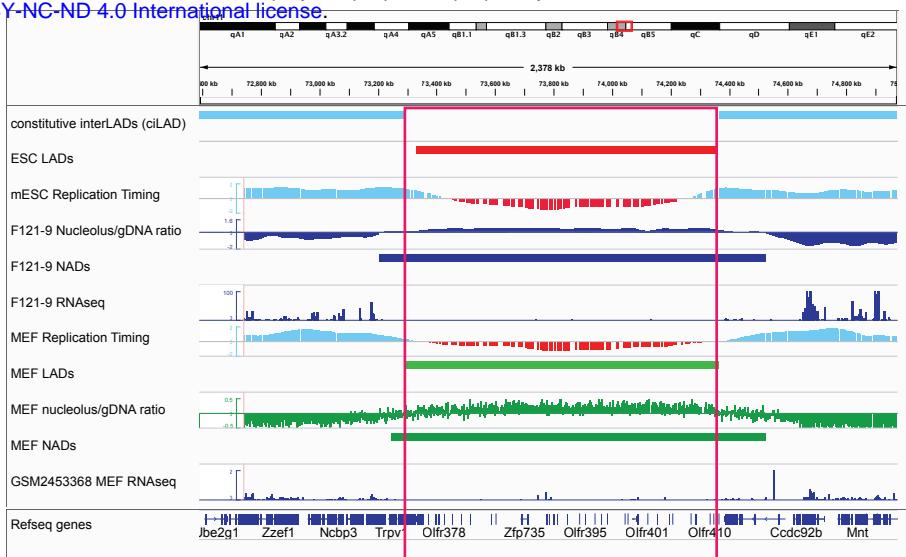
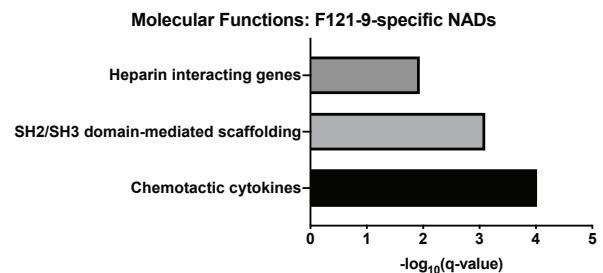
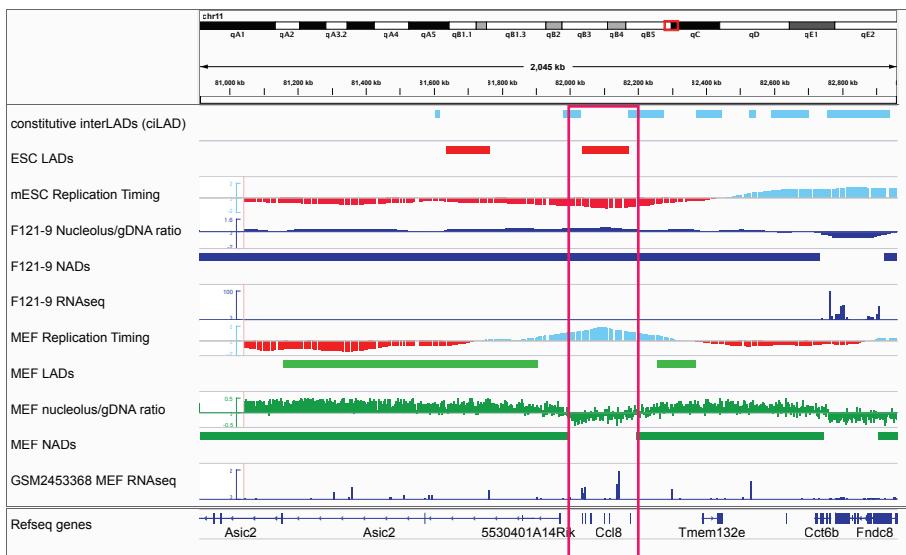
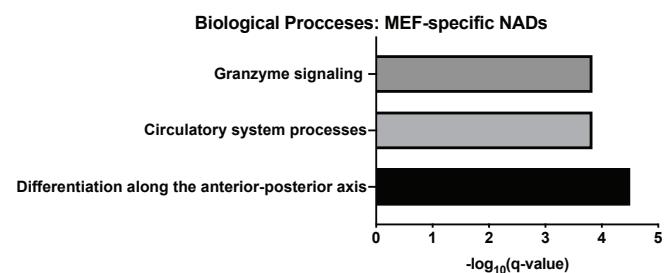
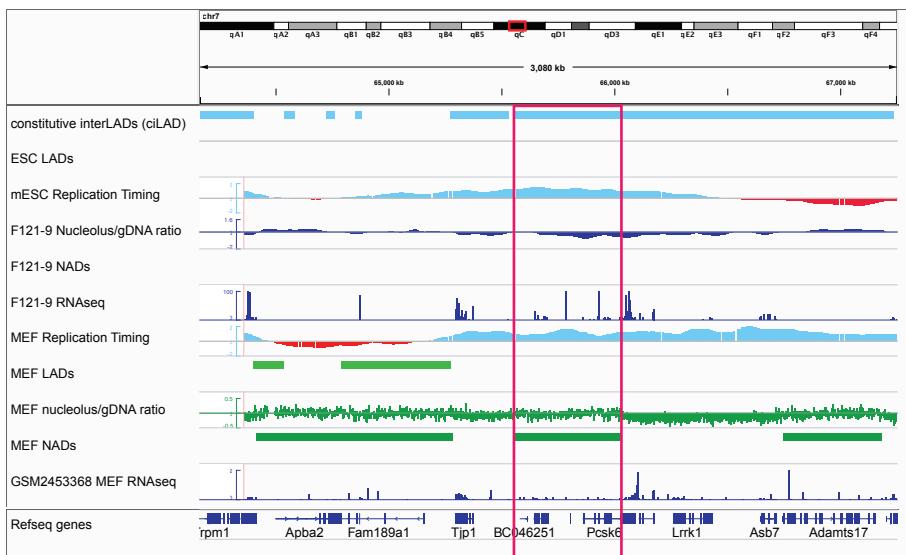


Figure 7


A.


B.


C.


D.

E.

F.

