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Abstract  

Thousands of genomic structural variants segregate in the human population and can impact 

phenotypic traits and diseases. Their identification in whole-genome sequence data of large 

cohorts is a major computational challenge. Here we present PopDel, which identifies and 

genotypes deletions of about 500 to at least 10,000 bp in length in many genomes jointly. 

PopDel scales to tens of thousands of genomes as demonstrated by our evaluation on data 

of up to 49,962 genomes. Compared to previous tools, PopDel reduces the computational 

time needed to analyze 150 genomes from weeks to days. The deletions detected by 

PopDel in a single sample show a large overlap with high-confidence reference call sets. On 

data of up to 6,794 trios, inheritance patterns suggest a low false positive rate at a high 

recall. PopDel reliably reports common, rare and de novo deletions and the deletions reflect 

reported population structure. Therefore, PopDel enables routine scans for deletions in 

large-scale sequencing studies.  
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Introduction 

Comprehensive and reliable collections of genetic variation are a foundation for research on 

human diversity and disease1. When the collections are available for a population or disease 

cohort, they facilitate a wide range of studies investigating mutation rates2–4, mutational 

mechanisms5–7, functional consequences of variants8–10, ancestry relationships11, disease 

risks12, or treatment options13. Due to increased throughput and decreased cost, whole-

genome sequencing (WGS) is now performed on cohorts of thousands of individuals. This 

includes sequencing at the population level in Iceland14, the United Kingdom15, or Crete16 as 

well as sequencing of large cohorts for specific diseases, such as autism17 or asthma18, and 

in the general health research context in projects like GnomAD19,20 or TopMed21. To create 

collections of genetic variation, the data from these large numbers of individuals needs to be 

integrated. The most direct way of achieving this is done in joint variant calling approaches, 

which analyze the data from many individuals together and infer the variants with genotypes 

directly from the input data. 

For single nucleotide variants (SNVs) and small insertions/deletions (indels), joint calling has 

become the state of the art with tools that scale to tens of thousands of individuals22,23. For 

structural variants (SVs), the analysis of increasingly large numbers of individuals remains a 

major bioinformatic challenge24. Jointly detecting SVs in up to hundreds of individuals is a 

great achievement of previous projects and tools25,26. For larger cohorts, catalogues of SVs 

are generally created by first analyzing the data of each individual separately or in small 

subsets of individuals, subsequently merging the resulting call sets and, finally, determining 

genotypes for all individuals on the merged call set27,28. In this process, the aligned read data 

is typically accessed at least twice, for detecting and genotyping SVs, requiring substantial 

computational resources. In addition, the merging of SV call sets from different individuals is 

often arbitrary when the same SV is detected with shifted positions in several individuals 

29,30. Furthermore, variants that are only weakly supported by the data may not be 

discovered with this approach. A joint SV detection approach simplifies the calling process, 

is computationally more efficient if accessing the large amounts of input data only once, 

eliminates the need for an error-prone variant merging step, and may reveal weakly 

supported variants if carried by several individuals as the support accumulates across 

individuals. 

To overcome current limitations of SV callers, we introduce a joint calling approach for 

deletions of a few hundred up to tens of thousands of base pairs in length. The approach is 

specifically designed for large cohorts and is, to our knowledge, the first joint approach for 

SV discovery that scales to tens of thousands of individuals. Nevertheless, it can also be 
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applied to a single individual or small numbers of individuals, where it achieves comparable 

accuracy to widely-used deletion callers. 

 

Results 

Computational approach for joint deletion calling 

Deletions can manifest themselves in the reference alignment of short-read sequences as 

local drops in read depth, changes in the distance between the alignment of two reads in a 

pair, and split-aligned reads31. The main focus of our joint deletion calling approach is on 

local changes in the read pair alignment distance compared to the genome-wide distribution 

of read pair alignment distances. This focus has the advantage that we can discover smaller 

deletions than read depth approaches while being more computationally efficient than 

approaches that consider split-aligned reads32. 

To achieve scalability to very large numbers of individuals, our approach implemented in the 

PopDel program consists of two steps: A profiling step, which reduces the aligned input 

sequencing read data per individual into a small read pair profile, followed by a joint calling 

step, which takes as input the read pair profiles and outputs deletion calls with genotypes 

across all individuals (Figure 1, Methods). This two-step design is reminiscent of joint calling 

of small variants in GATK22 and CNV calling approaches that are based on read depth 

profiles33,34. Our read pair profiles contain an overall distribution of read pair distances as 

well as alignment start positions and distances of all read pairs that match certain quality 

criteria (Supplementary Note). The joint calling step processes these profiles of all 

individuals together in small genomic windows (default 30 bp) to discover and genotype 

deletions. For all windows, likelihood ratio tests are performed to test if deletions overlap the 

window in any of the jointly analyzed individuals. In the likelihood computation we use 

genotype weights to ensure that rare deletions can be found by boosting the signal in 

carriers and down-weighting the contribution of non-carriers dependent on the allele 

frequency. Finally, adjacent windows that support the same deletion are aggregated and 

output together with genotype likelihoods of all individuals. 

The values of most parameters of PopDel are calculated from the input data. The input 

parameters for each likelihood ratio test are iteratively estimated (Figure 1, Methods): the 

deletion length, allele frequency, genotype weights and genotype likelihoods for all 

individuals for the three genotypes (non-carrier, heterozygous carrier and homozygous 
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carrier). The minimum length of deletions that can be identified with our likelihood ratio test 

derives from the standard deviation of the insert sizes (Supplementary Note). 

Assessment of scalability on simulated data 

We simulated sequencing data of 1,000 diploid individuals each carrying 2,000 deletions 

with uniformly distributed allele frequencies, uniformly distributed lengths between 100 and 

10,000 bp and uniformly distributed positions on chr21 (Methods). On these data, we 

compared the running time, memory consumption, recall and precision of PopDel to that of 

four popular SV callers that can identify SVs jointly in multiple samples (Delly35, Lumpy36 

followed by SVTyper37 for genotyping (LUMPY+SVTyper), Manta38 and GRIDSS39). We note 

that PopDel only reports deletions while other callers look for other types of SVs, too. 

With a running time of 397 minutes and a peak memory of 1.5 GB for profiling and joint 

calling on the simulated chr21 data of 1,000 individuals, PopDel is the fastest tool and 

among the tools that require the least memory (Figure 2A,B). It is also the only tool that can 

jointly discover SVs in the data of all 1,000 individuals. All other tools complete the calling on 

at most 500 individuals and fail at 300 or 600 individuals due to too many open files. For 

these tools, the user has to resort to single sample calling with subsequent merging and 

genotyping in order to analyze more individuals. The precision and recall of most tools, 

including PopDel, is high reflecting that the simulated data is easy to analyze (Figure 2C,D). 

Only GRIDSS’s performance in precision and Manta’s performance in recall drop 

significantly with increasing numbers of individuals indicating that these tools were primarily 

designed to analyze a single sample at a time. 

Running times on public benchmarking data 

Next, we assessed the running time of PopDel compared to Delly and Lumpy+SVTyper on 

short read WGS data for the well-studied genome of NA12878 (accession ERR194147) and 

the 150 unrelated genomes in the Polaris HiSeq X Diversity Cohort (accession 

PRJEB20654). With a total running time of approximately 29 minutes on a single core for 

profile creation and deletion calling of the NA12878 genome, PopDel is 7 times faster than 

Delly and 16 times faster than Lumpy+SVTyper (Table 1). On the data from the Polaris 

Diversity Cohort, PopDel completes deletion calling within less than three days of CPU time. 

As we were not able to perform joint SV detection with Delly and Lumpy with available 

computational resources (Supplementary Note), we created deletion call sets by running 

these tools on each sample individually with subsequent variant merging and sample-wise 

genotyping. Structural variants other than deletions were removed before merging. The total 
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CPU time needed by Delly for this task was almost three weeks (20 days), that of 

Lumpy+SVTyper more than three months (103 days, Table 1).  

Comparison to reference deletion sets from the Genome in a Bottle (GiaB) consortium 

The data of the NA12878 genome allowed us to compare the calls of the three tools to 

reference sets of deletion calls prepared by the GiaB Consortium41: the short read based 

reference set as well as a set of deletions called from PacBio long read data for this 

genome. In all our analyses, two deletions were considered the same if they had a reciprocal 

overlap of 50% or more. Deletion calls within centromeric regions were excluded in all 

analyses (Methods) as calls within these regions are generally less reliable42. 

On the NA12878 data, PopDel is competitive with Delly and Lumpy+SVTyper (Figure 3, 

Supplementary Note). All three tools succeed to identify the majority of deletions in the 

short read reference set (716/779, 91.9%) with PopDel identifying marginally more deletions 

(742, 95.3%) than Lumpy+SVTyper (732, 94%) and Delly (730, 93.7%). The fraction of 

PacBio deletions identified by all three tools is much lower (820/3,831, 21.4%). This is 

expected as the long PacBio reads reveal variants involving repeats that are invisible or hard 

to detect in short read data. Again, PopDel identifies a similar number of PacBio deletions 

(888, 23.2%) as Lumpy+SVTyper (892, 23.3%) and Delly (906, 23.6%). We note that 

PopDel reports fewer deletions that are not included in the two reference call sets than Delly 

and Lumpy+SVTyper, which can either be true or false positives.  

Analysis of population structure based on deletions in the Polaris Diversity Cohort 

In the Polaris Diversity Cohort, PopDel identifies an average of 1674 heterozygous and 205 

homozygous deletions per individual (Methods). The cohort consists of three continental 

groups: Africans, East Asians and Europeans. As expected, Africans carry significantly (p-

value < 2.2 ⋅ 10−16, two-sided t-test) more deletions than Europeans and East Asians 

(Figure 4A). Principal component analysis of PopDel’s deletion calls (Methods) shows a 

clear separation between the three continental groups (Figure 4B) mirroring the well-known 

clustering resulting from small variants25,43. In particular, the first principal component 

separates the African samples from the other continental groups, while the second principal 

component additionally pulls apart the European and East Asian samples. These findings 

indicate that the deletions detected and genotyped by PopDel well reflect the biological 

differences between the continental groups. Similar results were obtained for the Delly and 

Lumpy+SVTyper deletions (Supplementary Note).  

Performance evaluation using data of 49 Polaris trios 
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By combining the Polaris HiSeq X Kids Cohort (accession PRJEB25009) with the Polaris 

Diversity Cohort we obtain a set of 49 trios. In these trios, we evaluate the Mendelian 

inheritance error rate and transmission rate of reported deletions and their genotypes 

(Methods). The Mendelian inheritance error rate effectively assesses the genotyping of 

common variants. The transmission rate is also meaningful for rare variants measuring how 

often a deletion allele is inherited from a heterozygous parent (Supplementary Note). We 

calculated the transmission rate only for those deletions found in a single trio and where one 

parent is heterozygous and the other carries the reference allele on both haplotypes 

(Methods). 

We determined filtering criteria for all three tools to reach a Mendelian inheritance error rate 

below 0.3%, which has been suggested as an acceptable error rate42 (Figure 4C, Methods). 

With 1,712 deletions per trio that are consistent with Mendelian inheritance, the PopDel call 

set includes 15% more consistent deletions than Delly (1,485 consistent deletions per trio) 

and 40% more than Lumpy+SVTyper (1,222 consistent deletions per trio). The transmission 

rate of PopDel at 50.4% is very close to the expected 50%. The transmission rate of Delly is 

49.2% and that of Lumpy is 47.5%. With 3363 deletions, the number of deletions reported by 

PopDel that we could use to calculate this transmission rate is 10% larger than for Delly 

(3064 deletions) and 7% larger than for Lumpy+SVTyper (3157 deletions). These results 

suggest that the joint approach implemented in PopDel identifies more deletions than other 

approaches at a similar or better accuracy. 

Application to population-scale data from Iceland 

We applied PopDel to whole-genome data of 49,962 Icelanders including 6,794 parent-child 

trios (Methods). The average number of deletions PopDel reports per Icelander on the 22 

autosomes is 2,826 (without filtering on genotype quality). Using the same filtering criteria as 

for the Polaris trios, the Mendelian inheritance error rate in the 6,794 trios is 1.2% (1,859 

consistent deletions on average per trio). The transmission rate for 4,180 deletions is 49.6%. 

While the Mendelian inheritance error rate is slightly higher in this large cohort than in the 49 

Polaris trios, the transmission rate remains very close to the expected 50%. This implies that 

the majority of errors appear as common deletions shared by several individuals. 

Identification of a de novo deletion in the Polaris data 

In the deletions reported by PopDel for the Polaris Kids Cohort we searched for de novo 

deletions (Methods). We identified an 8901 bp deletion at chr6:93035858-93044759 in the 

Spanish individual HG01763 but not in her parents (Figure 5). Given that this deletion is 
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intergenic and HG01763 is part of a cohort of healthy individuals44, we expect the de novo 

deletion not to be of medical relevance. The closest transcript annotations in Gencode v2945 

are the lncRNA AL138731.1 at a distance of 25.6 kb and the EPHA7 gene in a distance of 

195.3 kb. Interestingly, the deletion is close to a SNV that overlaps with deletion-supporting 

read pairs and allowed us to determine that the deletion haplotype was inherited from the 

mother (HG01762). Further evidence for this to be a true de novo event is given by 25 SNVs 

within the deletion that confirm the child to carry a single haplotype where both parents are 

heterozygous. All three individuals are heterozygous for numerous SNVs upstream of the 

deletion. Four of the SNVs within the deletion confirm that the event happened on a maternal 

haplotype. 

 

Discussion 

Identification and genotyping of structural variation in sequencing cohorts is a major 

computational challenge. To enable the analysis of the increasingly large cohorts that are 

being sequenced, we developed a novel joint deletion calling approach and implemented it 

in the tool PopDel. Compared to existing tools, the joint calling approach in PopDel greatly 

simplifies the analysis workflow and shows tremendous improvements in the required 

compute time. This indicates that PopDel scales to very large cohorts and our tests on 

population-scale data from Iceland substantiate its scalability. 

PopDel consists of two steps: creation of read pair profiles per sample and joint deletion 

calling. The computational advantage of this two-step design is that the large input BAM files 

containing aligned read data need to be processed only once. The joint calling step takes all 

information needed for deletion detection and genotyping from the small read pair profiles. 

This implies that additional samples can be added to the analysis without the need to access 

all input BAM files again reducing the computational burden considerably. 

The number of individuals studied does not severely affect the accuracy of PopDel. On data 

of a single individual, PopDel is competitive with previous tools. On the Polaris Diversity 

Cohort, the deletions called by PopDel recapitulate previous population genetic results 

showing that Africans carry more deletions than other continental groups and confirming that 

joint calling can be used to identify population structure. On the Polaris Kids Cohort, PopDel 

identifies more deletions at a better transmission rate for rare variants compared to other 

tools and reports a de novo deletion of about 9 kb. On Icelandic data, PopDel identifies 

deletions jointly in almost 50,000 genomes maintaining an excellent transmission rate for 
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rare variants. All results confirm that the joint calling approach in PopDel is accurate across 

the frequency spectrum and the number of individuals analyzed.  

The de novo deletion in the Polaris Kids Cohort together with the low transmission rate in the 

large number of Icelandic genomes demonstrates that PopDel provides a basis for studying 

rarely observed de novo deletion events. A previous study verified seven de novo deletions 

in the size range addressed by PopDel in 258 healthy trios46. Given their rate of de novo 

deletions, we expect to observe 1.33 medium-size de novo deletions in the 49 Polaris trios. 

This is well in line with our finding of a single de novo event. 

When we tested an early version of PopDel on a selected 54 kb region covering the LDLR 

gene in 43,202 Icelanders, we identified a previously unknown 2.5 kb deletion in three 

closely related Icelanders shown to affect LDL levels (Björnsson et al. manuscript in 

preparation). This finding shows that PopDel is able to identify variants of biomedical interest 

even if they are present at a very low allele frequency in a population-scale cohort, and it 

showcases the importance of SVs in human health. 

 

URLs 

PopDel source code, https://github.com/kehrlab/PopDel; Scripts used for running the tools 

and evaluation, https://github.com/kehrlab/PopDel-scripts; Long read reference call set, 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/NA12878.

sorted.vcf.gz; Short read reference call set, ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/
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deduplicated_deletions.bed; NCBI genome remapping service, https://www.ncbi.nlm.nih.gov/
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Figure 1. The approach implemented in PopDel is divided into two steps. The first step reduces the BAM file of one individual at a time into a 

small profile. The second step processes the profiles of all individuals together by sliding a window (of size 30 bp by default) over the genome 

and assessing the likelihood of each window to overlap with a deletion in any individual. Sizes and allele frequencies of the deletions are 

estimated iteratively. Consecutive windows are combined into a single variant call and genotypes of all individuals are output. Init, Initialization; 

LR, likelihood ratio. 
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Figure 2. Performance on chromosome 21 data simulated for increasing numbers of 

samples. Delly and Lumpy were applied in two settings: Lumpy (solid line) and Lumpy-

Express (dashed line), and Delly without (solid line) and with (dashed line) the option '--

noIndels'. Lumpy’s results include genotyping with SVTyper. Lines stopping with an ‘x’ 

before 1,000 samples signal that the respective tool crashes when trying to process an 

additional 100 samples.  
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Figure 3. Call set overlap for PopDel, Delly and Lumpy on NA12878 with different reference 

call sets. (A) Overlap with GiaB short read call set. (B) Overlap with PacBio long read call 

set. 
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Figure 4. (A) Number of deletions per sample by continental group as called by PopDel on the Polaris Diversity Cohort. All data points are 

shown in color. Boxes indicate the first and third quartile, the center line indicates the median, whiskers extend to the most extreme data points 

that are not more than 1.5 interquartile ranges (IQR) away from the median, and notches end at +/-1.58 IQR/sqrt(n) where n is the number of 

data points. (B) Principal component analysis of PopDel’s calls from the Polaris Diversity Cohort. (C) Mendelian inheritance error rate by 

number of consistent deletion sites per trio for the Polaris Kids Cohort. Dashed lines indicate a call sets where duplicate calls ( 50% reciprocal 

overlap) are removed.  
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Figure 5. De-novo deletion identified by PopDel in one trio of the Polaris Kids Cohort. The child (HG0173, bottom) is carrier of a heterozygous 

deletion not present in either parent. The arrows mark the SNPs that allow the phasing of the haplotypes in the child.  
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Table 1. Running times of tested tools on NA1278 and Polaris Diversity Cohort.  

 
Running times (CPU hours) 

 NA12878 
(single individual) 

Polaris Diversity Cohort 
(150 individuals) 

PopDel 0:29 60:17 

Delly 3:24 483:35 (*) 

Lumpy + SVTyper 8:03 2,467:37 (*) 

(*) Single sample calling with subsequent variant merging and sample-wise genotyping. 

Note that Delly and Lumpy report other types of SVs apart from deletions. These SVs were 

excluded before variant merging and genotyping whenever possible. 
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Methods 

Read pair profile creation 

PopDel reduces a coordinate-sorted BAM file of each sample into a read pair profile in a 

custom binary format (Supplementary Note). This profile stores positions and insert sizes of 

read pairs that align confidently (Supplementary Note) to the reference genome. In 

addition, the profile file contains meta information, including a distribution of insert sizes 

across the sample and an index, which allows for jumping to genomic positions in the profile. 

We define the insert size as the distance between the leftmost alignment position of the 

forward read to the rightmost alignment position of the reverse read in the pair extended by 

any clipped bases (Supplementary Figure 1). The null distribution of insert sizes is 

estimated by sampling the BAM file using pre-defined but user-configurable genomic regions 

with good mappability (Supplementary Note). If more than one library has been sequenced 

for a sample, PopDel writes separate profile data per read group to the profile file. An 

excerpt of an example profile is shown in the Supplementary Note. The profiling vastly 

reduces I/O during joint calling as the size of the profiles is on average only 1.76% of the 

original BAM file size (Supplementary Note). 

Likelihood ratio test for joint deletion calling 

The likelihood ratio test for a given genomic window compares the relative likelihood that a 

deletion of a certain length 𝑙 overlaps the window against the relative likelihood of observing 

the reference haplotype: 

Λ =
ℒ(del of length 𝑙)

ℒ(no del)
 

Let 𝑆 ∈ 𝒮 be a single sample from the set of all samples 𝒮 and let 𝐼𝑆 be the list of insert sizes 

for all the read pairs of 𝑆 overlapping the given window (Supplementary Figure 1). 

Furthermore, let ∆𝑆= (𝑖 − 𝜇𝑆 |𝑖 ∈ 𝐼𝑆) be the deviations of the insert sizes from the mean 𝜇𝑆. 

We assume independence of samples and calculate the likelihood of the reference model as 

the product of the samples’ likelihoods ℒ(𝐺0|ΔS) for the reference genotype 𝐺0 

ℒ(no del) = ∏ ℒ(𝐺0|Δ𝑆)

S∈𝒮

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2019. ; https://doi.org/10.1101/740225doi: bioRxiv preprint 

https://doi.org/10.1101/740225
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

For the likelihood of the deletion model we use the weighted sums of all three genotype 

likelihoods in a similar product 

ℒ(del of length 𝑙) = ∏ ∑ (𝑎𝑔
𝑆 ⋅ ℒ(𝐺𝑔|Δ𝑆))

2

𝑔=0𝑆∈𝒮

 

where the 𝑎𝑔
𝑆 are sample- and genotype-specific weights (see below) with genotypes 𝑔 ∈

{0,1,2} corresponding to 0, 1 or 2 variant alleles and 𝑎0
𝑆  + 𝑎1

𝑆  + 𝑎2
𝑆  =  1 for any 𝑆 ∈ 𝒮. 

Assuming Wilks' theorem, which states that twice the logarithm of a likelihood ratio is 

asymptotically 𝜒2-distributed, we calculate a cutoff for Λ in PopDel using 2 log Λ ~ 𝜒2 with a 

p-value threshold of 0.01 (one-tailed) and 1 degree of freedom in order to decide if the 

window overlaps a deletion. 

Iterative estimation of parameters for the likelihood ratio test 

The likelihood ratio test requires as input a deletion length, genotype likelihoods for all 

samples and sample- and genotype-specific weights. PopDel estimates these values for 

each window iteratively from the profiles together with an allele frequency that is needed for 

updating the weights (Figure 1). For simplicity, the following assumes one read group per 

sample but our implementation in PopDel also handles multiple read groups 

(Supplementary Note).  To be able to detect deletions of different lengths from different 

haplotypes overlapping the same window, the iteration and likelihood ratio test are 

performed for several initializations of the deletion length. Initial lengths are estimated by 

identifying samples with similar third quartiles of Δ𝑆 via greedy clustering (Supplementary 

Note). The initial allele frequencies 𝑓 are set to the fraction of deletion-supporting reads 

pairs of all samples in the window (Supplementary Note). To calculate the  genotype 

likelihoods of the three genotypes 𝐺0, 𝐺1 and 𝐺2 of a single sample 𝑆, PopDel transforms the 

insert size histogram of 𝑆 to reflect how many read pairs with a given insert size deviation 

𝛿 ∈ Δ𝑆 are expected to overlap a window of size 𝑤 (Supplementary Note). Let  𝐻𝑆(𝛿) be 

the resulting relative likelihood of observing a read pair with insert size deviation 𝛿. We call a 

deviation informative if  𝐻𝑆(𝛿 − 𝜖𝑆) ≥ 2 ⋅ 𝐻𝑆(𝛿 − 𝑙) or  2 ⋅ 𝐻𝑆(𝛿 − 𝜖𝑆) ≤ 𝐻𝑆(𝛿 − 𝑙), and 

define 𝛥̅𝑆 ⊆ 𝛥𝑆 to be the set of informative deviations. Furthermore, 𝜖𝑆 is a sample-specific 

reference shift (Supplementary Note) that accounts for local biases of the data such as GC-

content47,48. 
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PopDel calculates the likelihoods ℒ(𝐺𝑔|Δ𝑆) as 

ℒ(𝐺0|Δ𝑆) = ∏ 𝐻𝑆(𝛿 − ϵS)

δ∈𝛥̅𝑆

 

ℒ(𝐺1|Δ𝑆) = (
|Δ̅𝑆|

𝑘
) 𝑝𝑘(1 − 𝑝)(|𝛥̅𝑆|−𝑘) ∏ max(𝐻𝑆(𝛿 − 𝜖𝑆), 𝐻𝑆(𝛿 − 𝑙)) 

𝛿∈Δ̅𝑆

 

ℒ(𝐺2|Δ𝑆) = ∏ 𝐻𝑆(𝛿 − 𝑙)

𝛿∈Δ̅𝑆

 

where we choose 𝑝 = 0.4 and k amounts to the number of deviations 𝛿 ∈ 𝛥̅𝑆 for which 

𝐻𝑆(𝛿 − 𝑙) > 𝐻𝑆(𝛿 − 𝜖𝑆). 

The sample- and genotype-specific weights 𝑎𝑔
𝑆 are designed to give low weight to samples 

with a small likelihood for the genotype and a high weight to those with a good one and 

make it more likely to observe a carrier genotype when the allele frequency is high: 

𝑎𝑔
𝑆 =

ℒ(𝐺𝑔|Δ𝑆) ⋅ ℒ(𝑓, 𝐺𝑔)

∑ (ℒ(𝐺𝑗|Δ𝑆) ⋅ ℒ(𝑓, 𝐺𝑗))2
𝑗=0

 

with ℒ(𝑓, 𝐺𝑔) as 

ℒ(𝑓, 𝐺0) = (1 − 𝑓)2 

ℒ(𝑓, 𝐺1) = 2𝑓(1 − 𝑓) 

ℒ(𝑓, 𝐺2) = 𝑓2
 

Given the weights, the allele frequency 𝑓 is updated using: 

𝑓𝑛𝑒𝑤 =
1

2|𝒮|
⋅ ∑(𝑎1

𝑆 + 2𝑎2
𝑆)

𝑆∈𝒮

 

To update the deletion length 𝑙, probabilities 𝑃𝑙,𝜖
𝑆 (𝛿) reflecting that a given insert size 

deviation 𝛿 resulted from a distribution shifted by 𝑙 rather than by 𝜖𝑆 are calculated as 

𝑃𝑙,𝜖𝑆

𝑆 (𝛿) = 𝑎1
𝑆 ⋅

𝐻𝑆(𝛿 − 𝑙)

𝐻𝑆(𝛿 − 𝜖𝑆) + 𝐻𝑆(𝛿 − 𝑙)
+ 𝑎2

𝑆 

and used to update 𝑙 jointly across all samples as the weighted sum over all insert size 

deviations: 

𝑙𝑛𝑒𝑤 =
∑ ∑ 𝛿 ⋅ 𝑃𝑙,𝜖𝑆

𝑆 (𝛿)𝜹∈Δ𝑆 𝑆∈𝓢

∑ ∑ 𝑃𝑙,𝜖𝑆

𝑆 (𝛿)𝛿∈Δ𝑆 𝑆∈𝓢

 

The iteration for parameter estimation terminates when both the allele frequency and 

deletion length converge or additional termination conditions are met, e.g. reaching the 

maximum number of iterations (default 15) (Supplementary Note). A start position of the 
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potential deletion is estimated during above calculations by keeping track of the rightmost 

ends of the forward reads of read pairs whose 𝛿 supports the deletion estimate 

(Supplementary Note). 

Merging of consecutive deletion windows 

To provide the user with a non-redundant list of deletion variants, adjacent windows that 

support the same deletion need to be merged. PopDel sorts all windows for which the null 

hypothesis of the likelihood ratio test can be rejected in ascending order of the predicted 

deletion start position, deletion length and descending deletion likelihood ratio. Moving over 

this sorted list of windows 𝑤0, 𝑤1, …, a window 𝑤𝑖 , 𝑖 ≥ 0 is merged with another window 

𝑤𝑖+𝑘 , 𝑘 > 0 if their start positions and deletion sizes are similar enough (Supplementary 

Note). When no more windows can be merged with 𝑤𝑖, a deletion is output with a start 

position and length calculated as the median over all merged windows. Merging continues 

with the next window 𝑤𝑖+𝑘+1 that has not been merged with any other window so far. 

Deletion output 

We report the genotype with the best mean PHRED-scaled genotype likelihood across the 

merged windows of one sample in the output. Samples without sufficient data or much 

higher than average coverage at the locus are not genotyped (Supplementary Note). The 

allele frequency is estimated by counting the number of alleles predicted to carry the variant, 

divided by the total number of genotyped alleles. We calculate a genotype quality as the 

difference of the best and second best PHRED-scaled genotype likelihoods. 

Simulation of chr21 data 

We simulated deletion variants with uniformly distributed length between 100 and 10,000 bp, 

uniformly distributed positions on chromosome 21 of GRCh38 and uniformly distributed 

allele frequency between 0 and 1. Regions containing ‘N’s were excluded and deletion were 

required to be at least 1000 bp apart. Using this set of deletions, we created 2,000 

haplotypes by sampling deletions according to their allele frequency and inserting them into 

chromosome 21 of GRCh38. The haplotypes were combined into 1,000 diploid samples. The 

samples were subsequently used to simulate NGS reads with art_illumina49 and the reads 

aligned to GRCh38 using BWA-mem50. 

Setup of SV callers on simulated data 
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PopDel (1.1.0) and Manta (1.4.0) were run with an option to limit the calling to chr21. Delly 

(0.7.8) was applied once with default parameters and once without small indel realignment 

(-n). GRIDSS (1.8.1) was provided a maximum heap size of 8 GB. Lumpy (0.2.13) was 

applied once only relying on lumpyexpress and once with prior extraction of split reads and 

discordant read pairs using samtools (1.7) (subsequently called multi-step). Joint genotyping 

of the Lumpy calls was performed using SVtyper (0.6.0). All tools were applied on increasing 

numbers of BAM files, up to 1000 or until failure. 

Evaluation on simulated data 

Running time and memory consumption were measured on a dedicated work station (Intel 

Xeon E5-1630v3 8x3.5GHz, 64GB RAM) using ‘/usr/bin/time’. As PopDel and Lumpy consist 

of multiple steps, the running times are the sum of the time taken by all steps from the BAM 

files to the VCF file. The memory consumption of these tools is stated as the maximum 

memory consumption of all steps. As GRIDSS produces two break-ends per deletion, 

corresponding pairs of break-ends were collapsed into a single call and “LOW_QUAL” 

variants were removed. The calls of Lumpy and Delly were not filtered for variants that had 

the filter field set to “PASS” as this would have had a negative impact on their performance. 

A call and a simulated variant were considered to be the same if they had a reciprocal 

overlap of at least 50%. Each simulated variant is only allowed to be matched with one 

predicted variant. See Supplementary Note for results using alternative equality criteria. 

Calling and filtering on real data 

All samples were mapped to the human reference genome (GRCh38)51 using BWA-

mem52,53. If not stated otherwise, calling was performed jointly on all samples with default 

options and, if possible, limited to the reference sequence of the 22 autosomes. On 

NA12878 we further included chromosome X. Variants were filtered to the size range from 

500 to 10,000 bp. The Polaris data and Icelandic data was filtered to high-confidence calls, 

where we kept only deletions with genotype quality scores above a fixed threshold. This 

threshold was chosen once per tool on the Polaris Kids Cohort such that the Mendelian 

inheritance error rate dropped below 0.3%42: 27 for PopDel, 28 for Delly and 104 for 

Lumpy+SVTYPER. The threshold for PopDel was set to 50 to search for de novo deletions. 

The sample order of the Polaris Diversity and Kids Cohorts was shuffled but the same for all 

tools and no tool was provided pedigree information. Joint calling with Delly (-n) and Lumpy 

(multi-step) did not finish within 4 weeks. Therefore, they were run using single sample 

calling with merging and sample-wise re-genotyping (Supplementary Note). Calls other 
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than deletions were removed early in Delly’s and Lumpy’s pipelines to reduce running time 

(Supplementary Note). Lumpy was run as lumpyexpress. Variants genotyped as 0/0 in all 

samples (as found in Lumpy+SVTyper’s output) were removed. Delly (-n) variants were only 

considered if they had the ‘FILTER’ field set to ‘PASS’. Significance of the difference in the 

number of variant alleles between continental groups was assessed using the R-function 

t.test with var.equal=FALSE. 

Reference call sets for NA12878 

GiaB short read and PacBio reference call sets were downloaded (see URLs), filtered for 

deletion variants and liftover from GRCh37 to GRCh38 was performed using the NCBI 

Genome Remapping Service (see URLs). All contigs except for chromosomes 1 to 22 and 

chromosome X were removed and VCF-to-BED conversion was performed for the PacBio 

callset. 

Filtering of centromeric regions 

Centromeric regions for GRCh38 were obtained through the UCSC table browser (“group: 

Mapping and Sequencing”, “track: Centromeres”). Any variants in a reference set or call set 

having any overlap with a region in the BED file of centromeres were removed. Overlap was 

determined using bedtools intersect54 (Supplementary Note). 

Principal Component Analysis 

Predicted genotypes of the Polaris Diversity Cohort were converted into a variant/sample 

matrix containing variant allele counts. Uninformative variants and those in linkage 

disequilibrium were removed (Supplementary Note). PCA was computed using the R-

function prcomp. 

Mendelian inheritance error rate and transmission rate 

The Mendelian inheritance error rate was calculated on chromosomes 1 to 22. Duplicates 

within one call set were removed by removing all calls that had at least 50% reciprocal 

overlap with an upstream call. For all reported deletions, the three genotypes in each trio 

were inspected for Mendelian consistency (Supplementary Note). Trios with one or more 

missing genotypes and trios with all three samples genotyped as 0/0 were ignored. For 

calculating the transmission rate, we considered only deletions that were called in a single 

trio, one parent is a heterozygous carrier and the other parent carries the reference allele on 

both haplotypes. The transmission rate is the number of deletion alleles transmitted from the 

heterozygous parents to the children divided by the number of considered deletions. 
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Sequence data from 49,962 Icelanders 

DNA was isolated from both blood and buccal samples. All participating subjects signed 

informed consent. The personal identities of the participants and biological samples were 

encrypted by a third-party system approved and monitored by the Data Protection Authority. 

The National Bioethics Committee and the Data Protection Authority in Iceland approved 

these studies. The Icelandic samples were whole-genome sequenced at deCODE Genetics 

using Illumina GAIIx, HiSeq, HiSeqX and NovaSeq sequencing machines, and sequences 

were aligned to the human reference genome (GRCh38)51 using BWA-mem52,53. Details of 

the sample preparation, paired-end sequencing, read processing and alignment, and 

selection of the final set of BAM files have been previously described55. 
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