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Abstract

DNA variants that alter gene expression contribute to variation in many phenotypic traits. In
particular, trans-acting variants, which are often located on different chromosomes from the genes
they affect, are an important source of heritable gene expression variation. However, our
knowledge about the identity and mechanism of causal trans-acting variants remains limited. Here,
we developed a fine-mapping strategy called CRISPR-Swap and dissected three expression
quantitative trait locus (eQTL) hotspots known to alter the expression of numerous genes in trans
in the yeast Saccharomyces cerevisiae. Causal variants were identified by engineering
recombinant alleles and quantifying the effects of these alleles on the expression of a green
fluorescent protein-tagged gene affected by the given locus in trans. We validated the effect of
each variant on the expression of multiple genes by RNA-sequencing. The three variants were
strikingly different in their molecular mechanism, the type of genes they reside in, and their
distribution in natural populations. While a missense leucine-to-serine variant at position 63 in the
transcription factor Oaf1 (L63S) was almost exclusively present in the reference laboratory strain,
the two other variants were frequent among S. cerevisiae isolates. A causal missense variant in the
glucose receptor Rgt2 (V539I) occurred at a poorly conserved amino acid residue and its effect
was strongly dependent on the concentration of glucose in the culture medium. A noncoding

variant in the conserved fatty acid regulated (FAR) element of the OLE] promoter influenced the
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expression of the fatty acid desaturase Olel in cis and, by modulating the level of this essential
enzyme, other genes in frans. The OAF1 and OLE] variants showed a non-additive genetic
interaction, and affected cellular lipid metabolism. These results revealed remarkable diversity in
the molecular basis of frans-regulatory variation, highlighting the challenges in predicting which

natural genetic variants affect gene expression.
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Author summary

Differences in the DNA sequence of individual genomes contribute to differences in many traits,
such as appearance, physiology, and the risk for common diseases. An important group of these
DNA variants influences how individual genes across the genome are turned on or off. In this
paper, we describe a strategy for identifying such “trams-acting” variants in different strains of
baker’s yeast. We used this strategy to reveal three single DNA base changes that each influences
the expression of dozens of genes. These three DNA variants were very different from each other.
Two of them changed the protein sequence, one in a transcription factor and the other in a sugar
sensor. The third changed the expression of an enzyme, a change that in turn caused other genes
to alter their expression. One variant existed in only a few yeast isolates, while the other two
existed in many isolates collected from around the world. This diversity of DNA variants that
influence the expression of many other genes illustrates how difficult it is to predict which DNA

variants in an individual’s genome will have effects on the organism.
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Introduction

DNA variants that alter gene expression are an important source of genetic variation for many
traits [1], including common disease in humans [2], agricultural yield [3,4] and evolutionary
change [5]. To map gene expression variation in the genome, expression levels are measured in a
population of individuals and related to the genotype of each individual. This approach identifies
expression quantitative trait loci (eQTLs) — genomic regions that each contain one or more variants

that affect gene expression.

eQTLs can be classified into two types based on their mechanism of action. Cis eQTLs arise from
variants that alter the expression of genes on the same DNA molecule, for example by changing
the sequence of a regulatory element in a promoter. Most cis-acting variants are located close to
or within the genes they influence, such that cis eQTLs can be detected as “local” eQTLs that
overlap the given gene. By contrast, trans eQTLs arise from variants that change the activity and/or
abundance of a diffusible factor which in turn alter the expression of other genes. 7rans eQTLs
can be located anywhere in the genome relative to the genes they affect. While they can be local
(e.g., if a gene encoding a transcription factor resides next to a gene targeted by that factor), most

trans eQTLs are “distant” from the genes they affect, usually on different chromosomes.

As in genetic mapping of other traits, identifying the specific DNA variants that have causal effects
in eQTL regions is challenging. Recent studies have made progress in identifying cis acting
variants (e.g. [6—10]). However, few frans-eQTLs have been resolved to single variants. This is
although most of the heritable contribution to gene expression variation arises from trans rather
than cis eQTLs [11-16], and although frans acting variation is likely to play pivotal roles in
shaping diseases and phenotypes within species [11,17]. Identifying the molecular nature of trans-
acting variants and the mechanisms by which they alter gene expression is key to understanding

the connection between genotypic and phenotypic variation.

Natural isolates of the yeast Saccharomyces cerevisiae have provided fundamental insights into
the genetics of gene expression variation ([12,18-34], reviewed in [35]). Particularly intensive
efforts have been directed at the comparison between a laboratory strain (the genome reference
strain S288C, or “BY”) and a wine strain (RM11a, “RM”), whose genomes differ at about 40,000
variants. eQTL mapping in recombinant progeny from a cross between these strains revealed the

existence of eQTL hotspots that each influence the expression of numerous genes in trans [18].
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Many of these hotspots also affect protein levels [22,36,37]. Recently, an analysis of mRNA levels

in an expanded set of 1,012 BY/RM progeny provided a more comprehensive view of regulatory

variation in this cross [12]. Specifically, trans-acting variation arose almost exclusively from 102

hotspots, some of which affected the expression of thousands of genes (Fig 1A). A small number

of hotspots in this and other crosses have been resolved to their causal genes and nucleotide

variants [18,20,23,30,31,34,38-41], but progress towards a more complete view of hotspot

variants has been hampered by the challenges of engineering and measuring the expression effects

of candidate variants.

A

\ trans—effects P i ’)—:>—

\ , .

ene product -
9 P . cis-effect

7’ - -A
* Variant eQTL “hotspot”
Causal variant
non-essential gene essential gene
1. Replace or flank
locus with selectable
cassette(s)
hphMX
gCASS5a 4
2. Transform cells with pFAQ055
gRNA/Cas9 plasmid Cas9
and repair template LEU2
Single-cut Double-cut

Repalr template

KanMX

C

ODSOU

P
200 400 600 800 1000

GF

GFP / OD ratio

02 03 04

0.0 0.1

4000 6000

2000

Gene affected in trans

| cFP

Inflection point
in growth curve

T T T T T 1
0 5 10 15 20
Timepoint (hours)

Soeene

2

& GFP level
f at inflection point

P

<

I T T T T 1
0 5 10 15 20
Timepoint (hours)

° GFP/OD ratio

[ 0‘?@ at inflection point
8S° as phenotype
° o% for fine-mapping
[}
G0 w%
° e

T T
0 5 10 15 20
Timepoint (hours)


https://doi.org/10.1101/740076
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/740076; this version posted August 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

87 Fig 1. Hotspot fine mapping strategy. A. Illustration of the possible cis and trans effects at an eQTL hotspot.
88 A genomic region, shown in blue with several genes depicted as wide arrows, harbors multiple variants
89  (stars). Of these, one causal variant (red star) alters the activity and/or abundance of a gene product (blue
90 circle with red star), which alters the expression of multiple genes (gray arrows) in trans. Another variant is
91 shown affecting a neighboring gene in cis, but has no trans effect. B. A schematic showing two examples of
92  engineering a BY allele (blue) to an RM allele (red) using CRISPR-Swap. In step one, a non-essential gene is
93 replaced by the G418 resistance cassette (KanMX) or an essential gene is flanked by the hygromycin
94 resistance (hphMX) and KanMX cassettes. In step two, the strain is transformed with the CRISPR-Swap
95 plasmid pFAOO55 that expresses Cas9 and the guide RNA gCASS5a and the auxotrophic marker LEU2; and
96 a PCR-generated repair template containing the desired RM allele. The gCASS5a/Cas9 complex directs
97 cleavage (scissors) of the cassettes. Either a single-cut or a double-cut occurs depending on the number of
98 cassettes present. Selection of transformants for leucine prototrophy and loss of G418, or hygromycin and
99 G418, resistance identifies strains with the desired RM allele replacement. C. Quantifying the expression of
100 a representative gene affected in trans by a hotspot. Fluorescence of the protein expressed from the GFP-
101 tagged gene and optical density (ODeoo) of the culture are measured in 15 minute intervals during growth
102 in a plate reader. The inflection point, the point where the culture exits logarithmic growth, and two
103 flanking points are used to determine the GFP/ODsoo ratio for phenotyping the effect of the engineered
104 alleles.

105

106  Here, we describe a strategy for the identification of causal eQTL hotspot variants that combines
107 a genome engineering approach with high-throughput quantification of fluorescently tagged
108  protein expression as a phenotypic readout. We used this strategy to identify causal variants
109  underlying three frans-acting eQTL hotspots in the BY and RM strains: a common missense
110  variant in the glucose receptor Rgt2, a rare missense variant in the oleate-activated transcription
111 factor Oafl, and a common variant in the promoter of OLE] that alters the expression of this
112 essential fatty acid desaturase gene. We studied the effects of these variants in more detail and
113 discovered that the effect of the RGT2 variant is influenced by the environment, and that the OAF'1
114 and OLE] variants interact in a non-additive fashion and lead to changes in cellular lipids. These
115  results show that variants underlying frans-acting hotspots are highly diverse. They can be
116  common or rare in the population, different in their evolutionary conservation, and located in the

117  coding or noncoding region of genes encoding functionally diverse proteins.
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118 Results

119  The CRISPR-Swap strategy for engineering allelic series

120 To assist fine-mapping of hotspot intervals, we devised “CRISPR-Swap” (Fig 1B), a two-step
121  strategy for efficient allele exchange that combines advantages of “insert-then-replace” methods
122 [42,43] with CRISPR/Cas9 engineering [44—46]. In the first step, a given locus is replaced with a
123 selectable marker cassette. Second, the strain is transformed with a plasmid that expresses Cas9
124 and a guide RNA (gRNA) that targets the cassette, along with a DNA repair template containing
125  terminal homology to sequences flanking the cassette in the genome. We designed the “gCASS5a”
126  gRNA to specifically target a sequence shared by several selectable marker cassettes used for gene
127  deletions in the popular pFA6a series (e.g., KanMX6, natMX4 and hphMX4; [47-50]; S1 Fig)
128  such that the same gRNA can be used to replace each of these cassettes. By inserting two different
129  cassettes flanking a genomic region, this gRNA can be used to exchange both cassettes along with
130  the intervening sequence. This “double-cut” CRISPR-Swap method enables allele exchange even
131  when the region contains sequences essential for survival (Fig 1B). Additionally, we designed a
132 “gGFP” that specifically targets cassettes used for C-terminal tagging of open reading frames with
133 GFP.

134 The gRNA/Cas9 complex is constitutively expressed from the CRISPR-Swap plasmid and will
135  continue to cleave at the cassette(s) in the genome until a repair is made that abolishes the gRNA
136  recognition sequence or the cell dies. Consequently, after transformation, all colonies that form on
137  media lacking leucine have undergone a repair that blocks further cleavage by the gRNA/Cas9
138  complex. We designed the gCASS5a and gGFP gRNAs to cleave in the cassette but outside of the
139  selectable marker gene, such that marker expression should be maintained if repair occurs without
140  exchange of the selectable marker (Figure S1). Thus, transformants with the desired allele swap
141  can be easily identified by screening for the loss of the resistance or auxotrophy conferred by the

142  selectable marker.

143 We analyzed the results of 40 independent CRISPR-Swaps we performed to determine the
144  efficiency of CRISPR-Swap. After transformation with the CRISPR-Swap plasmid expressing
145  either gCASS5a or gGFP and a PCR-generated repair template, a median of 87.5% of the
146  transformants no longer expressed the cassette selectable marker. We screened over 100 of these

147  transformants for integration of the desired allele by colony PCR, restriction digestion or
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148  sequencing and found that all had the correct allele exchange. We also sequenced the guide RNA
149  recognition site in 13 transformants that remained G418 resistant and found that 2 had the
150  hallmarks of repair by non-homologous end-joining, while the remaining 11 were repaired using
151  the homologous sequence present in the GFP-His3MX cassette in these strains (see below) to
152 repair the locus. We observed no difference in CRISPR-Swap efficiency among the two strain
153  backgrounds (BY and RM), the genomic loci we targeted, or the gCASS5a and gGFP gRNAs. In
154  summary, CRISPR-Swap readily creates allele replacements with high efficiency.

155

156  Fine-mapping of hotspot regions using GFP-tagged proteins to measure frans-gene

157  expression

158  We leveraged the ability of CRISPR-Swap to rapidly engineer allelic series at a given locus to
159  dissect three frans-acting hotspot regions to the causal variant. We focused on these hotspots
160  because they have strong effects on many genes in trans, and because earlier fine-mapping in the
161 1,012 BY/RM segregant panel had located them to only a few genes. Before engineering each
162  hotspot, we selected one abundantly expressed gene strongly affected by the hotspot in trans to
163  monitor the effects of our genome edits on its gene expression (Fig 1C). We C-terminally tagged
164  the open reading frame of this gene with GFP, engineered the hotspot locus with CRISPR-Swap,
165 and measured GFP fluorescence in each engineered strain during growth on a 96-well plate reader
166  (Methods). This approach provided high-throughput measurements of gene expression for the
167  statistically powerful dissection of the hotspot loci.

168
169 A missense variant in RGT2 influences expression of HXT7! in trans

170 A hotspot locus on chromosome IV affects the expression of many genes at the mRNA and protein
171  levels in crosses between BY and RM [12]. In the expanded BY/RM segregant panel, this locus
172 had been mapped to a region containing three genes: RGT2, ARF2, and RPL35-B (Fig 2A). There
173  mRNA levels of 1,400 genes are affected by this hotspot in trans, and these genes are enriched for
174  roles in ATP synthesis and carbohydrate derivative metabolism. The strongest trans effect was on
175  HXTI mRNA (LOD = 182), which encodes a low affinity glucose transporter whose expression is
176  affected by Rgt2 [51], suggesting RGT72 is likely the causal gene at this hotspot. In support of this,
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177  genetic variation within the RG72 coding region was previously shown to influence protein levels
178  of the high affinity glucose transporter Hxt2p [29]. RGT2 encodes a low affinity glucose sensor
179  located in the plasma membrane (Fig 2B; reviewed in [52]). The BY and RM alleles of RGT2
180  differ at five missense single nucleotide variant (SNVs). Three of these SNVs are located in the
181  long cytoplasmic-facing C-terminal tail required for glucose signaling, and the remaining two are
182  within the 12 predicted transmembrane helices (Fig 2B). RGT2, as well as ARF?2, is also influenced
183 by alocal eQTL.

184
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variants and orange lines mark missense variants), the genes and their positions in the hotspot (large gray
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191 confidence interval (medium blue) and the position of markers perfectly linked to the hotspot peak marker
192 (dark blue). B. Schematic of the Rgt2 protein in the plasma membrane. BY / RM missense variants are
193 indicated by stars, with the identified causal variant in red. The missense variant amino acid positions, their
194 resulting amino acid change and their PROVEAN scores [53] are shown. The synonymous variants are not
195 depicted. C. On the left are schematics of RGT2 alleles with BY sequences in blue and RM sequences in red.
196 Positions of SNVs are marked with a straight line and INDELs are marked with two diagonal lines. The
197  variants in the RGT2 3’UTR and synonymous variants are not depicted. On the right are the corresponding
198 Hxt1-GFP fluorescence levels for each allele. P-values are for tests comparing each allele to its respective
199  wildtype. Significant p-values are outlined. Blue boxplots indicate alleles in the BY background and red
200 boxplots and gray background shading indicate alleles in the RM background. Lines group measurements
201 of the same clone. Different symbols (circles, squares, etc.) denote different plate reader runs. Small dots
202 next to a clone indicate a 5’UTR indel with an allele that does not match the one indicated in the allele

203  schematics (see Methods).
204

205  To determine if RGT2 is the causal gene at this hotspot and identify the responsible variant, we C-
206  terminally tagged Hxtl with GFP and created a series of allele replacements at the RG7?2 locus
207  using CRISPR-Swap. In both BY and RM backgrounds, deletion of RGT2 drastically reduced
208  Hxt1-GFP levels, confirming that RG7?2 is required for proper Hxt1-GFP expression. Replacing
209 the BY RGT2 promoter region with the RM allele had no measurable effect on Hxtl-GFP.
210  Reciprocal allele replacement of the entire RG72 coding region showed that the RG72 RM allele
211  resulted in lower Hxt1-GFP expression compared to the BY allele (Fig 2C), which is the direction
212 of effect expected from eQTL data [12].

213 By engineering a series of chimeric RGT2 alleles spanning the coding region we systematically
214  narrowed the causal region to two missense variants, neither of which were predicted to be
215  deleterious (Fig 2C; S1 Table). Of these, a G-to-A SNV at 241,965 bp, resulting in a valine to
216  isoleucine change at amino acid position 539 (V539I), recapitulated the effect of swapping the
217  entire coding region. In a strain that carried all RG72 RM coding variants except V5391, Hxtl-
218  GFP expression was indistinguishable from the BY wildtype, suggesting that V5391 is the single
219  causal variant in this gene. The effect of V5391 on Hxt1-GFP expression was present in both BY
220  and RM (Fig 2C), with no evidence that the strain background influences the effect of this variant

11
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221  (interaction p-value = 0.1). The variant caused a minor effect on growth rate in the RM
222 background, but no effect in the BY background (Table 1).
223
224  Table 1. Effects of causal hotspot variants on growth rates
Variant Growth rate in p-value in BY Growth rate in p-value in RM
BY (RM allele RM (BY allele
relative to BY relative to RM
wildtype allele) wildtype allele)
RGT2(V539I) 98% 0.5 93% 0.02
OAF1(S63L) 96% 0.09 100% >0.99
OLEI(FAR) 92% 0.3 92% 0.005
225
226
227  The RGT2 V5391 variant affects Hxt1-GFP expression in a glucose-dependent manner
228  Increasing glucose concentrations results in an increase in the expression of Hxtl [51]. Given that
229  the V5391 variant lies within one of the predicted transmembrane helices that likely form the
230  pocket necessary for glucose sensing by Rgt2 [54], we hypothesized that the effect of the V5391
231  variant may change depending on the concentration of glucose in the culture medium. To test this
232 idea, we measured Hxt1-GFP expression in BY and RM strains with their native RG72 alleles as
233 well as with engineered V5391 alleles in a range of glucose concentrations (Fig 3).
234
235

12
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237  Fig 3. Effect of the RGT2 1539V variant on Hxt1-GFP expression in different glucose concentrations. Hxt1-
238 GFP fluorescence levels in the four different genotypes in increasing glucose concentrations are shown.
239 Blue boxplots indicate alleles in the BY background and red boxplots and gray background shading indicate
240 alleles in the RM background. Lines group measurements of the same clone. Different symbols (circles,
241 squares, etc.) denote different plate reader runs. The inset graph shows fitted effect sizes as a function of
242  glucose concentration. Error bars show standard errors of the mean. P-values are shown for ANOVA models

243  examining the various main and interaction terms.
244

245  In both BY and RM, higher glucose concentrations increased expression of Hxt1-GFP regardless
246  of which V5391 allele was present. However, the difference in Hxt1-GFP expression between the
247 V5391 alleles showed a clear dependence on glucose levels (ANOVA test for interaction between
248  allele effect and glucose concentration: p = 7e-13). The BY allele drove nearly 2-fold higher Hxt1-
249  GFP expression than the RM allele at 1% glucose, while the difference between alleles became
250  almost indistinguishable at 12% glucose. Thus, the effect size of the V5391 variant underlying the
251  RGT2 eQTL hotspot strongly depends on the environment.

252

253
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A missense variant in OAF] alters expression of F4A44 in trans

Several of the eQTL hotspots identified in the BY/RM cross affect the expression of genes
involved in fatty acid metabolism. They include a hotspot on chromosome I, which affects the
mRNA and protein levels of 450 genes in trans. The locus was previously mapped to a region
containing the genes FLC2 and OAF'I [12] (Fig 4A). Neither FLC2 nor OAF 1 are influenced by a
local eQTL, suggesting the causal variant is likely coding. OAFI encodes a transcription factor
that activates expression of genes involved in peroxisome related functions including the (-
oxidation of fatty acids [55-57], making it a promising candidate causal gene. The BY and RM
alleles of OAF1 differ at three missense SNVs (Fig 4B).

A Chromosome 1:48,890; 455 genes affected C

FAA4 GFP
45 kb 50 kb 55 kb
1 1 I R
L | A 1 W AR AN AN A T A I A A‘A‘
FLC2 AlM2 R —
GEM1 1%
ACS1 OAF1 Q - #—-—
: o —p=7eb T
confidence interval L i
G 125 1
B 3= |, :
L63S: 1184T: K594E: R p=2e4
541 -1.91 1.86 1
Oaf1 * ﬁ ﬁ: 2 1.00 1 R
. Ao o
Zn(2) Cys(6)  Ligand binding domain M 1 4
Background BY BY RM RM
OAF1(L63S) allele BY RM RM BY

Fig 4. The OAF1 causal variant. A. Schematic of the eQTL hotspot on Chromosome IV. From top to bottom,
the figure shows the hotspot location on the chromosome and the number of genes it affects, the positions
of the BY and RM sequence variants (gray lines mark synonymous and intergenic variants and orange lines
mark missense variants), the genes and their positions in the hotspot (large gray arrows; red outlines
denote genes with a local eQTL) The 95% confidence intervals (medium blue) and the position of markers
perfectly linked to the hotspot peak marker (dark blue).B. Schematic of the Oafl protein domains and
variants. The conserved zinc-finger domain and the ligand-binding domain [58] are in orange. BY / RM
missense variants are indicated by stars, with the identified causal variant in red. The missense variant
amino acid positions, their resulting amino acid change and their PROVEAN scores [53] are shown. The
synonymous variants are not depicted. C. The figure shows Faa4-GFP fluorescence levels for strains with

the indicated OAF1 (L63S) alleles. P-values are for tests comparing the allele to its respective wildtype. Blue
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276 boxplots indicate alleles in the BY background and red boxplots indicate alleles in the RM background. Lines
277  group measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate

278 reader runs.
279

280  We engineered a series of OAF1 alleles and measured Faa4-GFP expression in trans. FAA4
281  mRNA abundance was shown to be strongly affected by this locus (LOD score = 102, [12]), and
282  FAA4 encodes a long chain fatty acyl-CoA synthetase, a protein with clear phenotypic connection
283  to fatty acid metabolism. We found that a single T-to-C missense variant in OAF1 at 48,751 bp
284  resulted in a decrease in Faa4-GFP expression in agreement with the direction of effect observed
285 in the eQTL data (Fig 4C, S2 Fig, S1 Table). The variant encodes a leucine at position 63 in BY
286  and a serine in RM (L63S). In the Oafl protein, the L63S variant is located next to the Zn(2)Cys(6)
287  DNA binding domain (Fig 4B) where it may alter Oaf1 binding to its regulatory targets. The effect
288  of L63S on gene expression was consistent in both strain backgrounds (interaction p-value = 0.4;

289  Fig 4C), and L63S had no detectable effects on growth rate (Table 1).
290
291 A noncoding promoter variant influences OLE1 expression in cis and FAA4 in trans

292 A second fatty-acid related hotspot resides on chromosome VII and affects the mRNA levels of
293 977 genes, which are enriched for functions in lipid biosynthetic processes as well as the response
294  to endoplasmic reticulum stress. The confidence interval of this locus spans ~1 kb centered in the
295  noncoding region between the SDS23 and OLE1 genes (Fig 5A). OLE encodes the ER-bound A9-
296 fatty acid desaturase, the only yeast enzyme capable of desaturating fatty acids [59,60]. SDS23 is
297  likely involved in regulation of the metaphase to anaphase transition of the cell cycle [61]. Given
298  the enrichment of target genes of this hotspot involved in lipid metabolism, we reasoned that OLE]
299  is the more likely causal gene. The BY and RM alleles of OLE! differ at one missense SNV and
300  four non-coding variants (2 indels and 2 SNVs) in the SDS23 and OLE] intergenic region.

301
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303 Fig 5. The OLE1 causal variant. A. Schematic of the eQTL hotspot on Chromosome VII. From top to bottom,
304  thefigure shows the hotspot location on the chromosome and the number of genes it affects, the positions
305 of the BY and RM sequence variants (gray lines mark synonymous and intergenic variants and orange lines
306 mark missense variants), the genes and their positions in the hotspot (large gray arrows; red outlines
307 denote genes with a local eQTL) The 95% confidence interval (medium blue) and the position of markers
308  perfectly linked to the hotspot peak marker (dark blue). B. Schematic of the SDS23 / OLE1 region. BY / RM
309 variants in the intergenic region and missense variants in the genes are indicated by stars, with the
310 identified causal variant in the FAR element (peach box) in red. The missense variant amino acid positions,
311 their resulting amino acid change and their PROVEAN scores [53] are shown. The synonymous variants are
312 not depicted. C. Fluorescence levels of Olel-mCherry (left panel) and Faa4-GFP (right panel). The BY strains
313 harbor both Olel-mCherry and Faa4-GFP and the indicated OLE1 alleles. Lines group measurements of the

314 same clone. Different symbols (circles, squares, etc.) denote different plate reader runs.

315
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316  We engineered the essential OLE locus using double-cut CRISPR-Swap, by flanking the region
317  with the HphMX and KanMX cassettes and replacing both cassettes along with the intervening
318  region with a series of alleles (Fig 1B). We again measured Faa4-GFP expression in the engineered
319  strains, given FA44 mRNA levels are strongly affected by this locus (LOD = 78). We identified a
320  noncoding A-to-G SNV at 398,081 bp in the intergenic region between SDS23 and OLE] that
321  affected Faa4-GFP expression in the expected direction based on the eQTL data (S3 Fig, S1 Table).
322 This effect was consistent in both strain backgrounds (interaction p-value = 0.8). While the BY
323  allele of this variant decreased growth rate in the RM background, the variant had no effect in the
324  BY background (Table 1).

325  The causal variant is located in the fatty-acid regulated (FAR) promoter element, a region known
326  to be important for transcriptional activation and fatty acid regulation of OLEI expression [62]
327  (Fig 5B). Both OLEI and SDS23 are strongly affected by local eQTLs with higher mRNA
328  expression linked to the BY allele, suggesting that OLE [ and/or SDS23 expression may be affected
329 by the FAR variant. To test the effect of the FAR variant on OLE expression, we created BY
330  strains with OLE] tagged with mCherry in addition to FAA44 tagged with GFP. In these strains,
331 the RM FAR allele significantly decreased Olel-mCherry levels in cis and increased Faa4-GFP
332 levels in trans (Fig 5C), which are the directions of effect expected based on the eQTL results [12].

333  To further examine the cis-regulatory activity of the FAR variant, we created reporter plasmids
334 with multiple alleles of the SDS23/OLE intergenic region driving expression of yeVenus. When
335 the intergenic region drove expression of yeVenus in the direction of SDS23, the promoter alleles
336  all drove similar yeVenus expression (S4 Fig). In sharp contrast, when the intergenic region drove
337  expression of yeVenus in the direction of OLE], the FAR-BY allele drove significantly higher
338  yeVenus expression than the RM allele, fully recapitulating the difference between the all-BY and
339  all-RM promoter alleles (S4 Fig). The effect did not depend on whether the yeVenus plasmids
340  were expressed in the BY or RM background (interaction p > 0.29). Together, these results suggest
341  that the FAR variant influences OLE! in cis, as well as FAA4 in trans.

342
343

344
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345  Small changes in OLE] expression from wildtype levels are sufficient to affect F 444 gene

346  expression in trans

347  To explore the effect of OLE] and SDS23 abundance on gene expression in frans, we added an
348  additional copy of OLEI, SDS23 or the intergenic sequence on a single-copy plasmid in a BY
349  FAA4-GFP strain. The presence of an extra copy of OLE resulted in significant reduction of Faa4-
350  GFP levels, consistent with eQTL data (S5 Fig). By contrast, an extra copy of SDS23 resulted in
351 an increase in Faa4-GFP levels. An extra copy of the intergenic sequence alone did not change
352 Faa4-GFP levels (S5 Fig). These results further support that it is a change in OLE and not SDS23

353  expression that is responsible for the trans-effect of the hotspot on F4A44 expression.

354  While changes in Olel levels appear to be the primary cause for the trans effect on Faa4-GFP, the
355 noncoding FAR variant alters OLE[ expression by only about 15% (Fig 5B). To understand the
356  relationship between OLEI and FAA4 over a range of expression levels, we inserted a synthetic,
357 inducible Z3EV promoter upstream of OLEI. This promoter can be activated precisely and
358  quantitatively by addition of estradiol to the culture medium [63]. We measured both Olel-
359 mCherry and Faa4-GFP as a function of estradiol concentration and observed a clear
360 anticorrelation between Olel-mCherry and Faa4-GFP levels (Fig 6). At an estradiol dose of 4 — 5
361 nM, the Z3EV strain expressed Olel-mCherry and Faa4-GFP at levels comparable to BY strains
362 expressing OLEI-mCherry from its native promoter with either the wildtype or FAR-RM allele.
363  Higher doses of estradiol continued to increase Olel-mCherry levels, while Faa4-GFP dropped
364 rapidly and reached a plateau at levels well below the native BY strains. As expected for the
365  essential OLE] gene, low levels of induction resulted in poor growth (S6 Fig). Notably, growth of
366  the Z3EV strain was closest to wildtype at 6 nM estradiol and higher, a concentration in which
367 OLEI expression levels are well above wildtype levels. The reason for this growth defect at
368  wildtype expression levels is unknown and may reflect an inability of strains with the Z3EV
369  promoter and C-terminal mCherry fusion to finely regulate OLE1 transcription. Taken together,
370  our results indicate that the BY strain expresses OLE] at a level at which even slight alterations in
371  OLEI expression, like that caused by the FAR variant, are sufficient to change FAA44 expression

372  in trans.

373
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375 Fig 6. Expression modulation of Olel. Fluorescence levels of Ole1l-mCherry (solid red lines) under control
376 of the estradiol-inducible Z3sEV promoter and Faa4-GFP (solid green lines) under its native promoter at
377  various estradiol doses. Fluorescence levels of strains with the native OLEI promoter and the FAR-BY or
378 FAR-RM allele respectively, are shown as dotted and dashed lines, respectively, at each estradiol

379 concentration for comparison. All strains harbor both the mCherry tag on Olel and the GFP tag on Faa4.
380

381

382 A non-additive interaction between the O4AF1 and OLE] variants

383  The Oafl transcription factor binds throughout the OLE promoter including in the close vicinity
384  of the FAR variant [64]. This raises the possibility that the effects of O4F1 L63S and the FAR
385  variant may interact with each other genetically. While neither variant had shown significant
386 interactions with the genetic background as a whole (see above), a specific interaction between
387  these two variants could have been obscured by the thousands of other sequence differences
388  between the BY and RM backgrounds. Indeed, the previous eQTL data contained a non-additive
389 interaction affecting FA44 mRNA levels between two trans eQTLs that contained OAF1 and
390  OLEI, respectively (Fig 7A). To test if this trans-by-trans interaction could be explained by the
391  specific causal variants we identified here, we constructed a BY strain that carried the RM alleles
392 at both OAFI and the FAR variant and compared its Faa4-GFP expression to strains that carried
393  one or the other of these edits. The combined alleles resulted in Faa4-GFP expression that differed

394  from an additive allele combination (interaction p = 0.002) in a manner that mirrored the detected
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395  eQTL interaction (Fig 7B). Specifically, in the presence of the more active RM OAF[ allele, the
396  FAR variant showed a greater effect than in the presence of the less active BY OAF I allele. As
397  with the majority of epistatic interactions identified in this cross [65], the deviation from additivity

398  caused by this interaction is detectable but subtle.

399  To test if this trans-by-trans interaction affecting FAA44 could be mediated by a cis-by-trans
400 interaction between the same two variants, we introduced our yeVenus plasmids with the two FAR
401  alleles into BY strains with either the BY or RM OAF(L63S) alleles. We again found a significant
402  interaction between the FAR and OAF'] variants (Fig 7C). In the presence of the OAF1-L.63S-RM
403  allele, the FAR variant resulted in a larger difference in yeVenus expression than in the presence
404  of the OAF1-L63S-BY allele (p = 1.5 e-7). The OAF1 RM allele also resulted in overall higher
405  expression of the yeVenus construct (p = 1.6 e-6). Taken together, these results show that the
406  OAFI L63S variant and the OLE[ FAR variant interact genetically such that their effects on gene

407  expression in cis as well as trans are not simply additive.
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409  Fig 7. Nonadditive genetic interaction between the OAF1 and OLE1 causal variants. A. Data from [12] show
410 levels of FAA4 mRNA in 1,012 BY/RM segregants, divided into four groups depending on their genotypes at
411 OAF1 and OLE1. Note the slightly larger difference between OLE1 alleles in segregants that carry the RM
412  allele (red boxplots) compared to the BY allele (blue boxplots) at OAF1. B. Faa4-GFP fluorescence levels in
413 strains engineered to carry the BY or RM allele at OAF1-L63S and OLE1(FAR). C. yeVenus fluorescence levels
414  for strains engineered to carry the BY or RM allele at OAF1-L63S and the OLE1(FAR) promoter driving
415 yeVenus expression on a plasmid. The difference between OLE1 alleles in segregants (in A) or strains (in B
416  and C) that carry the RM allele (red boxplots) compared to the BY allele (blue boxplots) at OAF1 are

417  highlighted by gray arrows.
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418
419  The OAFI and OLE] variants alter lipid profiles

420  To test if the two causal variants in the fatty acid metabolism genes OAF and OLE] alter cellular
421  phenotypes other than gene expression, we measured overall lipid composition as well as non-
422 esterified (“free”) fatty acids (NEFAs) in the RM and BY strains, as well as in BY strains with
423 OAFI(L63S)-RM, OLE] FAR-RM, or both of these alleles (Fig 8 & S7 Fig). The BY and RM
424 strains differed in multiple metabolites (S7 Fig, S2 Table, S3 Table), and the presence of either of
425  the two variant alleles in the BY background also resulted in significant differences in lipid
426  metabolites. The BY OAF1 allele decreased the fraction of longer-chain (C18) lipids (Fig 8A) and
427  also caused a decrease in the amount of C18 NEFAs (S7 Fig). This change resembles the effect of
428  an OAF1 deletion on lipid metabolism [64], consistent with the BY OAF'] allele having reduced
429  function (S2 Fig). The OLEI FAR-RM allele resulted in a significant increase in the amount of
430  saturated NEFAs but did not significantly reduce the amount of desaturated NEFAs (Fig 8B). This
431  suggests that reduced expression of the Olel desaturase caused by the FAR-RM allele results in
432 reduced consumption of the substrate but maintains levels of the reaction product in the reaction
433 catalyzed by Olel. We did not detect changes in overall lipid composition due to the OLE] FAR-
434  RM allele. Taken together, our results show that the variants affecting OLE [ expression and Oafl

435  activity translate to changes in cellular lipids.
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437  Fig 8. Lipid and fatty acid measurements. A. The fraction of C18 lipids in BY strains with wildtype or RM
438  alleles at OAF1(L63S) or OLEI(FAR) or a combination of both. B. The concentration of saturated and
439 unsaturated non-esterified fatty acids (NEFA) in the same strains. For each strain, the figure shows values
440  for each replicate (smaller points) along with the mean (larger points) and standard deviation (vertical

441 lines). See S7 Fig for all measurements.
442
443  The fine-mapped variants are the cause of the hotspot effects on mRNA levels

444  We have shown that each of the variants in RGT2, OAF1, and the OLE1 FAR element affect the
445  protein expression of a representative gene in trans. If these variants underlie the trans-acting
446  hotspots, we expect them to alter the transcript levels of many genes, and that these expression
447  changes will correlate with the known effects of the hotspots we sought to fine-map. To test this,
448  we quantified transcript levels in BY strains edited at each variant (S4 Table — S6 Table).

449  Each of the three variants altered the transcript levels of dozens of genes including the
450  representative gene we used for fine-mapping (HXT or FAA4) with the expected direction of
451  effect (Fig 9, Table 2). In addition, the FAR variant caused a nominally significant (p = 0.03) effect
452  on OLEI but not on SDS23 (p = 0.7), in agreement with our yeVenus reporter assay (S4 Fig).
453  Crucially, the magnitude of expression change caused by the three variants was significantly and
454  positively correlated with the respective hotspot effects (Fig 9) when considering all expressed
455  genes. Like the vast majority of trans eQTLs [12], the three hotspots dissected here have small
456  effects on most genes, typically explaining only a few percent of variance in mRNA levels. Our
457  RNA-Seq experiment was not designed to detect such small effects at statistical significance,
458  which would require dozens to hundreds of replicates. When we used a lenient significance cutoff
459  (uncorrected p < 0.05) to restrict our analysis to genes with some evidence for differential
460  expression, the correlations with hotspot effects increased at each hotspot (Table 2). These strong
461  correlations were reflected in high directional concordance. For example, at a more stringent
462  threshold (false discovery rate = 10%), every differentially expressed gene had concordant
463  direction of effect with the given hotspot for RG72 and OLEI, and there was just a single
464  discordant gene (out of 30) for OAF1 (Fig 9). This strong agreement between expression changes
465  caused by the three variants and known hotspot effects shows that these variants are causal variants

466  at their respective hotspots.
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Fig 9. Comparison of the differential gene expression caused by each causal variant and the eQTL hotspot

effects. The differential expression of an edited vs wildtype strain is on the x-axis and the previously

determined hotspot effects are on the y-axis. All genes with non-zero hotspot effects are shown. Red points

are genes with differential expression p-value < 0.05. Purple points are genes with differential expression

at FDR < 0.1. The larger red circles mark the genes used for fine-mapping. The blue circles are genes we

investigated in the confidence interval of each hotspot. The correlation between differential expression

and hotspot effects is given in each panel. For RGT2, orange circles show adenine-metabolism related genes

that are described in the text.
Table 2. RNA Seq results
Variant Number of | Number Correlation' between Correlation' between
DE genes | of DE DE? and hotspot effect: | DE? and hotspot effect:
(10% genes all genes genes with DE p <0.05
FDR) (p <0.05)
RGT2 (V539I) | 45 183 Rho=0.30,p=2e-25 | Rho=0.64,p~0
OAFI1(L63S) |45 147 Rho =0.62,p=1e-46 | Rho=0.80, p =6e-15
FAR 18 95 Rho=0.34,p=1e-19 | Rho=0.48,p=0.0015

'These correlations exclude genes without a hotspot effect detected in [12].

2log2 fold change

If a hotspot is caused by multiple causal variants in the same or neighboring genes, our single

variant edit might not account for all the effects of the hotspot. Therefore, we examined genes with
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483  transcript levels strongly affected by the hotspot that are unaffected by our variant edits. Genes
484  strongly affected by the hotspot at RGT2 but not by the RGT2 V5391 variant showed a significant
485  enrichment for “de novo IMP biosynthetic process” (corrected p = 9e-9) and related terms in purine
486  metabolism. This enrichment is driven by seven ADE genes with large hotspot effects that were
487  all non-significant in our experiment (Fig 9). We suspect that a second variant in this region is

488  responsible for these effects.
489
490  Population distribution and conservation of causal variants

491  To explore the evolutionary history of the three causal hotspot variants, we examined their
492  distribution across a worldwide panel of 1,011 S. cerevisiae isolates with genomic sequence [66].
493  The BY allele at OAF I L63S is rare among yeast isolates (Fig 10). It is carried only by BY and a
494  few close relatives while the RM allele is present in all other isolates as well as related species.
495  Reflecting this pattern, the Protein Variation Effect Analyzer (PROVEAN) tool [53] assigned a
496  “deleterious” score of -5.4 to the BY allele at this variant. In our experiments, the BY OAF ! allele
497  increased Faa4-GFP expression, which was the same direction caused by the OAF1 knockout (S2
498  Fig). Thus, the OAF 1 hotspot is caused by a rare, derived missense variant almost exclusive to the

499  BY laboratory strain that probably reduces function of the Oafl transcription factor.

500
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RGT2- Chromosome 1V:214,965 bp G/A OAF1- Chromosome 1:48,751 bp T/C OLE1- Chromosome VI11:398,081 bp A/G

French French 7B French
Wine/ dairy Wine/ p dairy Wine/ dairy
European / European 7, European
Mixed Mixed Mixed
origin origin origin
Sake/Asian Sake/Asian Sake/Asian
fermentation fermentation Ale N fermentation Ale
beer 7/ beer
S.cerevisiae(BY) ..LNVVAVVVVYFAVYETR.. S.cerevisiae(BY) ..RKRNRILFVCQACRKSK... S.cerevisiae(BY) ..GGGCCCAACAAAGGCGCT...
S.cerevisiae(RM) ..LNVVAVIVVYFAVYETR.. S.cerevisiae(RM) ..RKRNRISFVCQACRKSK.. S.cerevisiae(RM) ..GGGCCCAACGAAGGCGCT..
S.paradoxus ..LNVVAVIVVYFAVYETR... S.paradoxus ..RKRNRISFVCQACRKSK... S.paradoxus ..GGGCCCAACAAAGGCGCT...
K.lactis ..LNAVGVLVVYFTVYETN... K.lactis ..CKRQRISFVCQACRKNK... S.mikatae ..GGGCCCAACAAAGGCGCT...
D.hansenii ..CNALGVVFVYFMVYETK... D.hansenii ..RKRHRISVVCGFCKKRK... S.kudriavzevii ..GGGCCCAACAAAGGCGCT...
S.pombe ..CNLCAAIIIFLFAKETK.. kkgkk k% *33 * S.buyanus ..GGGCCCAACAAAGGCGCT...
*  L.s.333 *k, S.pastorianus ..GGGCCCAACAAAGGCGCT...
S.eubaynus ..GGGCCCAACAAAGGCGCT...
S.arboricola ..GGGCCCAACAAAGACGCT...
S.jurei ..GGGCCCAACAAAGGCGCT...
@ 1 T SDS23 // OLE 1 oo
S
Chinese/Taiwanese Chinese/Taiwanese E o
isolates isolates T 397)600 = 398000 ' 398400 ' 398'800
501 @ BY4741strain @ RM11.1Astrain @ strain with BY variant @ strain with RM variant ~ @® strain with RM/BY variant @ strain with other variant/undefined
502  Fig 10. Population genetic features of the causal variants. Neighbor joining tree of the 1,011 S. cerevisiae
503 strains sequenced in [66]. For each causal variant, the presence of the BY (blue), RM (red), BY and RM
504  (purple), or other (black) allele is shown across the tree. For the OAF1 and RGT2 missense variants, amino-
505 acid alignments with the indicated species are shown. For the intergenic FAR variant, we show nucleotide
506 alignments as well as PhastCons conservation scores for the depicted SDS23 / OLE1 region from the UCSC
507  Genome Browser.
508
509  The RGT2 and OLE] variants show very different patterns. At RGT2 V5391, both the valine in BY
510 and the isoleucine in RM are also encoded by related yeast species (Fig 10). Evidently, the V5391
511  variant can be tolerated without severe fitness consequences, as reflected in a “neutral” PROVEAN
512 score of 0.12. Within S. cerevisiae, the highly divergent and likely ancestral group of Chinese
513  isolates [66—68] carry the valine found in BY, suggesting that the isoleucine in RM is derived.
514  This derived allele has ~25% frequency in the S. cerevisiae population, where it is predominantly
515  found in isolates from the European wine clade, as well as in a second group of isolates with mixed
516  origin (Fig 10). Both the derived RM variant and an RG7?2 deletion resulted in reduced induction
517  of HXT1I expression (Fig 2C).
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518 At the OLEI FAR variant, the alanine found in BY is present in the ancestral Chinese isolates,
519  suggesting that the guanine in RM is derived (Fig 10). Indeed, the nucleotide sequence of the
520  noncoding region surrounding the FAR variant is conserved among Saccharomyces sensu stricto
521  species, and all other species carry the alanine found in BY at this position. The RM allele has
522 high frequency (46%) among yeast isolates, predominantly due to near fixation among the many
523  isolates in the European wine clade. The allele is also present in isolates from dairy, ale beer, and
524  other origins. The RM allele increased F444 expression in trans. This is the same direction of
525  effect we observed when inserting the kanMX cassette immediately downstream of OLE/. Such
526  engineered alleles are commonly called “Decreased Abundance by mRNA Perturbation” (DAmP)
527  alleles and are expected to decrease gene function by lowering mRNA transcript levels ([69]; S3

528  Fig).

529  Thus, the three causal variants identified here have diverse population genetic characteristics. They
530 include a rare, lab-specific allele and two common alleles found in a quarter or more of the
531 sequenced yeast isolates. At all three variants, we observed that the likely derived allele altered

532 gene expression in the same direction as alleles that eliminate or reduce gene function.
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533  Discussion

534  We fine-mapped natural DNA variants that each result in expression changes at many genes in
535  trans using CRISPR-Swap, a strategy that facilitates rapid engineering of allelic series at a given
536  locus. CRISPR-Swap is similar to other recently developed two-step engineering approaches
537  [70,71], and has multiple advantages: 1) The great majority of clones that are transformed with the
538  CRISPR-Swap plasmid and repair template incorporate the desired allele and clones without the
539  desired allele are easily identified by screening for maintained expression of the cassette selectable
540  marker. 2) gRNAs do not need to be designed and tested for each region due to the use of a common
541 gRNA. 3) Regions without a nearby PAM site can be engineered because the gRNAs target
542  integrated cassettes rather than the genomic region directly. 4) Larger regions, including those that
543  contain essential genes can be engineered by flanking the region with two cassettes and using a
544  single gRNA to cut and swap both cassettes and the intervening region. 5) Our gRNAs can be
545  directly used to engineer existing strains that already contain cassettes e.g., strains in the S.

546  cerevisiae deletion and GFP collections [72,73].

547  While we successfully used GFP-tagged protein abundance as phenotypic readouts amenable to
548  high-throughput measurement, the hotspots we dissected had been identified via their effects on
549  mRNA levels. The effects of the locus on the mRNA and protein of the gene used for phenotyping
550  cannot always assumed to be consistent [22,37]. Further, fine-mapping using the expression of a
551  single focal gene can only detect variants that influence this focal gene. Additional variants in the
552 same region that specifically affect other genes would be missed. Indeed, while our RNA-Seq
553  results were consistent with single causal variants at OAF' ] and OLE I, they suggested the presence
554  of a second causal variant close to RG72, which acts on genes involved in purine metabolism.
555  Evidently, even such narrowly mapped hotspot loci as those we dissected here can be due to
556  multiple causal variants with distinct effects but in close proximity to each other, as has been

557  observed for QTLs for other traits in yeast [74,75].

558 A key result from this work is that the three causal variants we identified are strikingly different
559  from each other. First, the variants include two coding missense variants (in RGT72 and OAFI),
560  along with the cis-acting noncoding FAR variant at OLE . In yeast, 10 additional natural variants
561 have been experimentally demonstrated to affect gene expression in trams, and there are 5

562  additional hotspots for which the gene but not the causal variant is known (S7 Table ,
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563 [18,20,23,30,31,34,38-41], see also [76]) Coding variation underlies at least 13 of these 18 cases,
564  including missense, frameshift and transposon insertion variants. In species other than yeast,
565 information about causal trans eQTL variants remains extremely limited [77-80]. In human
566  genetics, searches for trans eQTLs often assume a model in which noncoding variants alter the
567  expression of a regulator gene in cis, which in turn alters the expression of other genes in trans
568  [81-85]. The FAR variant at OLE discovered here is an example of such a mechanism. However,
569  the predominance of causal coding variants in yeast suggests that rans eQTLs caused by coding

570  variants may also exist in other species.

571  Second, the genes affected by the three variants encode different types of proteins: a glucose sensor
572  (Rgt2), a transcription factor (Oafl), and the essential enzyme Olel. While genes encoding
573  transcription factors are enriched in hotspot regions [12], hotspots clearly also arise from other
574  gene classes (S7 Table). Among these, enzymes are a particularly interesting group. Because most
575 enzymes do not directly regulate gene expression, metabolic changes caused by differential
576  enzyme activity or expression must trigger trans changes in gene expression indirectly [86,87].
577  The FAR variant at OLE] illustrates the indirect mechanisms that could underlie such indirect
578  trans effects. Its RM allele reduced Olel expression and increased saturated NEFAs. Higher lipid
579  saturation decreases membrane fluidity [88—90] which is sensed by membrane-bound dimers of
580  Mga2 or Spt23 [88,91-93]. In our data, the FAR RM allele increased MGA2 expression in trans.
581  Apparently, this noncoding variant perturbs mechanisms involved in membrane homeostasis,

582  which may ultimately alter gene expression via the transcriptional regulator MGA2.

583  The trans effects of the FAR variant were caused by a decrease in Olel levels of only about 15%
584  (Fig 5B & 6). Such sensitivity to small expression changes may be unusual among genes. While
585  the BY and RM strains carry thousands of local eQTLs affecting at least half of the genes in the
586  genome, most of these local eQTLs do not result in detectable expression changes at other genes
587  intrans [12]. Little is known about whether, when, and how small expression changes at one gene
588 influence other genes in frans, and how some of these changes go on to influence the organism.
589  Pioneering studies have shown that even relatively small reductions in the expression of the
590 enzyme genes TDH3 [94] and LCB2 [95] can reduce fitness, and that the relationship between
591  gene expression and fitness is specific to each gene [96], the environment [96], and the strain
592  background [95]. Future work will explore the causal relationships among fitness and gene

593  expression changes in trans.
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594  Finally, the three causal variants we discovered also differed in their population genetic
595  characteristics. The OAF1(S63L) variant is rare, while the RGT72 and OLE] variants are found in
596  many isolates. These two common variants differ in the degree of evolutionary conservation of
597  their site, with poor conservation at RGT72(V539I) and high conservation at the noncoding FAR
598  variant. At least in the case of RG72, simple evolutionary conservation alone would not have been

599  sufficient to predict the causal variant.

600  Atall three variants, the derived alleles affected trans gene expression in the same direction as loss
601  of function or reduced function alleles. While this suggests that the derived alleles are detrimental,
602  the high frequency in the population of the RG72 and OLE] alleles argues against strong negative
603  fitness consequences. While these two variants could potentially be beneficial in some
604  backgrounds or conditions, they could also be sufficiently mildly deleterious to have drifted to
605  high frequency, as has been proposed to be the case for many frans-acting polymorphisms [97,98].
606  Indeed, none of the three variants resulted in consistent growth differences in both backgrounds in
607  our culture medium (Table 1), suggesting that any fitness effects they may have are minor or occur
608  in other environments. For example, at RG72, the effect of the V5391 variant on HXT'] expression
609  was reduced dramatically simply by altering the amount of glucose in the medium, suggesting that
610  the long-term evolutionary consequences of this variant could be highly dependent on the

611 environment.

612 With the arrival of population-scale genome sequencing [99], the functional interpretation of
613  individual DNA variants has become a major goal of genetics, and numerous experimental and
614  computational approaches aiming to predict phenotypic consequences of variants have been
615  developed [53,100-107]. The diverse nature of variants that cause trans-eQTLs revealed here will
616 make prediction of trams effects challenging. More data on the effects of variants on gene
617  expression in frans will be important to understand frans-regulatory variation, both from high

618  throughput approaches [108—114], and focused dissection of individual hotspots.
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Materials and methods

Strains, Plasmids, Primers and Media

Experiments were performed in haploid S. cerevisiae strains derived from S288C (BY4741
(MATa, his3A1 leu2A0 met15A0 ura3A0), referred to as “BY” in the text) and RM-11a, (RM
HO(BY) (MATa, his3A1::CloNAT, leu2A0, ura3A0 HO(BY allele) AMNI(BY allele), referred to
as “RM?”). All strains used in this study can be found in S8 Table. The HO(BY) allele was
introduced into this RM strain by replacing the hphMX cassette at HO with the BY allele in
YLK2442 (a gift from L. Kruglyak) by CRISPR-Swap. Importantly, the CloNAT resistance gene
at the HIS3 locus in RM HO(BY) is not recognized by the gCASS5a. All plasmids used in this
study are in S9 Table. All primers/oligonucleotides are in S10 Table.

We used the following media (recipes are for 1L):

YNB+2% Glu +all (6.7 g yeast nitrogen base with ammonium sulfate and without amino acids, 20
g glucose, 50 mg histidine, 100 mg leucine, 50 mg methionine, 200 mg uracil and sterilized by

filtration)

YNB+2% Glu -Leu (YNB+2% Glu+all (without leucine)

YPD (10 g yeast extract, 20 g peptone, 20 g glucose)

SDC-Leu (1.66 g SC -His -Leu -Ura, 50 mg histidine, 200 mg uracil, 20 g glucose)
SDC-His (1.66 g SC -His -Leu -Ura, 100 mg leucine, 200 mg uracil, 20 g glucose)
LB (10 g tryptone, 10 g NaCl, 5 g yeast extract)

Media for selection of resistance gene expression was supplemented at the following
concentrations: ampicillin (100 pg/ml), nourseothricin sulfate (100 pg/ml), G418 sulfate (200
pg/ml), hygromycin B (300 pg/ml). For solid media, 20 g/L. agar was added prior to autoclaving.

Yeast were grown at 30°C. Bacteria were grown at 37°C.

Plasmid construction
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644  To construct the CRISPR-Swap plasmids we annealed oligos OFA0185 and OFA0186 for
645  gCASSS5a (pFA0055) and OFA0552 and OFA0553 for gGFP (pFA0057), and ligated them into
646  the Bcll and Swal sites of pML107, a gift of John Wyrick (Addgene #67639) as described in [45].

647  We are depositing pFA0055 and pFA0057 to Addgene under #131774 and #131784, respectively.

648  The yeVenus reporter plasmids were created by PCR fusion of the OLE! (-1 to -936) or SDS23 (-
649 1 to -1090) promoter fragment with the open reading frame of yeVenus, a gift of Kurt Thorn
650  (Addgene plasmid #8714) [115]. To create plasmids pRS415-pOLE1(BY)-yeVenus and pRS415-
651 pOLEI(RM)-yeVenus, the OLE] promoter and yeVenus PCR fragments were digested with
652  HindIII and BglII and ligated into pRS415 [116] digested with HindIIl and BamHI. To create
653  pRS415-pOLE1(BY_FAR RM)-yeVenus and pRS415-pOLE1(RM_FAR BY)-yeVenus the
654  OLE] promoter PCR fragment was digested with HindIII and PstI and ligated into the same sites
655  of pRS415-OLE1(BY)-yeVenus 1. To create pRS415-SDS23(BY)pVenus, the SDS23 promoter
656 and yeVenus PCR fragment was digested with Sall and Ndel and cloned into the same sites of
657 pRS415-pOLE1(BY)-yeVenus_1. For details on the creation of the PCR fusions see S11 Table.

658

659 pRS415-OLEI(BY) was created by ligating the OLE1(BY) gene (-936 to+373) after PCR
660  amplification and digestion with HindIII (native in OLE1) and BamHI (on OFA0641 primer) into
661  the same sites of pRS415. pRS415-SDS23(BY) was created by ligating the SDS23(BY) gene (-
662 1033, +4730) after PCR amplification and digestion with BamHI and Sacl into the same sites of
663  pRS415. pRS415-SDS23-OLEIp(BY) was created by ligating the 1009-bp intergenic region
664  between SDS23 and OLEI after PCR amplification and digestion with BamHI and HindIII into
665  the same sites of pRS415.

666
667 Tagging genes and cassette insertion

668 Insertions of cassettes for genome modification were performed using a standard PCR-based
669  one-step method [50]. Selection markers used were HIS3M X6, which allows growth of his3-
670  mutants without exogenous histidine, KanMX4, which allows growth with G418, natMX6,
671  which allows growth with nourseothricin sulfate/CloNAT and hphMX4 or hphNT1, which
672  allows growth with hygromycin B. For C-terminal tagging of HX7I, we used the GFP-
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673  HIS3MX6 cassette for tagging of HXT'/, and the mCherry-hphNT1 cassette, a gift of Jifi Hasek
674  (Addgene plasmid #74635) [117] for tagging of OLE]. For the first step of CRISPR-Swap, we
675 used KanMX4 and hphMX cassettes for gene deletion or for cassette insertion without deletion.
676  After selection for these markers, the transformants were single colony purified and insertion

677  of the cassette in the correct location and absence of the wild-type allele were verified by PCR.
678
679  Construction of repair templates for CRISPR-Swap

680  Repair templates were PCR amplified from BY and RM genomic DNA with primers designed to
681  create products with termini homologous (ranging from 84 — 338 bp) to the region flanking the
682  targeted cassette and, when possible, to be free of BY/RM sequence differences. To create hybrid
683  BY and RM repair templates, we used PCR SOEing techniques [118]. See S11 Table for details

684  on construction of each template.
685

686  CRISPR-Swap

687  Strains were transformed with the gCASS5a or gGFP plasmid and a PCR-generated repair
688  template using a standard lithium acetate procedure [119]. For each transformation, we used 25 ml
689  of cells at ODsoo= 0.4-0.8. To prepare 50 ml of cells for transformation, the cells were pelleted by
690  centrifugation at 3,000 g for 3 min, the supernatant removed and the cells were resuspended in 1
691  ml water and transferred to a 1.7 ml microfuge tube. The cells were pelleted at 2,500 g for 2 min,
692  the supernatant removed, and the cells were resuspended in 1 ml of Solution 1 (0.1M LiAc, I X TE
693  buffer). The cells were pelleted once again, supernatant removed, and then resuspended in 200 pl
694  of Solution 1. For each transformation, ~125 pl of the cell mixture was transferred to a 1.7 ml
695  microfuge tube containing 100 ng of the guide RNA plasmid, 1000 ng of PCR-generated repair
696  template and 5 pl (10 pg/ul) of salmon sperm carrier DNA (Sigma #D7656) and the tube was
697  incubated on a turning wheel at 30°C for 30 min. After which, 700 pl of Solution 2 (0.1M LiAc,
698 1X TE and 40% PEG 3350) was added and the mixture was returned to the turning wheel and
699 incubated at 30°C for 30 min. Next, the mixture was incubated at 42°C for 15 min and then 500
700  pl of water was added. To wash the cells prior to plating, the cells were pelleted at 2,500 g for 2

701  min, the supernatant removed, and the cells were resuspended in 1 ml of water. The cells were
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702 pelleted once again at 2,500 g for 2 min, the supernatant removed, and the cells resuspended in
703 200 pl of water, plated onto two SDC-Leu plates, and incubated at 30°C for 3 — 4 days. The median
704 number of colonies growing on SDC-Leu after single-cut CRISPR-Swap was 38 for BY and 3 for
705 RM strains. After double-cut CRISPR-Swap there were ~50% fewer transformants in each
706  background. The resultant leucine prototrophic colonies were single-colony purified on SDC-Leu
707  plates and then assayed for loss of the selectable marker cassette by identifying strains that could
708  no longer grow on YPD with G418, or, for OLE! allele exchanges, YPD with G418 and/or YPD
709  with hygromycin. We did not cure the strains of the CRISPR-Swap plasmid with the exception of
710  the strains used for RNA sequencing and the RM HO(BY) strain YFA0254. In our experience, the
711  plasmid is rapidly lost and therefore was likely not present during phenotyping of the strains. To
712 cure the strains of the plasmid, the strains were single-colony streaked and then replica plated to
713 SC-Leu to identify leucine auxotrophic colonies. We preserved a minimum of three independently

714 derived strains for each allele swap in glycerol (15% final concentration) stored at -80°C.
715
716  Verification of allele exchange

717  We performed colony PCR to verify the absence of the selectable marker cassette(s) and presence
718  of the desired allele. Further verification of variant incorporation was in some cases performed by
719  sequencing or by restriction enzyme digestion. To verify variants by enzyme digestion, we
720  screened for the presence of an Sspl site created by the O4F1 L63S BY allele and an Ncol site
721  created by the OLEI 1.304M RM allele. We did not always verify the allele exchange since we
722 found that 100% of the colonies that no longer expressed the selectable marker had the desired

723  allele. Special cases of allele exchange verification are described below.

724  The RGT?2 repair templates in some allele swaps contained a single indel variant within the 5’
725  homologous flanking region. In these strains, the variant was sequenced and only strains with the
726  desired variant were preserved when possible. In other cases, the mismatched variant is indicated

727  in Fig 2 and S8 Table. We found this variant to have no effect on expression of Hxt1-GFP.

728  The BY FAA4-GFP OLE1(L304M) strains were created using single-cut CRISPR-Swap of the
729  KanMX cassette in BY FAA4-GFP DAmP(OLE1) (YFA0547) and a repair template made from
730  BY genomic DNA with OFA0519, which carries the RM variant at L304M, and OFA0120.

731  Because the site of homologous recombination can initiate anywhere along the OLE [ gene present
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732 in the genome, the L304M variant was verified by restriction digestion and sequencing and 4 of

733 10 allele swaps successfully incorporated the RM variant at L304M.

734 When performing double-cut CRISPR-Swap at the OLE! locus, we observed incorporation of
735  unexpected BY/RM chimeric alleles in 2/36 strains in which we genotyped at least one variant.
736  We believe this can occur because the OLE! repair template is homologous to the sequence
737  between the two cassettes, allowing recombination to occur between the repair template and the

738  intervening sequence.
739
740  Phenotyping of engineered strains

741  Precultures were inoculated with cells from strains freshly growing on YPD plates or from glycerol
742  stocks and grown overnight in 800 — 1000 ul of YNB+2% Glu+all medium in a 2-ml deep-96-
743 well-plate on an Eppendorf Mixmate shaker set at 1100 rpm at 30°C. The precultures were diluted
744 to an ODeso=0.05 in 100 pl of the same medium in a 96-well flat bottom plate (Costar) and the
745  plates were sealed with a Breathe Easy membrane (Diversified Biotech). The strains were
746  phenotyped in a BioTek Synergy H1 (BioTek Instruments) plate reader at 30°C with readings
747  taken every 15 min for 97 cycles with 10 sec of orbital shaking between reads and 11 — 13 min
748  between cycles. Cell growth was characterized using absorbance readings at 600 nm and protein
749  expression was measured using fluorescence readings taken from the bottom of the plate with the
750  following parameters: GFP (excitation 488, emission 520 nm) and yeVenus (excitation 502,
751  emission 532 nm) with an average of 10 reads per well and gain set on extended; and mCherry

752  (excitation 588 nm, emission 620 nm) with an average of 50 reads per well and gain set at 150.

753  All  plate reader measurements are available at our code repository at

754  https://eithub.com/frankwalbert/threeHotspots.

755
756  Growth of RGT2 strains in different glucose concentrations

757  HXTI-GFP tagged strains, BY (YFA0276-8), BY RGT2(V539I) (YFA0489-91), RM (YFA0279-
758  81) and RM RGT2(1539V) (YFA0492-95) were precultured overnight in 1 ml of YNB+all with
759  the indicated glucose concentration (1%-12% glucose w/vol.) The cultures were diluted in 100 pl

760  of the same media and phenotyped as described above. We removed one strain (YFA0275, a BY
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761  wild type strain present on one plate) from the analyses because it showed highly unusual HX7'I-
762  GFP expression at high glucose.

763
764  yeVenus reporter expression

765  Strains BY (YFA0993), RM (YFA0254), or BY OAF1(L63S) (YFA0907) were transformed with
766  pRS415-based plasmids containing OLE / SDS23 intergenic fragments driving expression of the
767  yeVenus reporter. Phenotyping was performed as described above in YNB+2% Glu -Leu to
768  maintain the plasmids. Precultures were inoculated with transformants that were single colony
769  purified on SDC-Leu plates or using pools of transformants (~5-10 colonies) taken directly from
770  the SDC-Leu transformation plates and grown overnight, diluted, and phenotyped as described
771  above.

772
773  Modulation of OLE1 expression using Z;:EV

774  The BY FAA4-GFP strain expressing the estradiol responsive transcription activator was created
775 by inserting pACT1-Z:EV-NATMX [63] at the HO locus, S11 Table for more details. The OLE]
776  gene was then modified to have the Z3EV responsive promoter cassette (KANMX-pZ3EV and a
777  C-terminal fusion with mCherry-hphNT1. Cells of BY FAA4-GFP OLE1-mCherry(YFA1105),
778  BY FAA4-GFP OLEI(FAR RM)-mCherry(YFA1140) and BY HO::pACT1 Z3EV FAA4-GFP
779  Z3EVpOLEI-mCherry (YFA1110; glycerol stock prepared from a culture grown in 8 nM
780  estradiol) were precultured overnight in 250 pl of YNB+2% Glu+all with 4, 5, 6, 8, 10, 15, 20, 30
781  or 40 nM of estradiol (Sigma E1024: 10 uM stock solution in ethanol), diluted in 100 pl of the

782  same media, and phenotyped as described above.
783
784  Extraction and sequencing of mRNA

785  Strains BY(YFA1130), BY RGT2 back to WT(YFA1131), BY OAF1(L63S) (YFA1132), BY
786  OLE1(FAR RM) (YFA1133) and BY RGT2(V539I) (YFA1134) were precultured (7 precultures
787  of each strain) in 1 ml of YNB+2% Glu+all as described above. After ~18 hours of growth, the
788  precultures were diluted to ODgoo=0.05 in 1 ml of the same media. After ~7 hours of growth, the

789  optical density of the cultures was measured in the plate reader and growth was continued until an
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790  average plate ODsoo = 0.37, at which time the plate was centrifuged for 3 min at 2,100 g, the
791  supernatant removed, and each cell pellet was resuspended in 1 ml of H>O and transferred to a 1.7
792  ml microfuge tube. The tubes were centrifuged for 2 min at 16,000g, the supernatant removed, and
793  the cell pellets were immediately frozen by immersion of the tube in liquid nitrogen and stored at

794 -80°C.

795  Five cell pellets from each strain were chosen for RNA isolation so that the average ODsoo within
796  and between strains were as uniform as possible, with an average ODgoo = 0.37 (range of 0.34 to
797  0.40). Total RNA was isolated from cell pellets in 5 batches (each batch contained one of each of
798  the 5 strains) using the ZR Fungal/Bacterial RNA mini-prep kit including the DNase I on-column
799  digestion step (Zymo Research). Each cell pellet was resuspended in lysis buffer and transferred
800  to screw-capped tubes containing glass beads and the cells were broken open using a mini-
801  beadbeater (Biospec Products) in 5 cycles of 2 min bead beating followed by 2 min at -80°C. The
802  total RNA was eluted in 50 ul of DNAse/RNAse free water and the RNA Integrity and
803  concentration was measured using an Agilent 2200 Tape Station. RINe scores ranged from 9.8 —

804 10, with an average RNA concentration of 137 ng/pl.

805  Poly-A RNA was extracted from 550 ng of total RNA using NEBNext Poly(A) mRNA Magnetic
806  Isolation Module (NEB) and used as input into the NEB Ultra II Directional RNA library kit for
807  Illumina (NEB E7760) in two batches. NEBNext Multiplex Oligos for Illumina (Dual Index
808  Primers Setl) were used to amplify and barcode the libraries using the following cycling
809  conditions: Initial Denaturation at 98°C for 30 s and 10 cycles of: 98°C for 10 s and 65°C for 75

810 s, followed by a 65°C extension for 5 min.

811  The amplified DNA was quantified using Qubit DNA HS. Sample concentrations ranged from 47
812  — 102 ng/ul. An equal concentration of each of the 25 barcoded libraries was pooled and the
813  average fragment size of the library was 350 bp, as determined using an Agilent High Sensitivity
814  chip. High-output sequencing of 76-bp single-end reads was performed on an Illumina NextSeq
815 550 at the University of Minnesota Genomics Core. An average of 14 million reads were obtained

816  for each sample.
817  Sequencing reads are available at GEO as series GSE134169.

818

36


https://doi.org/10.1101/740076
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/740076; this version posted August 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

819  Lipid Measurements

820 Strains BY (YFA0897), RM HO(BY) (YFA0254), BY OAFI1(L63S) (YFA0907), BY
821 OLE1(FAR RM) (YFA0914) and BY OLEI(FAR RM)OAFI1(L63S)(YFA1096) were
822  precultured (6 precultures of each strain) for ~18 hours in 1 ml of YNB+2% Glu+all and then
823  diluted in 7 ml of the same media to an ODsoo = 0.002 in a loosely capped 16 X 150 mm culture
824  tube and grown at 30°C on a turning wheel until an approximate ODsoo = 0.34 (measured in plate
825  reader). Samples were centrifuged for 3 min at 2,100g, the supernatant was removed and the cell
826  pellets were resuspended in 1 ml of water and transferred to 1.7 ml microfuge tubes. The cells
827  were pelleted for 2 min at 16,000g, the supernatant removed, and the cell pellets were immediately

828  frozen by immersion of the tube in liquid nitrogen and stored at -80°C.

829  Cell pellets from each strain were resuspended in 1X PBS and sonicated. Fatty acids and total lipid
830  composition were measured against a standard curve on a triple quadrupole mass spectrometer
831  coupled with an Ultra Pressure Liquid Chromatography system (LC/MS) as previously described
832  [120]. Briefly, the cell pellets were spiked with internal standard prior to extraction with tert-Butyl
833  Methyl Ether (MTBE). Roughly 25% of the sample was dried down, hydrolyzed, re-extracted and
834  brought up in running buffer for the analysis of total fatty acid composition. The remaining portion
835  of the extract was dried down and brought up in running buffer prior to injecting on the LC/MS
836  for the NEFA measurement. Data acquisition was performed under negative electrospray

837  ionization condition.
838
839  Allele frequencies of the variants in the population

840  The phylogenetic tree used to describe the evolution of the causal variants was obtained from [66]
841  (personal communication). Briefly, the tree was formed from the analysis of 1,544,489 biallelic
842  sites across 1,011 S. cerevisiae strains using the R package “ape” [121] with the 'unrooted' method
843  to display the tree. For each of the three variants, the matrix of variants from [66] was used to
844  define which of the 1,011 strains carry the RM allele, the BY allele, both the BY and RM allele,
845  or another allele. The edges of the tree were colored based on the alleles each strain carries. The
846  absence of color continuity as seen with OLE! and RGT2 can indicate multiple independent
847  mutation events, but is more likely to arise from out-crossing events leading to mosaic genomes

848 [122].
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849  Alignments were performed using Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo/) with

850  default settings. Sequences for alignment were retrieved from the NCBI nucleotide database.
851  Predictions of variant effect on the function of the Rgt2, Oafl, Sds23, and Olel proteins were

852  calculated using Provean (Protein Variation Effect Analyzer) (http:/provean.jcvi.org).

853
854  Computational and statistical analyses

855  All analyses described below were conducted in R (www.r-project.org), with individual packages

856 indicated throughout. Figures were generated using base R and ggplot2 [123]. Analysis code is
857  available at https://github.com/frankwalbert/threeHotspots.

858
859  Quantification of gene expression from plate reader data

860  We used the ‘growthcurver’ R package [124] to fit a logistic growth curve to the ODgoo readings
861  in each well. Every plate had several blank wells that contained medium but no yeast, and we used
862  these blank wells to correct for the optical density of the medium. We visually confirmed
863  successful fit of the growth curve for every well, and additionally excluded any wells for which
864  growthcurver indicated poor model fit. From the fitted growth model, we extracted growth rates
865  as well as the “inflection point” of the growth curve, i.e. the time point at which the population
866  reached half its maximum capacity. We chose this time point for our measure of expression
867  because in practice it closely matches the ODgoo values used to map the hotspots [12], and because
868  while cultures are still growing exponentially at this time point, they have reached a high enough

869  density to allow accurate quantification of fluorescence.

870  To obtain expression values for downstream analyses, we subtracted the mean ODsoo and mean
871  fluorescence of the blank wells included on each plate from all other wells on the plate. We
872  calculated the mean of three background-subtracted time points centered on the inflection point
873  (Fig 1C) for ODsoo and fluorescence. Downstream analyses of gene expression used the ratio of

874  this mean fluorescence divided by the mean ODsoo.

875  Prior to statistical analysis, we logz-transformed these fluorescence ratios. Every plate that carried
876  strains with the BY and RM backgrounds also carried untagged wild type control strains without

877  any fluorescent markers. We subtracted the average logs(fluorescence ratio) values from these
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878  untagged strains from those of the tagged strains. Thus, the fluorescent phenotypes used in
879  statistical analyses and displayed in the figures are in units of logz-fold change compared to

880  untagged strains with matched genetic background.
881
882  Statistical analyses of plate reader data

883  For fine-mapping, we used pairwise comparisons of genotypes to determine whether the
884  expression associated with a given edited allele differed significantly from the wild type or other
885 alleles. These pairwise tests were computed using mixed linear models whose random effect terms
886  depended on the structure of the data available for each comparison. Specifically, two random

887  terms were included where appropriate:

888  Plate identity. As fine-mapping progressed, most genotypes were measured on several plate runs,
889  usually along with different sets of other genotypes. This resulted in a complex data structure in
890  which genotypes were sometimes but not always included on the same plates, run over a span of
891  several months. To account for this structure, the model included plate identity as a random term.
892  To ensure that plate effects were properly accounted for in both genotypes in a given pairwise
893  comparison, each comparison was computed using only data from plates that carried both
894  genotypes under consideration. For example, while wildtype strains were run on multiple plates, a
895  given edited strain may only have been present on one of these plates. In this scenario, only this
896  one plate would be used in the statistical comparison. Note that data in figures in the paper that
897  display plate reader data from multiple plates were not corrected for plate effects. We chose to not
898  correct for plate effects in the plots because we wished to present a raw view of the data, and
899  because there is no good way to apply a common visual correction for plate identity when different
900  genotype comparisons require different plate corrections, depending on which genotypes were
901 present on each plate. In the figures, plate identity is indicated with different symbols (dots,

902  squares, triangles, etc.).

903  Clone identity. During strain engineering, we created at least three independent clones of each
904  strain. Clone identity was included in the model as a random effect to control for any systematic
905  differences among these clones. In the figures, we visually grouped data from different wells for a
906  clone by connecting these wells with a line. For the yeVenus reporter experiments, we collected

907 data from individual transformed colonies as well as from small transformant pools that each
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908  contained (and effectively averaged) multiple colonies. For statistical analyses, we treated each

909  small transformant pool as if it were a colony.

910  In the equations below, we denote random effects in parentheses. For each genotype, we used the
911  “lmer” function in the Ime4 package [125] to fit a model of the phenotype y with the above random

912  effect terms as appropriate:
913  HO: y = (plate) + (clone) + &

914  where ¢is the residual error. We fit a second model that includes a fixed effect term for genotype

915  identity:
916  HI:y = (plate) + (clone) + genotype + &

917  We tested for significance of the genotype term using ANOVA comparing H0 and HI. Note that
918  for a few comparisons in which only a single clone was run in replicate on a single plate, we did

919  not include random effects terms. We fit these models using the “Im” function.

920  P-values in plate reader analyses during fine mapping were not corrected for multiple testing.
921

922  Tests for non-additive genetic interactions

923  To test for non-additive interactions of a given allele (i.e., the BY or RM allele at a given causal
924 variant) with the strain background (BY or RM), we fit a model with a fixed effect term for strain

925  background, in addition to a term for the allele at the variant of interest:

926  HO:y = (plate) + (clone) + strain + allele + &

927  and a second model that adds an interaction term between allele and strain background:
928  HI:y = (plate) + (clone) + strain + allele + strain:allele + &

929  We used ANOVA to test if the inclusion of the strain:allele interaction term in H/ significantly
930  improved model fit. These interaction tests only considered plates that contained both alleles for
931 the given variant in both strain backgrounds. We used the same models to test for interactions
932  between FAR alleles and OAF alleles by replacing the “RM” factor level in strain with “BY
933 (OAFI-RM)”.
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934  To compare the OAFI/OLE] allele interaction to that observed earlier in eQTL data (Source Data
935 14 1in [12]), we obtained expression values (Source Data 1 from [12]) and used a linear model to
936  regress out effects of collection batch and ODsoo for these data (Source Data 2 from [12]). We then
937  used genotypes (Source Data 3 from [12]) at the marker positions corresponding to the two
938 interacting loci at OAF'] and OLE] to divide the segregants in [12] into four two-locus genotype
939  classes and plot their F444 mRNA levels in Fig 7A.

940
941  Dependence of the RGT2(V539I) effect on glucose concentration

942 To test if the effect of the causal variant in RGT2 depended on glucose concentration in the
943  medium, we extended our modeling framework to include glucose (logz(glucose concentration))
944  as a numeric covariate. We fit a model that included all possible pairwise interactions between

945  strain, allele, and glucose:

946  HI: y = (plate) + (clone) + strain + allele + glucose + strain:allele + strain:glucose +

947  allele:glucose + ¢

948  and compared this model to simpler models from which we dropped the respective interaction term

949  of interest. For example, to test for the interaction between glucose and the allele effect:
950  HO:y = (plate) + (clone) + strain + allele + glucose + strain:allele + strain:glucose + &
951  We computed p-values comparing these models using ANOVA.

952

953  RNASeq data handling

954  We used trimmomatic [126] version 0.38 to trim Illumina adapters, filter out reads shorter than 36
955  bp, trim bases with a quality score of less than 3 from the start and end of each molecule, and
956  perform sliding window trimming to remove bases with an average quality of less than 15 in a
957  window of four bases. This filtering retained >97% of reads. We used kallisto [127] to pseudoalign
958  these trimmed and filtered reads to the S. cerevisiae transcriptome obtained from Ensembl [128]
959  build 93 based on genome version sacCer3 [129]. Following recommendations in [130], we used

960  FastQC [131] and RSeQC [132] to examine the quality of our 25 samples and found them to all
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961  be of high quality and, importantly, highly similar to each other. We retained all 25 samples for

962  downstream analysis.

963  As ameasure of gene expression, we used “estimated counts” in the kallisto output for each gene
964  in each sample. To exclude genes with poor alignment characteristics, we used RSeQC to calculate
965  Transcript Integrity Numbers (TINs) per gene and sample, and also considered “effective gene
966  length” produced by kallisto. We retained genes in which no sample had a count of zero, no sample
967  had a TIN of zero, and with effective length larger than zero. This filtering retained 5,400 genes
968  (out of 6,713 annotated) for further analysis.

969
970  RNASeq statistical analyses

971  Statistical analyses were conducted using the DESeq2 R package [133]. During RNA isolation and
972  sequencing library generation, we had collected a number of covariates and batch identities:
973  Bioanalyzer-based RNA Integrity Number (RIN), Bioanalyzer-based RNA concentration, Qubit-
974  based RNA concentration, ODeoo of the culture at time of flash freezing, as well as batch for cell
975  harvest, RNA isolation, and library generation. Samples from our 5 genotypes had been distributed
976  equally among these three batches. We examined the influence of these technical covariates by
977  comparing them to principal components computed on variance-stabilized data [133] and found
978  that the three batches (in particular cell harvest) appeared to influence the results. We thus included
979  these three batches as covariates in all further analyses. We used surrogate variable analysis (SVA)
980  [134] to further account for unexplained technical variation and included two SVs in our statistical
981  model. While choices about which specific technical covariates and SVs to include in the model
982  did slightly alter the significance tests for individual genes, our main result of positive correlations

983  between hotspot effects and differential expression was robust to these choices.

984  We fit the DESeq2 model to all 25 samples and conducted pairwise tests for differential expression
985  between genotypes. Specifically, we compared the edited OAFI and OLEI alleles to a BY
986  wildtype strain (YFA1130) engineered by CRISPR-Swap with gGFP to remove the GFP tag from
987  FAA4. We compared the edited RGT2 variant to a BY wild type strain (YFA1131) engineered by
988  CRISPR-Swap with gCASS5a to replace rgt2A::kanMX6 with the RG72 BY allele. The main text

989  describes differential expression results based on either nominal p-values (p < 0.05), or based on
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990  a multiple-testing corrected threshold computed via false discovery rate estimation using the

991  Benjamini-Hochberg method [135] as reported by DESeq?2.

992  To compare differential expression to hotspot effects, we used logz-fold changes estimated by
993  DESeq?2 and hotspot effects that had been estimated by fitting a lasso model to all expressed genes
994  and all 102 hotspots, as described in [12]. These hotspot effects were obtained from Source Data
995 9 in [12]. We used nonparametric Spearman rank correlation to compare differential expression
996  with the hotspot lasso coefficients. We excluded genes with a hotspot effect of zero. While
997 inclusion of these genes slightly degraded the magnitude of the correlations between hotspot

998 effects and differential expression, all correlations remained significant and positive.

999  Gene ontology enrichment analysis for genes with strong hotspot effects but no differential
1000  expression was conducted using the “Gene Ontology Term Finder” tool on SGD [136]. As the
1001  background set, we used all genes present in both the hotspot effect matrix and our RNASeq data.
1002 As the test set, we used genes with an absolute hotspot effect of at least 0.3 and a differential

1003  expression p-value larger than 0.3.
1004
1005  Statistical analyses of lipid data

1006  To correct for possible technical confounders from lipid composition and NEFAs, we used a linear
1007  model to regress out effects of acquisition order and sample grouping. For NEFAs, we also
1008  regressed out total protein, which had been measured from the same samples. The residuals from
1009  these regression were used in the statistical analyses below. To obtain total saturated, unsaturated,
1010  C18, and C16 measures, we summed the measures for the respective individual lipid species in

1011  these groups.

1012 To analyze the effects of the O4F1 and OLE[ alleles in the BY background, we jointly considered
1013 the measures from the four genotypes (BY, BY(OAF-L63S), BY(FAR-RM), and BY with both
1014  RM alleles) by fitting a linear model to each lipid compound y that models the effects of the OAF/
1015 and the FAR allele at OLE!:

1016  y = OAFI1 + OLEIl + OAFI1:OLEI + ¢

1017  where ¢ is the residual error. We analyzed this model using ANOVA to test for main effects of

1018  each allele as well as for the interaction term. P-values were not corrected for multiple testing.
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1019  The BY and RM backgrounds we compared using T-tests.
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1406  Supporting information captions

1407  S1 Fig. Guide RNA recognition sequences. A. Schematic of a cassette typically used for gene
1408  deletions. The gCASS5a recognition sequence is marked with a bracket and the PAM site is
1409  underlined. Start of the TEF promoter sequence driving expression of the selectable marker is in
1410  red letters. B. Schematic of a cassette used for C-terminally tagging open reading frames with
1411 GFP. The location of the gGFP recognition sequence is marked with a bracket and the PAM site
1412 isunderlined. The start of the GFP sequence is in neon green. The recognition sites for Sall (pink)
1413 and Pacl (purple) are the Cas9 cleavage sites (scissors) are shown to allow easy comparison of the
1414  gRNA recognition sequences, which are specific to each cassette. Designated with arrows are the

1415  universal primer sequences, S1 or U2 and F1, used for amplification of common cassettes.
1416

1417  S2 Fig. OAFI fine mapping. On the left are schematics of OAF alleles with BY sequences in
1418  blue and RM sequences in red. Missense variants are marked with a straight line. Synonymous and
1419  non-coding variants are not shown. On the right are the corresponding Faa4-GFP fluorescence
1420  levels for each allele. P-values are for tests comparing each allele to its respective wildtype.
1421  Significant p-values are outlined. Blue boxplots indicate alleles in the BY background and red
1422 boxplots and background gray shading indicate alleles in the RM background. Lines group
1423  measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate

1424  reader runs.
1425

1426  S3 Fig. OLEI fine mapping. On the left are schematics of OLE] alleles with BY sequences in
1427  blue and RM sequences in red. Only the one missense variant and none of the synonymous variants
1428  in the open reading frame are marked. Variants in the non-coding region are maked with a single
1429  line for a SNV and a two diagonal lines for INDELSs. On the right are the corresponding Faa4-GFP
1430  fluorescence levels for each allele. P-values are for tests comparing each allele to its respective
1431  wildtype. Significant p-values are outlined. Blue boxplots indicate alleles in the BY background
1432 and red boxplots and background gray shading indicate alleles in the RM background. Lines group
1433  measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate

1434  reader runs.
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S4 Fig. yeVenus reporter expression. On the top are schematics of the SDS23/OLE1 locus and

the two orientations of the yeVenus reporter constructs. The bottom panel shows yeVenus

fluorescence levels for the indicated yeVenus reporter constructs. Blue boxplots indicate alleles in

the BY background and red boxplots indicate alleles in the RM background. Lines group

measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate

reader runs.

S5 Fig. Effects of plasmid overexpression of SDS23/OLE1 sequences on Faa4-GFP

expression. Faa4-GFP fluorescence levels of strains transformed with a LEU2-CEN plasmid

containing the indicated sequence. Lines group measurements of the same clone.

S6 Fig. Growth rates as a function of estradiol dose. Error bars show standard deviations.

S7 Fig. Lipid and fatty acid measurements. All individual measurements are shown. For each

genotype, the figure shows values for each replicate (smaller points) along with the mean (larger

points) and standard deviation (vertical lines).
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1461  S9 Table. Plasmids
1462  S10 Table. Oligos

1463  S11 Table. Yeast strain and plasmid construction

61


https://doi.org/10.1101/740076
http://creativecommons.org/licenses/by/4.0/

