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Abstract

Thousands of genomic structural variants segregate in the human population and can impact
phenotypic traits and diseases. Their identification in whole-genome sequence data of large
cohorts is a major computational challenge. Here we present PopDel, which identifies and
genotypes deletions of about 500 to at least 10,000 bp in length in many genomes jointly.
PopDel scales to tens of thousands of genomes as demonstrated by our evaluation on data
of up to 49,962 genomes. Compared to previous tools, PopDel reduces the computational
time needed to analyze 150 genomes from weeks to days. The deletions detected by
PopDel in a single sample show a large overlap with high-confidence reference call sets. On
data of up to 6,794 trios, inheritance patterns suggest a low false positive rate at a high
recall. PopDel reliably reports common, rare and de novo deletions and the deletions reflect
reported population structure. Therefore, PopDel enables routine scans for deletions in

large-scale sequencing studies.
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Introduction

Comprehensive and reliable collections of genetic variation are a foundation for research on
human diversity and disease!. When the collections are available for a population or disease
cohort, they facilitate a wide range of studies investigating mutation rates®™*, mutational
mechanisms®’, functional consequences of variants®19, ancestry relationships!, disease
risks'?, or treatment options®®. Due to increased throughput and decreased cost, whole-
genome sequencing (WGS) is now performed on cohorts of thousands of individuals. This
includes sequencing at the population level in Iceland*, the United Kingdom?®, or Crete'® as
well as sequencing of large cohorts for specific diseases, such as autism?’ or asthma?®, and
in the general health research context in projects like GnomAD!®?° or TopMed?. To create
collections of genetic variation, the data from these large numbers of individuals needs to be
integrated. The most direct way of achieving this is done in joint variant calling approaches,
which analyze the data from many individuals together and infer the variants with genotypes
directly from the input data.

For single nucleotide variants (SNVs) and small insertions/deletions (indels), joint calling has
become the state of the art with tools that scale to tens of thousands of individuals??>%. For
structural variants (SVs), the analysis of increasingly large numbers of individuals remains a
major bioinformatic challenge?*. Jointly detecting SVs in up to hundreds of individuals is a
great achievement of previous projects and tools?>2®. For larger cohorts, catalogues of SVs
are generally created by first analyzing the data of each individual separately or in small
subsets of individuals, subsequently merging the resulting call sets and, finally, determining
genotypes for all individuals on the merged call set?”-%8, In this process, the aligned read data
is typically accessed at least twice, for detecting and genotyping SVs, requiring substantial
computational resources. In addition, the merging of SV call sets from different individuals is
often arbitrary when the same SV is detected with shifted positions in several individuals
2930 Furthermore, variants that are only weakly supported by the data may not be
discovered with this approach. A joint SV detection approach simplifies the calling process,
is computationally more efficient if accessing the large amounts of input data only once,
eliminates the need for an error-prone variant merging step, and may reveal weakly
supported variants if carried by several individuals as the support accumulates across

individuals.

To overcome current limitations of SV callers, we introduce a joint calling approach for
deletions of a few hundred up to tens of thousands of base pairs in length. The approach is
specifically designed for large cohorts and is, to our knowledge, the first joint approach for

SV discovery that scales to tens of thousands of individuals. Nevertheless, it can also be
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applied to a single individual or small numbers of individuals, where it achieves comparable

accuracy to widely-used deletion callers.

Results
Computational approach for joint deletion calling

Deletions can manifest themselves in the reference alignment of short-read sequences as
local drops in read depth, changes in the distance between the alignment of two reads in a
pair, and split-aligned reads®!. The main focus of our joint deletion calling approach is on
local changes in the read pair alignment distance compared to the genome-wide distribution
of read pair alignment distances. This focus has the advantage that we can discover smaller
deletions than read depth approaches while being more computationally efficient than
approaches that consider split-aligned reads®2.

To achieve scalability to very large numbers of individuals, our approach implemented in the
PopDel program consists of two steps: A profiling step, which reduces the aligned input
sequencing read data per individual into a small read pair profile, followed by a joint calling
step, which takes as input the read pair profiles and outputs deletion calls with genotypes
across all individuals (Figure 1, Methods). This two-step design is reminiscent of joint calling
of small variants in GATK?? and CNV calling approaches that are based on read depth
profiles®*=34, Our read pair profiles contain an overall distribution of read pair distances as
well as alignment start positions and distances of all read pairs that match certain quality
criteria (Supplementary Note). The joint calling step processes these profiles of all
individuals together in small genomic windows (default 30 bp) to discover and genotype
deletions. For all windows, likelihood ratio tests are performed to test if deletions overlap the
window in any of the jointly analyzed individuals. In the likelihood computation we use
genotype weights to ensure that rare deletions can be found by boosting the signal in
carriers and down-weighting the contribution of non-carriers dependent on the allele
frequency. Finally, adjacent windows that support the same deletion are aggregated and

output together with genotype likelihoods of all individuals.

The values of most parameters of PopDel are calculated from the input data. The input
parameters for each likelihood ratio test are iteratively estimated (Figure 1, Methods): the
deletion length, allele frequency, genotype weights and genotype likelihoods for all

individuals for the three genotypes (non-carrier, heterozygous carrier and homozygous
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carrier). The minimum length of deletions that can be identified with our likelihood ratio test

derives from the standard deviation of the insert sizes (Supplementary Note).
Assessment of scalability on simulated data

We simulated sequencing data of 1,000 diploid individuals each carrying 2,000 deletions
with uniformly distributed allele frequencies, uniformly distributed lengths between 100 and
10,000 bp and uniformly distributed positions on chr21 (Methods). On these data, we
compared the running time, memory consumption, recall and precision of PopDel to that of
four popular SV callers that can identify SVs jointly in multiple samples (Delly®®, Lumpy?3®
followed by SVTyper® for genotyping (LUMPY+SVTyper), Manta® and GRIDSS®*). We note
that PopDel only reports deletions while other callers look for other types of SVs, too.

With a running time of 397 minutes and a peak memory of 1.5 GB for profiling and joint
calling on the simulated chr21 data of 1,000 individuals, PopDel is the fastest tool and
among the tools that require the least memory (Figure 2A,B). It is also the only tool that can
jointly discover SVs in the data of all 1,000 individuals. All other tools complete the calling on
at most 500 individuals and fail at 300 or 600 individuals due to too many open files. For
these tools, the user has to resort to single sample calling with subsequent merging and
genotyping in order to analyze more individuals. The precision and recall of most tools,
including PopDel, is high reflecting that the simulated data is easy to analyze (Figure 2C,D).
Only GRIDSS’s performance in precision and Manta’s performance in recall drop
significantly with increasing numbers of individuals indicating that these tools were primarily

designed to analyze a single sample at a time.
Running times on public benchmarking data

Next, we assessed the running time of PopDel compared to Delly and Lumpy+SVTyper on
short read WGS data for the well-studied genome of NA12878 (accession ERR194147) and
the 150 unrelated genomes in the Polaris HiSeq X Diversity Cohort (accession
PRJEB20654). With a total running time of approximately 29 minutes on a single core for
profile creation and deletion calling of the NA12878 genome, PopDel is 7 times faster than
Delly and 16 times faster than Lumpy+SVTyper (Table 1). On the data from the Polaris
Diversity Cohort, PopDel completes deletion calling within less than three days of CPU time.
As we were not able to perform joint SV detection with Delly and Lumpy with available
computational resources (Supplementary Note), we created deletion call sets by running
these tools on each sample individually with subsequent variant merging and sample-wise

genotyping. Structural variants other than deletions were removed before merging. The total
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CPU time needed by Delly for this task was almost three weeks (20 days), that of
Lumpy+SVTyper more than three months (103 days, Table 1).

Comparison to reference deletion sets from the Genome in a Bottle (GiaB) consortium

The data of the NA12878 genome allowed us to compare the calls of the three tools to
reference sets of deletion calls prepared by the GiaB Consortium*!: the short read based
reference set as well as a set of deletions called from PacBio long read data for this
genome. In all our analyses, two deletions were considered the same if they had a reciprocal
overlap of 50% or more. Deletion calls within centromeric regions were excluded in all

analyses (Methods) as calls within these regions are generally less reliable*?.

On the NA12878 data, PopDel is competitive with Delly and Lumpy+SVTyper (Figure 3,
Supplementary Note). All three tools succeed to identify the majority of deletions in the
short read reference set (716/779, 91.9%) with PopDel identifying marginally more deletions
(742, 95.3%) than Lumpy+SVTyper (732, 94%) and Delly (730, 93.7%). The fraction of
PacBio deletions identified by all three tools is much lower (820/3,831, 21.4%). This is
expected as the long PacBio reads reveal variants involving repeats that are invisible or hard
to detect in short read data. Again, PopDel identifies a similar number of PacBio deletions
(888, 23.2%) as Lumpy+SVTyper (892, 23.3%) and Delly (906, 23.6%). We note that
PopDel reports fewer deletions that are not included in the two reference call sets than Delly

and Lumpy+SVTyper, which can either be true or false positives.
Analysis of population structure based on deletions in the Polaris Diversity Cohort

In the Polaris Diversity Cohort, PopDel identifies an average of 1674 heterozygous and 205
homozygous deletions per individual (Methods). The cohort consists of three continental
groups: Africans, East Asians and Europeans. As expected, Africans carry significantly (p-
value < 2.2 - 1071¢, two-sided t-test) more deletions than Europeans and East Asians
(Figure 4A). Principal component analysis of PopDel’s deletion calls (Methods) shows a
clear separation between the three continental groups (Figure 4B) mirroring the well-known
clustering resulting from small variants?3, In particular, the first principal component
separates the African samples from the other continental groups, while the second principal
component additionally pulls apart the European and East Asian samples. These findings
indicate that the deletions detected and genotyped by PopDel well reflect the biological
differences between the continental groups. Similar results were obtained for the Delly and

Lumpy+SVTyper deletions (Supplementary Note).

Performance evaluation using data of 49 Polaris trios
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By combining the Polaris HiSeq X Kids Cohort (accession PRIJEB25009) with the Polaris
Diversity Cohort we obtain a set of 49 trios. In these trios, we evaluate the Mendelian
inheritance error rate and transmission rate of reported deletions and their genotypes
(Methods). The Mendelian inheritance error rate effectively assesses the genotyping of
common variants. The transmission rate is also meaningful for rare variants measuring how
often a deletion allele is inherited from a heterozygous parent (Supplementary Note). We
calculated the transmission rate only for those deletions found in a single trio and where one
parent is heterozygous and the other carries the reference allele on both haplotypes
(Methods).

We determined filtering criteria for all three tools to reach a Mendelian inheritance error rate
below 0.3%, which has been suggested as an acceptable error rate*? (Figure 4C, Methods).
With 1,712 deletions per trio that are consistent with Mendelian inheritance, the PopDel call
set includes 15% more consistent deletions than Delly (1,485 consistent deletions per trio)
and 40% more than Lumpy+SVTyper (1,222 consistent deletions per trio). The transmission
rate of PopDel at 50.4% is very close to the expected 50%. The transmission rate of Delly is
49.2% and that of Lumpy is 47.5%. With 3363 deletions, the number of deletions reported by
PopDel that we could use to calculate this transmission rate is 10% larger than for Delly
(3064 deletions) and 7% larger than for Lumpy+SVTyper (3157 deletions). These results
suggest that the joint approach implemented in PopDel identifies more deletions than other

approaches at a similar or better accuracy.
Application to population-scale data from Iceland

We applied PopDel to whole-genome data of 49,962 Icelanders including 6,794 parent-child
trios (Methods). The average number of deletions PopDel reports per Icelander on the 22

autosomes is 2,826 (without filtering on genotype quality). Using the same filtering criteria as
for the Polaris trios, the Mendelian inheritance error rate in the 6,794 trios is 1.2% (1,859

consistent deletions on average per trio). The transmission rate for 4,180 deletions is 49.6%.
While the Mendelian inheritance error rate is slightly higher in this large cohort than in the 49
Polaris trios, the transmission rate remains very close to the expected 50%. This implies that

the majority of errors appear as common deletions shared by several individuals.
Identification of a de novo deletion in the Polaris data

In the deletions reported by PopDel for the Polaris Kids Cohort we searched for de novo
deletions (Methods). We identified an 8901 bp deletion at chr6:93035858-93044759 in the
Spanish individual HG01763 but not in her parents (Figure 5). Given that this deletion is
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intergenic and HG01763 is part of a cohort of healthy individuals**, we expect the de novo
deletion not to be of medical relevance. The closest transcript annotations in Gencode v29%°
are the IncRNA AL138731.1 at a distance of 25.6 kb and the EPHA7 gene in a distance of
195.3 kb. Interestingly, the deletion is close to a SNV that overlaps with deletion-supporting
read pairs and allowed us to determine that the deletion haplotype was inherited from the
mother (HG01762). Further evidence for this to be a true de novo event is given by 25 SNVs
within the deletion that confirm the child to carry a single haplotype where both parents are
heterozygous. All three individuals are heterozygous for numerous SNVs upstream of the
deletion. Four of the SNVs within the deletion confirm that the event happened on a maternal
haplotype.

Discussion

Identification and genotyping of structural variation in sequencing cohorts is a major
computational challenge. To enable the analysis of the increasingly large cohorts that are
being sequenced, we developed a novel joint deletion calling approach and implemented it
in the tool PopDel. Compared to existing tools, the joint calling approach in PopDel greatly
simplifies the analysis workflow and shows tremendous improvements in the required
compute time. This indicates that PopDel scales to very large cohorts and our tests on

population-scale data from Iceland substantiate its scalability.

PopDel consists of two steps: creation of read pair profiles per sample and joint deletion
calling. The computational advantage of this two-step design is that the large input BAM files
containing aligned read data need to be processed only once. The joint calling step takes all
information needed for deletion detection and genotyping from the small read pair profiles.
This implies that additional samples can be added to the analysis without the need to access

all input BAM files again reducing the computational burden considerably.

The number of individuals studied does not severely affect the accuracy of PopDel. On data
of a single individual, PopDel is competitive with previous tools. On the Polaris Diversity
Cohort, the deletions called by PopDel recapitulate previous population genetic results
showing that Africans carry more deletions than other continental groups and confirming that
joint calling can be used to identify population structure. On the Polaris Kids Cohort, PopDel
identifies more deletions at a better transmission rate for rare variants compared to other
tools and reports a de novo deletion of about 9 kb. On Icelandic data, PopDel identifies

deletions jointly in almost 50,000 genomes maintaining an excellent transmission rate for
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rare variants. All results confirm that the joint calling approach in PopDel is accurate across

the frequency spectrum and the number of individuals analyzed.

The de novo deletion in the Polaris Kids Cohort together with the low transmission rate in the
large number of Icelandic genomes demonstrates that PopDel provides a basis for studying
rarely observed de novo deletion events. A previous study verified seven de novo deletions
in the size range addressed by PopDel in 258 healthy trios*®. Given their rate of de novo
deletions, we expect to observe 1.33 medium-size de novo deletions in the 49 Polaris trios.

This is well in line with our finding of a single de novo event.

When we tested an early version of PopDel on a selected 54 kb region covering the LDLR
gene in 43,202 Icelanders, we identified a previously unknown 2.5 kb deletion in three
closely related Icelanders shown to affect LDL levels (Bjornsson et al. manuscript in
preparation). This finding shows that PopDel is able to identify variants of biomedical interest
even if they are present at a very low allele frequency in a population-scale cohort, and it
showcases the importance of SVs in human health.
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Figure 1. The approach implemented in PopDel is divided into two steps. The first step reduces the BAM file of one individual at a time into a

small profile. The second step processes the profiles of all individuals together by sliding a window (of size 30 bp by default) over the genome

and assessing the likelihood of each window to overlap with a deletion in any individual. Sizes and allele frequencies of the deletions are

estimated iteratively. Consecutive windows are combined into a single variant call and genotypes of all individuals are output. Init, Initialization;

LR, likelihood ratio.
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Figure 2. Performance on chromosome 21 data simulated for increasing numbers of
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nolndels'. Lumpy’s results include genotyping with SVTyper. Lines stopping with an X’
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Table 1. Running times of tested tools on NA1278 and Polaris Diversity Cohort.

Running times (CPU hours)

NA12878 Polaris Diversity Cohort
(single individual) (150 individuals)
PopDel 0:29 60:17
Delly 3:24 483:35 (*)
Lumpy + SVTyper 8:03 2,467:37 (*)

(*) Single sample calling with subsequent variant merging and sample-wise genotyping.

Note that Delly and Lumpy report other types of SVs apart from deletions. These SVs were

excluded before variant merging and genotyping whenever possible.
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Methods
Read pair profile creation

PopDel reduces a coordinate-sorted BAM file of each sample into a read pair profile in a
custom binary format (Supplementary Note). This profile stores positions and insert sizes of
read pairs that align confidently (Supplementary Note) to the reference genome. In
addition, the profile file contains meta information, including a distribution of insert sizes
across the sample and an index, which allows for jumping to genomic positions in the profile.
We define the insert size as the distance between the leftmost alignment position of the
forward read to the rightmost alignment position of the reverse read in the pair extended by
any clipped bases (Supplementary Figure 1). The null distribution of insert sizes is
estimated by sampling the BAM file using pre-defined but user-configurable genomic regions
with good mappability (Supplementary Note). If more than one library has been sequenced
for a sample, PopDel writes separate profile data per read group to the profile file. An
excerpt of an example profile is shown in the Supplementary Note. The profiling vastly
reduces I/O during joint calling as the size of the profiles is on average only 1.76% of the

original BAM file size (Supplementary Note).
Likelihood ratio test for joint deletion calling

The likelihood ratio test for a given genomic window compares the relative likelihood that a
deletion of a certain length [ overlaps the window against the relative likelihood of observing
the reference haplotype:

_ L(del of length [)
B L(no del)

Let S € S be a single sample from the set of all samples S and let IS be the list of insert sizes
for all the read pairs of S overlapping the given window (Supplementary Figure 1).
Furthermore, let AS= (i — us |i € I°) be the deviations of the insert sizes from the mean ps.
We assume independence of samples and calculate the likelihood of the reference model as
the product of the samples’ likelihoods £L(G,|A®) for the reference genotype G,

L(no del) = HL(GOMS)

Ses
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For the likelihood of the deletion model we use the weighted sums of all three genotype

likelihoods in a similar product

2
L(del of length [) = HZ (ag : L(GglAS))

SES g=0

where the ag are sample- and genotype-specific weights (see below) with genotypes g €

{0,1,2} corresponding to 0, 1 or 2 variant alleles and a; + ai + a5 = 1forany S € S.

Assuming Wilks' theorem, which states that twice the logarithm of a likelihood ratio is
asymptotically y2-distributed, we calculate a cutoff for A in PopDel using 2log A ~ ¥? with a
p-value threshold of 0.01 (one-tailed) and 1 degree of freedom in order to decide if the

window overlaps a deletion.
Iterative estimation of parameters for the likelihood ratio test

The likelihood ratio test requires as input a deletion length, genotype likelihoods for all
samples and sample- and genotype-specific weights. PopDel estimates these values for
each window iteratively from the profiles together with an allele frequency that is needed for
updating the weights (Figure 1). For simplicity, the following assumes one read group per
sample but our implementation in PopDel also handles multiple read groups
(Supplementary Note). To be able to detect deletions of different lengths from different
haplotypes overlapping the same window, the iteration and likelihood ratio test are
performed for several initializations of the deletion length. Initial lengths are estimated by
identifying samples with similar third quartiles of AS via greedy clustering (Supplementary
Note). The initial allele frequencies f are set to the fraction of deletion-supporting reads
pairs of all samples in the window (Supplementary Note). To calculate the genotype
likelihoods of the three genotypes G,, G; and G, of a single sample S, PopDel transforms the
insert size histogram of S to reflect how many read pairs with a given insert size deviation

8 € A’ are expected to overlap a window of size w (Supplementary Note). Let HS(8) be
the resulting relative likelihood of observing a read pair with insert size deviation §. We call a
deviation informative if H5(§ —eg) =2 -HS(§—1)or 2-HS(6 —e5) < H5(§ — 1), and
define A% < 4° to be the set of informative deviations. Furthermore, ¢, is a sample-specific
reference shift (Supplementary Note) that accounts for local biases of the data such as GC-

content*’48,
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PopDel calculates the likelinoods £(G,|AS) as

LGols%) = | [ o6 - €9

8€4s
S |4%] k (|25]-k) S s
LGIa9) = (1) =m0 [ | max(H9(5 - e, H5(5 - D)
S€AS
LGla9) = | [ #6-0
S€AS
where we choose p = 0.4 and k amounts to the number of deviations § € A% for which
HS5(6 —1) > H5(6 — €5).

The sample- and genotype-specific weights ag are designed to give low weight to samples

with a small likelihood for the genotype and a high weight to those with a good one and
make it more likely to observe a carrier genotype when the allele frequency is high:

5 L(G41A%) - £(f, Gy)
’ j=0 (L(GJIAS) - L(f, Gj))

with L(f,G,) as
L(f,Go) = (1= f)?
L(f,G) =2fA~-f)
L(f,62) = f*

Given the weights, the allele frequency f is updated using:

new _ 1 . S ) S
f _lel (a1+ aZ)

SES

To update the deletion length [, probabilities Pfe(S) reflecting that a given insert size

deviation ¢ resulted from a distribution shifted by [ rather than by €5 are calculated as
HS(5 -1

HS(6 —€5) + HS(6 — 1)

and used to update [ jointly across all samples as the weighted sum over all insert size

Pl‘?es(é‘) = af ’ + ag

deviations:

ZSESZ&eAS - PI,SES(S)
2ses DsenS Pﬁes((S)

[new —

The iteration for parameter estimation terminates when both the allele frequency and
deletion length converge or additional termination conditions are met, e.g. reaching the

maximum number of iterations (default 15) (Supplementary Note). A start position of the
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potential deletion is estimated during above calculations by keeping track of the rightmost
ends of the forward reads of read pairs whose § supports the deletion estimate

(Supplementary Note).
Merging of consecutive deletion windows

To provide the user with a non-redundant list of deletion variants, adjacent windows that
support the same deletion need to be merged. PopDel sorts all windows for which the null
hypothesis of the likelihood ratio test can be rejected in ascending order of the predicted
deletion start position, deletion length and descending deletion likelihood ratio. Moving over
this sorted list of windows wy, wy, ..., @ window w;, i > 0 is merged with another window
WLk, k > 0 if their start positions and deletion sizes are similar enough (Supplementary
Note). When no more windows can be merged with w;, a deletion is output with a start
position and length calculated as the median over all merged windows. Merging continues

with the next window w;, ;1 that has not been merged with any other window so far.
Deletion output

We report the genotype with the best mean PHRED-scaled genotype likelihood across the
merged windows of one sample in the output. Samples without sufficient data or much
higher than average coverage at the locus are not genotyped (Supplementary Note). The
allele frequency is estimated by counting the number of alleles predicted to carry the variant,
divided by the total number of genotyped alleles. We calculate a genotype quality as the

difference of the best and second best PHRED-scaled genotype likelihoods.
Simulation of chr21 data

We simulated deletion variants with uniformly distributed length between 100 and 10,000 bp,
uniformly distributed positions on chromosome 21 of GRCh38 and uniformly distributed
allele frequency between 0 and 1. Regions containing ‘N’s were excluded and deletion were
required to be at least 1000 bp apart. Using this set of deletions, we created 2,000
haplotypes by sampling deletions according to their allele frequency and inserting them into
chromosome 21 of GRCh38. The haplotypes were combined into 1,000 diploid samples. The
samples were subsequently used to simulate NGS reads with art_illumina® and the reads
aligned to GRCh38 using BWA-mem?®.

Setup of SV callers on simulated data
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PopDel (1.1.0) and Manta (1.4.0) were run with an option to limit the calling to chr21. Delly
(0.7.8) was applied once with default parameters and once without small indel realignment
(-n). GRIDSS (1.8.1) was provided a maximum heap size of 8 GB. Lumpy (0.2.13) was
applied once only relying on lumpyexpress and once with prior extraction of split reads and
discordant read pairs using samtools (1.7) (subsequently called multi-step). Joint genotyping
of the Lumpy calls was performed using SVtyper (0.6.0). All tools were applied on increasing
numbers of BAM files, up to 1000 or until failure.

Evaluation on simulated data

Running time and memory consumption were measured on a dedicated work station (Intel
Xeon E5-1630v3 8x3.5GHz, 64GB RAM) using ‘/usr/bin/time’. As PopDel and Lumpy consist
of multiple steps, the running times are the sum of the time taken by all steps from the BAM
files to the VCF file. The memory consumption of these tools is stated as the maximum
memory consumption of all steps. As GRIDSS produces two break-ends per deletion,
corresponding pairs of break-ends were collapsed into a single call and “LOW_QUAL”
variants were removed. The calls of Lumpy and Delly were not filtered for variants that had
the filter field set to “PASS” as this would have had a negative impact on their performance.
A call and a simulated variant were considered to be the same if they had a reciprocal
overlap of at least 50%. Each simulated variant is only allowed to be matched with one

predicted variant. See Supplementary Note for results using alternative equality criteria.
Calling and filtering on real data

All samples were mapped to the human reference genome (GRCh38)°! using BWA-
mem>253, |f not stated otherwise, calling was performed jointly on all samples with default
options and, if possible, limited to the reference sequence of the 22 autosomes. On
NA12878 we further included chromosome X. Variants were filtered to the size range from
500 to 10,000 bp. The Polaris data and Icelandic data was filtered to high-confidence calls,
where we kept only deletions with genotype quality scores above a fixed threshold. This
threshold was chosen once per tool on the Polaris Kids Cohort such that the Mendelian
inheritance error rate dropped below 0.3%%2: 27 for PopDel, 28 for Delly and 104 for
Lumpy+SVTYPER. The threshold for PopDel was set to 50 to search for de novo deletions.

The sample order of the Polaris Diversity and Kids Cohorts was shuffled but the same for all
tools and no tool was provided pedigree information. Joint calling with Delly (-n) and Lumpy
(multi-step) did not finish within 4 weeks. Therefore, they were run using single sample

calling with merging and sample-wise re-genotyping (Supplementary Note). Calls other
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than deletions were removed early in Delly’s and Lumpy’s pipelines to reduce running time
(Supplementary Note). Lumpy was run as lumpyexpress. Variants genotyped as 0/0 in all
samples (as found in Lumpy+SVTyper’'s output) were removed. Delly (-n) variants were only
considered if they had the ‘FILTER’ field set to ‘PASS’. Significance of the difference in the
number of variant alleles between continental groups was assessed using the R-function
t.test with var.equal=FALSE.

Reference call sets for NA12878

GiaB short read and PacBio reference call sets were downloaded (see URLS), filtered for
deletion variants and liftover from GRCh37 to GRCh38 was performed using the NCBI
Genome Remapping Service (see URLS). All contigs except for chromosomes 1 to 22 and
chromosome X were removed and VCF-to-BED conversion was performed for the PacBio
callset.

Filtering of centromeric regions

Centromeric regions for GRCh38 were obtained through the UCSC table browser (“group:
Mapping and Sequencing”, “track: Centromeres”). Any variants in a reference set or call set
having any overlap with a region in the BED file of centromeres were removed. Overlap was

determined using bedtools intersect® (Supplementary Note).
Principal Component Analysis

Predicted genotypes of the Polaris Diversity Cohort were converted into a variant/sample
matrix containing variant allele counts. Uninformative variants and those in linkage
disequilibrium were removed (Supplementary Note). PCA was computed using the R-

function prcomp.
Mendelian inheritance error rate and transmission rate

The Mendelian inheritance error rate was calculated on chromosomes 1 to 22. Duplicates
within one call set were removed by removing all calls that had at least 50% reciprocal
overlap with an upstream call. For all reported deletions, the three genotypes in each trio
were inspected for Mendelian consistency (Supplementary Note). Trios with one or more
missing genotypes and trios with all three samples genotyped as 0/0 were ignored. For
calculating the transmission rate, we considered only deletions that were called in a single
trio, one parent is a heterozygous carrier and the other parent carries the reference allele on
both haplotypes. The transmission rate is the number of deletion alleles transmitted from the

heterozygous parents to the children divided by the number of considered deletions.
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Sequence data from 49,962 Icelanders

DNA was isolated from both blood and buccal samples. All participating subjects signed
informed consent. The personal identities of the participants and biological samples were
encrypted by a third-party system approved and monitored by the Data Protection Authority.
The National Bioethics Committee and the Data Protection Authority in Iceland approved
these studies. The Icelandic samples were whole-genome sequenced at deCODE Genetics
using Illlumina GAllx, HiSeq, HiSegX and NovaSeq sequencing machines, and sequences
were aligned to the human reference genome (GRCh38)%! using BWA-mem®23, Details of
the sample preparation, paired-end sequencing, read processing and alignment, and
selection of the final set of BAM files have been previously described®.
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