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Abstract 
Lineage reconstruction is central to understanding tissue development and maintenance. While 

powerful tools to infer cellular relationships have been developed, these methods typically have 

a clonal resolution that prevent the reconstruction of lineage trees at an individual cell division 

resolution. Moreover, these methods require a transgene, which poses a significant barrier in the 

study of human tissues. To overcome these limitations, we report scPECLR, a probabilistic 

algorithm to endogenously infer lineage trees at a single cell-division resolution using 5-

hydroxymethylcytosine. When applied to 8-cell preimplantation mouse embryos, scPECLR 

predicts the full lineage tree with greater than 95% accuracy. Further, scPECLR can accurately 

extract lineage information for a majority of cells when reconstructing larger trees. Finally, we 

show that scPECLR can also be used to map chromosome strand segregation patterns during 

cell division, thereby providing a strategy to test the “immortal strand” hypothesis in stem cell 

biology. Thus, scPECLR provides a generalized method to endogenously reconstruct lineage 

trees at an individual cell-division resolution. 

 

Introduction 
Understanding lineage relationships between cells in a tissue is one of the central questions in 

biology. Reconstructing lineage trees is not only fundamental to understanding tissue 

development, homeostasis and repair but also important to gain insights into the dynamics of 

tumor evolution and other diseases. Genetically encoded fluorescent reporters have been a 

powerful approach to reconstruct the lineage of many tissues1. However, these methods require 

the generation of complex animal models for each stem or progenitor cell type of interest, and are 

limited to a clonal resolution1. Similarly, other pioneering techniques, such as the use of viruses2, 
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transposons3,4, Cre-loxP based recombination5 and CRISPR-Cas96-8 have also been used to 

genetically label cells to primarily reconstruct clonal lineages that lack the resolution of an 

individual cell division. This clonal resolution limits our ability to understand tissue dynamics at a 

single cell-division resolution. While a recent report that combined CRISPR-Cas9-mediated 

targeted mutagenesis with single-molecule RNA fluorescence in situ hybridization enabled 

reconstruction of lineages at a single cell-division resolution (MEMOIR)9, its ability to infer lineages 

dropped substantially by the 3rd cell division.  

Further, as all these methods involve exogenous labeling strategies, they cannot be used 

to map cellular lineages in human tissues directly, thereby posing a significant barrier to 

understanding human development and diseases. While endogenous somatic mutations have 

been used to reconstruct lineages, the low frequency of their occurrence and distribution over the 

whole genome make them challenging to detect and therefore limit their application as a lineage 

reconstruction tool10-12. Similarly, a recent method used mutations within the mitochondrial 

genome to reconstruct lineages, but as most other lineage reconstruction approaches, it is limited 

to a clonal resolution13. Previously, we developed a method to detect the endogenous epigenetic 

mark 5-hydroxymethylcytosine (5hmC) in single cells (scAba-Seq) and showed that the lack of 

maintenance of this mark during replication coupled with the low rates of Tet-mediated 

hydroxymethylation resulted in older DNA strands containing higher levels of 5hmC14. The ability 

to track individual DNA strands through cell division allowed us to deterministically reconstruct 

lineages that were limited to 2 cell divisions14. Therefore, to overcome limitations of existing 

methods, we report scPECLR (single-cell Probabilistic Endogenous Cellular Lineage 

Reconstruction), a generalized probabilistic framework for endogenously reconstructing cellular 

lineages at an individual cell division resolution using single-cell 5hmC sequencing.  

 

Results 
Genome-wide strand-specific 5hmC enables initial lineage bifurcation of individual cells 
into two subtrees  

As proof-of-principle, we dissociated 8-cell mouse embryos and performed scAba-Seq to 

quantify strand-specific genome-wide patterns of 5hmC in single cells (Figure 1-I). As shown 

previously, a majority of 5hmC is present on the paternal genome during these stages of 

preimplantation development15-17. Single cells from an 8-cell embryo displayed a mosaic genome-

wide distribution with no overlap of 5hmC between the plus and minus strands of a chromosome 

(Figure 1-II). Further, we found that for each chromosome, the strand-specific 5hmC was localized 

to a few cells with other cells containing undetectable levels of the mark (Figure 1-II). These 
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observations clearly demonstrate that only one allele carries a majority of 5hmC, and that 

consistent with previous results, we are primarily detecting 5hmC on the original paternal genome 

with DNA strands synthesized in subsequent rounds of replication carrying very low levels of the 

mark. We used this as our basis to reconstruct cellular lineages of 8-cell mouse embryos. 

 As the first step towards reconstructing lineage trees, we noted that the original plus and 

minus strands of each paternal chromosome in the 1-cell zygote will be found in distinct cells on 

opposite sides of the lineage tree after ! cell divisions. As a result, all cells can be placed in one 

of two subtrees, thereby reducing the number of cell divisions to be reconstructed from ! to ! − 1. 

For example, at the 8-cell stage, the original plus strand of chromosome 7 is detected in cell 8 

while the minus strand is detected in cells 1 and 2 (Figure 1-II). This suggests that cell 8 is on the 

opposite side of the lineage tree compared to cells 1 and 2. Performing this first step of scPECLR, 

which we refer to as original strand segregation (OSS) analysis, over all the chromosomes 

enables us to systematically place cells 1-4 and 5-8 on opposite sides of the lineage tree for this 

embryo, reducing the complexity of the problem from reconstructing 3 cell divisions with 315 tree 

topologies to 2 cell divisions with 9 tree topologies (Figure 1-III). 

 
Probabilistic lineage reconstruction using scPECLR accurately predicts 8-cell embryo 
trees  
To reconstruct the complete lineage tree, we next focused attention on the mosaic pattern of 

5hmC arising from abrupt transitions in hydroxymethylation levels among cells along the length 

of a chromosome. As described previously, these sharp transitions in 5hmC that are shared 

between two cells are the result of homologous recombination during sister chromatid exchange 

(SCE) events in the G2 phase of a previous cell cycle14. Detection of 5hmC transition points that 

are common to two cells therefore indicate a shared evolutionary history between these cells 

(Figure 1-I, inset). However, while a SCE event at the 4-cell stage would imply that the cells are 

sister cells (Figure 1-III, left), one occurring at the 2-cell stage would indicate that the same pattern 

of 5hmC transition can also be observed between cousin cells (Figure 1-III, right). Thus, the 

observation of a single shared SCE event between two cells cannot be used to immediately 

discriminate between sister and cousin cell configurations.  

To systematically determine the likelihood of observing different tree topologies, we 

developed a probabilistic framework where the occurrence of SCE events are modeled as a 

Poisson process. The total number of SCE events is used to estimate the parameter $ of the 

Poisson process, the rate of SCE events per chromosome per cell division, using maximum 

likelihood estimation (Methods). Following OSS, 8-cell trees can be grouped into two 4-cell 
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subtrees, each with 3 possible tree arrangements (Figure 2-I). Next, we used the probabilistic 

model to calculate the likelihood of observing a SCE pattern for a chromosome given a tree 

topology. We observed a large variety of SCE patterns, ranging from commonly observed 

patterns, such as one or two SCE transitions shared between two cells, to more complex 

distributions of 5hmC between cells (Supplementary Figure 1). For the most common pattern of 

one SCE transition between two cells, scPECLR predicts that the tree with the two cells as sisters 

(Tree A) is twice as likely as one where the two cells are cousins (Tree B or C), in good agreement 

with simulated data (Figure 2-II and Methods). Similarly, both our model prediction and 

simulations show that when two SCE transitions are shared between two cells, the probability that 

the two cells are sisters is 2 to 3 times higher than the probability that they are cousins, with the 

likelihood ratio between sister and cousin tree configurations depending on the relative position 

of the SCE transition on the chromosome (Figure 2-III and Methods). The lower probability of 

observing this pattern in cousin tree arrangements arises from the constraint that only even 

number of SCE transitions can occur within the region between %&& and %&' of the chromosome 

during the last cell division (Supplementary Figure 2). More complex 5hmC distribution patterns, 

such as when two SCE events are shared between three cells substantially favors the Tree A 

configuration (Figure 2-III and Methods).  After the SCE pattern of each chromosome is analyzed, 

we can estimate the total likelihood of observing the different tree topologies, assuming that the 

SCE events on each chromosome are independent (Methods). Finally, the likelihood of an 8-cell 

tree is the product of the likelihoods of the two corresponding 4-cell subtrees (Figure 2-IV).  

To test the accuracy of scPECLR, we simulated 5hmC patterns of 8-cell embryos with a 

SCE rate similar to the experimentally observed value ($ = 0.3), which is also within the range of 

SCE event rates found in various other cell types18-22. We found that scPECLR predicted the 

lineage tree correctly in 96% of all simulations (Figure 3-I). In contrast, MEMOIR predicted the 

lineage tree accurately in only ~67% of the top 40% most reliably reconstructed trees (Figure 3-

I). This improved accuracy strongly suggests that endogenous strand-specific 5hmC patterns 

present an accurate tool to reconstruct lineage trees at an individual cell division resolution. An 

automated pipeline to reconstruct cellular lineages is provided with this work (Methods). We next 

applied scPECLR on the 8-cell mouse embryo shown in Figure 1-II and other embryos to predict 

lineage trees with high confidence (Figure 2-IV and Supplementary Figure 3).  

 As SCE transitions play a central role in reconstructing cellular lineage trees with 

scPECLR, we next explored how the endogenous rate of SCE events influences the accuracy of 

the model. As expected, the accuracy of lineage reconstruction increases monotonically with 

increasing rates of SCE events, with greater than 98% of the simulated 8-cell trees correctly 
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predicted for $ ≥ 0.4 (Figure 3-II and Methods). These simulations were performed using 19 

paternal autosomes, consistent with our observation that a majority of 5hmC is found on the 

paternal genome in preimplantation mouse embryos. However, most cell types carry 5hmC on 

both parental genomes and therefore, we also performed simulations with 38 chromosomes. 

Again, as expected, the predictive power of the model increases, with the lineages of more than 

98% of the simulated 8-cell trees accurately predicted for $ ≥ 0.2 (Figure 3-II). These results 

demonstrate that the lineage tree can be accurately predicted up to 3 cell divisions even with low 

rates of SCE events (Figure 3-II). 

 
scPECLR can be extended to reconstruct larger lineage trees 
We next extended this approach to reconstruct the lineage of 16-cell trees, where the number of 

possible tree topologies increase exponentially to more than 6x108. While the ability to predict the 

complete lineage tree decreases (17% of all simulated 16-cell trees were predicted correctly for 

$ = 0.3), we found that in a majority of cases large parts of the lineage tree were reconstructed 

accurately with the most common error being the misidentification of one sister pair within a 4-cell 

subtree (Figures 3-II and 3-III). For a SCE rate of $ = 0.3, 83% of all 4-cell subtrees and 63% of 

all 2-cell subtrees (sister pairs) were predicted correctly (Figure 3-III). Overall, when 

reconstructing a 16-cell lineage tree, over 80% of all 4-cell and 2-cell subtrees were predicted 

accurately for $ ≥ 0.3 and $ ≥ 0.6, respectively (Figure 3-III). These results suggest that when 

reconstructing 16-cell trees from strand-specific 5hmC data, it will be important to identify parts of 

the lineage tree that we can predict with high confidence. To accomplish this, we first included all 

tree topologies that were predicted to have probabilities above a threshold relative to the tree with 

the highest probability (Figure 3-IV). A consensus tree that is consistent with all these tree 

topologies is then established (Figure 3-IV, Supplementary Figure 4 and Methods). For example, 

with $ = 0.3 and for a relative threshold of 0.1, the median consensus tree contained 24 tree 

topologies (Figure 3-V, solid red line). The consensus trees displayed a false discovery rate (FDR) 

of ~26%, implying that in 26% of the simulations, the consensus tree was not consistent with the 

true tree (Figure 3-V, dotted red line). As the relative threshold is increased (that is, we include 

fewer tree topologies to construct the consensus tree), the median consensus tree contains fewer 

topologies, resulting in a more specific or constrained consensus tree. However, this comes at 

the expense of an increase in FDR. Thus, the relative threshold allows us to tune the competing 

goals of specificity and accuracy of the consensus tree. These results show that for a certain rate 

of SCE events and a desired level of FDR, the median number of topologies contained in the 

consensus tree can be estimated, yielding insights into how much lineage information can be 
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extracted from the 5hmC data based on the number of SCE events and our error tolerance (Figure 

3-VI and Methods).  

 

scPECLR can be used to infer the rate of SCE events at each cell division and test the 
“immortal strand” hypothesis   
In addition to reconstructing cellular lineage trees, scPECLR can also be used to infer the rate of 

SCE events at individual cell divisions. For example, for 8-cell mouse embryos, the 5hmC 

distribution at the 4-cell and 2-cell stages can be reconstituted based on the predicted lineage, 

enabling us to estimate the rate of SCE events at each cell division (Figure 2-IV and 

Supplementary Figure 3). While the overall SCE rate over three cell divisions for all the 8-cell 

mouse embryos analyzed in this study was estimated to be 0.31 events per chromosome per cell 

division, the individual SCE rates for the 1-to-2, 2-to-4, and 4-to-8 cell stages were 0.13, 0.11, 

and 0.68, respectively. Further, we found that the different rates of SCE events at each cell 

division did not affect the prediction accuracy of scPECLR (Supplementary Figure 5 and 

Methods). These results show that scPECLR can be used to infer the rate of double-stranded 

DNA breaks at each cell division and that the rate of SCE events can vary during development. 

 Finally, we explored another application of scPECLR. As scPECLR uses endogenous 

strand-specific 5hmC in single cells to reconstruct 8-cell trees with high accuracy, we 

hypothesized that this method could be used to quantify how parental alleles are segregated 

during cell division (Figure 4-I). Different stem cell populations, such as hair follicle23, neural24, 

satellite muscle25,26 and intestinal crypt stem cells27,28, have previously been shown to display non-

random segregation of DNA strands that can influence cell fate decisions. These results have led 

to the “immortal strand” hypothesis that postulates old DNA strands are retained by daughter stem 

cells during asymmetric cell divisions to reduce the mutational load arising from genome 

replication of these longer lived cells. During mouse preimplantation development, recent reports 

have shown that blastomeres show biases in cell fate specification as early as the 4-cell stage29,30. 

Therefore, as proof-of-concept, we investigated sister chromatid segregation patterns at the 4-

cell stage. To do this, we first combined 5hmC data from reconstructed sister cell pairs at the 8-

cell stage to generate the distribution of the oldest DNA strands at the 4-cell stage (Figure 4-II). 

In the example shown, when comparing cells (1,2) and (3,4), we found that the original DNA 

strands preferentially segregate to cell (1,2). In contrast, such a non-random pattern of DNA 

strand segregation is not observed between sister cells (5,6) and (7,8). Quantitatively, we 

analyzed seven mouse embryos to find one sister pair at the 4-cell stage that displayed 

statistically significant non-random segregation of DNA strands (Figure 4-III and Methods). Thus, 
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this proof-of-concept study shows that strand-specific reconstruction of lineage trees can be a 

powerful approach to test the immortal strand hypothesis in different stem cell populations.  

 
Discussion 
Cellular lineage reconstruction plays an important role in answering fundamental questions in 

several areas of biology, such as immunology, cancer biology and developmental and stem cell 

biology. However, most current methods have two major limitations: (1) Clonal lineage 

reconstruction that cannot establish lineage relationships at the resolution of individual cell 

divisions; and (2) The use of transgenes that involves the time-intensive generation of complex 

animal models and is an approach that cannot be extended to map lineages in human tissues. 

To overcome these limitations, we have developed a generalized probabilistic framework to 

reconstruct cellular lineages at an individual cell division resolution using strand-specific single-

cell 5hmC sequencing data. scPECLR can potentially also be combined with single-cell 

measurements of other non-maintained epigenetic marks, such as 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC), to reconstruct lineages21. Importantly, the use of an endogenous 

epigenetic mark to reconstruct lineage trees suggests that this method can be directly extended 

to study human development. 

In future, combining detection of 5hmC with measurements of mRNA from the same cell 

can potentially be used to simultaneously quantify both the cell type and the lineage relationship 

between cells in a tissue, thereby enabling us to directly probe symmetric and/or asymmetric cell 

fate decisions of stem cells at an individual cell division resolution. Such measurements can 

provide detailed insights into how stem cells maintain an exquisite balance between self-renewal 

and differentiation to regulate the dynamics of tissue development and homeostasis. Finally, we 

anticipate that integrating 5hmC based lineage reconstruction with measurements of other 

epigenetic marks from the same cells holds tremendous promise in understanding the genome-

wide transmission and inheritance of the epigenome at each cell division.  
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Figures 

 
Figure 1 | Strand-specific single-cell 5hmC data enables initial lineage bifurcation of individual 

cells into two subtrees. (I) Schematic shows a zygote with chromosomes containing high 5hmC 

levels (solid lines) undergoing three cell divisions. The newly synthesized strands at each cell 

division contain very low levels of 5hmC (dotted lines). SCE events occur randomly during each 
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cell cycle. All cells are isolated and sequenced using scAba-Seq to quantify strand-specific 5hmC 

in single cells. (II) Data shows mosaic pattern of strand-specific 5hmC in single cells obtained 

from an 8-cell mouse embryo. 5hmC counts within 2 Mb bins on the plus and minus strands of all 

chromosomes are shown in orange and blue, respectively. (III) The original plus and minus 

strands of each chromosome should be found in cells on opposite sides of the lineage tree. This 

OSS analysis on chromosome 7 places cell 8 in one 4-cell subtree and cells 1 and 2 in the other 

subtree. Performing OSS on all chromosomes places cells in one of these two 4-cell subtrees 

and reduces the complexity of the lineage reconstruction problem.  
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Figure 2 | Endogenous 5hmC based lineage reconstruction using scPECLR. (I) Schematic 

showing that two cells sharing an original DNA strand (solid orange line) can either be sisters 

(Tree A) or cousins (Trees B and C) depending on whether the SCE event occurred at the 4- to 

8- or 2- to 4-cell stage, respectively. All newly synthesized DNA strands are shown as dashed 

black lines. (II) For the case of a SCE transition between two cells, the probability of the pair of 

cells being sisters vs. cousins is plotted against the relative position of the SCE event on the 

chromosome (%&&). The model prediction (black) and simulation results (yellow) are shown for 

chromosome 1 (0 = 97 for 2 Mb bins) with $ = 0.3. (III) The probability ratio between Trees A and 

B are shown as a function of %33 for 0 = 97 and $ = 0.3 for two cases – 2 SCE transitions shared 

between 2 cells and 2 SCE events shared between 3 cells. (IV) For the 8-cell mouse embryo 

shown in Figure 1-II, the probability of observing the different topologies of the two 4-cell subtrees 

are shown.  
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Figure 3 | scPECLR can reconstruct 8-cell lineage trees accurately and be extended to 

reconstruct larger lineage trees. (I) scPECLR accurately predicts the lineage of 96% of simulated 

8-cell trees ($ = 0.3). Error bars indicate the bootstrapped standard error. In comparison, 

MEMOIR accurately predicts 67% of the top 40% most reliably reconstructed 8-cell trees9. (II) 

Panel shows the percentage of simulated 8-cell and 16-cell trees that are correctly predicted by 

scPECLR for different SCE rates ($). Solid and dotted lines indicate cells where 5hmC can be 

quantified in 19 or 38 chromosomes, respectively. The prediction accuracy is computed by 

simulating 5000 trees. Error bars indicate the bootstrapped standard error of prediction accuracy. 
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(III) Panel shows the percentage of 2-, 4- and 8-cell subtrees that are accurately predicted within 

simulated 16-cell trees as a function of the SCE rate ($). The prediction accuracy is computed by 

simulating 5000 16-cell trees. Error bars indicate the bootstrapped standard error of prediction 

accuracy. (IV) Schematic illustrating how consensus trees are obtained. In this example, the top 

6 tree topologies (with the highest probabilities) that are obtained after applying scPECLR on a 

simulated 16-cell tree are shown. The relative threshold parameter is used to determine the 

number of topologies that are considered in the consensus tree analysis. With a relative threshold 

of 0.5, the top 5 tree topologies in this example are used to generate a consensus tree that is 

consistent with all these trees. The uncertainty within the consensus tree is quantified by the 

number of tree topologies it contains. The higher the number of tree topologies it contains, the 

higher is the uncertainty within the consensus tree. Red fonts indicate parts of the lineage tree 

that are incorrectly predicted. The tree highlighted in bold is the true tree. (V) Simulation results 

show that as the relative threshold increases, the median number of topologies in the consensus 

tree decreases (solid lines, left axis), while the false discovery rate (FDR) increases (dotted lines, 

right axis). For these simulations, two other parameters 48 and 44 are set to 0.75 and 1.0, 

respectively. (For additional details on the parameters, see Methods). (VI) As the FDR decreases, 

the median number of topologies contained within the consensus tree increases. Thus, this panel 

shows how the specificity of the consensus tree is related to error tolerance. For $ ≥ 0.7, the 

median number of topologies contained within the consensus tree rapidly drops to 1, suggesting 

that the consensus tree is fully constrained and is the correct tree. Note, the lowest FDR possible 

for $ = 0.3, 0.5, 0.7 and 1.0 are 15%, 10%, 10%, and 5%, respectively.  
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Figure 4 | scPECLR can be used to map DNA strand segregation patterns. (I) Schematic showing 

DNA strand segregation patterns during cell division. Non-random segregation results in old DNA 

strands being preferentially inherited by one daughter cell. The oldest DNA strands are shown as 

solid lines, and strands synthesized in the ! + 1 and ! + 2 generation are shown as dashed and 

dotted lines, respectively. (II) Combining the experimental 5hmC data for the 8-cell embryo in 

Figure 1-II with the lineage tree predicted by scPECLR enables the genome-wide reconstitution 

of 5hmC in single cells at the 4-cell stage. (III) Proof-of-principle testing non-random segregation 

of DNA strands at the 4-cell stage of mouse embryogenesis. The 7-values from a binomial test 

under a null hypothesis of random segregation shows that one embryo displays statistically 

significant (7 < 0.05) non-random segregation of DNA strands.   
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Methods 

Embryo isolation and cell picking  
Embryos were gently flushed out of the infundibulum of E2.5 pregnant mice using warm M2 

medium. Embryos were then manipulated in 4-ring IVF dishes coated with RNase-free BSA 

because, once dissociated, cells stick to plastic. Embryos were washed in PBS-0 and in Tyrode’s 

acid to remove the zona pellucida, then placed in a 1/3 dilution of TrypLE Select Gibco A12177-

01 (stock solution is referred by Gibco as 10x concentrated) and placed on the warm plate for 2 

minutes. We then used glass capillaries of different diameters to dissociate the embryo into 2-3 

clusters. Cells were then progressively extracted from each cluster, one after the other, using 

glass capillaries. Every single cell that is released from the clusters is immediately placed into a 

well of a 384-well plate containing lysis buffer.  

Single-cell 5hmC sequencing (scAba-Seq) 
Single cells isolated from 8-cell mouse embryos were deposited into 384-well plates and the 

scAba-Seq protocol was performed using the Nanodrop II liquid-handing robot. Briefly, after 

protease treatment to strip off chromatin, 5hmC sites in the genome were glucosylated using T4-

Phage b-glucosyltransferase. Next, AbaSI was added to the reaction mixture that recognizes 

glucosylated sites and introduces double-stranded breaks with 3’ overhangs 11-13 nucleotides 

downstream of the recognition site. The fragmented genomic DNA molecules were ligated to 

double-stranded adapters containing a cell barcode, 5’ Illumina adapter, and T7 promoter. The 

ligated molecules were amplified by in vitro transcription and then used to prepare Illumina 

libraries. A detailed protocol can be found in Ref. 14. 

Modeling SCE events as a Poisson process 
The 5hmC data was discretized into 2 Mb bins and all SCE transitions in the 8-cell mouse embryos 

were identified manually. A specific SCE transition on chromosome 14 was found at the same 

genomic position in all embryos due to a misorientation of the reference genome (mm10), 

consistent with previous reports18,21. The stochastic nature of SCE events is modeled as a Poisson 

process. In using a Poisson process to model SCE events, we assume that all SCE events occur 

independently and at a constant rate. The probability of observing : SCE transitions in one cell 

cycle is given by:  

 
;[:] =

$> ∗ @AB

:!
 (1) 
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where $ is the average number of SCE transitions per chromosome per cell division. Further, to 

build a probabilistic framework to reconstruct cellular lineages, we define the following 

parameters: (1) D is the probability that an original strand is inherited by a particular daughter cell, 

which is equal to ½ for randomly segregating DNA strands; (2) %EF is the genomic length fraction 

of the Gth segment (1 ≤ G ≤ I + 1, where I is the number of SCE transitions) of the original DNA 

strand that is observed in cell K; and (3) 0 is the number of unique positions where SCE events 

can occur. 

scPECLR 

The first step is to use the numbers of observed SCE events to estimate $ using maximum 

likelihood estimation (MLE). Thereafter, Original Strand Segregation (OSS) analysis is used to 

separate the cells into two groups, reducing the number of cell divisions to be reconstructed from 

! to ! − 1. Next, within each subtree, we calculate the probability of observing a SCE pattern of 

a chromosome given a tree topology. For example, for the most frequently occurring pattern of 

one SCE event shared between two cells (see example in Figure 2-I), the probability of observing 

it in Tree A is given by the product of the probability of having no SCE events in the first cell 

division and the probability of having one SCE event in the second cell division 

 ;(%&&, %33|NO) = ;QR = S
D
@B
T U

$D
@B0

V (2) 

Similarly, the probability of observing this pattern in Tree B is given by the product of the 

probability of having one SCE event in the first cell division, and no SCE events within the original 

DNA strands in both cells in the second cell division 

 
;(%&&, %33|NW) = ;QX = U

$D
@B0

VY
D
@B
@U
(&AZ[[)(\]&)

\ VB^ Y
D
@B
@U
(&AZ__)(\]&)

\ VB^ (3) 

which leads to  

 ;QR
;QX

=
2

@
`
\

 (4) 

Detailed analytical expressions for the probability of observing different SCE patters are provided 

below in “Analytical expressions for the probability of observing the three most common SCE 

patterns”.  

Subsequently, we assume that the SCE patterns on each chromosome are independent 

and compute the overall probability of observing SCE events over the whole genome for each 

tree topology. Moreover, as a 4-cell subtree has only three distinct topologies we get  

 ;(NO|a) + ;(NW|a) + ;(Nb|a) = 1 (5) 
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where a represents the genome-wide SCE patterns in all cells of the embryo. Rearrangement 

gives us the probability of observing different tree topologies given the SCE patterns over the 

whole genome  

 ;(NO|a) =
1

1 + ;
(a|NW)
;(a|NO)

+ ;
(a|Nb)
;(a|NO)

 (6) 

Finally, the probability of observing the topology of a particular 8-cell tree is a product of the 

probabilities of the two corresponding 4-cell subtrees. 

 After the probabilities of all tree topologies are estimated, scPECLR assigns the topology 

with the highest probability as the predicted tree. Then, starting with this predicted tree, $ values 

specific to each cell division are estimated. A second iteration with cell division-specific $	values 

is then performed to obtain a new predicted tree. If the new predicted tree is not the same tree as 

that inferred in the first iteration, another iteration is performed starting from the predicted tree in 

the current iteration. This iterative process is carried out till the predicted tree is the same as that 

obtained in the previous iteration or until 10 iterations have been performed. In all in vivo mouse 

embryos and almost all simulated embryos, the predicted tree converges by the 3rd iteration. 

Analytical expressions for the probability of observing the three most common SCE 
patterns 
Case I: The most common SCE pattern that we observed in mouse embryos is one SCE transition 

shared between two cells (cells 1 and 2 in Figure 2-I and Supplementary Figure 1). This pattern 

alone cannot discriminate between sister (Tree A) or cousin (Trees B and C) cell configurations 

as all three topologies are consistent with the SCE pattern. Therefore, we developed a model to 

rigorously determine the probability of observing any SCE pattern given a tree topology. For Tree 

A, the probability of observing one shared SCE transition is given by the product of the probability 

of having no SCE events in the first cell division and the probability of having one SCE event in 

the second cell division. Further, there is a 1 0d  chance that the observed SCE event occurs at a 

specific discretized genomic position. The probability that the original DNA strand is inherited by 

the mother of cells 1 and 2 is D, and the probability of inheriting the observed SCE pattern between 

cells 1 and 2 is given by D.  

 ;(%&&, %33|NO) = ;QR = S
D
@B
T U

$D
@B0

V (7) 

Similarly, for Tree B,  

 ;(%&&, %33|NW) = ;QX = U
$D
@B0

V S
D
@B
+ eTS

D
@B
+ eT (8) 
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Here, e represents the probability that the SCE events during the second cell division occur within 

newly synthesized DNA strands that contain undetectable levels of 5hmC. To estimate e on the 

left branch of the lineage tree that gives rise to cells 1 and 3, we can show that  

Probability of 1 undetectable SCE transition = Bf
gh
(1 − %&&)(

\]&
\
) 

Probability of 2 undetectable SCE transitions = B_f
gh3!

i(1 − %&&) S
\]&
\
Tj
3
 

. 

. 

. 

Probability of ! undetectable SCE transitions = Bkf
ghl!

i(1 − %&&) S
\]&
\
Tj
l
 

Therefore, e is given by 

 

 

 

m =
$D
@B
n\ +

$3D
@B2!

(n\)3 +
$'D
@B3!

(n\)' +⋯	

=
D
@B
(
(n\$)&

1!
+
(n\$)3

2!
+
(n\$)'

3!
+⋯)	

=
D
@B
p@qrB − 1s (9) 

where n\ = (1 − %&&)(
\]&
\
).  

Thus, (8) becomes 

 
;(%&&, %33|NW) = ;QX = U

$D
@B0

VY
D
@B
@U
(&AZ[[)(\]&)

\ VB^ Y
D
@B
@U
(&AZ__)(\]&)

\ VB^ (10) 

Further, it is trivial to show that the probability of observing the SCE pattern given Tree B or C is 

equal, that is 

 ;QX = ;(%&&, %33|NW) = ;(%&&, %33|Nb) = ;Qt (11) 

Therefore, the ratio of the probability of cells 1 and 2 being sisters (Tree A) vs. cousins (Trees B 

or C) is given by 

 ;QR
;QX

=
;QR
;Qt

=
;Quvuwxyu
;Qz{|uvku

=
2

@
`
\

 (12) 

Note that the probability ratio is a function of only the SCE rate and the number of bins, and is not 

dependent on the location of the SCE event in this case.  

 

Case II: The second most common SCE pattern is the observation of two SCE transitions that are 

shared between two cells (Figure 2-III and Supplementary Figures 1 and 2). For the original DNA 
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strand to be observed in only two cells, SCE transitions must occur in the same cell cycle. Thus, 

the probability of observing this SCE pattern in Tree A is given by  

 ;(%&&, %33, %&'|NO) = ;QR = (
D
@B
)(
$3D
@B2!

2
03) (13) 

The first term is the probability that no SCE event occurs in the first cell division, and the second 

term is the probability of having two SCE transitions during the second cell division. 

Similarly, for Tree B  

 
;(%&&, %33, %&'|NW) = ;QX = Y

$3D
@B2!

2
03^ S

D
@B
+ qTY

D
@B
@U
(Z[[]Z[~)(\]&)

\ VB^ (14) 

where � is the probability that undetectable SCE events occur within the 5hmC-depleted genomic 

region between %&& and %&', whose length is equal to %33. Note that the observed SCE pattern is 

possible for an even number of SCE events occurring within this region. To estimate �, we can 

show that  

Probability of 2 undetectable SCE transitions = B_f
gh3!

iZ__(\]&)]&
\

j
3
 

Probability of 4 undetectable SCE transitions = BÄf
ghÅ!

iZ__(\]&)]&
\

j
Å
 

. 

. 

.  

Probability of ! undetectable SCE transitions = Bkf
ghl!
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Thus, � is given by 
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=
D
@B
Y
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2!
+
(n\$)Å

4!
+ ⋯^	

=
D
@B
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where n\ = iZ__(\]&)]&
\

j 

Therefore, (14) becomes 

 
;QX = Y

$3D
@B2!

2
03^Y

D
@B
cosh Yb

%33(0 + 1) + 1
0

^^Y
D
@B
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(Z[[]Z[~)(\]&)
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and the ratio of the probability of cells 1 and 2 being sisters (Tree A) vs. cousins (Trees B or C) is 

given by 
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 ;QR
;QX

=
;QR
;Qt

=
;Quvuwxyu
;Qz{|uvku

=
2@(&A

(&AZ__)(\]&)
\ )B

cosh	($ %33(0 + 1) + 10 )
 (17) 

In this case, the probability ratio is a function of the genomic location of the SCE events, in addition 

to the SCE rate and the number of bins.  

 

Case III: Another common but more complicated SCE pattern occurs when an original DNA strand 

is shared between three cells (Figure 2-III). Intuitively, Tree B with cells 1 and 3 as sisters is the 

least likely configuration as it requires one additional SCE transition compared to the other two 

trees. The probability of observing this SCE pattern in Trees A and C are given by 

 
;(%&&, %33, %''|NO) = ;QR = U

$D
@B0

V U
$D
@B0

@B
Z~~(\]&)

\ V U
D
@B
@B

(Z[[]Z__)(\]&)
\ V (18) 

 

 
;(%&&, %33, %''|Nb) = ;Qt = U

$D
@B0
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D
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(Z__]Z~~)(\]&)
\ V U

$D
@B0

@B
Z[[(\]&)

\ V (19) 

In (18), the first term accounts for one SCE event between %33 and %''. The second term includes 

one SCE event between %&&and %33 and undetectable SCE events within the right-most genomic 

region, whose length is equal to %''. The third term accounts for no SCE event within %'' and 

undetectable SCE events within the left region, whose length is equal to (%&& + %33). Similarly, in 

(19), the first term accounts for one SCE event between %&& and %33. The second term includes 

no SCE events within %&& and undetectable SCE events within the rest of the chromosome, 

equivalent in length to (%33 + %''). The third term includes one SCE event between %33 and %'' 

and undetectable SCE events within the left-most genomic region. Note that Trees A and C are 

mirror images of each other and the probability of observing this SCE pattern is equal for these 

two tree configurations. For Tree B, 

 

 
;(%&&, %33, %''|NW) = ;QX = Y

$3D
@B03^ (á) U

D
@B
@B

(Z[[]Z~~)(\]&)
\ V (20) 

The first term is for two SCE events in the first cell division. The second term accounts for an odd 

number of undetectable SCE transitions within the genomic region between %&& and %'', such 

that both cells 1 and 3 contain parts of the original DNA strand. The third term includes 

undetectable SCE events within both left and right genomic regions, whose combined length is 

(%&& + %''). Further, á is given by 

 

 

 

á =
bD
@B
(n\)& +

$'D
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(n\)' +⋯	

(21) 
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=
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\
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Therefore, (20) becomes  
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and the ratio of the probability of Tree A vs. B is given by  

 ;QR
;QX

=
;Qt
;QX

=
@BZ__

\]&
\

sinh	($ %33(0 + 1) + 10 )
 (23) 

Consistent with our intuition, Tree B is less likely than the other two tree topologies, and depending 

on the values of 0, $, and %33, Tree B can be anywhere between 2 to 100 times less likely (Figure 

2-III). 

The approach described above can be applied to any SCE pattern. The probability of 

observing different SCE patterns are estimated for all chromosomes. Next, we assume that each 

chromosome strand is independent and compute the overall probability of observing the SCE 

patterns over the whole genome (a) for each Tree K (NE). To determine the most likely tree, we 

compute and compare	;(NO|a), ;(NW|a), and ;(Nb|a) using Bayes’ theorem 

 
;(NE|a) = 	

;(a|NE) ∗ ;(NE)
;(a)

 (24) 

where ;(NE) and ;(a) are the probabilities of observing Tree K and the genome-wide SCE pattern 

data, respectively. ;(NE) reflects prior belief of the likelihood that Tree K is the correct topology. As 

there are 3 possible topologies for any 4-cell tree, we get 

 ;(NO|a) + ;(NW|a) + ;(Nb|a) = 1 (25) 

Further, the ratio of the probability of observing Tree K vs. Tree G is given by 

 ;(NE|a)
;(NF|a)

=
;(a|NE) ∗ ;(NE)
;pa|NFs ∗ ;(NF)

=
;(a|NE)
;pa|NFs

 (26) 

where Tree K or G is either Tree A, B, or C. The prior probabilities ;(NE) are assumed to be equal 

to one another, a common practice in Bayesian analysis31. After rearrangement, we get 

 ;(NO|a) =
1

1 + ;
(a|NW)
;(a|NO)

+ ;
(a|Nb)
;(a|NO)

 (27) 
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Similarly, the probability of all tree topologies can be calculated. Finally, the probability of a 

particular 8-cell tree is given by the product of the probabilities of the two corresponding 4-cell 

subtrees. 

Simulating stand-specific 5hmC distributions 
To validate the analytical expressions for the probability of observing different SCE patterns in 

Figures 2-II and 2-III, we simulated 8-cell trees where the occurrence of SCE events were 

modeled as a Poisson process with $ = 0.3 and chromosome strands were assumed to segregate 

randomly (D = 0.5). Simulations were performed on chromosome 1 (0 = 97 for 2 Mb bins). These 

simulations were then used to estimate the probability of observing Tree A vs. Tree B as a function 

of the position of the SCE event. 

 To test the accuracy of scPECLR in predicting lineage trees in Figure 3-II, 8- or 16-cell 

embryos with 19 or 38 chromosomes were simulated as described above. All bins in the original 

DNA strands were hydroxymethylated whereas all subsequently synthesized DNA strands 

contained no 5hmC, mimicking in vivo experimental observations. 5,000 simulated trees were 

generated for each condition shown in Figure 3-II and inputted into scPECLR to estimate the 

percentage of trees that are accurately predicted by the algorithm. For 16-cell trees, we also 

estimated the prediction accuracy of 2-, 4- and 8-cell subtrees within the full tree. For 4-cell 

embryos, as OSS accurately separates the four cells into two groups of two cells each, the lineage 

reconstruction problem becomes deterministic and the trees are predicted with 100% accuracy.  

Consensus tree analysis  

This analysis was performed on 16-cell trees to identify parts of the lineage tree that can be 

predicted with high confidence. The two 8-cell subtrees obtained from OSS are treated 

independently. The first step is to use a desired relative threshold (RT) to identify all trees that 

have probabilities within a threshold level of the highest probability tree and include such trees for 

downstream analysis. All included trees are subsequently weighed equally. The second step is to 

examine the 4-cell subtrees of each included tree. If all trees consistently predict the same 4-cell 

subtree, the consensus tree includes the 4-cell subtree. This is true for most datasets as scPECLR 

largely predicts the 4-cell subtrees accurately in 16-cell trees (Figure 3-III). When disagreement 

arises, if the percentage of included trees that have the same 4-cell subtree exceeds a threshold 

(48), ranging from 0.55 to 1.0, the consensus tree includes the 4-cell subtree, and tree topologies 

that conflict with this 4-cell subtree are excluded from further analysis. If the percentage is 

below	48, the consensus tree does not include the exact 4-cell subtree but instead attempts to 

identify as many pairs of cells as possible that appear in different 4-cell subtrees of all included 
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trees, and the consensus analysis terminates. After the 4-cell subtrees are determined, the 

topology predicted within each of these subtrees is then considered. Again, if all of the remaining 

trees predict the same topology or if the percentage of remaining trees that predict a consistent 

topology exceeds a threshold (44), ranging from 0.55 to 1.0, the consensus tree also includes that 

topology. Otherwise, it does not predict a specific topology within the 4-cell subtree but attempts 

to identify one cousin pair that appears in the 4-cell topology.  

The consensus tree has different levels of specificity, ranging from predicting a full 16-cell 

tree, where the relationships between all cells are exact, to predicting only two 8-cell subtrees. In 

general, each consensus tree is constrained to contain a certain number of tree topologies, which 

provides information about how specific each consensus tree is. For example, in Figure 3-IV, the 

consensus tree contains six possible topologies, as there are two topologies arising from 

uncertainty in the subtree containing cells 5-8 and three topologies arising from uncertainty in the 

subtree containing cells 13-16. The lower the number of topologies contained within the 

consensus tree, the more specific and informative it is.  

 There are three parameters in the consensus tree analysis: RT, 48, and 44. RT has the 

largest influence on the structure of the consensus tree, while varying 48 and 44 leaves the 

consensus tree largely unchanged (Figures 3-V, 3-VI and Supplementary Figure 4) (Note: In 

Figure 3-V, 48 and 44 are kept constant at 0.75 and 1, respectively). When the RT increases, the 

consensus tree becomes more specific but suffers from a higher false discovery rate (FDR). In 

contrast, although the effects are small, increasing 48 and 44 leads to a very modest decrease in 

the specificity of the consensus tree and reduction in FDR. Thus, using different parameter values 

allows us to tune the competing goals of specificity and accuracy of the consensus tree. In fact, 

for a specific FDR, there is an optimal set of parameters that gives the most specific consensus 

tree for a dataset. We performed a consensus tree analysis on the dataset in Figure 3-II (solid 

blue lines), with different combinations of RT ranging from 0.05 to 0.50, and 48 and 44 ranging 

from 0.55 to 1.0. Each parameter set provides a consensus tree with a different level of specificity, 

measured by the median number of trees contained in the consensus tree, and the FDR. For any 

level of FDR tolerated, there is at least one parameter combination that yields the lowest median 

number of trees. For example, when $ = 0.3 and the FDR is chosen to be 30%, the optimal 

parameter set has RT, 48, and 44 as 0.05, 0.75, and 1, respectively, yielding the median number 

of trees contained within the consensus tree to be 36. Thus, for any dataset, the rate of SCE 

events can be estimated using MLE, and with a user-selected FDR, an optimal parameter set can 

be estimated to give the most specific consensus tree. 
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Consensus tree analysis improves the accuracy of lineage prediction in all scenarios. 

When the SCE rate is low ($ = 0.1) and the iterative prediction alone performs poorly for 16-cell 

trees, an error rate of greater than 99% in the iterative prediction decreases to a FDR between 

30-75%. When the iterative prediction alone performs moderately ($ = 0.5), an error rate of ~60% 

improves to a FDR between 10-45% (Figures 3-II and 3-V). Lastly, when the iterative prediction 

alone performs well ($ = 1.0), an error rate of ~25% decreases to a FDR between 5-20% (Figures 

3-II and 3-V). When $ = 1.0, there are only 1 to 2 median topologies contained in each consensus 

tree, indicating that the consensus analysis increases the accuracy of the prediction without 

compromising its specificity. This result shows that scPECLR and the consensus tree analysis 

provides a significant amount of lineage information with reasonable accuracy for 16-cell trees 

(Figures 3-V and 3-VI).  

scPECLR is robust to initial estimates of the SCE rate and to varying SCE rates at each 
cell division  
We explored the robustness of scPECLR to initial estimates of the SCE rate by simulating strand-

specific 5hmC data in 8-cell trees with a constant SCE rate ($ = 0.3). We then used different 

values of SCE rates – ranging from 0.1 to 2.0 – in scPECLR to predict the lineage tree (instead 

of estimating the SCE rate from the observed SCE pattern using MLE). We found that the 

percentage of trees that were accurately predicted did not change over the range of SCE rates, 

suggesting that scPECLR is robust to uncertainty in SCE rate estimation (Supplementary Figures 

5-I and 5-II). 

 As the 8-cell mouse embryos have varying rates of SCE events across cell divisions, we 

explored the robustness of scPECLR when the rates are different for each cell division. Because 

prediction accuracy of scPECLR is dependent on the rate of SCE events, in this analysis, we fixed 

the combined SCE rate (ä) over 3 (or 4) cell divisions, but allowed individual cell divisions to have 

different rates. For 8-cell trees, the model is largely robust against varying rates of SCE events 

across cell divisions, with higher ä and larger number of chromosomes resulting in better 

prediction accuracy (Supplementary Figure 5-III). For example, when the SCE rates are low for 

the first and second cell division ($& and $3) and high for the third cell division ($'), similar to the 

experimental observation in 8-cell mouse embryos, scPECLR predicts the lineage tree with very 

high accuracy (Supplementary Figure 5-III, H3). One case where the prediction accuracy drops 

modestly is when the SCE rates of the first and third cell divisions ($& and $') are low and the 

SCE rate of the second cell division ($3) is high (Supplementary Figure 5-III, H2). In this case, the 

data has a large number of SCE events that are shared between cousin cells. As the SCE rate at 
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each cell division is assumed constant during the first iteration of scPECLR, the algorithm predicts 

that cells sharing more SCE events are more likely to be sisters. This misidentification results in 

a large percentage of simulations not predicting the true tree after the first iteration. However, the 

prediction improves significantly after a few iterations because starting from the second iteration, 

the model accounts for different SCE rates at each cell division. Consequently, the varying SCE 

rates at each cell division has minimal impact on the accuracy of 8-cell tree prediction.  

 For 16-cell trees, there are a few cases where the prediction accuracy is worse than when 

the rates are uniformly distributed; these include situations where $Å is low (Supplementary Figure 

5-IV, H2, H3, H13, H23, and L4). In these cases, the prediction accuracy is lower because 

scPECLR inaccurately infers a pair of cousin or second cousin cells as sister cells due to a large 

number of SCE events shared between such pairs. In contrast, cases with high $Å values result 

in better prediction accuracy because scPECLR correctly identifies sister cell pairs 

(Supplementary Figure 5-IV, H4, H14, H24, and H34). Finally, scPECLR also performs well when 

$3 and $' are low as it does not misidentify cousin or second cousin pairs as sister pairs. These 

results suggest that in addition to the combined SCE rate, how the individual SCE rates are 

distributed over each cell division impacts the accuracy of reconstructing 16-cell trees. 

Binomial test to identify non-random DNA segregation  

To test the segregation pattern of DNA strands at the 4-cell stage, the 5hmC profile of 8-cell 

mouse embryos were combined using the lineages predicted by scPECLR to obtain the 

distribution of 5hmC on the original DNA strands at the 4-cell stage. Original DNA strands that 

had not undergone any SCE events at the 4-cell stage were considered in this analysis. Due to 

low SCE rates during the first and second cell divisions in the embryos, a majority of the original 

DNA strands had not undergone SCE events at the 4-cell stage. A binomial two-tailed test was 

conducted in R with a null hypothesis of random segregation (π = 0.5) and an alternative 

hypothesis of non-random segregation (π ≠ 0.5). A pair of sister cells were considered to display 

statistically significant non-random DNA segregation for p-values lower than 0.05. 

scPECLR implementation in MATLAB 
scPECLR was implemented in MATLAB to perform iterative probabilistic reconstruction of lineage 

trees. The script first uses single-cell strand-specific 5hmC data to perform OSS analysis to 

eliminate a majority of tree topologies. Next, it calculates the SCE rate and estimates the 

probabilities of all tree topologies given the genome-wide SCE pattern to predict the tree with the 

highest probability. Using this predicted tree, the program estimates the SCE rate for each cell 

division and re-calculates the probabilities of all tree topologies. The program performs iterations 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/739300doi: bioRxiv preprint 

https://doi.org/10.1101/739300
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

until the predicted tree does not change or until 10 iterations are reached. The scripts 

implementing scPECLR in MATLAB, along with test files, are provided as Supplementary 

Information.  

Data and software availability  
Accession code GEO: GSE131678. scPECLR was implemented in MATLAB. Custom codes and 

test files are provided with this manuscript.  
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