
A potential cortical precursor of visual word form recognition in untrained monkeys 1 
Rishi Rajalingham1,2, Kohitij Kar1,2,3, Sachi Sanghavi1,2, Stanislas Dehaene,4,5, James J. DiCarlo1,2,3 2 
 3 
1Department of Brain and Cognitive Sciences, 2McGovern Institute for Brain Research, 3Center for Brains, Minds 4 
and Machines 5 
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 6 
4Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France 7 
5Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 8 
91191 Gif/Yvette, France 9 
 10 
Correspondence should be addressed to James J. DiCarlo, McGovern Institute for Brain Research, Department of 11 
Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Institute of Technology, 12 
46-6161, Cambridge, MA 02139. E-mail: dicarlo@mit.edu 13 
 14 
Title: 12 words 15 
Abstract: 321 words 16 
Introduction: 995 words 17 
Discussion: 1308 words 18 
Figures: 4 19 
  20 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/739649doi: bioRxiv preprint 

https://doi.org/10.1101/739649
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 21 
 22 
Skilled human readers can readily recognize written letters and letter strings. This domain of visual recognition, 23 
known as orthographic processing, is foundational to human reading, but it is unclear how it is supported by neural 24 
populations in the human brain. Behavioral research has shown that non-human primates (baboons) can learn to 25 
distinguish written English words from pseudo-words (lexical decision), successfully generalize that behavior to novel 26 
strings, and exhibit behavioral error patterns that are consistent with humans. Thus, non-human primate models, 27 
while not capturing the entirety of human reading abilities, may provide a unique opportunity to investigate the 28 
neuronal mechanisms underlying orthographic processing. Here, we investigated the neuronal representation of 29 
letters and letter strings in the ventral visual stream of naive macaque monkeys, and asked to what extent these 30 
representations could support visual word recognition. We recorded the activity of hundreds of neurons at the top 31 
two levels of the ventral visual form processing pathway (V4 and IT) while monkeys passively viewed images of 32 
letters, English words, and non-word letter strings. Linear decoders were used to probe whether those neural 33 
responses could support a battery of orthographic processing tasks such as invariant letter identification and lexical 34 
decision.  We found that IT-based decoders achieved baboon-level performance on these tasks, with a pattern of 35 
errors highly correlated to the previously reported primate behavior. This capacity to support orthographic processing 36 
tasks was also present in the high-layer units of state-of-the-art artificial neural network models of the ventral stream, 37 
but not in the low-layer representations of those models. Taken together, these results show that the IT cortex of 38 
untrained monkeys contains a reservoir of precursor features from which downstream brain regions could, with some 39 
supervised instruction, learn to support the visual recognition of written words. This suggests that the acquisition of 40 
reading in humans did not require a full rebuild of visual processing, but rather the recycling of a brain network 41 
evolved for other visual functions. 42 
  43 
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Introduction 44 
 45 
 Literate human adults can efficiently recognize written letters and their combinations over a broad range of 46 
fonts, scripts and sizes (1–3). This domain of visual recognition, known as orthographic processing, is foundational 47 
to human reading abilities, because the invariant recognition of the visual word form is an indispensable step prior 48 
to accessing the sounds (phonology) and meanings (semantics) of written words (4). It is largely unknown how 49 
orthographic processing is supported by neural populations in the human brain. Given the recency of reading and 50 
writing to the human species (a cultural invention dating to within a few thousand years), it is widely believed that the 51 
human brain could not have evolved de novo neural mechanisms for the visual processing of orthographic stimuli, 52 
and that the neural representations that underlie orthographic processing abilities must build upon, and thus be 53 
strongly constrained by, the prior evolution of the primate brain (5, 6). In particular, a dominant theory is that the 54 
ventral visual pathway, a hierarchy of cortical regions known to support visual object recognition behaviors, could be 55 
inherited from recent evolutionary ancestors and minimally repurposed (or “recycled”) through developmental 56 
experience to support orthographic processing (6). Consistent with this hypothesis, functional imaging studies 57 
suggest that the post-natal acquisition of reading is accompanied by a partial specialization of dedicated cortical sub-58 
regions in the human ventral visual pathway, which ultimately become strongly selective to orthographic stimuli (7–59 
9). However, given the limitations of human imaging methods, it has been challenging to quantitatively test if and 60 
how neural representations in the ventral visual pathway might be reused to support orthographic processing. 61 
 62 
 Interestingly, the ventral visual processing stream – a hierarchically-connected set of neocortical areas (10) 63 
– appears remarkably well conserved across many primate species, including Old World monkeys, such as a rhesus 64 
macaques (Macaca mulatta) and baboons (Papio papio), that diverged from humans about 25 million years ago (11). 65 
Indeed, decades of research have inferred strong anatomical and functional homologies of the ventral visual 66 
hierarchy between humans and macaque monkeys (12–14).  Previously, we observed striking similarities in invariant 67 
visual object recognition behavior between these two primate species, even when measured at very high behavioral 68 
resolution (15, 16). Recent work suggests that non-human primates may also mimic some aspects of human 69 
orthographic processing behavior (17, 18).  In particular, Grainger and colleagues showed that baboons can learn 70 
to accurately discriminate visually-presented four-letter English words from pseudo-word strings (17). Crucially, the 71 
authors showed that baboons were not simply memorizing every stimulus, but instead had learned to discriminate 72 
between these two categories of visual stimuli based on the general statistical properties of English spelling, as they 73 
generalized to novel stimuli with above-chance performance. Furthermore, the baboons’ patterns of behavioral 74 
performance across non-word stimuli was similar to the corresponding pattern in literate human adults, who make 75 
infrequent but systematic errors on this task. Taken together, those prior results suggest that non-human primate 76 
models, while not capturing the entirety of human reading abilities, may provide a unique opportunity to investigate 77 
the neuronal mechanisms underlying orthographic processing.  78 
 79 
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 In light of this opportunity, we investigated the existence of potential neural precursors of visual word form 80 
recognition in the ventral visual pathway of untrained macaque monkeys. Prior neurophysiological and 81 
neuropsychological research in macaque monkeys point to a central role of the ventral visual stream in invariant 82 
object recognition (19–21), with neurons in inferior temporal (IT) cortex, the top-most stage of the ventral stream 83 
hierarchy, exhibiting selectivity for complex visual features and remarkable tolerance to changes in viewing conditions 84 
(e.g. position, scale, and pose) (19, 22, 23). It has been suggested that such neural features could have been coopted 85 
and selected by human writing systems throughout the world (5, 6, 24). Here, we reasoned that if orthographic 86 
processing abilities are supported by “recycling” primate IT cortex – either by minimal adaptations to the IT 87 
representation and/or evolutionary addition of new cortical tissue downstream of IT – then this predicts that the initial 88 
state of the IT representation, as measured in naïve macaque monkeys, should readily serve as a computational 89 
precursor of orthographic processing tests. Investigating, for the first time, the representation of letters and letter 90 
strings in macaque IT cortex would not only directly test this prediction but could also provide initial insights into the 91 
representation of letters and letter strings prior to reading acquisition.  92 
 93 

To quantitatively test this prediction of the “IT precursor” hypothesis, we first operationally defined a set of 94 
thirty orthographic identification and categorization tasks, such as identifying the presence of a specific letter or 95 
specific bigram within a letter string (invariant letter/bigram identification), or sorting out English words from pseudo-96 
words (lexical decision). We do not claim this to be an exhaustive characterization of orthographic processing, but 97 
an unbiased starting point for that greater goal.  As schematically illustrated in Figure 1A, we then recorded the 98 
spiking activity of hundreds of neural sites in V4 and IT of rhesus macaque monkeys while they passively viewed 99 
images of letters, English words and non-word strings. We then formally tested this prediction of the IT precursor 100 
hypothesis by asking whether adding a simple neural readout machinery on top of the macaque IT representation 101 
could produce a neural substrate of orthographic processing, using biologically plausible linear decoders that perform 102 
those behavioral tasks from the firing responses of those neuronal populations. We found that linear decoders that 103 
learn from the population spiking output of IT cortex easily achieved baboon-level performance on these tasks, and 104 
that the pattern of behavioral performance predicted by this hypothesis was highly correlated with the corresponding 105 
baboon behavioral pattern. These behavioral tests were also met by leading artificial neural network models of the 106 
non-human primate ventral stream, but not by low-level representations of those models. Taken together, these 107 
results show that, even in untrained non-human primates, the population of IT neurons contains an explicit (i.e. 108 
linearly separable), if still imperfect, representation of written words that might have been later “recycled” to support 109 
orthographic processing behaviors in higher primates such as humans. 110 
 111 
Results 112 

 113 
 Our primary goal was to experimentally test the capacity of neural representations in the primate ventral 114 
visual pathway to support orthographic classification tasks. To do so, we recorded the activity of hundreds of neurons 115 
from the top two levels of the ventral visual cortical hierarchy of rhesus macaque monkeys. Neurophysiological 116 
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recordings were made in four Rhesus monkeys using chronically implanted intracortical microelectrode arrays (Utah) 117 
implanted in the inferior temporal (IT) cortex, the top-most stage of the macaque ventral visual stream hierarchy (IT).  118 
As a control, we also collected data from upstream visual cortical area V4, which provides the dominant input to IT 119 
(Figure 1A). Neuronal responses were measured while each monkey passively viewed streams of images, consisting 120 
of alphabet letters, English words, and pseudo-word strings, presented in a rapid serial visual presentation (RSVP) 121 
protocol at the center of gaze (Fig. 1). Images were presented in randomized order, and each image was shown at 122 
least 25 times. Crucially, monkeys had no previous supervised experience with orthographic stimuli, and they were 123 
not rewarded contingently on the stimuli, but solely for accurately fixating. This experimental procedure resulted in a 124 
large dataset of 510 IT neural sites (and 277 V4 neural sites) in response to up to 1120 images of orthographic 125 
stimuli. To test the sufficiency of the IT representation for orthographic processing, we used simple linear decoders 126 
(as biologically plausible approximations of downstream neural computations, see Methods) to test each neuronal 127 
population on a battery of 30 visual orthographic processing tasks:  20 invariant letter identification tasks, 8 invariant 128 
bigram identification tasks, and two variants of the lexical decision task. For each behavioral test, we used a linear 129 
decoder, which computes a simple weighted sum over the IT population activity, to discriminate between two classes 130 
of stimuli (e.g. words versus pseudo-words). The decoder weights are “learned” using the IT population responses 131 
to a subset of stimuli (using 90% of the stimuli for training), and then the performance of the decoder is tested on 132 
held-out stimuli.  The overarching prediction of the “IT precursor” hypothesis was that, if a putative neural mechanism 133 
(i.e. a particular readout of a particular neural population) is sufficient for primate orthographic processing behaviors, 134 
then, it should be easy to learn (i.e. few supervised examples), its learned performance should match the overall 135 
primate performance, and its learned performance should have similar patterns of errors as primates that have 136 
learned those same tasks.  This logic has been previously applied to the domain of core object recognition to uncover 137 
specific neural linking hypotheses (25) that have been successfully validated with direct causal perturbation of neural 138 
activity (26, 27). 139 
 140 
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  141 
Lexical decision 142 
 We first focused on the visual discrimination of English words from pseudo-words (a.k.a. lexical decision) 143 
using a random subset of the stimuli tested on baboons (17). We collected the response of 510 IT neural sites and 144 
277 V4 neural sites to a base set of 308 four-letter written words and 308 four-letter pseudo-words (see Figure 1B, 145 
“base set” for example stimuli). To test the capacity of the IT neural representation to support lexical decision, we 146 
trained a linear decoder using the IT population responses to a subset of words and pseudo-words, and tested the 147 
performance of the decoder on held-out stimuli. Note that this task requires generalization of a learned lexical 148 
classification to novel orthographic stimuli, rather than the mere memorization of orthographic properties.  Figure 2A 149 

Figure 1: (A) Schematic of experiment. We recorded the activity of hundreds of neural sites in IT while monkeys passively 
fixated images of orthographic stimuli. (As a control, we also recorded from the dominant input to IT, area V4.) We then 
tested the sufficiency of the IT representation on 30 tests of orthographic processing (e.g. lexical decision, letter 
identification, etc.) using simple linear decoders. (B) Example visual stimuli. Images consisted of four-letter English words 
and pseudo-word strings presented in canonical views, as well as with variation in case (upper/lower) and size 
(small/medium/large), and single alphabet letters presented at four different locations. 
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shows the output choices of the linear readout of IT neurons, plotted as the probability of categorizing stimuli as 150 
words, as compared to behavioral choices of a pool of six baboons, as previously measured by Grainger et al. (17). 151 
For ease of visualization, the 616 individual stimuli were grouped into equally-sized bins based on the baboon 152 
performance, separately for words and pseudo-words. We qualitatively observe a tight correspondence between the 153 
behavioral choices made by baboons and those measured by the linear decoder trained on the IT population. To 154 
quantify this similarity, we benchmarked both the overall performance (accuracy) and the consistency of pattern of 155 
errors of the IT population with respect to this previously measured median baboon behavior on the same images.  156 
 157 

 158 
 We first found that decoders trained on the IT population responses achieved high performance (76% for 159 
510 neural sites) on lexical decision on new images (Figure 2B). Performance increased steadily with the number of 160 
neural sites included in the decoder, with about 250 randomly sampled IT neural sites matching the median 161 
performance of baboons doing this task (Figure 2B, blue). Could any neural population achieve this performance? 162 
As a first control for this, we tested the upstream cortical area V4. We found that the tested sample of V4 neurons 163 
did not achieve high performance (only 57% for 277 V4 neural sites), failing to match baboon performance on this 164 

Figure 2: (A) Comparison of baboon behavior and a linear readout of IT neurons, plotted as the proportion of stimuli categorized 
as “words.” The 616 individual stimuli were grouped into equally-sized bins based on the baboon performance, separately for 
words (red) and pseudo-words (blue). Error bars correspond to SEM, obtained via bootstrap resampling over stimuli; dashed 
line corresponds to unity line, demarking a perfect match between baboon behavior and IT-based decoder outputs. (B) 
Performance of decoders trained on IT and V4 representations on lexical decision, for varying number of neural sites. 
Distribution of individual baboon performance is shown on the right. (C) Consistency with baboon behavioral patterns of 
decoders trained on IT and V4 representations, for varying number of neural sites. (D) Distribution of selectivity of lexical decision 
for individual IT sites, highlighting the subpopulation of sites with selectivity significantly different from zero. (E) Performance of 
decoders trained on subpopulation of selective sites from (d) compared to remaining IT sites and all IT sites. 
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task (Figure 2B, green). Going beyond the summary statistic of average performance, we next tested whether 165 
baboons and neural populations exhibited similar behavioral patterns across stimuli, e.g. whether letter strings that 166 
were difficult to categorize for baboons were similarly difficult for these neural populations. To reliably measure 167 
behavioral patterns in each individual baboon subject, we grouped the 616 individual stimuli into equally-sized bins 168 
based on an independent criterion (the average bigram-frequency of each string in English, see Methods),  169 
separately for words and pseudo-words. For both baboons and decoders, we then estimated the average unbiased 170 
performance for each stimulus bin using a sensitivity index (d’); this resulted in a ten-dimensional pattern of unbiased 171 
performances. We then measured the similarity between patterns of unbiased performances from a tested neural 172 
population and the pool of baboons using a noise-adjusted correlation (see Methods). We observed that the pattern 173 
of performances obtained from the IT population was highly correlated with the corresponding baboon pool 174 
behavioral pattern (noise-adjusted correlation 𝜌" = 0.64; Figure 2C, blue). Perhaps any neural population would 175 
exhibit this baboon-like behavioral pattern? On the contrary, we found that this correlation was significantly higher 176 
than the corresponding value estimated from the V4 population, which is only one visual processing layer away from 177 
IT (𝜌" = 0.11; Figure 2C, green). By holding out data from each baboon subject from the pool, we additionally 178 
estimated the consistency between each individual baboon subject to the remaining pool of baboons (median 𝜌" =179 
0.67, inter-quartile range = 0.27, n=6 baboon subjects). This consistency value corresponds to an estimate of the 180 
ceiling of behavioral consistency, accounting for inter-subject variability. Importantly, the consistency of IT-based 181 
decoders is within this baboon behavioral range; this demonstrates that that this neural mechanism is as consistent 182 
to the baboon pool as each individual baboon is to the baboon pool, at this behavioral resolution. Together, these 183 
results suggest that the distributed neural representation in macaque IT cortex is sufficient to explain the lexical 184 
decision behavior of baboons, which itself was previously found to be correlated with human behavior (17). 185 
 186 
 We next explored how the distributed IT population’s capacity for supporting lexical decision arose from 187 
single neural sites. Figure 2D shows the distribution of word selectivity of individual sites in units of d’, with positive 188 
values corresponding to increased firing rate response for words over pseudo-words. We observed that, across the 189 
population, IT did not show strong selectivity for words over pseudo-words (average d’ = 0.008 ± 0.09, mean, SD 190 
over 510 IT sites), and that no individual IT site was strongly selective for words vs. pseudo-words (|d’|<0.5 for all 191 
recorded sites). However, a small but significant proportion of sites (10%; p<10-5, binomial test with 5% probability of 192 
success) exhibited a weak but significant selectivity for this contrast (inferred by a two-tailed exact test with bootstrap 193 
resampling over stimuli). Note that this subset of neural sites includes both sites that responded preferentially to 194 
words and sites that responded preferentially to pseudo-words. We measured the lexical decision performance of 195 
decoders trained on this subpopulation of neural sites, compared to the remaining subpopulation. Importantly, to 196 
avoid a selection bias in this procedure, we selected and tested neural sites based on independent sets of data 197 
(disjoint split-halves over trial repetitions). As shown in Figure 2E, we observed that decoders trained on this subset 198 
of selective neural sites performed better than a corresponding sample from the remaining non-selective population, 199 
but not as well as decoders trained on the entire population, suggesting that the population’s capacity for supporting 200 
lexical decision relies heavily but not exclusively on this small subset of selective neural sites. We next examined 201 
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whether this subset of selective neural sites was topographically organized on the cortical tissue. For this subset of 202 
neural sites, we did not observe a significant hemispheric bias (p=0.13, binomial test with probability of success 203 
matching our hemisphere sampling bias), or significant spatial clustering within each 10x10 electrode array (Moran’s 204 
I=0.11, p=0.70, see Methods). Thus, we observed no direct evidence for topographically organized specialization 205 
(e.g. orthographic category-selective domains) in untrained non-human primates, at the resolution of single neural 206 
sites. Taken together, these results suggest that lexical decision behavior could be supported by a sparse, distributed 207 
read-out of the IT representation in untrained monkeys, and provide a baseline against which to compare future 208 
studies of trained monkeys. 209 
 210 
Tests of invariant orthographic processing 211 
 212 
 Importantly, human readers can not only discriminate between different orthographic objects, but also do so 213 
with remarkable tolerance to variability in printed text. For example, readers can effortlessly recognize letters and 214 
words varying in up to two orders of magnitude in size, and are remarkably tolerant to variations in printed font (e.g. 215 
upper vs lower case) (3, 28). To investigate such invariant orthographic processing behaviors, we measured IT 216 
decoder performance for stimuli that vary in font size and font case, for a subsampled set of strings (40 words, 40 217 
pseudo-words, under five different variations for a total of 400 stimuli). To test this, we trained linear decoders on 218 
subsets of stimuli across all variations, and tested on held-out stimuli, for a total of 29 behavioral tests (20 invariant 219 
letter recognition tests, 8 invariant bigram recognition tests, and one test of invariant lexical decision). Figure 3A 220 
shows the performance of a decoder trained on the IT neuronal representation on each of these three types of 221 
behavioral tests, as a function of the neural sample size.  For comparison, we also show the same decoder test for 222 
the V4 population.  Once again, we observe that the IT population achieved relatively high performance across all 223 
tasks, and that this performance was greater than the corresponding estimated performance from the measured V4 224 
population. We note that performance values for invariant lexical decision should not be directly compared with those 225 
in Figure 2B, as invariant tests here were conducted with fewer training examples for the decoders (i.e. trained/tested 226 
on 40 distinct words/pseudo-words strings, rather than 308 strings in Figure 2B).  227 
 228 
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 229 
 We additionally tested the feature representation obtained from a deep recurrent convolutional neural 230 
network model of the ventral stream on the exact same behavioral tasks. Specifically, we tested the CORnet-S model 231 
(29), as it has recently been shown to best match the computations of the primate ventral visual stream (30, 31) and 232 
provides an independently simulated estimate of the neuronal population responses from each retinotopically-233 
defined cortical area in the ventral visual hierarchy (V1, V2, V4, and IT). Figure 3 shows the performance of decoders 234 
trained on each simulated neuronal population (gray lines) on invariant letter identification, invariant bigram 235 
identification, and invariant lexical decision, as a function of the number of model units used for decoding. We observe 236 
that the last layer of CORnet-S (simulated IT) significantly outperforms earlier layers (simulated upstream areas V1, 237 
V2, and V4) on these invariant orthographic discrimination tasks, and tightly matches the performance of the actual 238 
IT population. 239 
  240 
 Finally, we tested how the IT population’s capacity for these 29 invariant orthographic processing tests was 241 
distributed across individual IT neural sites. We computed the selectivity of individual sites in units of d’ for each of 242 
these tests, and estimated the statistical significance of each selectivity index using a two-tailed exact test with 243 
bootstrap resampling over stimuli (see Methods). Figure 3B shows a heatmap of significant selectivity indices for all 244 
pairs of neural sites and behavioral tests; each row corresponds to one behavioral test, each column to a single IT 245 
neural site, and filled bins indicate statistically significant selectivity. The histogram above shows the number of 246 
behavioral tests that each neural site exhibited selectivity for (median: 3 tests, inter-quartile-range: 5), and the 247 

Figure 3: (A) Performance of decoders trained on the IT and V4 representations on invariant orthographic tests, grouped into 
letter identification (n=20 tests), bigram identification (n=8 tests) and invariant lexical decision. Performance of artificial 
representations sampled from layers of deep convolutional neural network model CORnet-S are shown in grey. (B) Selectivity 
of individual IT sites over 29 invariant orthographic processing tests. The heatmap shows selectivity significantly different from 
zero over all pairs of neural sites and tests.  The histogram above shows the number of behavioral tests (Nt) that each neural 
site exhibited selectivity for; neural sites are ordered by increasing Nt. The histogram on the right shows the proportion of 
neural sites exhibiting selectivity for each test; the behavioral tests are ordered alphabetically within each task group (letter 
identification in orange, bigram identification in cyan, and lexical decision in gray). Dashed line corresponds to proportion of 
tests expected from chance (alpha = 5%). 
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histogram on the right shows the proportion of neural sites exhibiting selectivity for each test (median: 49/337 neural 248 
sites, inter-quartile range: 23/337).  249 
 250 
 Taken together, these results suggest that a sparse, distributed read-out of the adult IT representation of 251 
untrained non-human primates is sufficient to support many visual discrimination tasks, including ones in the domain 252 
of orthographic processing, and that that neural mechanism could be learned with a small number of training 253 
examples (median: 48 stimuli; inter-quartile range: 59, n = 30 behavioral tests).  Furthermore, this capacity is not 254 
captured by lower-level representations, including neural samples from the dominant visual input to IT (area V4) and 255 
low-level ventral stream representations as approximated by state-of-the-art artificial neural network models of the 256 
ventral stream. 257 
 258 
Encoding of orthographic stimuli 259 
 260 
 Finally, the availability for the first time of IT neuronal responses to orthographic stimuli allowed us to begin 261 
to address the question of how such stimuli are encoded at the single-neuron level. Behavioral and brain-imaging 262 
observations in human readers have led to several proposals concerning the putative neural mechanisms underlying 263 
human orthographic abilities. A presumed front end, common to many models, is a bank of letter detectors (e.g.(2, 264 
32, 33)), i.e. a spatially organized array of input units each sensitive to the presence of a specific letter at a given 265 
location. Additionally, it has been proposed that written words could be encoded by a set of bigram-sensitive units 266 
responding to specific ordered pairs of letters (32). The local combination detector (LCD) hypothesis posits a 267 
hierarchy of cortical representations whereby neurons encode printed words at increasing scale and complexity, 268 
from tuning to simple edges and letters to intermediate combinations of letters (e.g. letter bigrams) and finally to 269 
complex words and morphemes over the cortical hierarchy (2). Other theories have proposed that letter position 270 
information is encoded in the precise timing of spikes (34, 35). To date, it has been difficult to directly test such 271 
hypotheses. Here, to help constrain the space of encoding hypotheses, we characterized the response properties of 272 
hundreds of individual IT neural sites to words and to their component letters. 273 
 274 
 We first asked if individual IT neural sites exhibit any selectivity for letters. To test this, we measured the 275 
selectivity of IT responses to each of the 26 alphabet letters, each presented at four different retinal positions. Figure 276 
4A shows the “tuning curve” for three example IT neural sites. Consistent with the known image selectivity and 277 
position tolerance of IT neurons (19, 22, 23), we observed that the responses of these IT neural sites were 278 
significantly modulated by both letter identity and letter position, with each example site responding to some but not 279 
all individual letters. We focused on 222 (out of 338) neural sites with reliable response patterns across the single 280 
letter stimulus set (p<0.01, significant Pearson correlation across split-halves over repetitions). The top panel of 281 
Figure 4B shows the average normalized response to each of the 26 letters, across these 222 neural sites. For each 282 
neural site, letters were sorted according to the site’s response magnitude, estimated using half of the data (split-283 
half of stimulus repetitions) to ensure statistical independence; we then plotted the sorted letter response measured 284 
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on the remaining half (individual sites in grey, mean ± SEM in black). Across the entire population, we observe that 285 
some neural sites reliably respond more to some letters than others, but this modulation is generally not selective 286 
for one or a small number of letters. Rather, sites tended to respond to a broad range of letters, as quantified by the 287 
sparsity of letter responses (Figure 4B, bottom panel). Individual sites were also modulated by letter position (Figure 288 
4C, formatted as in Figure 4B), with a greater response to letters presented contralateral to the recording site, while 289 
also exhibiting substantial tolerance across positions. 290 
 291 
 Next, we asked whether the encoding of letter strings could be approximated as a local combination of 292 
responses to individual letters. To test this, we linearly regressed each site’s response to letter strings on the 293 
responses to the corresponding individual letters at the corresponding position, cross-validating over letter strings. 294 
Using the neural responses to all four letters, we observed that the predicted responses of such a linear 295 
reconstruction were modestly correlated with the measured responses to letter strings (see Figure 4D, right-most 296 
bar; 𝜌" = 0.29 ± 0.06, median ± standard error of median, n = 222 neural sites). To investigate if this explanatory 297 
power arose from all four letters, or whether 4-letter string responses could be explained just as well by a substring 298 
of letters, we trained and tested linear regressions using responses to only some (1, 2, or 3) letters. Given that there 299 
are many possible combinations for each, we selected the best such mapping from the training data, ensuring that 300 
selection and testing were statistically independent. We observed that reconstructions using only some of the letters 301 
were significantly poorer in predicting letter string responses (three letters: 𝜌" = 0.12 ± 0.02, median ± standard error 302 
of median). Finally, we tested how well a position-agnostic (or “bag of letters”) model performed on the same 303 
reconstruction task by trained and test linear regressions that mapped responses of letters, with the incorrect position 304 
(using a fixed, random shuffling of letter positions) on reconstructing the responses to whole letter strings. We found 305 
that this “bag of letters” model performed significantly worse (𝜌" = 0.11 ± 0.02, median ± standard error of median).  306 
 307 
 Note that all correlation values reported above were adjusted to account for the reliability of measured neural 308 
responses, such that a fully predictive model would have a noise-adjusted correlation of 1.0 regardless of the finite 309 
amount of data that were collected. Yet, the maximal value of 𝜌" = 0.29 that we obtained using the linear superposition 310 
of position-specific responses to the four letters was substantially lower than 1.0. Thus, the pure summation of neural 311 
responses to individual letter identity and position explained only a small part of the reliable neural responses to 4-312 
letter strings, suggesting that non-linear responses to local combinations of letters were also present. Future work 313 
using stimuli comprising a larger number of letter combinations can explore to what extent IT neural sites respond, 314 
for instance, to specific letter bigrams, as predicted by some models (2, 32). 315 
 316 
 Taken together, these observations demonstrate that individual IT neural sites in untrained non-human 317 
primates while failing to exhibit strong orthographic specialization, collectively suffice to support a battery of 318 
orthographic tasks. Importantly, these observations establish a number of relevant quantitative baselines, a pre-319 
registered benchmark to which future studies of the ventral stream representations in monkeys trained on 320 
orthographic discriminations, or in literate humans, could be directly compared to. 321 
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 322 

 323 
Discussion 324 
 325 
 A key goal of human cognitive neuroscience is to understand how the human brain supports the ability to 326 
learn to recognize written letters and words. This question has been investigated for several decades using human 327 
neuroimaging techniques, yielding putative brain regions that may uniquely underlie orthographic abilities (7–9). In 328 
the work presented here, we sought to investigate this behavioral domain in the primate ventral visual stream of 329 
naïve rhesus macaque monkeys. Non-human primates such as rhesus macaque monkeys have been essential to 330 
study the neuronal mechanisms underlying human visual processing, especially in the domain of object recognition 331 
where monkeys and humans exhibit remarkably similar behavior and underlying brain mechanisms, both 332 

Figure 4: (A) Firing rate responses to individual letter stimuli (26 letters at four positions) for three example neurons. (B) (top) 
Average normalized response to each of the 26 letters, across 222 IT neural sites. For each neural site, letters were sorted 
according to the site’s response magnitude (estimated using an independent half of the data) and plotted in gray. Averaging 
across the entire population, we observe that neural sites reliably respond more to some letters than others (black, mean ± SE 
across sites; note that SE is very small). However, this modulation is not very selective to individual letters or small numbers of 
letters, as quantified by the sparsity of letter responses (bottom panel). (C) Individual sites were also modulated by the letter 
position, exhibiting substantial tolerance across positions (formatted as in B). (D) To test if the encoding of letter strings can be 
approximated as a local combination of responses to individual letters, we reconstructed letter string responses from letter 
responses, for each neural site. As illustrated by the inset, we used the neural response to images of individual constituent letters  
to predict the response to images of the corresponding letter strings; predictions were made using linear regressions, cross-
validating over letter strings. The bar plot shows the noise-adjusted correlation of different regression models (median ±SE 
across neural sites). The “bag of letters” model uses responses of each of the four letters, at arbitrary positions, to predict 
responses of whole letter strings. Each of the position-specific models uses the responses of up to four letters at the appropriate 
position to predict letter string responses. 
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neuroanatomical and functional (13–16, 36, 37). Given this strong homology, and the relative recency of reading 333 
abilities in the human species, we reasoned that the high-level visual representations in the primate ventral visual 334 
stream could serve as a precursor that is recycled by developmental experience for human orthographic processing 335 
abilities. In other words, we hypothesized that the neural representations that directly underlie human orthographic 336 
processing abilities must be strongly constrained by the prior evolution of the primate visual cortex, such that 337 
representations present in naïve, illiterate, non-human primates could be minimally adapted to support orthographic 338 
processing. Here, we observed that orthographic information was explicitly encoded in sampled populations of 339 
spatially distributed IT neurons in naïve, illiterate, non-human primates. Our results are consistent with the hypothesis 340 
that the population of IT neurons in each subject forms an explicit representation of orthographic objects, and could 341 
serve as a common substrate for learning many visual discrimination tasks, including ones in the domain of 342 
orthographic processing. 343 
 344 
 We tested a battery of 30 orthographic tests, spanning a lexical decision task (words versus pseudo-words), 345 
invariant letter recognition, and invariant bigram recognition, as well as modifications that required tolerance to 346 
variation in text size and case. We do not claim that these tasks form an exhaustive characterization of orthographic 347 
processing, but rather a good starting point for that greater goal. Importantly, this battery of tasks could not be 348 
accurately performed by linear readout of the predominant input visual representation to IT (area V4) or by 349 
approximations of lower levels of the ventral visual stream, unlike many other coarse discrimination tasks (e.g. 350 
contrasting orthographic and non-orthographic stimuli). We tested arbitrarily sampled IT neural sites, including all 351 
sampled neural sites with significant visual drive. Finally, we modelled plastic changes via a linear classifier, a simple 352 
biologically plausible model of downstream neuronal computations. Indeed, the trained linear decoder performed 353 
binary classifications by computing weighted sums of IT responses followed by a decision boundary, analogous to 354 
synaptic strengths and spiking thresholds of neurons downstream of IT. We note that the successful classifications 355 
we observed do not necessarily imply that the brain exclusively uses IT or the same coding schemes and algorithms 356 
that we have used for decoding. Rather, the existence of this sufficient code in untrained and illiterate non-human 357 
primates suggests that the primate ventral visual stream could be minimally adapted through experience-dependent 358 
plasticity to support orthographic processing behaviors. 359 
 360 
 These results are consistent with a variant of the “neuronal recycling” theory, which posits that the features 361 
that support visual object recognition may have been coopted for written word recognition (5, 6, 24). Specifically, this 362 
variant of the theory is that humans have inherited a pre-existing brain system (here, the ventral visual stream) from 363 
recent evolutionary ancestors, and they either inherited or evolved learning mechanisms that enable individuals to 364 
adapt the outputs of that system during their lifespan for word recognition and other core aspects of orthographic 365 
processing. According to this view, pre-reading children already possesses many neurons sensitive to letter-like 366 
shapes such as T, L, +, etc. that – with supervised learning -- can be simply combined to support invariant word 367 
recognition. While we observed only weak single IT neuron tuning for individual letters, we note that such visual 368 
encoding is theoretically not the only way that populations of neurons might act as precursors of invariant word 369 
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recognition behavior, and our IT decoding results empirically demonstrate that here.  Regardless of these encoding 370 
alternatives, these results suggest that pre-reading children likely have a neural population representation that can 371 
readily be re-used to learn invariant word recognition. Relatedly, it has been previously proposed that the initial 372 
properties of this system may explain the child’s early competence and errors in letter recognition, e.g. explaining 373 
why children tend to make left-right inversion errors by the fact that IT neurons tend to respond invariantly to mirror 374 
images of objects (38–40). Over the course of reading acquisition, this neural representation would become 375 
progressively shaped to support written word recognition in a specific script. The theory may also explain why all 376 
human writing systems throughout the world rely on a universal repertoire of basic shapes (24). As shown in the 377 
present work, those visual features are already well encoded in the ventral visual pathway of illiterate primates, and 378 
may bias cultural evolution by determining which scripts are more easily recognizable and learnable. 379 
 380 
 In addition to testing a prediction of this neuronal recycling hypothesis, we also explored the question of how 381 
orthographic stimuli are encoded in IT neurons. Decades of research has shown that IT neurons exhibit selectivity 382 
for complex visual features with remarkable tolerance to changes in viewing conditions (e.g. position, scale, and 383 
pose) (19, 22, 23). More recent work demonstrates that the encoding properties of IT neurons, in both humans and 384 
monkeys, is best explained by the distributed complex invariant visual features of hierarchical convolutional neural 385 
network models (30, 41, 42). Consistent with this prior work, we here found that the firing rate responses of individual 386 
neural sites in macaque IT was modulated by, but did not exhibit strong selectivity to orthographic properties such 387 
as letters and letter positions. In other words, we did not observe precise tuning as postulated by “letter detector” 388 
neurons, but instead coarse tuning for both letter identity and position. It is possible that, over the course of learning 389 
to read, experience-dependent plasticity could fine-tune the representation of IT to reflect the statistics of printed 390 
words (e.g. single neuron tuning for individual letters or bigrams). Moreover, such experience could alter the 391 
topographic organization to exhibit millimeter-scale spatial clusters that preferentially respond to orthographic stimuli, 392 
as have been shown in juvenile animals in the context of symbol and face recognition behaviors (18, 43). Together, 393 
such putative representational and topographic changes could induce a reorientation of cortical maps towards letters 394 
at the expense of other visual object categories, eventually resulting in the specialization observed in the human 395 
visual word form area (VWFA). However, our results demonstrate that, even prior to such putative changes, the initial 396 
state of IT in untrained monkeys has the capacity to support many learned orthographic discriminations. 397 
 398 

In summary, we found that the neural population representation in IT cortex in untrained macaque monkeys 399 
is largely capable, with some supervised instruction, to extract explicit representations of written letters and words. 400 
We note that this did not have to be so. Indeed, according to constructivist theories of learning (44), experience 401 
determines cortical organization, and thus the visual representations that underlie orthographic processing should 402 
be largely determined over developmental time-scales by the experience of learning to read. As such, the IT 403 
representation measured in untrained monkeys (or even in illiterate humans) would likely not exhibit the ability to act 404 
as a precursor of orthographic processing. Likewise, orthographic processing abilities could have been critically 405 
dependent on other brain regions, such as speech and linguistic representations, or putative flexible domain-general 406 
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learning systems, that evolved well after the evolutionary divergence of humans and Old-World monkeys. Instead, 407 
we here report evidence for a “precursor” of visual word form recognition in untrained monkeys. This finding fits with 408 
nativist views of cognitive development, according to which learning rests on pre-existing neural representations 409 
which it only partially reshapes.  410 
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Methods 411 
 412 
Subjects. The non-human subjects in our experiments were four adult male rhesus macaque monkeys (Macaca 413 
mulatta, subjects N, B, S, M). Surgical procedures, behavioral training, and neural data collection are described in 414 
detail below. All procedures were performed in compliance with the guideline of National Institutes of Health and the 415 
American Physiological Society, and approved by the MIT Committee on Animal Care.  416 
 417 
Visual Images. We randomly subsampled 616 strings (308 words, 308 pseudo-words) from the stimulus set used 418 
to test orthographic processing abilities in baboons by Grainger et al. Word strings consisted of four-letter English 419 
words, whereas pseudo-word strings consisted of nonsense combinations of four letters, with one vowel and three 420 
consonant letters. The entire set of pseudo-words contained bigrams that ranged from those that are very common 421 
in the English language (e.g. “TH”) to those that are very uncommon (e.g. “FQ”), as quantified by a broad distribution 422 
of English bigram frequency (median = 95, inter-quartile range = 1366; in units of count per million). As such, given 423 
the previously established link between bigram frequency and difficulty in lexical decision (17), orthographic stimuli 424 
spanned a range of difficulties for the word vs pseudo-word lexical decision task. From these 616 strings, we then 425 
generated images of these strings under different variations generative parameters in font size (small/medium/large 426 
size) and font case (upper/lower case), fixing the font type (monotype), color (yellow), thus creating a total of 3696 427 
images. We additionally generated images of individual alphabet letters at each of the possibly locations (26 letters 428 
x 4 locations x 6 variations in font case/size). We measured IT and V4 responses from passively fixating rhesus 429 
macaque monkeys (see below) for a subset of 1120 images from this stimulus set, and used previously measured 430 
behavior from trained baboons from the study by Grainger  and colleagues (17). Visual images were presented to 431 
span 8° of visual angle, with each individual letter of size 0.8°, 1.2, and 1.6° for small, medium, and large variations.   432 
 433 
Baboon behavior. Baboon behavioral data from six guinea baboons performing a lexical decision task was obtained 434 
from prior work (17). We focused our analysis on the aforementioned subsampled stimulus set (616 strings). 435 
 436 
Large scale multielectrode recordings. 437 
 438 
Surgical implant of chronic micro-electrode arrays. We surgically implanted each monkey with a head post under 439 
aseptic conditions. After behavioral training, we implanted multiple 10 × 10 micro-electrode arrays (Utah arrays; 440 
Blackrock Microsystems) in V4 and IT cortex of each monkey. A total of 96 electrodes were connected per array. 441 
Each electrode was 1.5 mm long and the distance between adjacent electrodes was 400 µm. Array placements were 442 
guided by the sulcus pattern, which was visible during surgery. The electrodes were accessed through a 443 
percutaneous connector that allowed simultaneous recording from all 96 electrodes from each array. All behavioral 444 
training and testing were performed using standard operant conditioning (fluid reward), head stabilization, and real-445 
time video eye tracking.  446 
 447 
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Eye Tracking. We monitored eye movements using video eye tracking (SR Research EyeLink 1000). Using operant 448 
conditioning and water reward, our two subjects were trained to fixate a central white square (0.2°) within a square 449 
fixation window that ranged from ±2°. At the start of each behavioral session, monkeys performed an eye-tracking 450 
calibration task by making a saccade to a range of spatial targets and maintaining fixation for 500 ms. Calibration 451 
was repeated if drift was noticed over the course of the session. 452 
 453 
Electrophysiological Recording. During each recording session, band-pass filtered (0.1 Hz to 10 kHz) neural 454 
activity was recorded continuously at a sampling rate of 20 kHz using Intan Recording Controller (Intan Technologies, 455 
LLC). The majority of the data presented here were based on multiunit activity, hence we refer to “neural sites.” We 456 
detected the multiunit spikes after the raw data was collected. A multiunit spike event was defined as the threshold 457 
crossing when voltage (falling edge) deviated by less than three times the standard deviation of the raw voltage 458 
values. In this manner, we collected neural data from macaque V4 and IT from four male adult monkeys (N, B, S, M, 459 
weights in kg) in a piecewise manner. We focused our analyses on neural sites that exhibited significant visual drive 460 
(determined by p<0.001 comparing baseline activity to visually driven activity); this resulted in 510 IT neural sites 461 
and 277 V4 neural sites. Our array placements allowed us to sample neural sites from different parts of IT, along the 462 
posterior to anterior axis. However, we did not consider the specific spatial location of the site, and treated each site 463 
as a random sample from a pooled IT population. For each neural site, we estimated the repetition-averaged firing 464 
rate response in two temporal windows (70ms-170ms and 170ms-270ms after stimulus onset) and concatenated 465 
these firing rates for decoding analyses. Single unit analyses focused on the 70ms-170ms time interval. 466 
 467 
Tests of orthographic processing  468 
 469 
Linear decoders. To test the capacity of ventral stream neural representations to support orthographic processing 470 
tasks, we used linear decoders to discriminate between two classes of stimuli (e.g. words versus pseudo-words) 471 
using the firing rate responses of neural populations. We used binary logistic regression classifiers with ten-fold 472 
cross-validation: decoder weights were learned using the neural population responses to 90% of stimuli and then 473 
the performance of the decoder is tested on held-out 10% of stimuli, repeating 10 times to test each stimulus. We 474 
repeated this process 10 times with random sampling of neurons. This procedure produces an output class 475 
probability for each tested stimulus, and we took the maximum of those as the behavioral “choice” of the decoded 476 
neural population. 477 
 478 
Deep neural network model behavior. We additionally tested a deep neural network model of the primate ventral 479 
stream on the exact same images and tasks. We used CORnet-S, a deep recurrent convolutional neural network 480 
model that has recently been shown to best match the computations of the primate ventral visual stream (29, 31). 481 
CORnet-S approximates the hierarchical structure of the ventral stream, with four areas each mapped to the four 482 
retinotopically-defined cortical area in the ventral visual hierarchy (V1, V2, V4, and IT). To do so, we first extracted 483 
features from each CORnet-S layer on the same images. As with neural features, we trained back-end binary logistic 484 
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regression classifiers to determine the ten-fold cross-validated output class probability for each image and for each 485 
label. 486 
 487 
Behavioral metrics. For each behavioral test, we measured the average unbiased performance (or balanced 488 
accuracy) as 𝑎𝑐𝑐 = /01(34560)

8
, where HR and FAR correspond to the hit-rate and false-alarm-rate across all stimuli.  489 

For the lexical decision task, we additionally estimated behavioral patterns across stimuli. To reliably measure 490 
behavioral patterns in each individual baboon subject, we grouped the 616 individual stimuli into ten equally-sized 491 
bins separately for words and pseudo-words; bins were defined based on the average bigram-frequency of each 492 
string in English. We then estimated the average unbiased performance for each stimulus bin using a sensitivity 493 
index: 𝑑: = 𝑍(𝐻𝑅) − 𝑍(𝐹𝐴𝑅) (45), where HR and FAR correspond to the hit-rate and false-alarm-rate across all 494 
stimuli within the bin. Across stimulus bins, this resulted in a ten-dimensional pattern of unbiased performances. 495 
 496 
Behavioral consistency. To quantify the behavioral similarity between baboons and candidate visual systems (both 497 
neural and artificial) with respect to the pattern of unbiased performance described above, we used a measure called 498 
“consistency” (𝜌") as previously defined (46), computed as a noise-adjusted correlation of behavioral signatures (47). 499 
For each system, we randomly split all behavioral trials into two equal halves and estimated the pattern of unbiased 500 
performance on each half, resulting in two independent estimates of the system’s behavioral signature. We took the 501 
Pearson correlation between these two estimates of the behavioral signature as a measure of the reliability of that 502 
behavioral signature given the amount of data collected, i.e. the split-half internal reliability. To estimate the 503 
consistency, we computed the Pearson correlation over all the independent estimates of the behavioral signature 504 
from the model (m) and the primate (p), and we then divide that raw Pearson correlation by the geometric mean of 505 

the split-half internal reliability of the same behavioral signature measured for each system: 𝜌"(𝒎, 𝒑) = D(𝒎,𝒑)
ED(𝒎,𝒎)D(F,𝒑)

. 506 

Since all correlations in the numerator and denominator were computed using the same number of trials, we did not 507 
need to make use of any prediction formulas (e.g. extrapolation to larger number of trials using Spearman-Brown 508 
prediction formula). This procedure was repeated 10 times with different random split-halves of trials. Our rationale 509 
for using a reliability-adjusted correlation measure for consistency was to account for variance in the behavioral 510 
signatures that is not replicable by the experimental condition (image and task).  511 
 512 
Single neuron analyses. For each neural site, we estimated the selectivity with respect to a number of contrasts 513 
(e.g. word vs pseudo-word) using a sensitivity index: 𝑑:G,H =

IJ4IK

LMN(OJ
N1OKN)

 (45). We obtained uncertainty estimates for 514 

single neuron selectivity indices by bootstrap resampling over stimuli, and inferred statistical significance using two-515 
tailed exact tests on the bootstrapped distributions. We determined whether neural sites that exhibited significant 516 
selectivity for lexical decisions were topographically organized across the cortical tissue using Moran’s I (48), a metric 517 
of spatial autocorrelation. We compared the empirically measured autocorrelation (averaged over six electrode 518 
arrays) to the corresponding distributions expected by chance, obtained by shuffling each electrode’s selectivity 100 519 
times.  520 
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