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Abstract 11 

DNA variants that alter gene expression contribute to variation in many phenotypic traits. In 12 

particular, trans-acting variants, which are often located on different chromosomes from the genes 13 

they affect, are an important source of heritable gene expression variation. However, our 14 

knowledge about the identity and mechanism of causal trans-acting variants remains limited. Here, 15 

we developed a fine-mapping strategy called CRISPR-Swap and dissected three expression 16 

quantitative trait locus (eQTL) hotspots known to alter the expression of numerous genes in trans 17 

in the yeast Saccharomyces cerevisiae. Causal variants were identified by engineering 18 

recombinant alleles and quantifying the effects of these alleles on the expression of a green 19 

fluorescent protein-tagged gene affected by the given locus in trans. We validated the effect of 20 

each variant on the expression of multiple genes by RNA-sequencing. The three variants were 21 

strikingly different in their molecular mechanism, the type of genes they reside in, and their 22 

distribution in natural populations. While a missense leucine-to-serine variant at position 63 in the 23 

transcription factor Oaf1 (L63S) was almost exclusively present in the reference laboratory strain, 24 

the two other variants were frequent among S. cerevisiae isolates. A causal missense variant in the 25 

glucose receptor Rgt2 (V539I) occurred at a poorly conserved amino acid residue and its effect 26 

was strongly dependent on the concentration of glucose in the culture medium. A noncoding 27 

variant in the conserved fatty acid regulated (FAR) element of the OLE1 promoter influenced the 28 
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expression of the fatty acid desaturase Ole1 in cis and, by modulating the level of this essential 29 

enzyme, other genes in trans. The OAF1 and OLE1 variants showed a non-additive genetic 30 

interaction, and affected cellular lipid metabolism. These results revealed remarkable diversity in 31 

the molecular basis of trans-regulatory variation, highlighting the challenges in predicting which 32 

natural genetic variants affect gene expression.  33 
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Author summary 34 

Differences in the DNA sequence of individual genomes contribute to differences in many traits, 35 

such as appearance, physiology, and the risk for common diseases. An important group of these 36 

DNA variants influences how individual genes across the genome are turned on or off. In this 37 

paper, we describe a strategy for identifying such “trans-acting” variants in different strains of 38 

baker’s yeast. We used this strategy to reveal three single DNA base changes that each influences 39 

the expression of dozens of genes. These three DNA variants were very different from each other. 40 

Two of them changed the protein sequence, one in a transcription factor and the other in a sugar 41 

sensor. The third changed the expression of an enzyme, a change that in turn caused other genes 42 

to alter their expression. One variant existed in only a few yeast isolates, while the other two 43 

existed in many isolates collected from around the world. This diversity of DNA variants that 44 

influence the expression of many other genes illustrates how difficult it is to predict which DNA 45 

variants in an individual’s genome will have effects on the organism.  46 
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Introduction 47 

DNA variants that alter gene expression are an important source of genetic variation for many 48 

traits [1], including common disease in humans [2], agricultural yield [3,4] and evolutionary 49 

change [5]. To map gene expression variation in the genome, expression levels are measured in a 50 

population of individuals and related to the genotype of each individual. This approach identifies 51 

expression quantitative trait loci (eQTLs) – genomic regions that each contain one or more variants 52 

that affect gene expression. 53 

eQTLs can be classified into two types based on their mechanism of action. Cis eQTLs arise from 54 

variants that alter the expression of genes on the same DNA molecule, for example by changing 55 

the sequence of a regulatory element in a promoter. Most cis-acting variants are located close to 56 

or within the genes they influence, such that cis eQTLs can be detected as “local” eQTLs that 57 

overlap the given gene. By contrast, trans eQTLs arise from variants that change the activity and/or 58 

abundance of a diffusible factor which in turn alter the expression of other genes. Trans eQTLs 59 

can be located anywhere in the genome relative to the genes they affect. While they can be local 60 

(e.g., if a gene encoding a transcription factor resides next to a gene targeted by that factor), most 61 

trans eQTLs are “distant” from the genes they affect, usually on different chromosomes. 62 

As in genetic mapping of other traits, identifying the specific DNA variants that have causal effects 63 

in eQTL regions is challenging. Recent studies have made progress in identifying cis acting 64 

variants (e.g. [6–10]). However, few trans-eQTLs have been resolved to single variants. This is 65 

although most of the heritable contribution to gene expression variation arises from trans rather 66 

than cis eQTLs [11–16], and although trans acting variation is likely to play pivotal roles in 67 

shaping diseases and phenotypes within species [11,17]. Identifying the molecular nature of trans-68 

acting variants and the mechanisms by which they alter gene expression is key to understanding 69 

the connection between genotypic and phenotypic variation. 70 

Natural isolates of the yeast Saccharomyces cerevisiae have provided fundamental insights into 71 

the genetics of gene expression variation ([12,18–34], reviewed in [35]). Particularly intensive 72 

efforts have been directed at the comparison between a laboratory strain (the genome reference 73 

strain S288C, or “BY”) and a wine strain (RM11a, “RM”), whose genomes differ at about 40,000 74 

variants. eQTL mapping in recombinant progeny from a cross between these strains revealed the 75 

existence of eQTL hotspots that each influence the expression of numerous genes in trans [18]. 76 
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Many of these hotspots also affect protein levels [22,36,37]. Recently, an analysis of mRNA levels 77 

in an expanded set of 1,012 BY/RM progeny provided a more comprehensive view of regulatory 78 

variation in this cross [12]. Specifically, trans-acting variation arose almost exclusively from 102 79 

hotspots, some of which affected the expression of thousands of genes (Fig 1A). A small number 80 

of hotspots in this and other crosses have been resolved to their causal genes and nucleotide 81 

variants [18,20,23,30,31,34,38–41], but progress towards a more complete view of hotspot 82 

variants has been hampered by the challenges of engineering and measuring the expression effects 83 

of candidate variants. 84 

 85 

 86 
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Fig 1. Hotspot fine mapping strategy. A. Illustration of the possible cis and trans effects at an eQTL hotspot. 87 

A genomic region, shown in blue with several genes depicted as wide arrows, harbors multiple variants 88 

(stars). Of these, one causal variant (red star) alters the activity and/or abundance of a gene product (blue 89 

circle with red star), which alters the expression of multiple genes (gray arrows) in trans. Another variant is 90 

shown affecting a neighboring gene in cis, but has no trans effect. B. A schematic showing two examples of 91 

engineering a BY allele (blue) to an RM allele (red) using CRISPR-Swap. In step one, a non-essential gene is 92 

replaced by the G418 resistance cassette (KanMX) or an essential gene is flanked by the hygromycin 93 

resistance (hphMX) and KanMX cassettes. In step two, the strain is transformed with the CRISPR-Swap 94 

plasmid pFA0055 that expresses Cas9 and the guide RNA gCASS5a and the auxotrophic marker LEU2; and 95 

a PCR-generated repair template containing the desired RM allele. The gCASS5a/Cas9 complex directs 96 

cleavage (scissors) of the cassettes. Either a single-cut or a double-cut occurs depending on the number of 97 

cassettes present. Selection of transformants for leucine prototrophy and loss of G418, or hygromycin and 98 

G418, resistance identifies strains with the desired RM allele replacement. C. Quantifying the expression of 99 

a representative gene affected in trans by a hotspot. Fluorescence of the protein expressed from the GFP-100 

tagged gene and optical density (OD600) of the culture are measured in 15 minute intervals during growth 101 

in a plate reader. The inflection point, the point where the culture exits logarithmic growth, and two 102 

flanking points are used to determine the GFP/OD600 ratio for phenotyping the effect of the engineered 103 

alleles. 104 

 105 

Here, we describe a strategy for the identification of causal eQTL hotspot variants that combines 106 

a genome engineering approach with high-throughput quantification of fluorescently tagged 107 

protein expression as a phenotypic readout. We used this strategy to identify causal variants 108 

underlying three trans-acting eQTL hotspots in the BY and RM strains: a common missense 109 

variant in the glucose receptor Rgt2, a rare missense variant in the oleate-activated transcription 110 

factor Oaf1, and a common variant in the promoter of OLE1 that alters the expression of this 111 

essential fatty acid desaturase gene. We studied the effects of these variants in more detail and 112 

discovered that the effect of the RGT2 variant is influenced by the environment, and that the OAF1 113 

and OLE1 variants interact in a non-additive fashion and lead to changes in cellular lipids. These 114 

results show that variants underlying trans-acting hotspots are highly diverse. They can be 115 

common or rare in the population, different in their evolutionary conservation, and located in the 116 

coding or noncoding region of genes encoding functionally diverse proteins. 117 
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Results 118 

The CRISPR-Swap strategy for engineering allelic series 119 

To assist fine-mapping of hotspot intervals, we devised “CRISPR-Swap” (Fig 1B), a two-step 120 

strategy for efficient allele exchange that combines advantages of “insert-then-replace” methods 121 

[42,43] with CRISPR/Cas9 engineering [44–46]. In the first step, a given locus is replaced with a 122 

selectable marker cassette. Second, the strain is transformed with a plasmid that expresses Cas9 123 

and a guide RNA (gRNA) that targets the cassette, along with a DNA repair template containing 124 

terminal homology to sequences flanking the cassette in the genome. We designed the “gCASS5a” 125 

gRNA to specifically target a sequence shared by several selectable marker cassettes used for gene 126 

deletions in the popular pFA6a series (e.g., KanMX6, natMX4 and hphMX4; [47–50]; S1 Fig) 127 

such that the same gRNA can be used to replace each of these cassettes. By inserting two different 128 

cassettes flanking a genomic region, this gRNA can be used to exchange both cassettes along with 129 

the intervening sequence. This “double-cut” CRISPR-Swap method enables allele exchange even 130 

when the region contains sequences essential for survival (Fig 1B). Additionally, we designed a 131 

“gGFP” that specifically targets cassettes used for C-terminal tagging of open reading frames with 132 

GFP. 133 

The gRNA/Cas9 complex is constitutively expressed from the CRISPR-Swap plasmid and will 134 

continue to cleave at the cassette(s) in the genome until a repair is made that abolishes the gRNA 135 

recognition sequence or the cell dies. Consequently, after transformation, all colonies that form on 136 

media lacking leucine have undergone a repair that blocks further cleavage by the gRNA/Cas9 137 

complex. We designed the gCASS5a and gGFP gRNAs to cleave in the cassette but outside of the 138 

selectable marker gene, such that marker expression should be maintained if repair occurs without 139 

exchange of the selectable marker (Figure S1). Thus, transformants with the desired allele swap 140 

can be easily identified by screening for the loss of the resistance or auxotrophy conferred by the 141 

selectable marker. 142 

We analyzed the results of 40 independent CRISPR-Swaps we performed to determine the 143 

efficiency of CRISPR-Swap. After transformation with the CRISPR-Swap plasmid expressing 144 

either gCASS5a or gGFP and a PCR-generated repair template, a median of 87.5% of the 145 

transformants no longer expressed the cassette selectable marker. We screened over 100 of these 146 

transformants for integration of the desired allele by colony PCR, restriction digestion or 147 
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sequencing and found that all had the correct allele exchange. We also sequenced the guide RNA 148 

recognition site in 13 transformants that remained G418 resistant and found that 2 had the 149 

hallmarks of repair by non-homologous end-joining, while the remaining 11 were repaired using 150 

the homologous sequence present in the GFP-His3MX cassette in these strains (see below) to 151 

repair the locus. We observed no difference in CRISPR-Swap efficiency among the two strain 152 

backgrounds (BY and RM), the genomic loci we targeted, or the gCASS5a and gGFP gRNAs. In 153 

summary, CRISPR-Swap readily creates allele replacements with high efficiency. 154 

 155 

Fine-mapping of hotspot regions using GFP-tagged proteins to measure trans-gene 156 

expression 157 

We leveraged the ability of CRISPR-Swap to rapidly engineer allelic series at a given locus to 158 

dissect three trans-acting hotspot regions to the causal variant. We focused on these hotspots 159 

because they have strong effects on many genes in trans, and because earlier fine-mapping in the 160 

1,012 BY/RM segregant panel had located them to only a few genes. Before engineering each 161 

hotspot, we selected one abundantly expressed gene strongly affected by the hotspot in trans to 162 

monitor the effects of our genome edits on its gene expression (Fig 1C). We C-terminally tagged 163 

the open reading frame of this gene with GFP, engineered the hotspot locus with CRISPR-Swap, 164 

and measured GFP fluorescence in each engineered strain during growth on a 96-well plate reader 165 

(Methods). This approach provided high-throughput measurements of gene expression for the 166 

statistically powerful dissection of the hotspot loci. 167 

 168 

A missense variant in RGT2 influences expression of HXT1 in trans 169 

A hotspot locus on chromosome IV affects the expression of many genes at the mRNA and protein 170 

levels in crosses between BY and RM [12]. In the expanded BY/RM segregant panel, this locus 171 

had been mapped to a region containing three genes: RGT2, ARF2, and RPL35-B (Fig 2A). There 172 

mRNA levels of 1,400 genes are affected by this hotspot in trans, and these genes are enriched for 173 

roles in ATP synthesis and carbohydrate derivative metabolism. The strongest trans effect was on 174 

HXT1 mRNA (LOD = 182), which encodes a low affinity glucose transporter whose expression is 175 

affected by Rgt2 [51], suggesting RGT2 is likely the causal gene at this hotspot. In support of this, 176 
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genetic variation within the RGT2 coding region was previously shown to influence protein levels 177 

of the high affinity glucose transporter Hxt2p [29]. RGT2 encodes a low affinity glucose sensor 178 

located in the plasma membrane (Fig 2B; reviewed in [52]). The BY and RM alleles of RGT2 179 

differ at five missense single nucleotide variant (SNVs). Three of these SNVs are located in the 180 

long cytoplasmic-facing C-terminal tail required for glucose signaling, and the remaining two are 181 

within the 12 predicted transmembrane helices (Fig 2B). RGT2, as well as ARF2, is also influenced 182 

by a local eQTL. 183 

 184 
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 185 

Fig 2. Fine mapping the causal variant in RGT2. A. Schematic of the eQTL hotspot on Chromosome IV. From 186 

top to bottom, the figure shows the hotspot location on the chromosome and the number of genes it 187 

affects, the positions of the BY and RM sequence variants (gray lines mark synonymous and intergenic 188 

variants and orange lines mark missense variants), the genes and their positions in the hotspot (large gray 189 

arrows; red outlines denote genes with a local eQTL) The 90% confidence interval (light blue), 95% 190 
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confidence interval (medium blue) and the position of markers perfectly linked to the hotspot peak marker 191 

(dark blue). B. Schematic of the Rgt2 protein in the plasma membrane. BY / RM missense variants are 192 

indicated by stars, with the identified causal variant in red. The missense variant amino acid positions, their 193 

resulting amino acid change and their PROVEAN scores [53] are shown. The synonymous variants are not 194 

depicted. C. On the left are schematics of RGT2 alleles with BY sequences in blue and RM sequences in red. 195 

Positions of SNVs are marked with a straight line and INDELs are marked with two diagonal lines. The 196 

variants in the RGT2 3’UTR and synonymous variants are not depicted. On the right are the corresponding 197 

Hxt1-GFP fluorescence levels for each allele. P-values are for tests comparing each allele to its respective 198 

wildtype. Significant p-values are outlined. Blue boxplots indicate alleles in the BY background and red 199 

boxplots and gray background shading indicate alleles in the RM background. Lines group measurements 200 

of the same clone. Different symbols (circles, squares, etc.) denote different plate reader runs. Small dots 201 

next to a clone indicate a 5’UTR indel with an allele that does not match the one indicated in the allele 202 

schematics (see Methods). 203 

 204 

To determine if RGT2 is the causal gene at this hotspot and identify the responsible variant, we C-205 

terminally tagged Hxt1 with GFP and created a series of allele replacements at the RGT2 locus 206 

using CRISPR-Swap. In both BY and RM backgrounds, deletion of RGT2 drastically reduced 207 

Hxt1-GFP levels, confirming that RGT2 is required for proper Hxt1-GFP expression. Replacing 208 

the BY RGT2 promoter region with the RM allele had no measurable effect on Hxt1-GFP. 209 

Reciprocal allele replacement of the entire RGT2 coding region showed that the RGT2 RM allele 210 

resulted in lower Hxt1-GFP expression compared to the BY allele (Fig 2C), which is the direction 211 

of effect expected from eQTL data [12]. 212 

By engineering a series of chimeric RGT2 alleles spanning the coding region we systematically 213 

narrowed the causal region to two missense variants, neither of which were predicted to be 214 

deleterious (Fig 2C; S1 Table). Of these, a G-to-A SNV at 241,965 bp, resulting in a valine to 215 

isoleucine change at amino acid position 539 (V539I), recapitulated the effect of swapping the 216 

entire coding region. In a strain that carried all RGT2 RM coding variants except V539I, Hxt1-217 

GFP expression was indistinguishable from the BY wildtype, suggesting that V539I is the single 218 

causal variant in this gene. The effect of V539I on Hxt1-GFP expression was present in both BY 219 

and RM (Fig 2C), with no evidence that the strain background influences the effect of this variant 220 
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(interaction p-value = 0.1). The variant caused a minor effect on growth rate in the RM 221 

background, but no effect in the BY background (Table 1). 222 

 223 

Table 1. Effects of causal hotspot variants on growth rates 224 

Variant Growth rate in 

BY (RM allele 

relative to BY 

wildtype allele) 

p-value in BY Growth rate in 

RM (BY allele 

relative to RM 

wildtype allele) 

p-value in RM 

RGT2(V539I) 98% 0.5 93% 0.02 

OAF1(S63L) 96% 0.09 100% >0.99 

OLE1(FAR) 92% 0.3 92% 0.005 

 225 

 226 

The RGT2 V539I variant affects Hxt1-GFP expression in a glucose-dependent manner 227 

Increasing glucose concentrations results in an increase in the expression of Hxt1 [51]. Given that 228 

the V539I variant lies within one of the predicted transmembrane helices that likely form the 229 

pocket necessary for glucose sensing by Rgt2 [54], we hypothesized that the effect of the V539I 230 

variant may change depending on the concentration of glucose in the culture medium. To test this 231 

idea, we measured Hxt1-GFP expression in BY and RM strains with their native RGT2 alleles as 232 

well as with engineered V539I alleles in a range of glucose concentrations (Fig 3). 233 

 234 

 235 
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 236 

Fig 3. Effect of the RGT2 I539V variant on Hxt1-GFP expression in different glucose concentrations. Hxt1-237 

GFP fluorescence levels in the four different genotypes in increasing glucose concentrations are shown. 238 

Blue boxplots indicate alleles in the BY background and red boxplots and gray background shading indicate 239 

alleles in the RM background. Lines group measurements of the same clone. Different symbols (circles, 240 

squares, etc.) denote different plate reader runs. The inset graph shows fitted effect sizes as a function of 241 

glucose concentration. Error bars show standard errors of the mean. P-values are shown for ANOVA models 242 

examining the various main and interaction terms. 243 

 244 

In both BY and RM, higher glucose concentrations increased expression of Hxt1-GFP regardless 245 

of which V539I allele was present. However, the difference in Hxt1-GFP expression between the 246 

V539I alleles showed a clear dependence on glucose levels (ANOVA test for interaction between 247 

allele effect and glucose concentration: p = 7e-13). The BY allele drove nearly 2-fold higher Hxt1-248 

GFP expression than the RM allele at 1% glucose, while the difference between alleles became 249 

almost indistinguishable at 12% glucose. Thus, the effect size of the V539I variant underlying the 250 

RGT2 eQTL hotspot strongly depends on the environment. 251 

 252 

 253 
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A missense variant in OAF1 alters expression of FAA4 in trans 254 

Several of the eQTL hotspots identified in the BY/RM cross affect the expression of genes 255 

involved in fatty acid metabolism. They include a hotspot on chromosome I, which affects the 256 

mRNA and protein levels of 450 genes in trans. The locus was previously mapped to a region 257 

containing the genes FLC2 and OAF1 [12] (Fig 4A). Neither FLC2 nor OAF1 are influenced by a 258 

local eQTL, suggesting the causal variant is likely coding. OAF1 encodes a transcription factor 259 

that activates expression of genes involved in peroxisome related functions including the b-260 

oxidation of fatty acids [55–57], making it a promising candidate causal gene. The BY and RM 261 

alleles of OAF1 differ at three missense SNVs (Fig 4B). 262 

 263 

 264 

Fig 4. The OAF1 causal variant. A. Schematic of the eQTL hotspot on Chromosome IV. From top to bottom, 265 

the figure shows the hotspot location on the chromosome and the number of genes it affects, the positions 266 

of the BY and RM sequence variants (gray lines mark synonymous and intergenic variants and orange lines 267 

mark missense variants), the genes and their positions in the hotspot (large gray arrows; red outlines 268 

denote genes with a local eQTL) The 95% confidence intervals (medium blue) and the position of markers 269 

perfectly linked to the hotspot peak marker (dark blue).B. Schematic of the Oaf1 protein domains and 270 

variants. The conserved zinc-finger domain and the ligand-binding domain [58] are in orange. BY / RM 271 

missense variants are indicated by stars, with the identified causal variant in red. The missense variant 272 

amino acid positions, their resulting amino acid change and their PROVEAN scores [53] are shown. The 273 

synonymous variants are not depicted. C. The figure shows Faa4-GFP fluorescence levels for strains with 274 

the indicated OAF1 (L63S) alleles. P-values are for tests comparing the allele to its respective wildtype. Blue 275 
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boxplots indicate alleles in the BY background and red boxplots indicate alleles in the RM background. Lines 276 

group measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate 277 

reader runs. 278 

 279 

We engineered a series of OAF1 alleles and measured Faa4-GFP expression in trans. FAA4 280 

mRNA abundance was shown to be strongly affected by this locus (LOD score = 102, [12]), and 281 

FAA4 encodes a long chain fatty acyl-CoA synthetase, a protein with clear phenotypic connection 282 

to fatty acid metabolism. We found that a single T-to-C missense variant in OAF1 at 48,751 bp 283 

resulted in a decrease in Faa4-GFP expression in agreement with the direction of effect observed 284 

in the eQTL data (Fig 4C, S2 Fig, S1 Table). The variant encodes a leucine at position 63 in BY 285 

and a serine in RM (L63S). In the Oaf1 protein, the L63S variant is located next to the Zn(2)Cys(6) 286 

DNA binding domain (Fig 4B) where it may alter Oaf1 binding to its regulatory targets. The effect 287 

of L63S on gene expression was consistent in both strain backgrounds (interaction p-value = 0.4; 288 

Fig 4C), and L63S had no detectable effects on growth rate (Table 1). 289 

 290 

A noncoding promoter variant influences OLE1 expression in cis and FAA4 in trans 291 

A second fatty-acid related hotspot resides on chromosome VII and affects the mRNA levels of 292 

977 genes, which are enriched for functions in lipid biosynthetic processes as well as the response 293 

to endoplasmic reticulum stress. The confidence interval of this locus spans ~1 kb centered in the 294 

noncoding region between the SDS23 and OLE1 genes (Fig 5A). OLE1 encodes the ER-bound ∆9-295 

fatty acid desaturase, the only yeast enzyme capable of desaturating fatty acids [59,60]. SDS23 is 296 

likely involved in regulation of the metaphase to anaphase transition of the cell cycle [61]. Given 297 

the enrichment of target genes of this hotspot involved in lipid metabolism, we reasoned that OLE1 298 

is the more likely causal gene. The BY and RM alleles of OLE1 differ at one missense SNV and 299 

four non-coding variants (2 indels and 2 SNVs) in the SDS23 and OLE1 intergenic region. 300 

 301 
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 302 

Fig 5. The OLE1 causal variant. A. Schematic of the eQTL hotspot on Chromosome VII. From top to bottom, 303 

the figure shows the hotspot location on the chromosome and the number of genes it affects, the positions 304 

of the BY and RM sequence variants (gray lines mark synonymous and intergenic variants and orange lines 305 

mark missense variants), the genes and their positions in the hotspot (large gray arrows; red outlines 306 

denote genes with a local eQTL) The 95% confidence interval (medium blue) and the position of markers 307 

perfectly linked to the hotspot peak marker (dark blue). B. Schematic of the SDS23 / OLE1 region. BY / RM 308 

variants in the intergenic region and missense variants in the genes are indicated by stars, with the 309 

identified causal variant in the FAR element (peach box) in red. The missense variant amino acid positions, 310 

their resulting amino acid change and their PROVEAN scores [53] are shown. The synonymous variants are 311 

not depicted. C. Fluorescence levels of Ole1-mCherry (left panel) and Faa4-GFP (right panel). The BY strains 312 

harbor both Ole1-mCherry and Faa4-GFP and the indicated OLE1 alleles. Lines group measurements of the 313 

same clone. Different symbols (circles, squares, etc.) denote different plate reader runs. 314 

 315 
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We engineered the essential OLE1 locus using double-cut CRISPR-Swap, by flanking the region 316 

with the HphMX and KanMX cassettes and replacing both cassettes along with the intervening 317 

region with a series of alleles (Fig 1B). We again measured Faa4-GFP expression in the engineered 318 

strains, given FAA4 mRNA levels are strongly affected by this locus (LOD = 78). We identified a 319 

noncoding A-to-G SNV at 398,081 bp in the intergenic region between SDS23 and OLE1 that 320 

affected Faa4-GFP expression in the expected direction based on the eQTL data (S3 Fig, S1 Table). 321 

This effect was consistent in both strain backgrounds (interaction p-value = 0.8). While the BY 322 

allele of this variant decreased growth rate in the RM background, the variant had no effect in the 323 

BY background (Table 1). 324 

The causal variant is located in the fatty-acid regulated (FAR) promoter element, a region known 325 

to be important for transcriptional activation and fatty acid regulation of OLE1 expression [62] 326 

(Fig 5B). Both OLE1 and SDS23 are strongly affected by local eQTLs with higher mRNA 327 

expression linked to the BY allele, suggesting that OLE1 and/or SDS23 expression may be affected 328 

by the FAR variant. To test the effect of the FAR variant on OLE1 expression, we created BY 329 

strains with OLE1 tagged with mCherry in addition to FAA4 tagged with GFP. In these strains, 330 

the RM FAR allele significantly decreased Ole1-mCherry levels in cis and increased Faa4-GFP 331 

levels in trans (Fig 5C), which are the directions of effect expected based on the eQTL results [12]. 332 

To further examine the cis-regulatory activity of the FAR variant, we created reporter plasmids 333 

with multiple alleles of the SDS23/OLE1 intergenic region driving expression of yeVenus. When 334 

the intergenic region drove expression of yeVenus in the direction of SDS23, the promoter alleles 335 

all drove similar yeVenus expression (S4 Fig). In sharp contrast, when the intergenic region drove 336 

expression of yeVenus in the direction of OLE1, the FAR-BY allele drove significantly higher 337 

yeVenus expression than the RM allele, fully recapitulating the difference between the all-BY and 338 

all-RM promoter alleles (S4 Fig). The effect did not depend on whether the yeVenus plasmids 339 

were expressed in the BY or RM background (interaction p > 0.29). Together, these results suggest 340 

that the FAR variant influences OLE1 in cis, as well as FAA4 in trans. 341 

 342 

 343 

 344 
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Small changes in OLE1 expression from wildtype levels are sufficient to affect FAA4 gene 345 

expression in trans 346 

To explore the effect of OLE1 and SDS23 abundance on gene expression in trans, we added an 347 

additional copy of OLE1, SDS23 or the intergenic sequence on a single-copy plasmid in a BY 348 

FAA4-GFP strain. The presence of an extra copy of OLE1 resulted in significant reduction of Faa4-349 

GFP levels, consistent with eQTL data (S5 Fig). By contrast, an extra copy of SDS23 resulted in 350 

an increase in Faa4-GFP levels. An extra copy of the intergenic sequence alone did not change 351 

Faa4-GFP levels (S5 Fig). These results further support that it is a change in OLE1 and not SDS23 352 

expression that is responsible for the trans-effect of the hotspot on FAA4 expression. 353 

While changes in Ole1 levels appear to be the primary cause for the trans effect on Faa4-GFP, the 354 

noncoding FAR variant alters OLE1 expression by only about 15% (Fig 5B). To understand the 355 

relationship between OLE1 and FAA4 over a range of expression levels, we inserted a synthetic, 356 

inducible Z3EV promoter upstream of OLE1. This promoter can be activated precisely and 357 

quantitatively by addition of estradiol to the culture medium [63]. We measured both Ole1-358 

mCherry and Faa4-GFP as a function of estradiol concentration and observed a clear 359 

anticorrelation between Ole1-mCherry and Faa4-GFP levels (Fig 6). At an estradiol dose of 4 – 5 360 

nM, the Z3EV strain expressed Ole1-mCherry and Faa4-GFP at levels comparable to BY strains 361 

expressing OLE1-mCherry from its native promoter with either the wildtype or FAR-RM allele. 362 

Higher doses of estradiol continued to increase Ole1-mCherry levels, while Faa4-GFP dropped 363 

rapidly and reached a plateau at levels well below the native BY strains. As expected for the 364 

essential OLE1 gene, low levels of induction resulted in poor growth (S6 Fig). Notably, growth of 365 

the Z3EV strain was closest to wildtype at 6 nM estradiol and higher, a concentration in which 366 

OLE1 expression levels are well above wildtype levels. The reason for this growth defect at 367 

wildtype expression levels is unknown and may reflect an inability of strains with the Z3EV 368 

promoter and C-terminal mCherry fusion to finely regulate OLE1 transcription. Taken together, 369 

our results indicate that the BY strain expresses OLE1 at a level at which even slight alterations in 370 

OLE1 expression, like that caused by the FAR variant, are sufficient to change FAA4 expression 371 

in trans. 372 

 373 
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 374 

Fig 6. Expression modulation of Ole1. Fluorescence levels of Ole1-mCherry (solid red lines) under control 375 

of the estradiol-inducible Z3EV promoter and Faa4-GFP (solid green lines) under its native promoter at 376 

various estradiol doses. Fluorescence levels of strains with the native OLE1 promoter and the FAR-BY or 377 

FAR-RM allele respectively, are shown as dotted and dashed lines, respectively, at each estradiol 378 

concentration for comparison. All strains harbor both the mCherry tag on Ole1 and the GFP tag on Faa4. 379 

 380 

 381 

A non-additive interaction between the OAF1 and OLE1 variants 382 

The Oaf1 transcription factor binds throughout the OLE1 promoter including in the close vicinity 383 

of the FAR variant [64]. This raises the possibility that the effects of OAF1 L63S and the FAR 384 

variant may interact with each other genetically. While neither variant had shown significant 385 

interactions with the genetic background as a whole (see above), a specific interaction between 386 

these two variants could have been obscured by the thousands of other sequence differences 387 

between the BY and RM backgrounds. Indeed, the previous eQTL data contained a non-additive 388 

interaction affecting FAA4 mRNA levels between two trans eQTLs that contained OAF1 and 389 

OLE1, respectively (Fig 7A). To test if this trans-by-trans interaction could be explained by the 390 

specific causal variants we identified here, we constructed a BY strain that carried the RM alleles 391 

at both OAF1 and the FAR variant and compared its Faa4-GFP expression to strains that carried 392 

one or the other of these edits. The combined alleles resulted in Faa4-GFP expression that differed 393 

from an additive allele combination (interaction p = 0.002) in a manner that mirrored the detected 394 
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eQTL interaction (Fig 7B). Specifically, in the presence of the more active RM OAF1 allele, the 395 

FAR variant showed a greater effect than in the presence of the less active BY OAF1 allele. As 396 

with the majority of epistatic interactions identified in this cross [65], the deviation from additivity 397 

caused by this interaction is detectable but subtle. 398 

To test if this trans-by-trans interaction affecting FAA4 could be mediated by a cis-by-trans 399 

interaction between the same two variants, we introduced our yeVenus plasmids with the two FAR 400 

alleles into BY strains with either the BY or RM OAF(L63S) alleles. We again found a significant 401 

interaction between the FAR and OAF1 variants (Fig 7C). In the presence of the OAF1-L63S-RM 402 

allele, the FAR variant resulted in a larger difference in yeVenus expression than in the presence 403 

of the OAF1-L63S-BY allele (p = 1.5 e-7). The OAF1 RM allele also resulted in overall higher 404 

expression of the yeVenus construct (p = 1.6 e-6). Taken together, these results show that the 405 

OAF1 L63S variant and the OLE1 FAR variant interact genetically such that their effects on gene 406 

expression in cis as well as trans are not simply additive. 407 

 408 

Fig 7. Nonadditive genetic interaction between the OAF1 and OLE1 causal variants. A. Data from [12] show 409 

levels of FAA4 mRNA in 1,012 BY/RM segregants, divided into four groups depending on their genotypes at 410 

OAF1 and OLE1. Note the slightly larger difference between OLE1 alleles in segregants that carry the RM 411 

allele (red boxplots) compared to the BY allele (blue boxplots) at OAF1. B. Faa4-GFP fluorescence levels in 412 

strains engineered to carry the BY or RM allele at OAF1-L63S and OLE1(FAR). C. yeVenus fluorescence levels 413 

for strains engineered to carry the BY or RM allele at OAF1-L63S and the OLE1(FAR) promoter driving 414 

yeVenus expression on a plasmid. The difference between OLE1 alleles in segregants (in A) or strains (in B 415 

and C) that carry the RM allele (red boxplots) compared to the BY allele (blue boxplots) at OAF1 are 416 

highlighted by gray arrows. 417 
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 418 

The OAF1 and OLE1 variants alter lipid profiles  419 

To test if the two causal variants in the fatty acid metabolism genes OAF1 and OLE1 alter cellular 420 

phenotypes other than gene expression, we measured overall lipid composition as well as non-421 

esterified (“free”) fatty acids (NEFAs) in the RM and BY strains, as well as in BY strains with 422 

OAF1(L63S)-RM, OLE1 FAR-RM, or both of these alleles (Fig 8 & S7 Fig). The BY and RM 423 

strains differed in multiple metabolites (S7 Fig, S2 Table, S3 Table), and the presence of either of 424 

the two variant alleles in the BY background also resulted in significant differences in lipid 425 

metabolites. The BY OAF1 allele decreased the fraction of longer-chain (C18) lipids (Fig 8A) and 426 

also caused a decrease in the amount of C18 NEFAs (S7 Fig). This change resembles the effect of 427 

an OAF1 deletion on lipid metabolism [64], consistent with the BY OAF1 allele having reduced 428 

function (S2 Fig). The OLE1 FAR-RM allele resulted in a significant increase in the amount of 429 

saturated NEFAs but did not significantly reduce the amount of desaturated NEFAs (Fig 8B). This 430 

suggests that reduced expression of the Ole1 desaturase caused by the FAR-RM allele results in 431 

reduced consumption of the substrate but maintains levels of the reaction product in the reaction 432 

catalyzed by Ole1. We did not detect changes in overall lipid composition due to the OLE1 FAR-433 

RM allele. Taken together, our results show that the variants affecting OLE1 expression and Oaf1 434 

activity translate to changes in cellular lipids. 435 

 436 
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Fig 8. Lipid and fatty acid measurements. A. The fraction of C18 lipids in BY strains with wildtype or RM 437 

alleles at OAF1(L63S) or OLE1(FAR) or a combination of both. B. The concentration of saturated and 438 

unsaturated non-esterified fatty acids (NEFA) in the same strains. For each strain, the figure shows values 439 

for each replicate (smaller points) along with the mean (larger points) and standard deviation (vertical 440 

lines). See S7 Fig for all measurements. 441 

 442 

The fine-mapped variants are the cause of the hotspot effects on mRNA levels 443 

We have shown that each of the variants in RGT2, OAF1, and the OLE1 FAR element affect the 444 

protein expression of a representative gene in trans. If these variants underlie the trans-acting 445 

hotspots, we expect them to alter the transcript levels of many genes, and that these expression 446 

changes will correlate with the known effects of the hotspots we sought to fine-map. To test this, 447 

we quantified transcript levels in BY strains edited at each variant (S4 Table – S6 Table). 448 

Each of the three variants altered the transcript levels of dozens of genes including the 449 

representative gene we used for fine-mapping (HXT1 or FAA4) with the expected direction of 450 

effect (Fig 9, Table 2). In addition, the FAR variant caused a nominally significant (p = 0.03) effect 451 

on OLE1 but not on SDS23 (p = 0.7), in agreement with our yeVenus reporter assay (S4 Fig). 452 

Crucially, the magnitude of expression change caused by the three variants was significantly and 453 

positively correlated with the respective hotspot effects (Fig 9) when considering all expressed 454 

genes. Like the vast majority of trans eQTLs [12], the three hotspots dissected here have small 455 

effects on most genes, typically explaining only a few percent of variance in mRNA levels. Our 456 

RNA-Seq experiment was not designed to detect such small effects at statistical significance, 457 

which would require dozens to hundreds of replicates. When we used a lenient significance cutoff 458 

(uncorrected p < 0.05) to restrict our analysis to genes with some evidence for differential 459 

expression, the correlations with hotspot effects increased at each hotspot (Table 2). These strong 460 

correlations were reflected in high directional concordance. For example, at a more stringent 461 

threshold (false discovery rate = 10%), every differentially expressed gene had concordant 462 

direction of effect with the given hotspot for RGT2 and OLE1, and there was just a single 463 

discordant gene (out of 30) for OAF1 (Fig 9). This strong agreement between expression changes 464 

caused by the three variants and known hotspot effects shows that these variants are causal variants 465 

at their respective hotspots. 466 
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 467 

Fig 9. Comparison of the differential gene expression caused by each causal variant and the eQTL hotspot 468 

effects. The differential expression of an edited vs wildtype strain is on the x-axis and the previously 469 

determined hotspot effects are on the y-axis. All genes with non-zero hotspot effects are shown. Red points 470 

are genes with differential expression p-value < 0.05. Purple points are genes with differential expression 471 

at FDR < 0.1. The larger red circles mark the genes used for fine-mapping. The blue circles are genes we 472 

investigated in the confidence interval of each hotspot. The correlation between differential expression 473 

and hotspot effects is given in each panel. For RGT2, orange circles show adenine-metabolism related genes 474 

that are described in the text. 475 

 476 

Table 2. RNA Seq results 477 

Variant Number of 

DE genes 

(10% 

FDR) 

Number 

of DE 

genes 

(p < 0.05) 

Correlation1 between 

DE2 and hotspot effect: 

all genes 

Correlation1 between 

DE2 and hotspot effect: 

genes with DE p < 0.05 

RGT2 (V539I) 45 183 Rho = 0.30, p = 2e-25 Rho = 0.64, p » 0 

OAF1(L63S) 45 147 Rho = 0.62, p = 1e-46 Rho = 0.80, p = 6e-15 

FAR 18 95 Rho = 0.34, p = 1e-19 Rho = 0.48, p = 0.0015 
1These correlations exclude genes without a hotspot effect detected in [12]. 478 
2log2 fold change 479 

 480 

If a hotspot is caused by multiple causal variants in the same or neighboring genes, our single 481 

variant edit might not account for all the effects of the hotspot. Therefore, we examined genes with 482 
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transcript levels strongly affected by the hotspot that are unaffected by our variant edits. Genes 483 

strongly affected by the hotspot at RGT2 but not by the RGT2 V539I variant showed a significant 484 

enrichment for “de novo IMP biosynthetic process” (corrected p = 9e-9) and related terms in purine 485 

metabolism. This enrichment is driven by seven ADE genes with large hotspot effects that were 486 

all non-significant in our experiment (Fig 9). We suspect that a second variant in this region is 487 

responsible for these effects. 488 

 489 

Population distribution and conservation of causal variants  490 

To explore the evolutionary history of the three causal hotspot variants, we examined their 491 

distribution across a worldwide panel of 1,011 S. cerevisiae isolates with genomic sequence [66]. 492 

The BY allele at OAF1 L63S is rare among yeast isolates (Fig 10). It is carried only by BY and a 493 

few close relatives while the RM allele is present in all other isolates as well as related species.  494 

Reflecting this pattern, the Protein Variation Effect Analyzer (PROVEAN) tool [53] assigned a 495 

“deleterious” score of -5.4 to the BY allele at this variant. In our experiments, the BY OAF1 allele 496 

increased Faa4-GFP expression, which was the same direction caused by the OAF1 knockout (S2 497 

Fig). Thus, the OAF1 hotspot is caused by a rare, derived missense variant almost exclusive to the 498 

BY laboratory strain that probably reduces function of the Oaf1 transcription factor. 499 

 500 
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 501 

Fig 10. Population genetic features of the causal variants. Neighbor joining tree of the 1,011 S. cerevisiae 502 

strains sequenced in [66]. For each causal variant, the presence of the BY (blue), RM (red), BY and RM 503 

(purple), or other (black) allele is shown across the tree. For the OAF1 and RGT2 missense variants, amino-504 

acid alignments with the indicated species are shown. For the intergenic FAR variant, we show nucleotide 505 

alignments as well as PhastCons conservation scores for the depicted SDS23 / OLE1 region from the UCSC 506 

Genome Browser. 507 

 508 

The RGT2 and OLE1 variants show very different patterns. At RGT2 V539I, both the valine in BY 509 

and the isoleucine in RM are also encoded by related yeast species (Fig 10). Evidently, the V539I 510 

variant can be tolerated without severe fitness consequences, as reflected in a “neutral” PROVEAN 511 

score of 0.12. Within S. cerevisiae, the highly divergent and likely ancestral group of Chinese 512 

isolates [66–68] carry the valine found in BY, suggesting that the isoleucine in RM is derived. 513 

This derived allele has ~25% frequency in the S. cerevisiae population, where it is predominantly 514 

found in isolates from the European wine clade, as well as in a second group of isolates with mixed 515 

origin (Fig 10). Both the derived RM variant and an RGT2 deletion resulted in reduced induction 516 

of HXT1 expression (Fig 2C). 517 
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At the OLE1 FAR variant, the alanine found in BY is present in the ancestral Chinese isolates, 518 

suggesting that the guanine in RM is derived (Fig 10). Indeed, the nucleotide sequence of the 519 

noncoding region surrounding the FAR variant is conserved among Saccharomyces sensu stricto 520 

species, and all other species carry the alanine found in BY at this position. The RM allele has 521 

high frequency (46%) among yeast isolates, predominantly due to near fixation among the many 522 

isolates in the European wine clade. The allele is also present in isolates from dairy, ale beer, and 523 

other origins. The RM allele increased FAA4 expression in trans. This is the same direction of 524 

effect we observed when inserting the kanMX cassette immediately downstream of OLE1. Such 525 

engineered alleles are commonly called “Decreased Abundance by mRNA Perturbation” (DAmP) 526 

alleles and are expected to decrease gene function by lowering mRNA transcript levels ([69]; S3 527 

Fig). 528 

Thus, the three causal variants identified here have diverse population genetic characteristics. They 529 

include a rare, lab-specific allele and two common alleles found in a quarter or more of the 530 

sequenced yeast isolates. At all three variants, we observed that the likely derived allele altered 531 

gene expression in the same direction as alleles that eliminate or reduce gene function.532 
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Discussion 533 

We fine-mapped natural DNA variants that each result in expression changes at many genes in 534 

trans using CRISPR-Swap, a strategy that facilitates rapid engineering of allelic series at a given 535 

locus. CRISPR-Swap is similar to other recently developed two-step engineering approaches 536 

[70,71], and has multiple advantages: 1) The great majority of clones that are transformed with the 537 

CRISPR-Swap plasmid and repair template incorporate the desired allele and clones without the  538 

desired allele are easily identified by screening for maintained expression of the cassette selectable 539 

marker. 2) gRNAs do not need to be designed and tested for each region due to the use of a common 540 

gRNA. 3) Regions without a nearby PAM site can be engineered because the gRNAs target 541 

integrated cassettes rather than the genomic region directly. 4) Larger regions, including those that 542 

contain essential genes can be engineered by flanking the region with two cassettes and using a 543 

single gRNA to cut and swap both cassettes and the intervening region. 5) Our gRNAs can be 544 

directly used to engineer existing strains that already contain cassettes e.g., strains in the S. 545 

cerevisiae deletion and GFP collections [72,73]. 546 

While we successfully used GFP-tagged protein abundance as phenotypic readouts amenable to 547 

high-throughput measurement, the hotspots we dissected had been identified via their effects on 548 

mRNA levels. The effects of the locus on the mRNA and protein of the gene used for phenotyping 549 

cannot always assumed to be consistent [22,37]. Further, fine-mapping using the expression of a 550 

single focal gene can only detect variants that influence this focal gene. Additional variants in the 551 

same region that specifically affect other genes would be missed. Indeed, while our RNA-Seq 552 

results were consistent with single causal variants at OAF1 and OLE1, they suggested the presence 553 

of a second causal variant close to RGT2, which acts on genes involved in purine metabolism. 554 

Evidently, even such narrowly mapped hotspot loci as those we dissected here can be due to 555 

multiple causal variants with distinct effects but in close proximity to each other, as has been 556 

observed for QTLs for other traits in yeast [74,75]. 557 

A key result from this work is that the three causal variants we identified are strikingly different 558 

from each other. First, the variants include two coding missense variants (in RGT2 and OAF1), 559 

along with the cis-acting noncoding FAR variant at OLE1. In yeast, 10 additional natural variants 560 

have been experimentally demonstrated to affect gene expression in trans, and there are 5 561 

additional hotspots for which the gene but not the causal variant is known (S7 Table , 562 
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[18,20,23,30,31,34,38–41], see also [76]) Coding variation underlies at least 13 of these 18 cases, 563 

including missense, frameshift and transposon insertion variants. In species other than yeast, 564 

information about causal trans eQTL variants remains extremely limited [77–80]. In human 565 

genetics, searches for trans eQTLs often assume a model in which noncoding variants alter the 566 

expression of a regulator gene in cis, which in turn alters the expression of other genes in trans 567 

[81–85]. The FAR variant at OLE1 discovered here is an example of such a mechanism. However, 568 

the predominance of causal coding variants in yeast suggests that trans eQTLs caused by coding 569 

variants may also exist in other species. 570 

Second, the genes affected by the three variants encode different types of proteins: a glucose sensor 571 

(Rgt2), a transcription factor (Oaf1), and the essential enzyme Ole1. While genes encoding 572 

transcription factors are enriched in hotspot regions [12], hotspots clearly also arise from other 573 

gene classes (S7 Table). Among these, enzymes are a particularly interesting group. Because most 574 

enzymes do not directly regulate gene expression, metabolic changes caused by differential 575 

enzyme activity or expression must trigger trans changes in gene expression indirectly [86,87]. 576 

The FAR variant at OLE1 illustrates the indirect mechanisms that could underlie such indirect 577 

trans effects. Its RM allele reduced Ole1 expression and increased saturated NEFAs. Higher lipid 578 

saturation decreases membrane fluidity [88–90] which is sensed by membrane-bound dimers of 579 

Mga2 or Spt23 [88,91–93]. In our data, the FAR RM allele increased MGA2 expression in trans. 580 

Apparently, this noncoding variant perturbs mechanisms involved in membrane homeostasis, 581 

which may ultimately alter gene expression via the transcriptional regulator MGA2. 582 

The trans effects of the FAR variant were caused by a decrease in Ole1 levels of only about 15% 583 

(Fig 5B & 6). Such sensitivity to small expression changes may be unusual among genes. While 584 

the BY and RM strains carry thousands of local eQTLs affecting at least half of the genes in the 585 

genome, most of these local eQTLs do not result in detectable expression changes at other genes 586 

in trans [12]. Little is known about whether, when, and how small expression changes at one gene 587 

influence other genes in trans, and how some of these changes go on to influence the organism. 588 

Pioneering studies have shown that even relatively small reductions in the expression of the 589 

enzyme genes TDH3 [94] and LCB2 [95] can reduce fitness, and that the relationship between 590 

gene expression and fitness is specific to each gene [96], the environment [96], and the strain 591 

background [95]. Future work will explore the causal relationships among fitness and gene 592 

expression changes in trans. 593 
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Finally, the three causal variants we discovered also differed in their population genetic 594 

characteristics. The OAF1(S63L) variant is rare, while the RGT2 and OLE1 variants are found in 595 

many isolates. These two common variants differ in the degree of evolutionary conservation of 596 

their site, with poor conservation at RGT2(V539I) and high conservation at the noncoding FAR 597 

variant. At least in the case of RGT2, simple evolutionary conservation alone would not have been 598 

sufficient to predict the causal variant. 599 

At all three variants, the derived alleles affected trans gene expression in the same direction as loss 600 

of function or reduced function alleles. While this suggests that the derived alleles are detrimental, 601 

the high frequency in the population of the RGT2 and OLE1 alleles argues against strong negative 602 

fitness consequences. While these two variants could potentially be beneficial in some 603 

backgrounds or conditions, they could also be sufficiently mildly deleterious to have drifted to 604 

high frequency, as has been proposed to be the case for many trans-acting polymorphisms [97,98]. 605 

Indeed, none of the three variants resulted in consistent growth differences in both backgrounds in 606 

our culture medium (Table 1), suggesting that any fitness effects they may have are minor or occur 607 

in other environments. For example, at RGT2, the effect of the V539I variant on HXT1 expression 608 

was reduced dramatically simply by altering the amount of glucose in the medium, suggesting that 609 

the long-term evolutionary consequences of this variant could be highly dependent on the 610 

environment. 611 

With the arrival of population-scale genome sequencing [99], the functional interpretation of 612 

individual DNA variants has become a major goal of genetics, and numerous experimental and 613 

computational approaches aiming to predict phenotypic consequences of variants have been 614 

developed [53,100–107]. The diverse nature of variants that cause trans-eQTLs revealed here will 615 

make prediction of trans effects challenging. More data on the effects of variants on gene 616 

expression in trans will be important to understand trans-regulatory variation, both from high 617 

throughput approaches [108–114], and focused dissection of individual hotspots.  618 
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Materials and methods 619 

Strains, Plasmids, Primers and Media 620 

Experiments were performed in haploid S. cerevisiae strains derived from S288C (BY4741 621 

(MATa, his3∆1 leu2∆0 met15∆0 ura3∆0), referred to as “BY” in the text) and RM-11a, (RM 622 

HO(BY) (MATa, his3Δ1::CloNAT, leu2Δ0, ura3Δ0 HO(BY allele) AMN1(BY allele), referred to 623 

as “RM”). All strains used in this study can be found in S8 Table. The HO(BY) allele was 624 

introduced into this RM strain by replacing the hphMX cassette at HO with the BY allele in 625 

YLK2442 (a gift from L. Kruglyak) by CRISPR-Swap. Importantly, the CloNAT resistance gene 626 

at the HIS3 locus in RM HO(BY) is not recognized by the gCASS5a. All plasmids used in this 627 

study are in S9 Table. All primers/oligonucleotides are in S10 Table.  628 

We used the following media (recipes are for 1L): 629 

YNB+2% Glu +all (6.7 g yeast nitrogen base with ammonium sulfate and without amino acids, 20 630 

g glucose, 50 mg histidine, 100 mg leucine, 50 mg methionine, 200 mg uracil and sterilized by 631 

filtration) 632 

YNB+2% Glu -Leu (YNB+2% Glu+all (without leucine) 633 

YPD (10 g yeast extract, 20 g peptone, 20 g glucose) 634 

SDC-Leu (1.66 g SC -His -Leu -Ura, 50 mg histidine, 200 mg uracil, 20 g glucose) 635 

SDC-His (1.66 g SC -His -Leu -Ura, 100 mg leucine, 200 mg uracil, 20 g glucose) 636 

LB (10 g tryptone, 10 g NaCl, 5 g yeast extract) 637 

Media for selection of resistance gene expression was supplemented at the following 638 

concentrations: ampicillin (100 µg/ml), nourseothricin sulfate (100 µg/ml), G418 sulfate (200 639 

µg/ml), hygromycin B (300 µg/ml). For solid media, 20 g/L agar was added prior to autoclaving. 640 

Yeast were grown at 30°C. Bacteria were grown at 37°C. 641 

 642 

Plasmid construction 643 
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To construct the CRISPR-Swap plasmids we annealed oligos OFA0185 and OFA0186 for 644 

gCASS5a (pFA0055) and OFA0552 and OFA0553 for gGFP (pFA0057), and ligated them into 645 

the BclI and SwaI sites of pML107, a gift of John Wyrick (Addgene #67639) as described in [45]. 646 

We are depositing pFA0055 and pFA0057 to Addgene under #131774 and #131784, respectively. 647 

The yeVenus reporter plasmids were created by PCR fusion of the OLE1 (-1 to -936) or SDS23 (-648 

1 to -1090) promoter fragment with the open reading frame of yeVenus, a gift of Kurt Thorn 649 

(Addgene plasmid #8714) [115]. To create plasmids pRS415-pOLE1(BY)-yeVenus and pRS415-650 

pOLE1(RM)-yeVenus, the OLE1 promoter and yeVenus PCR fragments were digested with 651 

HindIII and BglII and ligated into pRS415 [116] digested with HindIII and BamHI. To create 652 

pRS415-pOLE1(BY_FAR_RM)-yeVenus and pRS415-pOLE1(RM_FAR_BY)-yeVenus the 653 

OLE1 promoter PCR fragment was digested with HindIII and PstI and ligated into the same sites 654 

of pRS415-OLE1(BY)-yeVenus_1. To create pRS415-SDS23(BY)pVenus, the SDS23 promoter 655 

and yeVenus PCR fragment was digested with SalI and NdeI and cloned into the same sites of 656 

pRS415-pOLE1(BY)-yeVenus_1. For details on the creation of the PCR fusions see S11 Table. 657 

 658 

pRS415-OLE1(BY) was created by ligating the OLE1(BY) gene (-936 to+373) after PCR 659 

amplification and digestion with HindIII (native in OLE1) and BamHI (on OFA0641 primer) into 660 

the same sites of pRS415. pRS415-SDS23(BY) was created by ligating the SDS23(BY) gene (-661 

1033, +4730) after PCR amplification and digestion with BamHI and SacI into the same sites of 662 

pRS415. pRS415-SDS23-OLE1p(BY) was created by ligating the 1009-bp intergenic region 663 

between SDS23 and OLE1 after PCR amplification and digestion with BamHI and HindIII into 664 

the same sites of pRS415. 665 

 666 

Tagging genes and cassette insertion 667 

Insertions of cassettes for genome modification were performed using a standard PCR-based 668 

one-step method [50]. Selection markers used were HIS3MX6, which allows growth of his3- 669 

mutants without exogenous histidine, KanMX4, which allows growth with G418, natMX6, 670 

which allows growth with nourseothricin sulfate/CloNAT and hphMX4 or hphNT1, which 671 

allows growth with hygromycin B. For C-terminal tagging of HXT1, we used the GFP-672 
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HIS3MX6 cassette for tagging of HXT1, and the mCherry-hphNT1 cassette, a gift of Jiří Hašek 673 

(Addgene plasmid #74635) [117] for tagging of OLE1. For the first step of CRISPR-Swap, we 674 

used KanMX4 and hphMX cassettes for gene deletion or for cassette insertion without deletion. 675 

After selection for these markers, the transformants were single colony purified and insertion 676 

of the cassette in the correct location and absence of the wild-type allele were verified by PCR. 677 

 678 

Construction of repair templates for CRISPR-Swap 679 

Repair templates were PCR amplified from BY and RM genomic DNA with primers designed to 680 

create products with termini homologous (ranging from 84 – 338 bp) to the region flanking the 681 

targeted cassette and, when possible, to be free of BY/RM sequence differences. To create hybrid 682 

BY and RM repair templates, we used PCR SOEing techniques [118]. See S11 Table for details 683 

on construction of each template. 684 

 685 

CRISPR-Swap 686 

Strains were transformed with the gCASS5a or gGFP plasmid and a PCR-generated repair 687 

template using a standard lithium acetate procedure [119]. For each transformation, we used 25 ml 688 

of cells at OD600= 0.4-0.8. To prepare 50 ml of cells for transformation, the cells were pelleted by 689 

centrifugation at 3,000 g for 3 min, the supernatant removed and the cells were resuspended in 1 690 

ml water and transferred to a 1.7 ml microfuge tube. The cells were pelleted at 2,500 g for 2 min, 691 

the supernatant removed, and the cells were resuspended in 1 ml of Solution 1 (0.1M LiAc, 1X TE 692 

buffer). The cells were pelleted once again, supernatant removed, and then resuspended in 200 µl 693 

of Solution 1. For each transformation, ~125 µl of the cell mixture was transferred to a 1.7 ml 694 

microfuge tube containing 100 ng of the guide RNA plasmid, 1000 ng of PCR-generated repair 695 

template and 5 µl (10 µg/µl) of salmon sperm carrier DNA (Sigma #D7656) and the tube was 696 

incubated on a turning wheel at 30°C for 30 min. After which, 700 µl of Solution 2 (0.1M LiAc, 697 

1X TE and 40% PEG 3350) was added and the mixture was returned to the turning wheel and 698 

incubated at 30°C for 30 min. Next, the mixture was incubated at 42°C for 15 min and then 500 699 

µl of water was added. To wash the cells prior to plating, the cells were pelleted at 2,500 g for 2 700 

min, the supernatant removed, and the cells were resuspended in 1 ml of water. The cells were 701 
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pelleted once again at 2,500 g for 2 min, the supernatant removed, and the cells resuspended in 702 

200 µl of water, plated onto two SDC-Leu plates, and incubated at 30°C for 3 – 4 days. The median 703 

number of colonies growing on SDC-Leu after single-cut CRISPR-Swap was 38 for BY and 3 for 704 

RM strains. After double-cut CRISPR-Swap there were ~50% fewer transformants in each 705 

background. The resultant leucine prototrophic colonies were single-colony purified on SDC-Leu 706 

plates and then assayed for loss of the selectable marker cassette by identifying strains that could 707 

no longer grow on YPD with G418, or, for OLE1 allele exchanges, YPD with G418 and/or YPD 708 

with hygromycin. We did not cure the strains of the CRISPR-Swap plasmid with the exception of 709 

the strains used for RNA sequencing and the RM HO(BY) strain YFA0254. In our experience, the 710 

plasmid is rapidly lost and therefore was likely not present during phenotyping of the strains. To 711 

cure the strains of the plasmid, the strains were single-colony streaked and then replica plated to 712 

SC-Leu to identify leucine auxotrophic colonies. We preserved a minimum of three independently 713 

derived strains for each allele swap in glycerol (15% final concentration) stored at -80°C. 714 

 715 

Verification of allele exchange 716 

We performed colony PCR to verify the absence of the selectable marker cassette(s) and presence 717 

of the desired allele. Further verification of variant incorporation was in some cases performed by 718 

sequencing or by restriction enzyme digestion. To verify variants by enzyme digestion, we 719 

screened for the presence of an SspI site created by the OAF1 L63S BY allele and an NcoI site 720 

created by the OLE1 L304M RM allele. We did not always verify the allele exchange since we 721 

found that 100% of the colonies that no longer expressed the selectable marker had the desired 722 

allele. Special cases of allele exchange verification are described below. 723 

The RGT2 repair templates in some allele swaps contained a single indel variant within the 5’ 724 

homologous flanking region.  In these strains, the variant was sequenced and only strains with the 725 

desired variant were preserved when possible. In other cases, the mismatched variant is indicated 726 

in Fig 2 and S8 Table. We found this variant to have no effect on expression of Hxt1-GFP. 727 

The BY FAA4-GFP OLE1(L304M) strains were created using single-cut CRISPR-Swap of the 728 

KanMX cassette in BY FAA4-GFP DAmP(OLE1) (YFA0547) and a repair template made from 729 

BY genomic DNA with OFA0519, which carries the RM variant at L304M, and OFA0120. 730 

Because the site of homologous recombination can initiate anywhere along the OLE1 gene present 731 
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in the genome, the L304M variant was verified by restriction digestion and sequencing and 4 of 732 

10 allele swaps successfully incorporated the RM variant at L304M. 733 

When performing double-cut CRISPR-Swap at the OLE1 locus, we observed incorporation of 734 

unexpected BY/RM chimeric alleles in 2/36 strains in which we genotyped at least one variant. 735 

We believe this can occur because the OLE1 repair template is homologous to the sequence 736 

between the two cassettes, allowing recombination to occur between the repair template and the 737 

intervening sequence.  738 

 739 

Phenotyping of engineered strains 740 

Precultures were inoculated with cells from strains freshly growing on YPD plates or from glycerol 741 

stocks and grown overnight in 800 – 1000 µl of YNB+2% Glu+all medium in a 2-ml deep-96-742 

well-plate on an Eppendorf Mixmate shaker set at 1100 rpm at 30°C. The precultures were diluted 743 

to an OD600=0.05 in 100 µl of the same medium in a 96-well flat bottom plate (Costar) and the 744 

plates were sealed with a Breathe Easy membrane (Diversified Biotech). The strains were 745 

phenotyped in a BioTek Synergy H1 (BioTek Instruments) plate reader at 30°C with readings 746 

taken every 15 min for 97 cycles with 10 sec of orbital shaking between reads and 11 – 13 min 747 

between cycles. Cell growth was characterized using absorbance readings at 600 nm and protein 748 

expression was measured using fluorescence readings taken from the bottom of the plate with the 749 

following parameters: GFP (excitation 488, emission 520 nm) and yeVenus (excitation 502, 750 

emission 532 nm) with an average of 10 reads per well and gain set on extended; and mCherry 751 

(excitation 588 nm, emission 620 nm) with an average of 50 reads per well and gain set at 150. 752 

All plate reader measurements are available at our code repository at 753 

https://github.com/frankwalbert/threeHotspots. 754 

 755 

Growth of RGT2 strains in different glucose concentrations 756 

HXT1-GFP tagged strains, BY (YFA0276-8), BY RGT2(V539I) (YFA0489-91), RM (YFA0279-757 

81) and RM RGT2(I539V) (YFA0492-95) were precultured overnight in 1 ml of YNB+all with 758 

the indicated glucose concentration (1%-12% glucose w/vol.) The cultures were diluted in 100 µl 759 

of the same media and phenotyped as described above. We removed one strain (YFA0275, a BY 760 
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wild type strain present on one plate) from the analyses because it showed highly unusual HXT1-761 

GFP expression at high glucose. 762 

 763 

yeVenus reporter expression 764 

Strains BY (YFA0993), RM (YFA0254), or BY OAF1(L63S) (YFA0907) were transformed with 765 

pRS415-based plasmids containing OLE1 / SDS23 intergenic fragments driving expression of the 766 

yeVenus reporter. Phenotyping was performed as described above in YNB+2% Glu -Leu to 767 

maintain the plasmids. Precultures were inoculated with transformants that were single colony 768 

purified on SDC-Leu plates or using pools of transformants (~5-10 colonies) taken directly from 769 

the SDC-Leu transformation plates and grown overnight, diluted, and phenotyped as described 770 

above. 771 

 772 

Modulation of OLE1 expression using Z3EV 773 

The BY FAA4-GFP strain expressing the estradiol responsive transcription activator was created 774 

by inserting pACT1-Z3EV-NATMX [63] at the HO locus, S11 Table for more details. The OLE1 775 

gene was then modified to have the Z3EV responsive promoter cassette (KANMX-pZ3EV and a 776 

C-terminal fusion with mCherry-hphNT1.  Cells of BY FAA4-GFP OLE1-mCherry(YFA1105), 777 

BY FAA4-GFP OLE1(FAR_RM)-mCherry(YFA1140) and BY HO::pACT1_Z3EV FAA4-GFP 778 

Z3EVpOLE1-mCherry (YFA1110; glycerol stock prepared from a culture grown in 8 nM 779 

estradiol) were precultured overnight in 250 µl of YNB+2% Glu+all with 4, 5, 6, 8, 10, 15, 20, 30 780 

or 40 nM of estradiol (Sigma E1024: 10 µM stock solution in ethanol), diluted in 100 µl of the 781 

same media, and phenotyped as described above. 782 

 783 

Extraction and sequencing of mRNA 784 

Strains BY(YFA1130), BY RGT2 back to WT(YFA1131), BY OAF1(L63S) (YFA1132), BY 785 

OLE1(FAR_RM) (YFA1133) and BY RGT2(V539I) (YFA1134) were precultured (7 precultures 786 

of each strain) in 1 ml of YNB+2% Glu+all as described above. After ~18 hours of growth, the 787 

precultures were diluted to OD600=0.05 in 1 ml of the same media. After ~7 hours of growth, the 788 

optical density of the cultures was measured in the plate reader and growth was continued until an 789 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740076doi: bioRxiv preprint 

https://doi.org/10.1101/740076
http://creativecommons.org/licenses/by/4.0/


 36 

average plate OD600 = 0.37, at which time the plate was centrifuged for 3 min at 2,100 g, the 790 

supernatant removed, and each cell pellet was resuspended in 1 ml of H2O and transferred to a 1.7 791 

ml microfuge tube. The tubes were centrifuged for 2 min at 16,000g, the supernatant removed, and 792 

the cell pellets were immediately frozen by immersion of the tube in liquid nitrogen and stored at 793 

-80°C. 794 

Five cell pellets from each strain were chosen for RNA isolation so that the average OD600 within 795 

and between strains were as uniform as possible, with an average OD600 = 0.37 (range of 0.34 to 796 

0.40). Total RNA was isolated from cell pellets in 5 batches (each batch contained one of each of 797 

the 5 strains) using the ZR Fungal/Bacterial RNA mini-prep kit including the DNase I on-column 798 

digestion step (Zymo Research). Each cell pellet was resuspended in lysis buffer and transferred 799 

to screw-capped tubes containing glass beads and the cells were broken open using a mini-800 

beadbeater (Biospec Products) in 5 cycles of 2 min bead beating followed by 2 min at -80°C. The 801 

total RNA was eluted in 50 µl of DNAse/RNAse free water and the RNA Integrity and 802 

concentration was measured using an Agilent 2200 Tape Station. RINe scores ranged from 9.8 – 803 

10, with an average RNA concentration of 137 ng/µl. 804 

Poly-A RNA was extracted from 550 ng of total RNA using NEBNext Poly(A) mRNA Magnetic 805 

Isolation Module (NEB) and used as input into the NEB Ultra II Directional RNA library kit for 806 

Illumina (NEB E7760) in two batches. NEBNext Multiplex Oligos for Illumina (Dual Index 807 

Primers Set1) were used to amplify and barcode the libraries using the following cycling 808 

conditions: Initial Denaturation at 98°C for 30 s and 10 cycles of: 98°C for 10 s and 65°C for 75 809 

s, followed by a 65°C extension for 5 min. 810 

The amplified DNA was quantified using Qubit DNA HS. Sample concentrations ranged from 47 811 

– 102 ng/µl. An equal concentration of each of the 25 barcoded libraries was pooled and the 812 

average fragment size of the library was 350 bp, as determined using an Agilent High Sensitivity 813 

chip. High-output sequencing of 76-bp single-end reads was performed on an Illumina NextSeq 814 

550 at the University of Minnesota Genomics Core. An average of 14 million reads were obtained 815 

for each sample. 816 

Sequencing reads are available at GEO as series GSE134169. 817 

 818 
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Lipid Measurements 819 

Strains BY (YFA0897), RM HO(BY) (YFA0254), BY OAF1(L63S) (YFA0907), BY 820 

OLE1(FAR_RM) (YFA0914) and BY OLE1(FAR_RM)OAF1(L63S)(YFA1096) were 821 

precultured (6 precultures of each strain) for ~18 hours in 1 ml of YNB+2% Glu+all and then 822 

diluted in 7 ml of the same media to an OD600 = 0.002 in a loosely capped 16 X 150 mm culture 823 

tube and grown at 30°C on a turning wheel until an approximate OD600 = 0.34 (measured in plate 824 

reader). Samples were centrifuged for 3 min at 2,100g, the supernatant was removed and the cell 825 

pellets were resuspended in 1 ml of water and transferred to 1.7 ml microfuge tubes. The cells 826 

were pelleted for 2 min at 16,000g, the supernatant removed, and the cell pellets were immediately 827 

frozen by immersion of the tube in liquid nitrogen and stored at -80°C. 828 

Cell pellets from each strain were resuspended in 1X PBS and sonicated. Fatty acids and total lipid 829 

composition were measured against a standard curve on a triple quadrupole mass spectrometer 830 

coupled with an Ultra Pressure Liquid Chromatography system (LC/MS) as previously described 831 

[120].  Briefly, the cell pellets were spiked with internal standard prior to extraction with tert-Butyl 832 

Methyl Ether (MTBE). Roughly 25% of the sample was dried down, hydrolyzed, re-extracted and 833 

brought up in running buffer for the analysis of total fatty acid composition.  The remaining portion 834 

of the extract was dried down and brought up in running buffer prior to injecting on the LC/MS 835 

for the NEFA measurement. Data acquisition was performed under negative electrospray 836 

ionization condition.  837 

 838 

Allele frequencies of the variants in the population 839 

The phylogenetic tree used to describe the evolution of the causal variants was obtained from [66] 840 

(personal communication). Briefly, the tree was formed from the analysis of 1,544,489 biallelic 841 

sites across 1,011 S. cerevisiae strains using the R package “ape” [121] with the 'unrooted' method 842 

to display the tree. For each of the three variants, the matrix of variants from [66] was used to 843 

define which of the 1,011 strains carry the RM allele, the BY allele, both the BY and RM allele, 844 

or another allele. The edges of the tree were colored based on the alleles each strain carries. The 845 

absence of color continuity as seen with OLE1 and RGT2 can indicate multiple independent 846 

mutation events, but is more likely to arise from out-crossing events leading to mosaic genomes 847 

[122]. 848 
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Alignments were performed using Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo/) with 849 

default settings. Sequences for alignment were retrieved from the NCBI nucleotide database. 850 

Predictions of variant effect on the function of the Rgt2, Oaf1, Sds23, and Ole1 proteins were 851 

calculated using Provean (Protein Variation Effect Analyzer) (http://provean.jcvi.org). 852 

 853 

Computational and statistical analyses 854 

All analyses described below were conducted in R (www.r-project.org), with individual packages 855 

indicated throughout. Figures were generated using base R and ggplot2 [123]. Analysis code is 856 

available at https://github.com/frankwalbert/threeHotspots. 857 

 858 

Quantification of gene expression from plate reader data 859 

We used the ‘growthcurver’ R package [124] to fit a logistic growth curve to the OD600 readings 860 

in each well. Every plate had several blank wells that contained medium but no yeast, and we used 861 

these blank wells to correct for the optical density of the medium. We visually confirmed 862 

successful fit of the growth curve for every well, and additionally excluded any wells for which 863 

growthcurver indicated poor model fit. From the fitted growth model, we extracted growth rates 864 

as well as the “inflection point” of the growth curve, i.e. the time point at which the population 865 

reached half its maximum capacity. We chose this time point for our measure of expression 866 

because in practice it closely matches the OD600 values used to map the hotspots [12], and because 867 

while cultures are still growing exponentially at this time point, they have reached a high enough 868 

density to allow accurate quantification of fluorescence. 869 

To obtain expression values for downstream analyses, we subtracted the mean OD600 and mean 870 

fluorescence of the blank wells included on each plate from all other wells on the plate. We 871 

calculated the mean of three background-subtracted time points centered on the inflection point 872 

(Fig 1C) for OD600 and fluorescence. Downstream analyses of gene expression used the ratio of 873 

this mean fluorescence divided by the mean OD600. 874 

Prior to statistical analysis, we log2-transformed these fluorescence ratios. Every plate that carried 875 

strains with the BY and RM backgrounds also carried untagged wild type control strains without 876 

any fluorescent markers. We subtracted the average log2(fluorescence ratio) values from these 877 
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untagged strains from those of the tagged strains. Thus, the fluorescent phenotypes used in 878 

statistical analyses and displayed in the figures are in units of log2-fold change compared to 879 

untagged strains with matched genetic background. 880 

 881 

Statistical analyses of plate reader data 882 

For fine-mapping, we used pairwise comparisons of genotypes to determine whether the 883 

expression associated with a given edited allele differed significantly from the wild type or other 884 

alleles. These pairwise tests were computed using mixed linear models whose random effect terms 885 

depended on the structure of the data available for each comparison. Specifically, two random 886 

terms were included where appropriate: 887 

Plate identity. As fine-mapping progressed, most genotypes were measured on several plate runs, 888 

usually along with different sets of other genotypes. This resulted in a complex data structure in 889 

which genotypes were sometimes but not always included on the same plates, run over a span of 890 

several months. To account for this structure, the model included plate identity as a random term. 891 

To ensure that plate effects were properly accounted for in both genotypes in a given pairwise 892 

comparison, each comparison was computed using only data from plates that carried both 893 

genotypes under consideration. For example, while wildtype strains were run on multiple plates, a 894 

given edited strain may only have been present on one of these plates. In this scenario, only this 895 

one plate would be used in the statistical comparison. Note that data in figures in the paper that 896 

display plate reader data from multiple plates were not corrected for plate effects. We chose to not 897 

correct for plate effects in the plots because we wished to present a raw view of the data, and 898 

because there is no good way to apply a common visual correction for plate identity when different 899 

genotype comparisons require different plate corrections, depending on which genotypes were 900 

present on each plate. In the figures, plate identity is indicated with different symbols (dots, 901 

squares, triangles, etc.). 902 

Clone identity. During strain engineering, we created at least three independent clones of each 903 

strain. Clone identity was included in the model as a random effect to control for any systematic 904 

differences among these clones. In the figures, we visually grouped data from different wells for a 905 

clone by connecting these wells with a line. For the yeVenus reporter experiments, we collected 906 

data from individual transformed colonies as well as from small transformant pools that each 907 
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contained (and effectively averaged) multiple colonies. For statistical analyses, we treated each 908 

small transformant pool as if it were a colony. 909 

In the equations below, we denote random effects in parentheses. For each genotype, we used the 910 

“lmer” function in the lme4 package [125] to fit a model of the phenotype y with the above random 911 

effect terms as appropriate: 912 

H0: y = (plate) + (clone) + e 913 

where e is the residual error. We fit a second model that includes a fixed effect term for genotype 914 

identity:  915 

H1: y = (plate) + (clone) + genotype + e 916 

We tested for significance of the genotype term using ANOVA comparing H0 and H1. Note that 917 

for a few comparisons in which only a single clone was run in replicate on a single plate, we did 918 

not include random effects terms. We fit these models using the “lm” function. 919 

P-values in plate reader analyses during fine mapping were not corrected for multiple testing. 920 

 921 

Tests for non-additive genetic interactions 922 

To test for non-additive interactions of a given allele (i.e., the BY or RM allele at a given causal 923 

variant) with the strain background (BY or RM), we fit a model with a fixed effect term for strain 924 

background, in addition to a term for the allele at the variant of interest: 925 

H0: y = (plate) + (clone) + strain + allele + e 926 

and a second model that adds an interaction term between allele and strain background:  927 

H1: y = (plate) + (clone) + strain + allele + strain:allele + e 928 

We used ANOVA to test if the inclusion of the strain:allele interaction term in H1 significantly 929 

improved model fit. These interaction tests only considered plates that contained both alleles for 930 

the given variant in both strain backgrounds. We used the same models to test for interactions 931 

between FAR alleles and OAF1 alleles by replacing the “RM” factor level in strain with “BY 932 

(OAF1-RM)”. 933 
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To compare the OAF1/OLE1 allele interaction to that observed earlier in eQTL data (Source Data 934 

14 in [12]), we obtained expression values (Source Data 1 from [12]) and used a linear model to 935 

regress out effects of collection batch and OD600 for these data (Source Data 2 from [12]). We then 936 

used genotypes (Source Data 3 from [12]) at the marker positions corresponding to the two 937 

interacting loci at OAF1 and OLE1 to divide the segregants in [12] into four two-locus genotype 938 

classes and plot their FAA4 mRNA levels in Fig 7A. 939 

 940 

Dependence of the RGT2(V539I) effect on glucose concentration 941 

To test if the effect of the causal variant in RGT2 depended on glucose concentration in the 942 

medium, we extended our modeling framework to include glucose (log2(glucose concentration)) 943 

as a numeric covariate. We fit a model that included all possible pairwise interactions between 944 

strain, allele, and glucose: 945 

H1: y = (plate) + (clone) + strain + allele + glucose + strain:allele + strain:glucose + 946 

allele:glucose + e 947 

and compared this model to simpler models from which we dropped the respective interaction term 948 

of interest. For example, to test for the interaction between glucose and the allele effect: 949 

H0: y = (plate) + (clone) + strain + allele + glucose + strain:allele + strain:glucose + e 950 

We computed p-values comparing these models using ANOVA. 951 

 952 

RNASeq data handling 953 

We used trimmomatic [126] version 0.38 to trim Illumina adapters, filter out reads shorter than 36 954 

bp, trim bases with a quality score of less than 3 from the start and end of each molecule, and 955 

perform sliding window trimming to remove bases with an average quality of less than 15 in a 956 

window of four bases. This filtering retained ≥97% of reads. We used kallisto [127] to pseudoalign 957 

these trimmed and filtered reads to the S. cerevisiae transcriptome obtained from Ensembl [128] 958 

build 93 based on genome version sacCer3 [129]. Following recommendations in [130], we used 959 

FastQC [131] and RSeQC [132] to examine the quality of our 25 samples and found them to all 960 
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be of high quality and, importantly, highly similar to each other. We retained all 25 samples for 961 

downstream analysis. 962 

As a measure of gene expression, we used “estimated counts” in the kallisto output for each gene 963 

in each sample. To exclude genes with poor alignment characteristics, we used RSeQC to calculate 964 

Transcript Integrity Numbers (TINs) per gene and sample, and also considered “effective gene 965 

length” produced by kallisto. We retained genes in which no sample had a count of zero, no sample 966 

had a TIN of zero, and with effective length larger than zero. This filtering retained 5,400 genes 967 

(out of 6,713 annotated) for further analysis. 968 

 969 

RNASeq statistical analyses 970 

Statistical analyses were conducted using the DESeq2 R package [133]. During RNA isolation and 971 

sequencing library generation, we had collected a number of covariates and batch identities: 972 

Bioanalyzer-based RNA Integrity Number (RIN), Bioanalyzer-based RNA concentration, Qubit-973 

based RNA concentration, OD600 of the culture at time of flash freezing, as well as batch for cell 974 

harvest, RNA isolation, and library generation. Samples from our 5 genotypes had been distributed 975 

equally among these three batches. We examined the influence of these technical covariates by 976 

comparing them to principal components computed on variance-stabilized data [133] and found 977 

that the three batches (in particular cell harvest) appeared to influence the results. We thus included 978 

these three batches as covariates in all further analyses. We used surrogate variable analysis (SVA) 979 

[134] to further account for unexplained technical variation and included two SVs in our statistical 980 

model. While choices about which specific technical covariates and SVs to include in the model 981 

did slightly alter the significance tests for individual genes, our main result of positive correlations 982 

between hotspot effects and differential expression was robust to these choices. 983 

We fit the DESeq2 model to all 25 samples and conducted pairwise tests for differential expression 984 

between genotypes. Specifically, we compared the edited OAF1 and OLE1 alleles to a BY 985 

wildtype strain (YFA1130) engineered by CRISPR-Swap with gGFP to remove the GFP tag from 986 

FAA4. We compared the edited RGT2 variant to a BY wild type strain (YFA1131) engineered by 987 

CRISPR-Swap with gCASS5a to replace rgt2∆::kanMX6 with the RGT2 BY allele. The main text 988 

describes differential expression results based on either nominal p-values (p < 0.05), or based on 989 
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a multiple-testing corrected threshold computed via false discovery rate estimation using the 990 

Benjamini-Hochberg method [135] as reported by DESeq2. 991 

To compare differential expression to hotspot effects, we used log2-fold changes estimated by 992 

DESeq2 and hotspot effects that had been estimated by fitting a lasso model to all expressed genes 993 

and all 102 hotspots, as described in [12]. These hotspot effects were obtained from Source Data 994 

9 in [12]. We used nonparametric Spearman rank correlation to compare differential expression 995 

with the hotspot lasso coefficients. We excluded genes with a hotspot effect of zero. While 996 

inclusion of these genes slightly degraded the magnitude of the correlations between hotspot 997 

effects and differential expression, all correlations remained significant and positive. 998 

Gene ontology enrichment analysis for genes with strong hotspot effects but no differential 999 

expression was conducted using the “Gene Ontology Term Finder” tool on SGD [136]. As the 1000 

background set, we used all genes present in both the hotspot effect matrix and our RNASeq data. 1001 

As the test set, we used genes with an absolute hotspot effect of at least 0.3 and a differential 1002 

expression p-value larger than 0.3. 1003 

 1004 

Statistical analyses of lipid data 1005 

To correct for possible technical confounders from lipid composition and NEFAs, we used a linear 1006 

model to regress out effects of acquisition order and sample grouping. For NEFAs, we also 1007 

regressed out total protein, which had been measured from the same samples. The residuals from 1008 

these regression were used in the statistical analyses below. To obtain total saturated, unsaturated, 1009 

C18, and C16 measures, we summed the measures for the respective individual lipid species in 1010 

these groups. 1011 

To analyze the effects of the OAF1 and OLE1 alleles in the BY background, we jointly considered 1012 

the measures from the four genotypes (BY, BY(OAF1-L63S), BY(FAR-RM), and BY with both 1013 

RM alleles) by fitting a linear model to each lipid compound y that models the effects of the OAF1 1014 

and the FAR allele at OLE1: 1015 

y = OAF1 + OLE1 + OAF1:OLE1 + e 1016 

where e is the residual error. We analyzed this model using ANOVA to test for main effects of 1017 

each allele as well as for the interaction term. P-values were not corrected for multiple testing. 1018 
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The BY and RM backgrounds we compared using T-tests.  1019 
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Supporting information captions 1406 

S1 Fig. Guide RNA recognition sequences. A. Schematic of a cassette typically used for gene 1407 

deletions. The gCASS5a recognition sequence is marked with a bracket and the PAM site is 1408 

underlined. Start of the TEF promoter sequence driving expression of the selectable marker is in 1409 

red letters. B. Schematic of a cassette used for C-terminally tagging open reading frames with 1410 

GFP.  The location of the gGFP recognition sequence is marked with a bracket and the PAM site 1411 

is underlined. The start of the GFP sequence is in neon green. The recognition sites for SalI (pink) 1412 

and PacI (purple) are the Cas9 cleavage sites (scissors) are shown to allow easy comparison of the 1413 

gRNA recognition sequences, which are specific to each cassette. Designated with arrows are the 1414 

universal primer sequences, S1 or U2 and F1, used for amplification of common cassettes. 1415 

 1416 

S2 Fig. OAF1 fine mapping. On the left are schematics of OAF1 alleles with BY sequences in 1417 

blue and RM sequences in red. Missense variants are marked with a straight line. Synonymous and 1418 

non-coding variants are not shown. On the right are the corresponding Faa4-GFP fluorescence 1419 

levels for each allele. P-values are for tests comparing each allele to its respective wildtype. 1420 

Significant p-values are outlined. Blue boxplots indicate alleles in the BY background and red 1421 

boxplots and background gray shading indicate alleles in the RM background. Lines group 1422 

measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate 1423 

reader runs. 1424 

 1425 

S3 Fig. OLE1 fine mapping. On the left are schematics of OLE1 alleles with BY sequences in 1426 

blue and RM sequences in red. Only the one missense variant and none of the synonymous variants 1427 

in the open reading frame are marked. Variants in the non-coding region are maked with a single 1428 

line for a SNV and a two diagonal lines for INDELs. On the right are the corresponding Faa4-GFP 1429 

fluorescence levels for each allele. P-values are for tests comparing each allele to its respective 1430 

wildtype. Significant p-values are outlined. Blue boxplots indicate alleles in the BY background 1431 

and red boxplots and background gray shading indicate alleles in the RM background. Lines group 1432 

measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate 1433 

reader runs. 1434 
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 1435 

S4 Fig. yeVenus reporter expression. On the top are schematics of the SDS23/OLE1 locus and 1436 

the two orientations of the yeVenus reporter constructs. The bottom panel shows yeVenus 1437 

fluorescence levels for the indicated yeVenus reporter constructs. Blue boxplots indicate alleles in 1438 

the BY background and red boxplots indicate alleles in the RM background. Lines group 1439 

measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate 1440 

reader runs. 1441 

 1442 

S5 Fig. Effects of plasmid overexpression of SDS23/OLE1 sequences on Faa4-GFP 1443 

expression. Faa4-GFP fluorescence levels of strains transformed with a LEU2-CEN plasmid 1444 

containing the indicated sequence. Lines group measurements of the same clone. 1445 

 1446 

S6 Fig. Growth rates as a function of estradiol dose. Error bars show standard deviations. 1447 

 1448 

S7 Fig. Lipid and fatty acid measurements. All individual measurements are shown. For each 1449 

genotype, the figure shows values for each replicate (smaller points) along with the mean (larger 1450 

points) and standard deviation (vertical lines). 1451 

 1452 

S1 Table. Fine-mapping p-values  1453 

S2 Table. Lipid measurements  1454 

S3 Table. Lipid statistics 1455 

S4 Table. RNA sequencing gene expression counts 1456 

S5 Table. RNA sequencing sample and batch information 1457 

S6 Table. RNA sequencing results 1458 

S7 Table. eQTL hotspot literature review 1459 

S8 Table. Yeast strains 1460 
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S9 Table. Plasmids 1461 

S10 Table. Oligos 1462 

S11 Table. Yeast strain and plasmid construction  1463 
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