

1 Protocol development for discovery of 2 angiogenesis inhibitors *via* automated methods 3 using zebrafish

4
5 Antonio Mauro^{1, 2, 3, *}, Robin Ng¹, Jamie Yuanjun Li¹, Rui Guan¹, Youdong Wang¹, Krishna
6
7 Kumar Singh^{1, 2, 4, 5, 6}, Xiao-Yan Wen^{1, 2, 3, 7, 8, *}
8
9
10
11
12
13
14

15 ¹ Zebrafish Centre for Advanced Drug Discovery, Keenan Research Center, Li Ka Shing Knowledge Institute, St.
16 Michael's Hospital, Toronto, Ontario, Canada

17 ² Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada

18 ³ Cardiovascular Sciences Collaborative Program, University of Toronto, Toronto, Ontario, Canada

19 ⁴ Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada

20 ⁵ Department of Surgery, University of Toronto, Toronto, Ontario, Canada

21 ⁶ Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario,
22 London, Ontario, Canada

23 ⁷ Department of Medicine, University of Toronto, Toronto, Ontario, Canada

24 ⁸ Department of Physiology, University of Toronto, Toronto, Ontario, Canada

25 * Corresponding Authors

26 E-mail: antonio.mauro@mail.utoronto.ca (AM); x.wen@utoronto.ca (XYW)

49 **Abstract**

50 Their optical clarity as larvae and embryos, small size, and high fecundity make zebrafish
51 ideal for whole animal high throughput screening. A high-throughput drug discovery platform
52 (HTP) has been built to perform fully automated screens of compound libraries with zebrafish
53 embryos. A Tg(Flk1:EGFP) line, marking endothelial cell cytoplasm, was used in this work to
54 help develop protocols and functional algorithms for the system, with the intent of screening for
55 angiogenesis inhibitors. Indirubin 3' Monoxime (I3M), a known angiogenesis inhibitor, was
56 used at various concentrations to validate the protocols. Consistent with previous studies, a dose
57 dependant inhibitory effect of I3M on angiogenesis was confirmed. The methods and protocols
58 developed here could significantly increase the throughput of drug screens, while limiting human
59 errors. These methods are expected to facilitate the discovery of novel anti-angiogenesis
60 compounds and can be adapted for many other applications in which samples have a good
61 fluorescent signal.

62

63 **1 Introduction**

64 The Zebrafish (*Danio rerio*) is a tropical fresh water fish belonging to the minnow
65 family. The zebrafish has recently gained popularity as a well-managed vertebrate model for
66 human disease. One of the main reasons for this popularity is its unique combination of optical
67 clarity as embryos and larvae and its embryological manipulability. The optical clarity of
68 zebrafish embryos and larvae allows for the extensive examination of the onset and progression
69 of a pathological process *in vivo* and in real time. The breeding habits and large number of
70 offspring per mating cycle (100-200 eggs per week) are additional positives for the zebrafish.

71 This, together with its small size, makes it ideal for statistically significant large scale whole
72 animal high throughput screening for chemical and genetic phenotypes. [1]

73 A high-throughput drug discovery platform (HTP) has been built at St. Michael's
74 Hospital with the goal of performing fully automated screens of compound libraries using
75 zebrafish embryos as a model. In order to accomplish this goal, a fully functional HTP had to be
76 established. Protocols and functional algorithms were developed for each component of the
77 system with the intent of screening for angiogenesis inhibitors. A screen for angiogenesis
78 inhibitors will be the pilot project for this prototypical system. Also, firmware and hardware
79 adjustments were made to render the HTP operational and user friendly.

80 Transgenic Tg(Flk1:EGFP) zebrafish were used in this work. The Tg(Flk1:EGFP) line
81 presents with a vascular endothelial specific Flk1 promoter directing EGFP expression. Flk1 is a
82 fetal liver kinase also known as vascular endothelial growth factor receptor 2 (VEGFR-2) [2].
83 EGFP is an enhanced green fluorescence protein with a peak excitation wavelength at 488 nm
84 and a maximum emission wavelength at 509 nm [3,4].

85 Angiogenesis is a complex multistep process that requires the tight control and
86 coordination of endothelial cell (EC) behaviour. ECs are retained in a quiescent state in the
87 absence of pro-angiogenic stimuli. However, low-level autocrine vascular endothelial growth
88 factor A (VEGFA) signalling helps maintain EC homeostasis [5]. Tip cells (TCs) are selected
89 for sprouting in the presence of high levels of exogenous pro-angiogenic factors, such as
90 VEGFA, VEGFC, and angiopoietin 2 (ANG2), and VEGF receptor 2 (VEGFR2) or VEGFR3
91 signalling. Delta-like 4-Notch signalling, in contrast, laterally inhibits TC fate in adjacent ECs.
92 [6]

93 Pathological angiogenesis occurs with a deregulation in homeostasis. In disorders
94 featuring excessive angiogenesis, there is a surplus of angiogenesis activators that may be
95 accompanied by the suppression or reduction of angiogenesis inhibitors. Cancer, one of the
96 leading causes of death worldwide, is the most prominent disease in this category. Tumour
97 angiogenesis has been extensively studied to characterize its mechanisms and to develop targeted
98 and more effective therapies. Although, tumors come in many forms, angiogenesis is a process
99 to which all tumor progression is dependent. Two distinguishing features of cancer,
100 uncontrollable cell growth and metastasis, cannot be sustained in the absence of
101 neovascularization [7].

102 Inhibition of a pro-angiogenesis pathway, such as VEGF signaling, can block
103 angiogenesis in tumors and also change or destroy existing tumor vessels [8]. VEGF inhibitors
104 are effective in several types of cancers, however, the benefits are transient, and the vast majority
105 of patients who initially respond to the therapies develop resistance over time [9]. This indicates
106 the existence of alternate pathways for cancer angiogenesis.

107 There have been cases in which VEGF inhibitors were found to be more effective by
108 targeting multiple pro-angiogenesis pathways. Sunitinib, a drug approved for the treatment of
109 renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor (GIST), is an
110 example. This compound is a receptor tyrosine kinase (RTK) inhibitor that inhibits all VEGF
111 and PDGF receptors, which are upregulated in clear cell RCC [10]. Thus, it is possible to tailor
112 treatments towards specific cancers with VEGF inhibitors that also inhibit alternate pathways of
113 angiogenesis.

114 This report presents the development and validation of methods that will be used to
115 screen compound libraries with the HTP in a fully automated fashion, with the intent of initially

116 screening for angiogenesis inhibitors. The platform configuration, experimental protocol, and
117 novel pixel count readout is outlined.

118

119 **2 Results**

120 **2.1 Platform Configuration**

121 The fully automated high throughput drug screening platform (HTP) at St. Michael's
122 Hospital (SMH) was constructed by Caliper (a division of PerkinElmer) [Hopkinton,
123 Massachusetts, USA]. The hardware and software framework was assembled by Caliper and all
124 of the operational software was developed in house with Caliper's iLink Pro assay development
125 and schedule planning software. The HTP is designed to work with 96-well plates and can be
126 modified to work with 384-well plates. The HTP contains the following components: Sciclone
127 G3 Advanced Liquid Handler [Caliper] for compound preparation and administration, 3 x
128 Twister II robots [Caliper] for plate transport (with transfer stations to transfer plates between
129 robots 1 and 2 and robots 2 and 3), T-Robot thermocycler [Montreal Biotech Inc., Kirkland,
130 Quebec, Canada], Multidrop 384 [Thermo Scientific, Hudson, New Hampshire, USA] for quick
131 liquid dispensing of a specific liquid type over an entire plate, ELx405 plate washer [BioTek,
132 Winooski, Vermont, USA], Synergy H1 plate reader [BioTek] to read sample fluorescence and
133 luminescence, Image Xpress Ultra confocal microscope [Molecular Devices, Sunnyvale,
134 California, USA], COPAS XL embryo sorter [Union Biometrica, Holliston, Massachusetts,
135 USA] to sort and dispense embryos according to fluorescent markers, STX220 Incubator
136 [Liconic Instruments, Somerset, New Jersey, USA], and LPX220 plate hotel [Liconic
137 Instruments] to house compound plates. Figure 1 (Fig 1) shows a top view of a 3D CAD
138 drawing of the HTP.

139
140
141
142
143
144

Fig 1 – Top view of a 3D CAD drawing of the HTP. **A:** Sciclone G3 Advanced Liquid Handler. **B:** Twister II robots with transfer stations between them. **C:** T-Robot thermocycler. **D:** Multidrop 384. **E:** ELx405 plate washer. **F:** Synergy H1 plate reader. **G:** Image Xpress Ultra confocal microscope. **H:** COPAS XL embryo sorter. **I:** STX220 Incubator. **J:** LPX220 plate hotel. Scale bar is 50 cm.

145

146 2.2 Protocol

147 A drug screen for endothelial cell modulators with the HTP begins with an empty 96-well
148 optical bottom black wall plate [Thermo Fisher Scientific, Rochester, New York, USA] in the
149 incubator. The plate is then moved with the Twister II robots to the COPAS embryo sorter,
150 which is filled with homozygous Tg(Flk1:EGFP) embryos at about 8 hours post fertilization
151 (hpf) that are dispensed 1 fish/well into the 96 well plates. The optimal drop size to select 1
152 fish/well is 40 μ L. Thus, each well contains 1 zebrafish immersed in 40 μ L of E2 embryo
153 medium as it exits the embryo dispenser. Following this, a robot brings the plate to the
154 Multidrop 384, which adds a propylthiouracil (PTU) solution. Here, 50 μ L of a PTU/E2 media
155 solution is added per well at a 2.5x concentration of PTU (to allow for an eventual final 1.25x
156 concentration of PTU). A PTU embryo media solution is used to block melanogenesis and leave
157 the embryo optically clear throughout development without interfering with other processes [11].
158 At 10-11 hpf (beginning of the segmentation period), when primary organogenesis begins and
159 vasculogenesis is thought to be underway [12], the plate with the samples is moved to the
160 Sciclone along with a 96-well compound plate from the plate hotel. At this stage, 10 μ L of drug
161 from each well, at the desired concentration, is taken from the compound plate and placed into
162 the sample plate. The compound plate is then placed back into the plate hotel and the sample
163 plate is placed into the incubator at 32 °C. This temperature is chosen to encourage development
164 and increase the probability that the fish will be hatched by 4 days post fertilization (dpf) [13].

165 The sample plate is then moved back to the Sciclone and 10 μ L of 100 ppm clove oil (a zebrafish
166 anesthetic) is placed into each well of the sample plate to immobilize the fish for imaging. From
167 here the plate is transported to the Image Xpress confocal imager. Each well is imaged with a 4x
168 objective. The imaging program then captures a 2D image that represents the entire length of the
169 zebrafish. The captured images are then processed with a pixel counting program, developed as
170 a journal in Meta Xpress [Molecular Devices, Sunnyvale, California, USA], that identifies and
171 counts the pixels representing endothelial tissue using a lower pixel intensity threshold of 3000
172 on the software arbitrary scale. Figure 2 (Fig 2) is a flow chart of the HTP drug screening
173 protocol for endothelial cell modulators. Supplementary Figure 1 (S1 Fig) is an example of the
174 master iLink program used to instruct the HTP to execute the protocol. Figure 3 (Fig 3) is a
175 visualization of the pixel count readout with images of a zebrafish treated with 8 μ M Indirubin 3'
176 Monoxime (I3M), a known angiogenesis inhibitor [14], and a negative control fish treated with
177 0.05 % dimethyl sulfoxide (DMSO).

178
179 **Fig 2 – Flow chart of the HTP drug screening protocol for endothelial cell modulators.** Grey font: time of plate
180 movement. Red font: contents of plate while in transit between devices. Blue font: action taken at device.
181

182 **Fig 3 – Visualization of the pixel count readout.** The image on the left is a composite of 2D images from each of
183 the wells of a 96-well plate as presented by MetaXpress. The images on the right are blown up unprocessed and
184 processed images from a well with 0.05 % DMSO (negative control) and a well with 8 μ M I3M (angiogenesis
185 inhibitor). Scale bar is 700 μ m.
186

187

188 **2.3 HTP Protocol Validation**

189 An experiment was conducted, with multiple concentrations of I3M to validate the high
190 throughput protocol developed for the discovery of angiogenesis inhibitors. Tg(flk1:EGFP)
191 zebrafish were distributed 1 fish/well in a 96-well plate, with two columns designated for each
192 concentration. The concentrations of I3M were 0 μ M (0.05 % DMSO control), 1 μ M, 2 μ M, 4

193 μ M, 8 μ M, and 16 μ M (Fig 4; N = 16/group in triplicate). Values under 4000 pixels were
194 assumed to be dead embryos and were excluded. Distorted values due to poor images attributed
195 to moving fish were also removed. After an ANOVA with a Tukey's post-hoc analysis, it was
196 found that the concentrations of 8 μ M and 16 μ M yielded significantly (P < 0.05) lower pixel
197 counts when compared to the control group, as shown in Figure 4 (Fig 4). I3M was shown to
198 function in a dose dependent manner. These results were in accordance with previous literature
199 [14], thus validating the protocol. Also, having values for mortality in each concentration group,
200 it was possible to construct a plot representing survival (Fig 5).

201
202 **Fig 4 – Pixel count readout results that validate the high throughput protocol developed for the discovery of**
203 **angiogenesis inhibitors.** Tg(flk1:EGFP) zebrafish were treated with 0.05% DMSO and compared to
204 Tg(flk1:EGFP) zebrafish treated with various concentrations of I3M to validate protocol. The experiment was
205 repeated in triplicate. The error bars represent the standard deviation of the means from the three experiments.
206
207

208
209 **Fig 5 – Survival curve for Tg(flk1:EGFP) zebrafish treated with various concentrations of I3M.** The
210 experiment was repeated in triplicate. The error bars represent the standard deviation of the survival percentage
211 from the three experiments.
212

213
214

3 Discussion

215 This manuscript exhibits a functional high throughput drug discovery protocol to be used
216 with zebrafish models. Using zebrafish in a high throughput drug discovery setting allows for
217 an analysis of the effect of compounds on angiogenesis in a whole animal model *in vivo*. There
218 are several transgenic zebrafish lines, such as the Tg(flk1:EGFP) line used in this work, and
219 other models that allow for the visualization and quantification of angiogenesis [15]. In
220 zebrafish, during angiogenesis TC and stalk cells (SC) are regulated by VEGF and Notch
221 pathways, much like in human tumors [16]. This together with its high fecundity makes it ideal

222 for statistically significant whole animal high throughput screening for angiogenesis inhibitors.
223 The HTP provides a powerful and efficient tool for the discovery of drugs that modulate
224 angiogenesis.

225 It is worthy to note that, in addition to the described methods, certain interventions were
226 implemented to circumvent some limitations of working with the HTP and zebrafish. When
227 dispensing with the COPAS there were a few rare occurrences where embryos would stick
228 together or debris would be mistaken for an embryo. This would result in wells with errors (ie.
229 no fish or more than one fish). If this was noticed during dispensing the protocol was paused and
230 the wells with errors were corrected manually. In addition, due to the significant 4 day
231 incubation time between the introduction of the compounds and imaging preparations, there was
232 an opportunity to manually inspect the sample plates an hour or two just before imaging. Plates
233 could be inspected for unhatched embryos that could be manually dechorionated and for visibly
234 dead embryos. The visibly dead embryos usually coincided with a pixel count readout of less
235 than 4000, which validated the use of that metric. Also, before imaging the sample plates were
236 centrifuged, Centrifuge 5810 R [Eppendorf Canada, Mississauga, Ontario, Canada]. The
237 centrifuge was ramped up to 1400 rpm at a rate of 140 rpm per second, then immediately back
238 down at the same rate to force out any bubbles and encourage the fish to lie laterally on the
239 bottom of the plate.

240 A potential use of the methods displayed herein could be to screen libraries of
241 compounds that have already been through the rigors of clinical trials. This is highly significant
242 because it is temporally and financially economical to use compounds already approved for
243 clinical trials as repurposed drugs targeting pathological angiogenesis in the treatment of cancer.
244 A main goal is to discover anti-angiogenesis compounds that target multiple or alternate

245 mechanisms in tumor angiogenesis. This is important because cancers are known to promote
246 angiogenesis via multiple pathways and not all cancers utilize these pathways in the same
247 manner, with the different factors tipping the pro/anti-angiogenesis balance towards a pro-
248 angiogenesis environment [17]. For example, there have been cases in which VEGF inhibitors
249 were found to be more effective by also targeting other angiogenesis pathways in certain cancers
250 [10]. The use of these methods is expected to result in the discovery of potentially novel anti-
251 angiogenesis compounds that may improve treatment regimens for cancer.

252 The methods presented are from the perspective of a search for anti-angiogenesis
253 compounds, but they can be adapted for other uses. The general order of steps in the methods
254 would remain the same and similar pixel count readouts could be used for quantification in
255 assays where a fluorescent readout is possible. The methods would simply need to consider
256 certain key parameters for the best results: 1. Embryos would need to be dispensed after 8 hpf
257 and ideally still be in their chorion for consistent time of flight (TOF) readings. Once out of the
258 chorion, anesthetic will be required to keep the fish immobile for readings and fish orientation
259 may vary, making it difficult to define a TOF window. 2. The time of compound introduction
260 and length of incubation would be specific to the physiological phenomena being observed. 3.
261 Acquiring readouts would be ideal at 3 or 4 dpf. The fish are more likely to have hatched and
262 consistently lie laterally at these times. After 4 dpf, achieving a consistent orientation for
263 imaging is less likely, due to the developing swim bladder.

264

265 **4 Materials and methods**

266 **4.1 STX220 Incubator**

267 A drug screen for endothelial cell modulators with the HTP begins with an empty 96-well
268 optical bottom black wall plate in the incubator. This is done so that a rack position can be
269 logged and associated with a specific plate. This allows data to be linked to a specific plate
270 when there is an experiment that involves many plates. Alternatively, a bar code reader next to
271 the incubator can be used for plates equipped with barcode. The incubator is also used to house
272 sample plates after the compounds have been introduced. It was found that the condition of one
273 embryo per well in a 96-well optical bottom black wall plate with 100 μ L in each well created an
274 environment where the embryos matured slower than expected. For this reason, the incubator
275 was kept at 32 °C to encourage development and hatching by 4 dpf.

276

277 **4.2 COPAS XL Embryo Sorter**

278 The COPAS embryo sorter was used to dispense 1 fish/well into the 96-well plates at
279 around 8 hpf. The embryos were destroyed if dispensing was attempted before 8 hpf. The
280 Tg(Flk1:EGFP) embryos were selected and dispensed based on their TOF readings. Embryos
281 were selected from a homozygous population; therefore, there was no need to sort according to
282 fluorescence. To allow for the dispensing of 1 embryo/well the concentration of embryos in the
283 sample cup had to be limited to avoid having multiple embryos dispensed at once. The average
284 specific gravity of the embryos did not allow them to rise above a certain level while they were
285 mixed with the systems magnetic stir bar. For this reason, the optimal embryo to E2 water levels
286 were 100 embryos for a water level at 1.8 cm above the sample cup base, 200 embryos for water

287 levels between 1.8 cm and 3.2 cm, and 300 embryos for levels above 3.2 cm. Adding more than
288 300 embryos would result in dispensing errors. In addition, a vigorous trial and error process
289 was used to find the optimal settings to dispense 1 embryo/well with 40 μ L of E2 embryo
290 medium. The pressure parameters can be found in Figure 6 (Fig 6). All other settings can be
291 found in Supplementary Figure 2 (S2 Fig). Supplementary Video 1 (S1 Vid) shows the COPAS
292 in the process of dispensing 1 embryo/well in a 96-well plate. The markings at 1.8 cm and 3.2
293 cm above the sample cup base can also be observed in the video.

294
295 **Fig 6 – Optimized COPAS pressure settings to dispense 1 embryo/well.** The “Never stop dispensing” box is
296 checked so that dispensing does not stop due to the assigned pressures falling out of the default range.
297

298

299 **4.3 Multidrop 384**

300 The Multidrop was used to add 50 μ L/well of a PTU/E2 media solution. A straight
301 forward program was written to have the Multidrop dispense 50 μ L/well. The Multidrop is
302 triggered to dispense 50 μ L/well once a 96-well plate is placed on it by the Twister II robot.
303 Supplementary Figure 3 (S3 Fig) is a screen capture of the simple method that is triggered.
304

305 **4.4 Sciclone G3 Advanced Liquid Handler**

306 The Sciclone was used to dispense compounds from the compound plate into the sample
307 plate. The application for this step was written in the Maestro Software provided with the
308 Sciclone from Caliper Life Sciences. This program begins with initializing the Sciclone, homing
309 the X, Y, and Z axes of the head device, and setting the movement speed to 100%. The system
310 then loads 200 μ L non-filtered and non-sterile automation pipet tips [Caliper] onto the head

311 device from a tip box. The head device then moves to the compound plate and aspirates 10 μ L
312 as a trailing air gap to ensure that the entirety of the compound is dispensed later on. The head
313 device is set to descend to a position where each tip is positioned 2 mm above the bottom of its
314 corresponding well. Here 10 μ L of compound per well is aspirated at 30 μ L/s. The head then
315 retracts at 10% speed, to not leave any residual compound on the outside of the tips, and
316 aspirates 10 μ L as a leading air gap, to prevent any compound from leaking out of the tips. The
317 head then moves to the sample plate and descends to have the tips 2 mm above the bottom of
318 their corresponding well and all of the tip content is dispensed. The head device then moves
319 above a waste receptacle and dispenses the used tips. From here grips on the head device pick
320 up the sample plate and move it to a shaker. Here the plate is shaken in a figure eight pattern at
321 100 rpm for 10 seconds. The plate is then moved back to its original position. The head device
322 is then brought back to the home position to make way for the twister II robot that brings the
323 sample plate to the incubator. Supplementary Video 2 (S2 Vid) shows the Sciclone acting out
324 this protocol. Supplementary Figure 4 (S4 Fig) shows the application script.

325 The Sciclone was also used to dispense clove oil from a reservoir container into the
326 sample plate. The program used for this is identical the one described for dispensing compounds
327 into the sample plate from the compound plate, with one difference being that the tips descend
328 into a reservoir container at 0.2 mm above its bottom for aspiration instead of 2 mm above the
329 bottom of a 96-well plate.

330

331 4.5 Image Xpress Ultra

332 The Image Xpress Ultra confocal imager was used to capture a 2D image of the
333 Tg(Flk1:EGFP) zebrafish in each well of the 96-well plate at 4 dpf. A 4x objective was used to

334 capture the whole well and thus, ensure that the entirety of each fish was imaged. Each well was
335 imaged in four evenly sized quadrants at four times averaging, with a scan size of 2000 x 2000
336 pixels, to accomplish this. The z-offset from the bottom of the wells was optimal at -0.3 μ m.
337 These settings resulted in 384 images per plate, requiring 733.9 MB of storage. Each set of 4
338 images per well took roughly 15 s to acquire. A journal was developed in Meta Xpress to
339 process the images from each well. The journal begins by stitching the 2x2 images from each
340 well into one image with a 10% overlap between the images to ensure proper alignment. Each
341 image is then processed with a pixel counting program. This program identifies and counts
342 pixels representing endothelial tissue using a lower pixel intensity threshold of 3000 on the
343 software arbitrary scale. This allows for pixels representing endothelial tissue in the focal plane
344 and out of the focal plane to be included, while excluding background data. Thus, allowing the
345 data from a 2D image to be more representative of a 3D object. This type of processing removes
346 the need to work with stacks of images to create 3D representations and in turn significantly
347 reduces imaging and processing time to a level more favourable for a high throughput process.
348 These Image Express Ultra settings and the Meta Xpress journal were also used in previous work
349 describing a zebrafish sepsis model for high throughput drug discovery but not described in
350 detail [18].

351

352 **4.6 Zebrafish**

353 The Tg(Flk1:EGFP) line was maintained and crossed using standard techniques [19]. All
354 zebrafish experiments were approved by the St. Michael's Hospital Animal Care Committee
355 (Toronto, Ontario, Canada) under protocol ACC867.

356

357 **4.7 Code Availability**

358 All efforts were made to include all parameters and data required for anyone to repeat
359 these methods or adapt them for use in other types of assays. In addition to this, sample code
360 and further details can be found amongst the supplementary images. Any journal that was
361 developed in Meta Xpress was a collaborative effort with Molecular Devices and can be obtained
362 from the corresponding author upon request or directly from a Molecular Devices application
363 scientist.

364

365 **5 Data availability statement**

366 The data generated and/or analysed during this work, if not already included in this manuscript,
367 can be obtained from the corresponding author upon request.

368

369 **Acknowledgements**

370 We thank the technical staff at Caliper (a division of PerkinElmer) [Hopkinton, Massachusetts,
371 USA, Liconic Instruments [Somerset, New Jersey, USA], Union Biometrica [Holliston,
372 Massachusetts, USA], Thermo Scientific [Hudson, New Hampshire, USA], and Molecular
373 Devices [Sunnyvale, California, USA] for aiding in the construction and functional development
374 of the HTP. This work was supported by Canada Foundation for Innovation (grant #26233)
375 (X.Y.W.) and Ontario Centres of Excellence-Consortium Québécois sur la Découverte du
376 Médicament (OCE-CQDM) Life Sciences R&D Challenge Program (X.Y.W).

377

378

379 **Author Contributions**

380 Conceptualization: AM, XYW.

381 Data Curation: AM.

382 Formal Analysis: AM.

383 Funding Acquisition: XYW.

384 Investigation: AM.

385 Methodology: AM.

386 Project Administration: AM, XYW.

387 Resources: YW, XYW.

388 Software: AM.

389 Supervision: AM, KKS, XYW.

390 Validation: AM, RN

391 Visualisation: AM, RN, JYL.

392 Writing – Original Draft Preparation: AM.

393 Writing – Review & Editing: AM, RN, RG, KKS, XYW

394

395

396

397

398

399

400

401

402 References

403 1. Lieschke GJ, Currie PD. Animal models of human disease: Zebrafish swim into view. *Nat*
404 *Rev Genet.* 2007;8(5):353–67.

405 2. Jin S-W, Beis D, Mitchell T, Chen J-N, Stainier DYR. Cellular and molecular analyses of
406 vascular tube and lumen formation in zebrafish. *Development* [Internet]. 2005 Dec
407 1;132(23):5199 LP – 5209. Available from:
408 <http://dev.biologists.org/content/132/23/5199.abstract>

409 3. Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent
410 protein (GFP). *Gene.* 1996;173(1):33–8.

411 4. Yang TT, Cheng L, Kain SR. Optimized codon usage and chromophore mutations provide
412 enhanced sensitivity with the green fluorescent protein. *Nucleic Acids Res.*
413 1996;24(22):4592–3.

414 5. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, et al. Autocrine VEGF
415 signaling is required for vascular homeostasis. *Cell* [Internet]. 2007 Aug 24;130(4):691–
416 703. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010851/>

417 6. Herbert SP, Stainier DYR. Molecular control of endothelial cell behaviour during blood
418 vessel morphogenesis. *Nat Rev Mol Cell Biol* [Internet]. 2011 Aug 23;12(9):551–64.
419 Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319719/>

420 7. Verheul HMW, Voest EE, Schlingemann RO. Are tumours angiogenesis-dependent? *J*
421 *Pathol* [Internet]. 2004;202(1):5–13. Available from: <http://dx.doi.org/10.1002/path.1473>

422 8. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition of
423 Vascular Endothelial Growth Factor (VEGF) Signaling in Cancer Causes Loss of
424 Endothelial Fenestrations, Regression of Tumor Vessels, and Appearance of Basement

425 Membrane Ghosts. *Am J Pathol* [Internet]. 2004 Jul 4;165(1):35–52. Available from:
426 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618540/>

427 9. Yamagishi N, Teshima-Kondo S, Masuda K, Nishida K, Kuwano Y, Dang DT, et al.
428 Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of
429 colorectal cancer cells. *BMC Cancer* [Internet]. 2013 May 7;13:229. Available from:
430 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658959/>

431 10. Schoffski P, Dumez H, Clement P, Hoeben A, Prenen H, Wolter P, et al. Emerging role of
432 tyrosine kinase inhibitors in the treatment of advanced renal cell cancer: a review. *Ann
433 Oncol Off J Eur Soc Med Oncol*. 2006 Aug;17(8):1185–96.

434 11. Renaud O, Herbomel P, Kissa K. Studying cell behavior in whole zebrafish embryos by
435 confocal live imaging: Application to hematopoietic stem cells. *Nat Protoc* [Internet].
436 2011;6(12):1897–904. Available from: <http://dx.doi.org/10.1038/nprot.2011.408>

437 12. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic
438 development of the zebrafish. *Dev Dyn an Off public*. 1995;203(3):253–310.

439 13. Pype C, Verbueken E, Saad MA, Casteleyn CR, Van Ginneken CJ, Knapen D, et al.
440 Incubation at 32.5°C and above causes malformations in the zebrafish embryo. *Reprod
441 Toxicol* [Internet]. 2015;56:56–63. Available from:
442 <http://dx.doi.org/10.1016/j.reprotox.2015.05.006>

443 14. Kim JK, Shin EK, Kang YH, Park JHY. Indirubin-3'-monoxime, a derivative of a chinese
444 antileukemia medicine, inhibits angiogenesis. *J Cell Biochem*. 2011;112(5):1384–91.

445 15. Hogan BM, Schulte-Merker S. How to Plumb a Pisces: Understanding Vascular
446 Development and Disease Using Zebrafish Embryos. *Dev Cell* [Internet].
447 2017;42(6):567–83. Available from: <http://dx.doi.org/10.1016/j.devcel.2017.08.015>

448 16. Dimova I, Popivanov G, Djonov V. Angiogenesis in cancer - General pathways and their
449 therapeutic implications. *J BUON*. 2014;19(1):15–21.

450 17. Hida K, Maishi N. Abnormalities of tumor endothelial cells and cancer progression. *Oral
451 Sci Int* [Internet]. 2018;15(1):1–6. Available from: [https://doi.org/10.1016/S1348-8643\(17\)30041-1](https://doi.org/10.1016/S1348-8643(17)30041-1)
8643(17)30041-1%0Ahttp://linkinghub.elsevier.com/retrieve/pii/S1348864317300411

452 18. Philip AM, Wang Y, Mauro A, El-Rass S, Marshall JC, Lee WL, et al. Development of a
453 Zebrafish Sepsis Model for High-Throughput Drug Discovery. *Mol Med*.
454 2017;23(1):134–48.

455 19. El-Rass S, Eisa-Beygi S, Khong E, Brand-Arzamendi K, Mauro A, Zhang H, et al.
456 Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac
457 assembly . *Biol Open*. 2017;6(3):348–57.

459

460

461

462

463

464

465

466

467

468

469

470

471 **Supporting Information Captions**

472 **Supplementary Figures**

473 **S1 Fig – Master iLink Method used to instruct the HTS to execute the protocol to discover**
474 **angiogenesis inhibiting compounds.** The method begins by initializing all the required
475 equipment and confirming that all plates and consumable are programed in a logical location. As
476 the robots place the 96-well sample plates on the device corresponding to a certain protocol step
477 a separate routine, program, protocol, or simple instruction is triggered by iLink and run by the
478 device. When the device is done working through the set of commands, it triggers iLink to move
479 onto the next step.

480

481 **S2 Fig – Optimized COPAS settings to dispense 1 embryo/well.**

482

483 **S3 Fig – Screen shot of the simple Multidrop method triggered when a 96-well sample plate**
484 **is placed on it.**

485

486 **S4 Fig – Application script used to have the Sciclone liquid handler dispense 10 μ L of**
487 **compound from each well of a 96-well compound plate into each well of a 96-well sample**
488 **plate.**

489

490

491

492

493 **Supplementary Videos**

494 **S1 Vid - COPAS in the process of dispensing 1 embryo/well in a 96-well plate.**

495

496 **S2 Vid - Scicloner acting out protocol to aspirate compounds from the compound plate and**

497 **dispense them into the sample plate.**

498

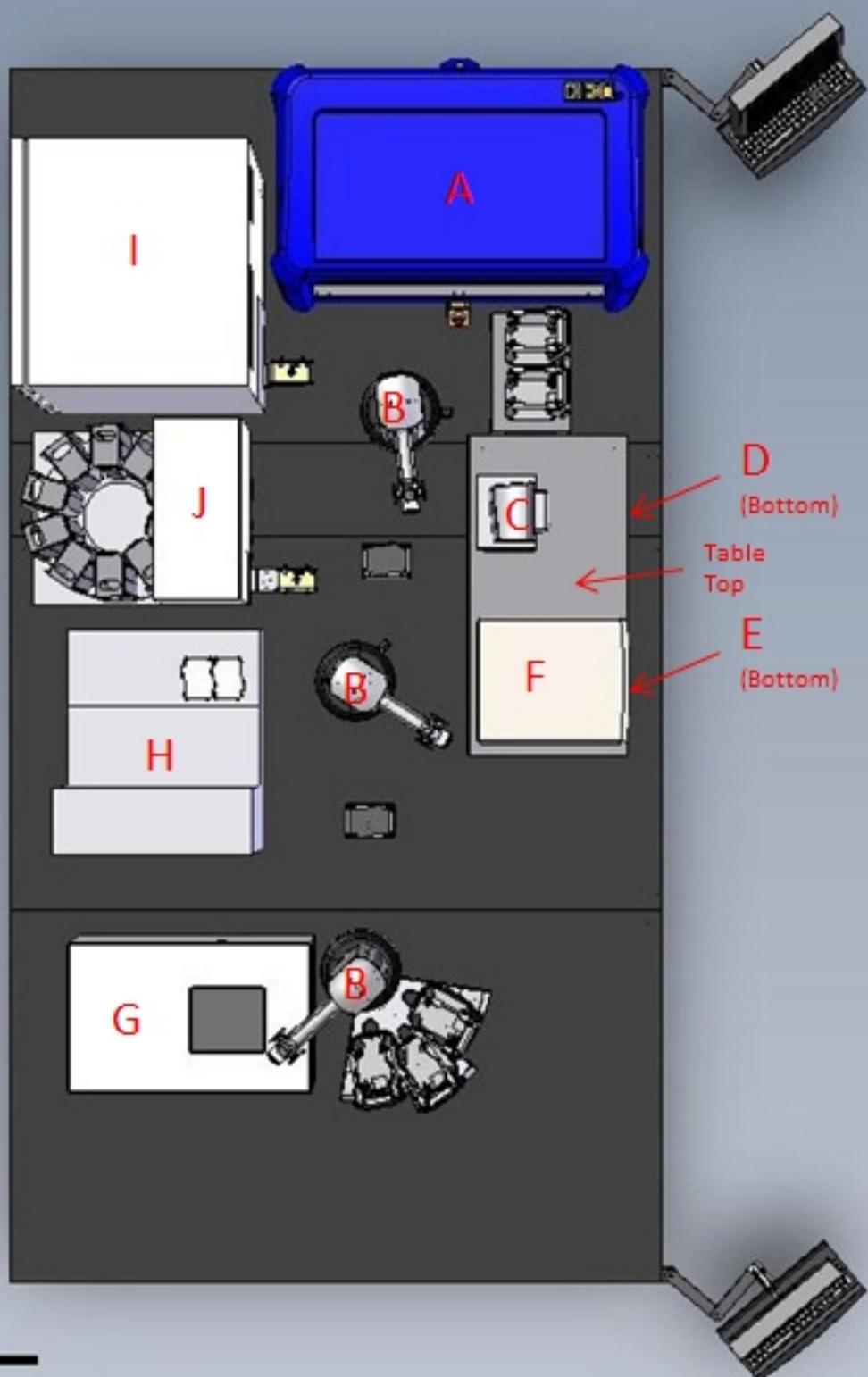


Figure 1

Incubator

8 hpf

Empty Plate

COPAS

Homozygous Tg(Flk1:EGFP) dispensed into 96-well plate

8 hpf

(1 zebrafish + 40 μ L E2 embryo media) per well

Multidrop

50 μ L PTU/E2 media is added per well

10-11 hpf

(1 zebrafish + 90 μ L PTU/E2 media) per well

Sciclone

10 μ L of compound is introduced per well

10-11 hpf

(1 zebrafish + 90 μ L PTU/E2 media + 10 μ L compound) per well

Incubator

Incubation until 4 dpf

4 dpf

(1 zebrafish + 90 μ L PTU/E2 media + 10 μ L compound) per well

Sciclone

10 μ L of anesthetic clove oil is introduced per well

4 dpf

(1 zebrafish + 90 μ L PTU/E2 media + 10 μ L compound + 10 μ L clove oil) per well

Image Xpress

2D image taken from each well and analyzed with the pixel counting program in Meta Xpress

Figure 2

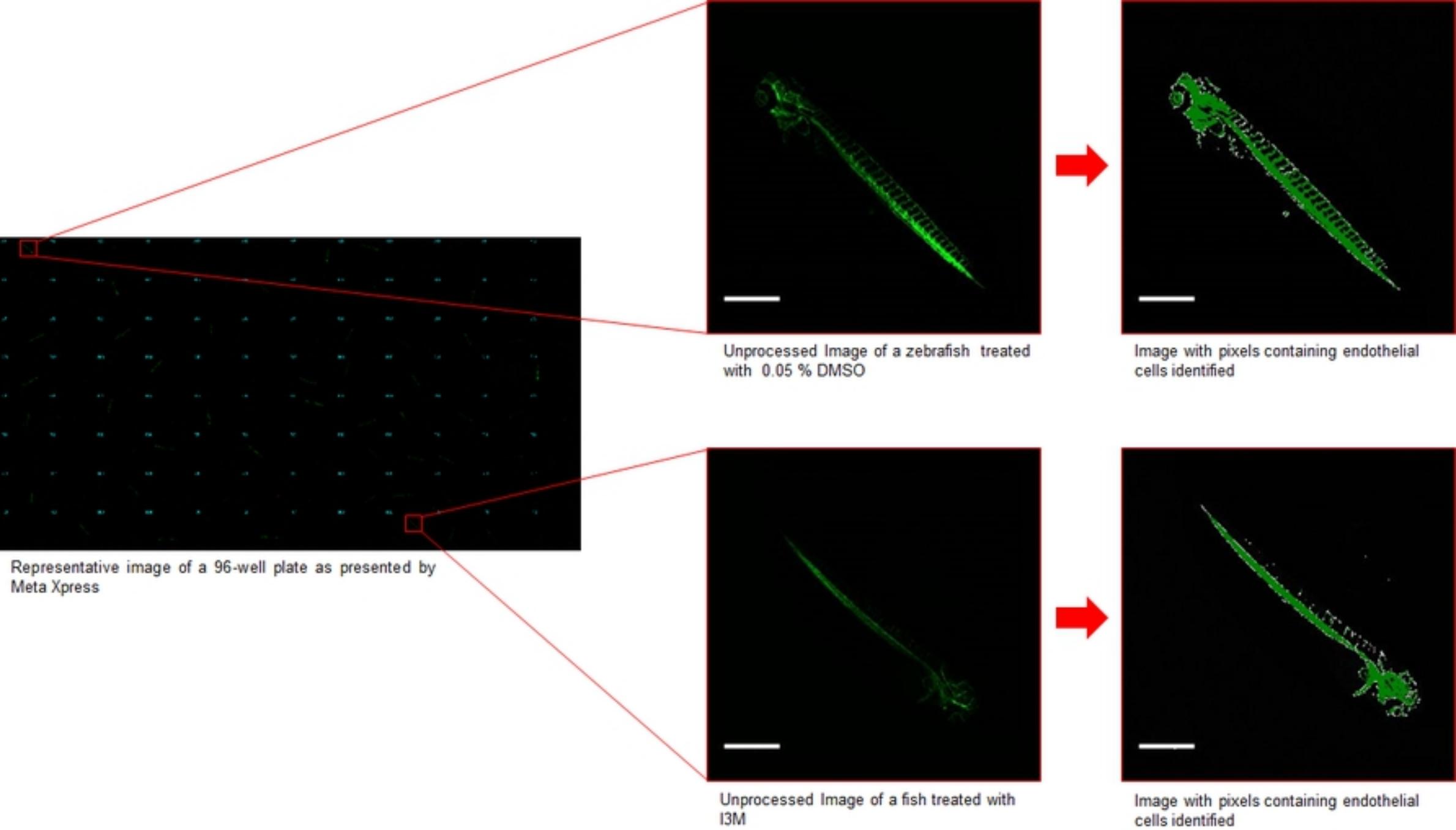


Figure 3

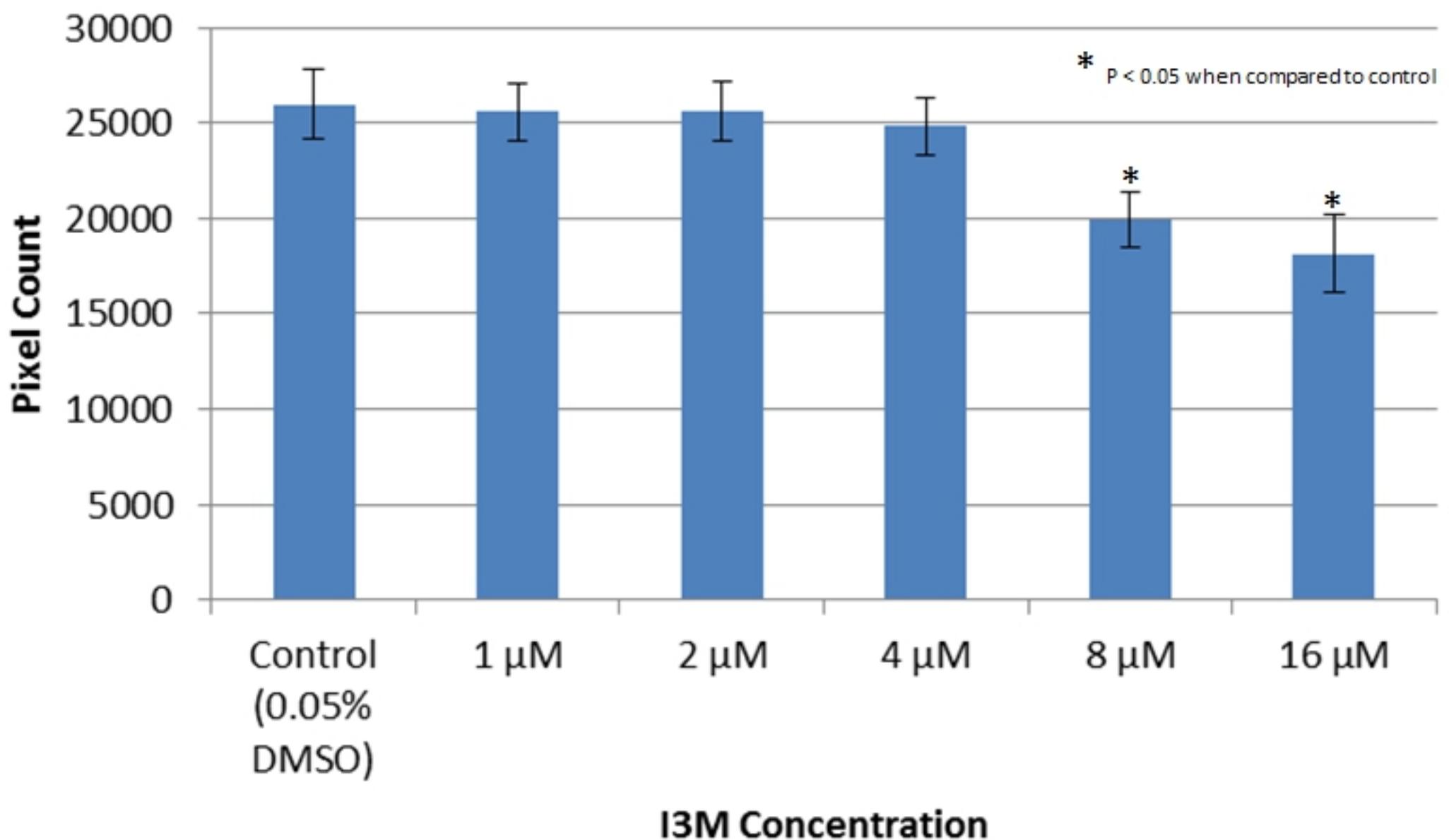


Figure 4

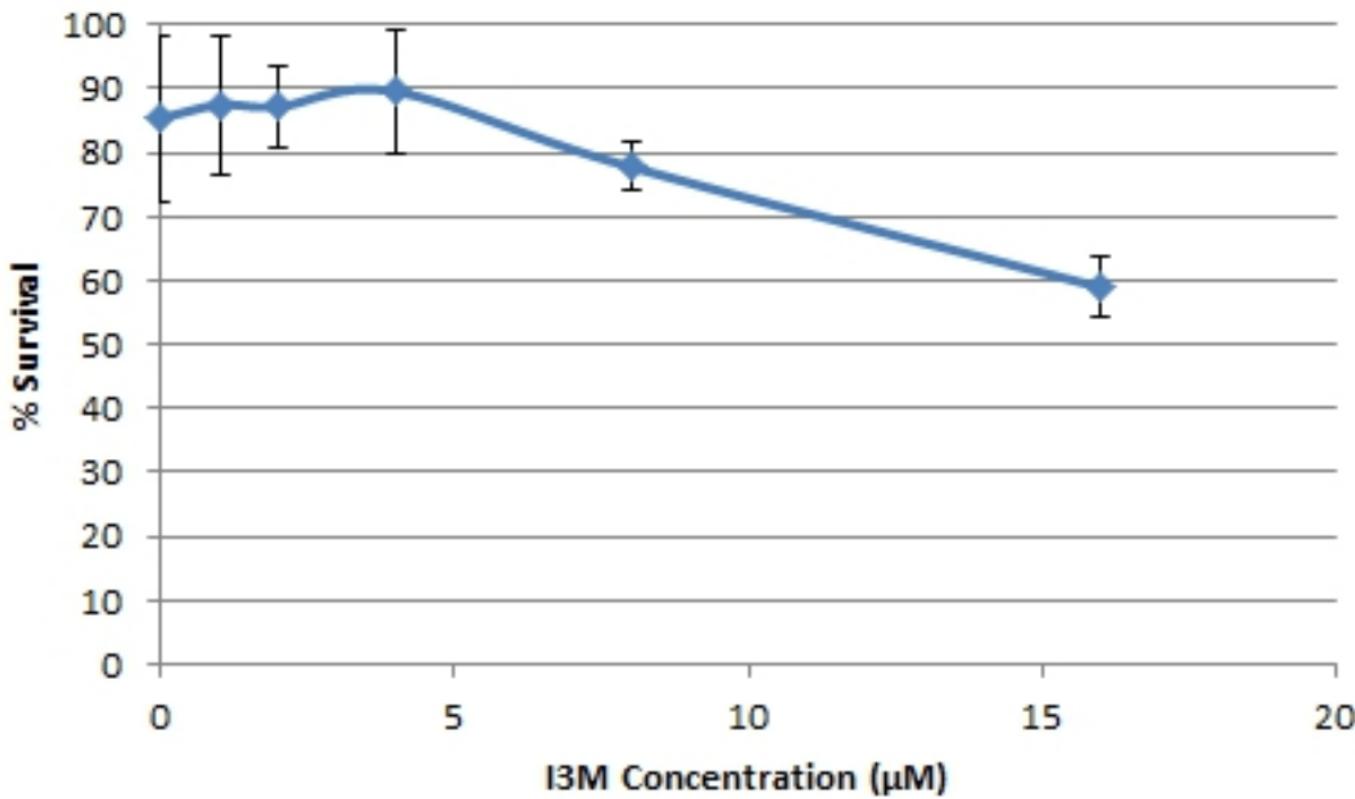


Figure 5

	Pressure (psi)	Acceptable range		Time before stopping when pressure out of range (sec)
Sheath	4.80	-	2.00	360
Sample	0.45	-	0.57	360
Divertor	2.50	-	0.50	360
Clean	4.00	-	0.50	360

Never stop dispensing

Update pressure

CLOSE

Figure 6