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ABSTRACT 
Hereditary hemorrhagic telangiectasia (HHT), a genetic bleeding disorder leading to systemic 
arteriovenous malformations (AVMs), is caused by loss-of-function mutations in the ALK1-ENG-
Smad1/5/8 pathway. Evidence suggests that HHT pathogenesis strongly relies on overactivated 
PI3K-Akt-mTOR and VEGFR2 pathways in endothelial cells (ECs). In the BMP9/10-
immunoblocked (BMP9/10ib) neonatal mouse model of HHT, we report here that the mTOR 
inhibitor, sirolimus, and the receptor tyrosine-kinase inhibitor, nintedanib, could synergistically 
fully block, but also reversed, retinal AVMs to avert retinal bleeding and anemia. Sirolimus plus 
nintedanib prevented vascular pathology in the oral mucosa, lungs, and liver of the BMP9/10ib 
mice, as well as significantly reduced gastrointestinal bleeding and anemia in inducible ALK1-
deficient adult mice. Mechanistically, in vivo in BMP9/10ib mouse ECs, sirolimus and nintedanib 
blocked the overactivation of mTOR and VEGFR2, respectively. Furthermore, we found that 
sirolimus activated ALK2-mediated Smad1/5/8 signaling in primary ECs—including in HHT 
patient blood outgrowth ECs—and partially rescued Smad1/5/8 activity in vivo in BMP9/10ib 
mouse ECs. These data demonstrate that the combined correction of endothelial Smad1/5/8, 
mTOR, and VEGFR2 pathways opposes HHT pathogenesis. Repurposing of sirolimus plus 
nintedanib might provide therapeutic benefit in HHT patients. 
 
INTRODUCTION 
Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome, is an 
autosomal dominant genetic disease with a prevalence of ~1 in 5,000 individuals (1). HHT is a 
hemorrhagic vascular dysplasia characterized by the development of mucocutaneous 
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telangiectasias and arteriovenous malformations (AVMs) in multiple tissues and organs. 
Particularly affected is the vasculature of the liver, lungs, and oronasal and gastrointestinal (GI) 
mucosa. In its most severe manifestations, HHT can lead to highly debilitating and life-threatening 
events, such as severe epistaxis and internal bleeding. HHT is also associated with secondary 
complications, which include anemia, cerebral abscess and embolism following pulmonary 
AVMs, as well as high-output cardiac failure consecutive to liver AVMs (2, 3). 
     At least 85% of HHT patients carry disease-causing loss-of-function mutations in the 
genes, ENG (encoding endoglin) or ACVRL1 (encoding activin receptor-like kinase 1, ALK1), 
which define the two disease subtypes: HHT1 (OMIM #187300) and HHT2 (#600376), 
respectively (4, 5). Mutations were also reported in SMAD4 (6) (encoding Smad4) and GDF2 (7) 
(encoding bone morphogenetic protein 9, BMP9), which cause rare and atypical forms of the 
disease called juvenile polyposis/HHT combined syndrome (OMIM #175050) and HHT-like 
vascular anomaly syndrome (#615506), respectively. BMP9, ALK1, endoglin, and Smad4 are 
members of the transforming growth factor-β signaling superfamily and all functionally interact 
in the same signal transduction axis (8). The cell surface receptor complex composed of the co-
receptor endoglin, the endothelial BMP type I receptor ALK1, and a BMP type II receptor (e.g., 
BMPR2) is activated by sequential binding to the circulating ligands BMP9 and BMP10 (9–11). 
Mutations in BMPR2 cause familial pulmonary arterial hypertension (PAH), which can be 
observed in some HHT2 patients (12), further supporting the notion that ALK1 and BMPR2 
functionally interact. ALK1-endoglin receptor activation leads to phosphorylation of the signal 
transducers, Smad1, Smad5, and Smad8, to trigger the formation of Smad1/5/8-Smad4 complexes 
that translocate into the nucleus to control specific gene expression programs (13). 
     HHT pathogenesis is triggered by a reduction of Smad1/5/8 signaling in ECs. Indeed, 
HHT-causing mutations decrease Smad1/5/8 response to ALK1-endoglin receptor activation by 
BMP9 (14–16). Consistent with this model, ALK1, endoglin, or Smad4 inactivation in mice and 
zebrafish leads to vascular defects, which include hypervascularization and AVMs (17–25). 
Downstream from ALK1-endoglin receptor loss-of-function, the exact pathways involved in HHT 
pathogenesis and ultimately, AVM development—i.e., the formation of direct shunts between an 
artery and a vein—remain incompletely understood (26). However, concordant studies have shown 
that HHT is associated with abnormal reactivation of angiogenesis (27) and that overactivated 
proangiogenic pathways, such as VEGF signaling, are required for the development of the vascular 
pathology of HHT models (28, 29). In vitro data in cell cultures have further revealed that VEGFR2 
phosphorylation and activity were increased upon ALK1 silencing (30), while endoglin silencing 
affected VEGFR2 trafficking to increase its downstream signaling (31). Transcriptomic data in 
ECs have also demonstrated that ALK1 negatively controlled VEGFR2 (KDR gene) expression 
(32, 33). In vivo, Vegfr2 knockdown was reported to block hypervascularization and AVMs in 
Alk1iΔEC mice (30) and pharmacological inhibition of VEGFR2 reduced disease severity in EngiΔEC 
mice (31). Also, recent clinical trials have indicated that intravenous treatment with the VEGF 
blocking antibody, bevacizumab, provided some therapeutic benefits in severely affected HHT 
patients (34, 35). In summary, although the field has not reached a consensus on the exact 
mechanism by which ALK1-endoglin loss-of-function activates VEGF signaling, there is strong 
evidence that VEGF-VEGFR2 signaling is a key contributor of the pathogenic process of HHT. 
     PI3K-Akt overactivation is also involved in AVM development in ALK1 (30) and endoglin 
(31) deficient mice and in HHT2 patients (36). Specifically, ribosomal protein S6 (S6) 
phosphorylation, a downstream effector of mTORC1 and Akt, was reported to be increased in the 
ECs of AVMs in the Alk1iΔEC mouse retina and in BMP9- and BMP10-immunoblocked 
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(BMP9/10ib) mice (30), another HHT model. In addition, administration of PI3K inhibitors, such 
as wortmannin, partially reduced retinal AVM numbers in Alk1iΔEC, EngiΔEC, and Smad4iΔEC mice 
(25, 30, 31). Akt1 deficiency also mitigated AVM pathology in the Smad4iΔEC model (25). Thus, 
overactivated VEGFR2 and PI3K-Akt-mTOR pathways are critical drivers—in addition to ALK1-
endoglin loss-of-function—of HHT pathogenesis and AVM development. 

Recently, we (32) and others (37) have reported that tacrolimus (Tac) was associated with 
Smad1/5/8 signaling activating properties, both in vitro in primary ECs and in vivo in mouse 
models of HHT and PAH. Spiekerkoetter et al. further reported in a cell-based BMP/Smad 
transactivation assay and in human pulmonary arterial ECs, that the mTOR inhibitor sirolimus 
(Siro, rapamycin), a macrolide analog of Tac, also activated Smad1/5/8, although less potently 
than Tac (37). These data suggest the intriguing possibility that Siro could both prevent mTOR 
overactivation and rescue Smad1/5/8 signaling in HHT models. In line with this hypothesis, a 2006 
case study reported the potential beneficial effect of an immunosuppressive regimen, which 
contained Siro, in a probable HHT patient who underwent liver transplantation following high-
output cardiac failure and hepatic AVM development (38). In this patient, the authors observed a 
reduction in angiodysplasia and mucosal hemorrhage. They proposed that the combination of Siro 
plus aspirin, in the antirejection regimen, could have contributed to the observed effects in this 
HHT patient (38). 

Several receptor tyrosine kinase (RTK) inhibitors that target VEGFR2 are FDA/EMA-
approved, including pazopanib that showed beneficial effects in ALK1 deficient mice (39) and in 
a cohort of HHT patients (40). A recent case study reported that nintedanib (Nin, BIBF 1120), 
another VEGFR2-targeting RTK inhibitor, which is approved for idiopathic pulmonary fibrosis 
(IPF) treatment, produced marked reductions in epistaxis and skin telangiectasias in a patient 
affected by both HHT and IPF (41). Nin is of particular interest compared to other classical RTK 
inhibitors because it has a narrow spectrum of inhibition and is associated with minimal adverse 
effects. 

In this context and in the current study, we sought to determine whether concurrent 
pharmacological targeting of Smad1/5/8 reduction, and of mTOR and VEGFR2 activation, could 
rescue the signaling defects and vascular pathology of HHT. We report that Siro and Nin, when 
administered in combination, mechanistically synergize at the transcriptional and signaling levels 
to efficiently prevent and reverse the vascular pathology, and the associated bleeding and anemia, 
in two HHT mouse models. 
 
RESULTS 
 
Sirolimus and nintedanib combination prevents vein dilation, hypervascularization, and AVM 
development in the retina of the tBMP9/10ib mice. 
 
Recently, we have reported the development of a HHT mouse model, which uses the 
transmammary route for administering BMP9 and BMP10 blocking antibodies to nursing mouse 
pups (22, 32), hereafter referred to as the transmammary-treated BMP9/10 immunoblocked 
(tBMP9/10ib) mice. We showed that this model, which has the advantage of being less invasive 
for the pups and more suitable for the analysis of large cohorts, leads to reduced ALK1 signaling 
and the development of a robust HHT-like pathology in the retinal vasculature of the pups (22, 
32). In this model, we found that Tac significantly activated endothelial ALK1 signaling in vivo 
and prevented hypervascularization of the tBMP9/10ib retina. Further analyses of Tac efficacy in 
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preventing vascular pathology in tBMP9/10ib mice revealed, however, a relatively modest effect 
of the drug on AVM development (32). These data prompted us to determine whether the 
macrolide analog of Tac, Siro (administered alone and in combination with Nin), is more potent 
in reducing the vascular pathology of the tBMP9/10ib retina. 

Studies were conducted prior to these experiments to determine the appropriate dosing and 
injection schedule of the drugs in pups. The highest dose of Siro that did not affect normal vascular 
development was chosen [0.5 mg/kg, intraperitoneal (i.p.) injection of the pups, assessed in the 
neonatal retina]. Similarly, in order to prevent changes in retinal vascular development, we 
determined that Nin should be given every third day and not before P5. With this schedule for Nin 
injection, the highest dose of the drug that did not affect physiological vascular development was 
determined to be 0.3 mg/kg (i.p., data not shown). Co-administration of Siro and Nin (Siro+Nin) 
at these dosing and injection schedules did not also significantly affect normal vascular growth, 
indicating that physiological angiogenesis in the retina was not inhibited by the drug combination 
(Figure S1). At this dosing, LC-MS analyses measured average serum concentrations of 9.0 nM 
Siro and 5.3 nM Nin in the injected P6 pups. 

As shown in Figure 1A and described before (22, 32), vascular pathology in pups was 
initiated at postnatal day 3 (P3) by one i.p. injection of the dams with anti-BMP9/10 antibodies. 
Mouse pups were administered preventively and daily with Siro from P3 to P5 (0.5 mg/kg, i.p.) 
and with Nin at P5 (0.3 mg/kg, i.p.). Mice were then analyzed at P6 (Figure 1A), a time point at 
which retinal vessel dilation, hypervascularization, and AVMs can readily be observed and 
quantified in this model (22, 32). In the tBMP9/10ib retinas, Siro significantly reduced AVM 
number and AVM diameter (Figures 1B-1D, 1G-1I, 1Q, and 1R). In addition, as we observed 
previously for Tac at the same dosing (0.5 mg/kg, P3-P5, i.p.) (32), Siro prevented vein dilation 
(Figure 1S) and the increase in density of the vascular plexus (Figures 1B-1D, 1L-1N, and 1T). In 
contrast, Nin at the tested dosing failed to reduce any of the investigated vascular defects of the 
tBMP9/10ib retinas (Figures 1B, 1C, 1E, 1G, 1H, 1J, 1L, 1M, 1O, and 1Q-1T). 

Although Siro treatment was able to significantly reduce AVM number and size, its 
preventive effect was only partial (AVM number, mean = 3.79 ± 0.30 in DMSO-treated 
tBMP9/10ib retinas vs. mean = 1.57 ± 0.19 in Siro-treated tBMP9/10ib retinas, P≤0.01). Knowing 
that evidence is strong to suggest that VEGFR2 signaling is increased in HHT models and that 
Siro demonstrated no efficacy in inhibiting VEGFR2-mediated MAPK signaling activation in 
primary ECs [Figure S2 and Ref. (42)], we asked whether the VEGFR2 inhibitor Nin could 
increase Siro potency in preventing AVMs. Combination treatment with the two drugs resulted in 
a significant increase of Siro anti-AVM effect (Figures 1B-1K and 1Q; AVM number after 
treatment, mean = 0.35 ± 0.11, P≤0.0001 vs. DMSO-treated tBMP9/10ib retinas, and P≤0.05 vs. 
Siro-treated tBMP9/10ib retinas). Siro+Nin combination did not further increase the effect of Siro 
on vein dilation and vascular density, as Siro alone was sufficient to fully correct these two defects 
(Figures 1L-1P, 1S, and 1T). Measurement of the diameter of the few remaining AVMs identified 
in the retina of the Siro+Nin-treated mice also revealed no difference compared to treatment with 
Siro alone (Figure 1R). Together these data in tBMP9/10ib mice show that Siro fully normalized 
vein dilation and hypervascularization, and significantly lowered AVM number and size in the 
retina. Furthermore and more strikingly, Nin significantly strengthened the anti-AVM effect of 
Siro. 
 
Siro+Nin prevents anemia and retinal bleeding in tBMP9/10ib mice. 
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We next assessed pathology progression in tBMP9/10ib pups at P9. As before, vascular pathology 
in pups was initiated at P3 by one i.p. injection of the dams with anti-BMP9/10 antibodies (Figure 
2A). Complete blood count (CBC) revealed significant reductions in hematocrit level, red blood 
cell (RBC) number, and hemoglobin level (Figure 2B), indicative of anemia in P9 tBMP9/10ib 
pups. Furthermore, severe cardiomegaly (Figures 2C and 2D) and splenomegaly (Figure 2C) 
developed in tBMP9/10ib mice. Splenomegaly was accompanied by an expansion of the red pulp 
(Figure 2D, right panels), indicating the presence of splenic erythropoietic stress response 
consecutive to anemia. These data prompted us to investigate whether tBMP9/10ib mice were 
actively bleeding. Inspection of the retinas using whole-mount immunohistochemistry (IHC) with 
an antibody directed against the RBC marker, Ter119, revealed the presence of strongly 
immunoreactive patches in multiple areas of the tBMP9/10ib retinas (Figures 2E, 2F, and 2K). 
Single-cell resolution confocal analyses and 3D reconstruction showed the presence of RBC 
patches outside the tBMP9/10ib retinal vasculature (Figures 2H-2H” and 2I-2I”, and animation in 
Movie S1). Interestingly, isolectin B4-positive projections could clearly be identified near the 
center of some of these RBC accumulations, suggesting that they might represent transversal 
vascular projections at the origin of the bleeding (Figures 2I-2I”, arrows; Movie S1). Treatment of 
the tBMP9/10ib mice with Siro+Nin from P3 to P8 (Figure 2A) significantly reduced the area 
occupied by retinal bleeding (Figures 2E-2K) and fully prevented the decrease in hematocrit level, 
RBC number, and hemoglobin level (Figure 2B), as well as blocked cardiomegaly, splenomegaly, 
and the loss of splenic architecture (Figures 2C and 2D). Thus, Siro+Nin combination treatment 
prevented anemia and retinal bleeding in tBMP9/10ib mice. 
 Because evidence is mounting that AVM development is controlled by blood flow (43) and 
because P9 tBMP9/10ib mice display significant cardiomegaly, we asked: (i) whether tBMP9/10ib 
mice develop cardiac defects leading to higher cardiac output and (ii) whether the drugs could 
indirectly reduce vascular pathology by correcting these cardiac defects. Although a modest 
decrease in heart rate was measured by doppler ultrasonography upon drug treatment in 
tBMP9/10ib mice, heart rate was overall not significantly changed in DMSO-treated and 
Siro+Nin-treated tBMP9/10ib pups, compared to normal pups (Figure S3A). In addition, no 
significant defects in cardiac output (Figure S3B) or pulmonary arterial pressure (Figure S3C) 
measures were found between all groups. These data demonstrate that basic cardiac function is 
normal in tBMP9/10ib pups, at least until P9, and that Siro+Nin combination is therefore unlikely 
to act on the vasculature by changing cardiac output. 
 
Siro+Nin reverses vascular pathology in tBMP9/10ib mice. 
 
We next analyzed the retinal vasculature of P9 tBMP9/10ib mice treated or not with Siro+Nin. On 
average ~4 AVMs were detected in tBMP9/10ib mice (Figures 2L and S4), indicating that no 
additional AVMs developed between P6 (mean = 3.79 ± 0.30, Figure 1Q) and P9. Strikingly, while 
Siro+Nin-treated P6 mice still contained some AVMs (n = 0.35 ± 0.11, Figure 1Q), the P9 
tBMP9/10ib mouse retinas that were treated with the drugs for 3 additional days were devoid of 
AVMs (Figures 2L and S4). In addition, the 6-day-Siro+Nin treatment (P3-P8, Figure 2A), as we 
observed after the 3-day-Siro+Nin treatment (P3-P5, Figure 1), fully prevented vein dilation and 
hypervascularization (Figures 2L and S4). LC-MS analyses measured an increase in average drug 
concentrations in the pup serum between P6 and P9: from 9.0 nM to 22.6 nM Siro and from 5.3 
nM to 24.7 nM Nin, indicating that three additional days of drug treatment led to an accumulation 
of the drugs in the circulation. 
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These data suggest that Siro+Nin treatment might also reverse existing AVMs, since some 
AVMs disappeared between P6 and P9. To directly address this possibility, we implemented a 
protocol that started the drug treatment once retinal vascular pathology was established. 
Specifically, pathology was induced as before at P3 and pups were then treated at P6 with 
Siro+Nin, a time point where we have established the presence of robust vein dilation, 
hypervascularization, and of ~4 AVMs per retina (Figure 1). Pups were treated for 3 days, from 
P6 to P8 (P6-P8), and analyzed at P9 (Figure 3A). We found that Siro+Nin administered after 
pathology induction significantly reduced overall vascular pathology (Figure S5), including AVM 
number, AVM size, vein dilation, and vascular density (Figures 3B and 3C). In addition, P6-P8 
Siro+Nin treatment significantly increased hematocrit level, RBC number, and hemoglobin level 
in anemic tBMP9/10ib mice (Figure 2B). 

Since disease induction is triggered by only one i.p. injection at P3 of anti-BMP9/10 
antibodies, we verified that the observed effects of Siro+Nin in P9 pups were not facilitated by a 
disappearance of the disease-causing anti-BMP9/10 blocking antibodies from the pup circulation. 
Using specific anti-BMP9 and anti-BMP10 antibody ELISAs, we found that serum antibody 
concentrations were stable between P6 and P9, and reached ~70 µg/mL for the anti-BMP9 antibody 
and ~85 µg/mL for the anti-BMP10 antibody (Figure S6). Thus, the disease-causing effects of the 
anti-BMP9/10 antibodies was maintained between P6 and P9, and therefore, the drug combination 
effect on pre-existing AVMs occurred in a maintained pathogenic environment. Taken together, 
these findings demonstrate that Siro+Nin combination treatment not only prevented, but also 
reversed, the retinal vascular pathology of the tBMP9/10ib mice. 
  
Siro+Nin prevents vascular pathology in the oral mucosa and lungs of the tBMP9/10ib mice. 
 
The oral mucosa and lungs are major sites of vascular lesion development in HHT patients. We 
investigated whether vascular defects are observed in these tissues of the P9 tBMP9/10ib mice. 
Injections of latex blue dye in the blood circulation were used to visualize vascular pathology. In 
the tBMP9/10ib mouse tongue and palate, mucosal vein dilation and hyperproliferative vascular 
defects were clearly identified after latex dye injection (Figures 4A, 4B, 4D, and 4E). Significant 
enlargements of the lingual and greater palatine vessels could be measured, compared to control 
tongues and palates (Figure 4J). In the lungs, the dye invaded a hypervascularized network of 
dilated small vessels throughout the lobar system and revealed an enlargement of the main 
pulmonary vessels of the tBMP9/10ib mice (Figures 4G, 4H, and 4J). Siro+Nin treatment of the 
tBMP9/10ib mice significantly and efficiently prevented the hyperproliferative vascular pathology 
and vessel dilation phenotype observed in the tongue, palate mucosa, and lungs (Figure 4). Thus, 
Siro+Nin combination reduced vascular pathology in the oral mucosa and lungs.  
 
Siro+Nin corrects a gene expression signature and prevents vascular pathology in the liver of 
the tBMP9/10ib mice. 
 
The liver is the most vascularized organ of the body and is a major site of vascular lesion 
development in HHT patients, more specifically in HHT2 patients (44). We next investigated 
whether vascular defects could be observed in the liver of the P9 tBMP9/10ib mice. Vascular 
pathology induction and drug treatments in pups were performed as above (Figure 2A). Latex dye 
tissue invasion was enhanced in the tBMP9/10ib liver and revealed a significant enlargement of 
the hepatic vessels (Figures 5A, 5B, and 5D). Hematoxylin and eosin (H&E) staining showed the 
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presence of marked local liver injury, characterized by the presence of significant hepatocyte 
vacuolation and hepatocellular necrosis (Figures 5E, 5F, 5H, 5I, and S7), a pathology that could 
result from ischemic events. 

To gain insight into the mechanism of liver injury, we performed a proteome array for 
angiogenesis-related factors. This screen identified plasminogen activator inhibitor 1 (PAI-1) as a 
protein strongly upregulated in the tBMP9/10ib liver, compared to livers from control mice (Figure 
5K). PAI-1 is of interest because it is upregulated during hypoxia (45), and might thus represent a 
response to ischemia. PAI-1 elevation in the tBMP9/10ib liver was confirmed by Western blot 
(WB, Figure 5L) and IHC (Figures 5M, 5N, and 5P) analyses. To verify that hypoxia is occurring 
in the tBMP9/10ib liver, tissue sections were stained for hypoxia-inducible factor-1α (HIF-1α), a 
transcriptional factor marker and master regulator of hypoxia (46). We found a strong upregulation 
of liver HIF-1α expression in tBMP9/10ib mice, compared to control mice (Figures 5Q, 5R, and 
5T). These data show that tBMP9/10ib mice develop a robust vascular pathology in the liver. 
Strikingly, Siro+Nin treatment of the tBMP9/10ib mice significantly prevented the 
hyperproliferative vascular pathology and vessel dilation phenotype of the liver (Figures 5A-5D). 
In addition, Siro+Nin efficiently reduced hepatocyte vacuolation and necrosis (Figures 5E-5J and 
S7), as well as prevented the overexpression of PAI-1 and HIF-1α in the liver of the tBMP9/10ib 
mice (Figures 5M-5T). Together, these results demonstrate that Siro+Nin combination prevented 
vascular pathology in the liver, as well as blocked liver disease in tBMP9/10ib mice. 

To further test the therapeutic potential of the Siro+Nin combination, we determined: (1) 
whether gene expression changes could be detected in the tBMP9/10ib whole-liver tissue and (2) 
whether treatments with the two drugs (administered alone or in combination) could correct these 
transcriptomic changes. When we plotted the transcript expression changes (measured as log fold 
change values, logFC) in tBMP9/10ib pups vs. normal controls, against the transcript expression 
logFCs obtained after treating the tBMP9/10ib pups with Siro+Nin vs. vehicle (DMSO), an inverse 
correlation was found for Siro+Nin treatment (r2 = 0.380, P<0.001; Figure 6A). An inverse 
correlation indicates that Siro+Nin treatment normalized some of the changes observed in the 
disease model (tBMP9/10ib pups) compared to normal controls. When the same comparison was 
done for Siro and Nin administered alone, a weaker correlation was measured (r2 = 0.193 and 
0.190, respectively, P<0.001; Figure 6A). These results indicate that Siro+Nin combination better 
corrected the expression changes of liver transcripts detected in the tBMP9/10ib mice, than either 
drug administered alone. 

To illustrate the synergistic effect of the Siro and Nin treatments on transcript expression, 
we identified transcripts that were differentially changed by the drug treatments in the tBMP9/10ib 
liver (n = 6-9 biological replicates/group, false discovery rate (FDR) ≤0.5%, log average 
expression >-5; Figure 6B). These transcripts are shown in Figure S8 and Table S1. The black box 
in the heatmap of Figure 6B shows a subset of transcripts that were: (1) significantly changed by 
Siro+Nin, (2) not changed by either Nin or Siro administered in isolation, and (3) whose expression 
was normalized, as compared to normal controls. This subset of transcripts confirms that a 
synergistic effect exists between Siro and Nin treatments at the gene expression level, and that this 
effect could normalize a subset of deregulated transcripts in the tBMP9/10ib liver. A function 
enrichment analysis of the identified subset of normalized transcripts revealed a significant 
network of genes involved in cell and protein metabolism (e.g., Uba6, Tmem56, mt-Nd3, Kdm1b, 
Gclc, Prkd3; GeneMANIA (47)), a response indicative of strong gene expression changes 
consecutive to liver injury and changes in cell homeostasis and cell stress. 
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Together, these transcriptomic data show that Siro and Nin treatments synergized and 
partially opposed a deregulated gene expression signature detected in the tBMP9/10ib liver. These 
results are important because they confirm the interaction and combination efficacy of the two 
drugs in reducing overall vascular pathology in tBMP9/10ib mice. 
 
Siro+Nin reduces GI bleeding and anemia in adult Alk1 iKO mice. 
 
The effect of the drug combination was evaluated in an adult Alk1 inducible knockout (iKO) mouse 
model (R26CreER/+;Alk12f/2f). In this model, ALK1 deficiency is induced by tamoxifen 
administration to generate severe gastrointestinal (GI) bleeding and anemia in 9 days [Figure 7 
and Refs. (39, 48)]. Daily treatment with the same doses of Siro+Nin used for the tBMP9/10ib 
mice (0.5 mg/kg Siro and 0.3 mg/kg Nin, i.p.), starting at the time of tamoxifen injection, 
significantly reduced GI bleeding (Figures 7A-7D) and significantly increased hematocrit level, 
RBC number, and hemoglobin level (Figures 7E-7G), compared to the vehicle-treated Alk1 iKO 
controls. 
 
In tBMP9/10ib mice, Siro and Nin prevent endothelial overactivation of mTOR and VEGFR2, 
respectively. 
 
We next assessed mTOR signaling in tBMP9/10ib mice by measuring the levels of phospho-
mTOR (p-mTOR) and phospho-S6 (p-S6) in the liver and retina. WB analyses revealed robust 
increases in p-mTOR and p-S6 levels in whole-liver homogenates isolated from tBMP9/10ib mice, 
compared to control mice (Figure 8A). Treatment with Siro (alone or in combination with Nin) 
blocked S6 phosphorylation and normalized p-mTOR levels in the tBMP9/10ib mouse liver 
(Figures 8A and S9). Further examination of the tBMP9/10ib retinal tissue confirmed the presence 
of strong p-S6 immunoreactivity in the AVMs, which could significantly be blocked by Siro 
treatment of the mice (Figures 8B and 8C). 

A significant elevation of activated phospho-VEGFR2 (p-VEGFR2) was detected in 
protein homogenates of liver ECs isolated from tBMP9/10ib mice (Figures 8D and S10) and in the 
tBMP9/10ib mouse retina (Figure 8E), which was significantly inhibited by Nin treatment of the 
mice (Figures 8D-8F). We also verified that drug combination did not interfere with the inhibitory 
effect of Nin on p-VEGFR2. As observed upon treatment with Nin alone, Siro+Nin fully inhibited 
VEGF-induced VEGFR2 activation in primary ECs (Figure S2). Altogether, these data confirmed 
that endothelial mTOR and VEGFR2 are overactivated in tBMP9/10ib mice and that Siro and Nin 
can respectively and efficiently block these signaling deregulations in vivo.  
  
Siro rescues Smad1/5/8 signaling by activating ALK2. 
 
Because the possibility that Siro might both prevent mTOR overactivation and rescue Smad1/5/8 
signaling in HHT mice is appealing, we revisited the effect of Siro on Smad1/5/8 signaling in cell 
culture systems. We found that Siro increased Smad1/5/8 phosphorylation (p-Smad1/5/8) in a 
dose-dependent manner and increased the levels of the Smad1/5/8 downstream target ID1 
(inhibitor of differentiation 1) in C2C12 myoblast cells (Figure S11A) and in human umbilical 
vein ECs (HUVECs, Figure 9A), at doses very comparable to Tac (32). A pharmacological 
approach using the pan-ALK inhibitor LDN-193189 (Figure 9B) and gene silencing (Figures 9C 
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and S11B) in HUVECs further showed that ALK2 is required for the stimulatory effect of Siro on 
Smad1/5/8 signaling. 

To further demonstrate efficacy in a cell culture system more directly relevant to the 
pathophysiology of human HHT, we used blood outgrowth ECs (BOECs) isolated from a HHT2 
patient genetically confirmed to carry the disease-causing ALK1 T372fsX truncation (32). 
Treating these HHT2 patient BOECs with Siro also increased p-Smad1/5/8 and ID1 levels (Figure 
9D). Finally, IHC analyses showed that in vivo Siro was able to modestly but significantly rescue 
the decrease of p-Smad1/5/8 in the retinal vasculature (Figures 9E and 9F). Thus, Siro displayed 
potent in vitro Smad1/5/8 signaling activating properties in EC cultures, including in HHT patient-
derived ECs, and significantly rescued Smad1/5/8 loss-of-function in vivo in tBMP9/10ib mice. 
 
DISCUSSION 
 
Major progress in techniques of interventional radiology, embolization, and cauterization have 
considerably reduced the risk of hemorrhage in HHT patients. However, the recurring and 
progressive nature of the disease continues to make HHT a highly debilitating disorder associated 
with life-threatening sequelae. Several disease-modifying therapies have been proposed in pre-
clinical models and some of them are currently being investigated in clinical trials (49). Notably, 
Tac was found to be associated with Smad1/5/8 activating properties in ECs and showed some 
efficacy in reducing pathology in HHT (32) and PAH (37) models and patients (50–52). Here we 
propose that Siro, a structural analog of Tac and inhibitor of mTOR, is a more potent blocker of 
AVM development in HHT mice. We found that Siro acts as a dual modulator by stimulating 
Smad1/5/8 while inhibiting mTOR, in both cell cultures and HHT mice, thus correcting two key 
signaling defects of the HHT ECs. 

In cell cultures, Tac was proposed to activate Smad1/5 by facilitating dissociation of the 
binding repressor FKBP12 from ALK1, ALK2, and ALK3, while Siro only recruited ALK2 (37). 
Here we confirmed in HUVECs that Siro could activate endothelial Smad1/5/8 by specifically 
stimulating ALK2. Although these data would need to be confirmed in vivo, they suggest that the 
intriguing possibility that ALK2 activation might compensate for ALK1 loss-of-function. 
Although attractive from a mechanistic aspect, this mechanism might be risky as ALK2 activating 
mutations are associated with fibrodysplasia ossificans progressiva, a disorder characterized by 
progressive heterotopic bone formation in muscle tissues (53). However, Siro, as well as Tac that 
also activates ALK2, are not known to lead to any adverse effects associated with mechanisms of 
abnormal ossification in humans. In addition, Siro showed a potent anti-AVM effect at doses (9-
22 nM in mouse serum) comparable to its use in the clinical setting (whole-blood trough 
concentrations of ~15-20 nM for prophylaxis of transplant rejection, for instance). 

Our data highlight a beneficial interaction and synergy between Siro and Nin treatments in 
HHT mice. This interaction was observed by RNA-Seq of the tBMP9/10ib liver, which revealed 
the presence of deregulated genes that were fully normalized only when Siro and Nin were co-
administered. This transcriptional interaction translated into a robust synergy of the two drug 
treatments and a significant improvement of the Siro effect at preventing AVMs in HHT mice. We 
found that Nin acted, at least in part, by blocking the overactivation of VEGFR2 in ECs of the 
tBMP9/10ib mice. Nin is not specific to VEGFRs, as it also targets FGFRs and PDGFRs, two 
other receptor families involved in angiogenesis (54). Further investigation will be needed to 
determine whether interference of these other RTK receptor pathways might be involved in the 
anti-AVM effect of the Siro+Nin combination. Previous work suggests, however, that this might 
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not be the case for PDGFRs, since PDGF signaling activation (not inhibition) was found to 
mitigate vessel wall defects in an Eng KO mouse model (55). 
     The current data provide further evidence that HHT pathogenesis requires the 
overactivation of the mTOR and VEGFR2 pathways (Figure 9G). How Smad1/5/8, mTOR, and 
VEGFR2 control each other during the disease process remains unclear. Although loss-of-function 
mutations in BMP9-ALK1-endoglin-Smad4 signaling are necessary to cause HHT, they are not 
sufficient. Indeed, additional genetic, environmental, and/or developmental modifiers are required 
for AVM development, a process referred to as the double/multiple hit hypothesis (56). Notably, 
VEGF stimulation or wounding, two triggers of angiogenesis, were reported to be required to 
generate brain and skin AVMs in adult ALK1 deficient mice (43). Furthermore, in HHT neonate 
mouse models, including in tBMP9/10ib pups, it is believed that retinal AVMs develop 
spontaneously and aggressively because vessel development is actively occurring through 
angiogenesis. Synergy between BMP9/10 blocking and VEGFR2 activation during the normal 
process of angiogenic vascular development would thus provide in these models the ideal milieu 
for lesion development. Therefore, although there is now strong evidence that Smad1/5/8 reduction 
overactivates VEGF signaling to cause vascular pathology, these two pathways are initiated by 
independent triggers. Our data showing that Nin and Siro treatments have clear synergistic effects 
support this notion and further show that the two pathways can independently signal in ECs to 
cause AVMs. 

Recent studies have demonstrated that PI3K-Akt signaling is overactivated in several HHT 
models and that its inhibition reduces the AVMs (25, 30, 31). In line with this observation, we 
show here that, in the tBMP9/10ib liver, there is an increase of p-Ser2448-mTOR, a phosphorylation 
mostly associated with mTORC1, the mTOR complex downstream from PI3K-Akt, which is 
directly targeted by Siro (57). In addition, Siro treatment, which fully prevented p-Ser2448-mTOR 
and S6 overactivation, reduced AVM number in our model, suggesting that mTOR, most likely 
downstream from PI3K-Akt, is a major player in AVM development. We further found that, 
although Siro fully inhibited mTOR overactivation in vivo, its anti-AVM effect was only partial 
and could be significantly potentiated upon VEGFR2 inhibition by Nin, indicating that VEGFR2 
can signal independently of the PI3K-Akt-mTOR pathway to control the AVMs. This observation 
concurs with recent data obtained in Smad4 deficient mice that indicate that abnormal PI3K-Akt 
activation in ECs is primary controlled by blood flow and not VEGFR2 (24, 58). 

An important question relates to the drug dosing used in this study and whether it allows 
the administered drugs to reach concentrations within the expected therapeutic range. We 
measured in average 9.0 nM Siro and 5.3 nM Nin at P6, and an increase to 22.6 nM Siro and 24.7 
nM Nin at P9 in the pup serum. Previously published in vitro experiments reported a Siro IC50 of 
~0.1 nM for mTOR (59) and a Nin IC50 of ~13 nM for VEGFR2 (60). At the tested dosing, 
circulating concentrations of Siro and Nin are therefore expected to inhibit in vivo mTOR and 
VEGFR2, which is in line with the observed effects on these targets in tBMP9/10ib mice (Figure 
8). For Smad1/5/8 stimulation by Siro, our experiments in HUVECs showed that the lowest 
effective concentration is 100 nM (Figure 9A), which is about 4 times higher than the concentration 
detected in the serum. We found nonetheless that Siro treatment modestly but significantly 
increased p-Smad1/5/8 in the mouse retina, indicating that the drug was delivered in sufficient 
quantities to stimulate Smad1/5/8 signaling in vivo (Figure 9). We have not obtained clear 
experimental data that explain this apparent discrepancy. However, it is important to note that 
concentrations used in vitro and drug serum concentrations are difficult to compare. Indeed, drug 
concentration measurements in the circulation do not consider the pharmacokinetic and 
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bioavailability of the drugs. One important parameter is cellular uptake and accumulation, which 
can significantly reduce serum concentration while increasing local drug delivery. Altogether these 
data suggest that the administered drugs reach concentrations within the expected therapeutic 
range. 

We found that Siro+Nin treatment prevented anemia in P9 tBMP9/10ib pups and adult 
Alk1 iKO mice (Figures 2B and 7D-G). In tBMP9/10ib pups, drug treatment generated a 
supranormal elevation of the CBC parameters. In some models of anemia, Siro was reported to 
ameliorate anemia by increasing stress erythropoiesis (61). In this context, the supranormal 
elevation of the CBC parameters measured after drug treatment could be due, in part, to changes 
in erythropoiesis. To test this hypothesis, additional experiments were performed by using the 
recently described method of monitoring erythropoiesis using CD44/Ter119/FSC as markers of 
terminal erythroid differentiation (62). We measured a significant increase in the number of 
reticulocytes in the bone marrow, but not in the spleen, of Siro+Nin-treated tBMP9/10ib mice 
(Figure S12). These data suggest that although no stress erythropoiesis induction was observed, an 
increase in RBC production occurred and thus could explain, at least partly, the supranormal levels 
of hematocrit, RBCs, and hemoglobin measured after the drug treatment. Further investigation will 
be required to clearly define the origin of the observed effects, for instance, by looking at the earlier 
RBC precursors (62). Other experiments will also be needed to precisely determine how much of 
the corrected anemia is driven by a bleeding reduction (Figure 2K) vs. an increased RBC 
production (Figure S12) and whether the drug effect on RBC production could be related to 
developmental aspects in newborn mice. In support to the latter possibility, a supranormal 
elevation of the RBC counts was not found in treated adult Alk1 iKO mice (Figure 7), further 
supporting our current interpretation that anemia correction is primarily driven by a bleeding 
reduction. 

Prophylaxis of rejection in liver transplantation includes treatment with 
immunosuppressive drugs, primarily Tac and more rarely Siro. Recently, liver AVM pathology 
recurrence was reported in HHT patients who underwent liver transplantation, while they were 
treated with Tac (63). Our study suggests the possibility that prioritizing Siro vs. Tac (together or 
not with Nin) in the antirejection regimen might also help in specifically preventing spreading of 
vascular disease in healthy liver grafts. 

More broadly, the beneficial effect of Siro and mTOR inhibition has already been described 
in models of pathological angiogenesis (64). In addition, Siro treatment has produced promising 
results in patients affected by vascular anomalies (65). Our observation that Siro and Nin 
mechanistically synergize to block the pathogenic process of HHT might thus have important 
ramifications for the treatment of other vascular disorders, such as the vascular anomaly diseases. 

In conclusion, the present data show that Siro and Nin combination concurrently 
normalizes endothelial Smad1/5/8, mTOR, and VEGFR2 pathways to synergistically and 
efficiently oppose HHT pathogenesis and the associated vascular pathology in neonate and adult 
mouse models of the disease. We thus propose that Siro+Nin combination has therapeutic potential 
in HHT. 
 
METHODS 
 
Mice. This study was performed using C57BL/6 mice (The Jackson Laboratory). 
R26CreER/+;Alk12f/2f mice generation and Alk1 deletion using tamoxifen were described previously 
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(39, 48). Mice were maintained in regular housing conditions and were allowed free access to 
water and maintenance diet. 
 
Transmammary-delivered immunoblocking of BMP9 and BMP10, and drug treatments. 
tBMP9/10ib pups and age-matched control pups (treated with isotype controls) were generated as 
previously described (22, 32). Pups (litter size, n = 7-9 mice; average mouse weight, 2 grams) were 
treated with vehicle (0.1% DMSO in saline), Siro (0.5 mg/kg bw), and Nin (0.3 mg/kg bw) 
following the different combinations and schedules described in the Figures. Isotype control pups 
were injected with vehicle. 
 
RNA-Seq, read alignments, and gene expression differential expression analysis. RNA was 
processed for RNA-Seq at the Genomics Resources Core Facility, Weill Cornell Medical College, 
New York, NY, on an Illumina HiSeq 4000 instrument. Alignments of reads to the transcriptome 
were performed with Kallisto version 0.44.0. We aligned reads to the mouse transcriptome 
downloaded from Ensembl (Mus_musculus.GRCm38.cdna.all.fa.gz). Alignment was run on a 
MacOS laptop with 16GB of memory, using the NextflowWorkbench (66) to orchestrate 
alignment and count aggregation for the analyzed samples. RNA-Seq transcript counts were 
analyzed with analysis scripts written with the MetaR languages (67). Additional details of the 
analyses are described in Supplemental Material. 
 
Statistics. For multiple-group comparisons, a one-way ANOVA test was performed (when data 
fulfilled the assumption of normality for parametric tests, using a D’Agostino & Pearson omnibus 
test) and a post hoc Tukey’s multiple comparison test was used. When normality was not achieved, 
a non-parametric Kruskal-Wallis test and post hoc Dunn’s multiple comparison test were used. 
For two-group comparisons, when normality was not achieved, a Mann-Whitney test was 
performed instead. P values < 0.05 were considered statistically significant. Analyses were done 
using GraphPad Prism. 
  
Study approvals. Study subject (HHT2 patient carrying the ALK1 T372fsX mutation) provided 
voluntary and written informed consent using a form approved by The Feinstein Institutes for 
Medical Research Institutional Review Board (IRB). Study subject BOECs were isolated and 
cultured using a protocol approved by the Institute’s IRB. All animal procedures were performed 
in accordance with protocols approved by The Feinstein Institutes for Medical Research and 
Barrow Neurological Institute Institutional Animal Care and Use Committees, and conformed to 
the NIH Guide for the Care and Use of Laboratory Animals and ARRIVE guidelines. 
 
Additional Methods are described in Supplemental Material. 
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 Figure 1. Siro+Nin prevents vein dilation, hypervascularization, and AVMs in the tBMP9/10ib 
mouse retina. (A) Schematic representation of the protocol of disease induction (i.p. injections of the 
lactating dams with anti-BMP9/10 blocking antibodies, anti-BMP9/10 mAbs) and of drug treatments (i.p. 
injections of the pups with Siro and/or Nin). Arrowheads indicate the postnatal days of injection. Control 
mouse pups were obtained by injecting the lactating dams with isotype controls and by directly injecting 
them with DMSO. Pups were euthanized at P6. (B-P) Representative images of retinas stained with 
fluorescent isolectin B4 (green) from control (CTRL; B, G, and L) mice and tBMP9/10ib mice treated with 
vehicle (DMSO; C, H, and M), Siro (D, I, and N), Nin (E, J, and O), or the combination of Siro and Nin (F, 
K, and P). Higher magnification in (G-K) and (L-P) show respectively retinal vein diameter (yellow 
arrowheads) and retinal vascular fields (plexus area) between an artery (a) and a vein (v). Arrows in denote 
AVMs. Scale bars, 500 µm (B-F), 200 µm (G-K), and 100 µm (L-P). (Q-T) Scatter plots measuring AVM 
number (Q), AVM diameter (R), vein diameter (S) and vascular plexus density (T) in CTRL and 
tBMP9/10ib mice treated as in (B-F). Data represent individual retinas and mean ± SEM (n = 14, 38, 28, 
12, and 20 retinas for the CTRL, DMSO, Siro, Nin, and Siro+Nin groups, respectively); Kruskal-Wallis 
test, post hoc Dunn’s multiple comparison test; *P<0.05, **P<0.01, ****P<0.0001. 
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Figure 2. Siro+Nin prevents anemia and retinal bleeding in tBMP9/10ib mice. (A) Schematic 
representation of the protocol of disease induction and drug treatments. Pups were euthanized at P9. (B) 
Scatter plots measuring hematocrit (HCT) level, red blood cell (RBC) number, and hemoglobin (Hb) level 
in P9 control (CTRL) and tBMP9/10ib mice treated with Siro+Nin at P3-P8 [as in (A)] or P6-P8 (see Figure 
3A). Data represent individual mice and mean ± SEM (n = 26-29, 35-40, 18, 11 mice for the CTRL, DMSO, 
Siro+Nin (P3-P8), and Siro+Nin (P6-P8) groups, respectively); HCT and RBC analyses: Kruskal-Wallis 
test, post hoc Dunn’s multiple comparison test; Hb analysis: one-way ANOVA, Tukey’s multiple 
comparison test. (C and D) P9 mouse heart and spleen analyses of CTRL and tBMP9/10ib mice treated as 
in (A). Heart/body and spleen/body weight ratios are shown in (C). Data represent individual mice and 
mean ± SEM (n = 9-11, 12, 9 mice for the CTRL, DMSO, and Siro+Nin groups, respectively); one-way 
ANOVA, Tukey’s multiple comparison test. Heart and spleen sections stained with H&E are shown in (D). 
lf, lymphoid follicle; rp, red pulp. (E-J”) Representative images showing microbleeds (dotted orange lines 
in E-G) in retinas stained with fluorescent isolectin B4 (green) and anti-Ter119 (red) from CTRL (E, H-
H”), and tBMP9/10ib mice treated with DMSO (F, I-I”) or Siro+Nin (G, J-J”), as in (A). Dotted white lines 
in (F) indicate AVMs. Higher magnifications in (H-J”) show the extending deeper retinal plexus 
[arrowheads marked as “d” in (H, I, and J)] and orthogonal view (xz and yz planes) of the stack of images 
at the level of the dotted lines shown in (H, I, and J). Orthogonal views in (H, I, and J) show superficial 
vascular plexus (yellow arrowheads marked as “s”), vascular branches projecting to the outer layer of the 
retina (white arrows), and microbleeds (asterisks). Focal plane views (H’, I’, and J’) and 3D reconstructions 
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(H”, I”, and J”) identify microbleeds. Scale bars, 1 mm (D, Heart), 10 µm (D, Spleen), 500 µm (E-G), and  
50 µm (H-J”). (K) Scatter plot measuring bleeding areas, expressed as a percentage of the retinal vascular 
area occupied by extravascular accumulation of RBCs in mice treated as in (A). Data represent mean ± 
SEM (n = 6, 4, 4 mice for the CTRL, DMSO, and Siro+Nin groups, respectively); one-way ANOVA, 
Tukey’s multiple comparison test. (L) Scatter plots measuring AVM number, vein diameter, and vascular 
plexus density in the retina of P9 pups treated as in (A). Data represent individual retinas and mean ± SEM 
(n = 7, 7, 8 mice for the CTRL, DMSO, and Siro+Nin groups, respectively); AVM number and vein 
diameter analyses: one-way ANOVA, Tukey’s multiple comparison test; vascular density analysis: 
Kruskal-Wallis test, post hoc Dunn’s multiple comparison test. *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001. 
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Figure 3. Siro+Nin reverses retinal vascular pathology in tBMP9/10ib mice. (A) Schematic 
representation of the protocol of disease induction and drug treatments. Pups were euthanized at P9. (B and 
C) Scatter plots measuring AVM number, vein diameter, vascular plexus density (B), and AVM diameter 
(C) in the retina of CTRL and tBMP9/10ib mice treated as in (A). Data represent individual retinas and 
mean ± SEM (n = 9, 8, 7 mice for the CTRL, DMSO, and Siro+Nin groups, respectively); AVM number 
and vascular density analyses: one-way ANOVA, Tukey’s multiple comparison test; AVM diameter 
analysis: Mann Whitney test; vein diameter analysis: Kruskal-Wallis test, post hoc Dunn’s multiple 
comparison test; **P<0.01, ***P<0.001, ****P<0.0001. 
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Figure 4. Siro+Nin prevents vascular pathology in the oral mucosa and lungs of the tBMP9/10ib mice. 
(A-I) Representative images of latex blue dye-perfused mouse tongue, palate, and lungs of control (CTRL; 
A, D, and G) and tBMP9/10ib mice treated with DMSO (B, E, and H) or Siro+Nin (C, F, and I), as in Figure 
2A. Yellow arrowheads indicate lingual, palatine, and pulmonary vessels used for diameter measurements, 
black arrow denotes a dilation of a lateral branch in the palatine vasculature (E). Scale bars, 500 µm (A-F) 
and 2 mm (G-I). (J) Scatter plots measuring lingual, palatine, and pulmonary vessel diameter. Data 
represent mean ± SEM; lingual vessel diameter analysis (n = 3, 4, 3 mice for the CTRL, DMSO, and 
Siro+Nin groups, respectively): Kruskal-Wallis test, post hoc Dunn’s multiple comparison test; Palatine (n 
= 2, 3, 4 mice) and pulmonary (n = 10, 6, 6 mice) vessel diameter analyses: one-way ANOVA, Tukey’s 
multiple comparison test; **P<0.01, ***P<0.001, ****P<0.0001. 
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Figure 5. Liver vascular pathology and liver disease in tBMP9/10ib mice: Effects of Siro+Nin 
treatment. (A-C) Latex blue dye-perfused livers from tBMP9/10ib mice treated with vehicle (DMSO, B) 
or Siro+Nin (C), and control mice treated with DMSO (CTRL, A). (D) Scatter plot measuring hepatic vessel 
diameter. Diameters of these vessels (most likely arterial) were measured at 2,000 µm (orange dotted lines) 
from the margin of the liver (grey dotted lines). Data represent mean ± SEM (n = 4 livers per condition); 
Kruskal-Wallis test, post hoc Dunn’s multiple comparison test. (E-J) Liver sections stained with H&E at 
low magnification (E-G) and high magnification (H-J) from tBMP9/10ib and control mice treated as in (A-
C), insets in (H-J) indicate magnified areas. (K-O) PAI-1 immunodetection by proteomic array (K, pooled 
homogenates from n = 3 mice) and WB (L, n = 3 mice) of liver homogenates, and by immunofluorescence 
staining in liver sections (M-O) from mice treated as in (A-C). (P) Scatter plot measuring PAI-1 levels, 
expressed as a mean intensity of fluorescence per sampled area. Data represent mean ± SEM (n = 3 livers 
per condition); Kruskal-Wallis  test, post hoc Dunn’s  multiple comparison test. (Q-S) HIF-1α IHC in liver 
sections from mice treated as in (A-C), insets indicate magnified areas. Histology data are representative of 
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at least 3 independent mice/condition. Scale bars, 1000 µm  (A-C), 3 mm (E-G), 100 µm (H-J, M-O, Q-S), 
35 µm in insets (H-J, Q-S). (T) Scatter plot measuring HIF-1α levels, expressed as a mean intensity of 
fluorescence per sampled area. Data represent mean ± SEM (n = 3 livers per condition); one-way ANOVA 
test, post hoc Tukey’s  multiple comparison test. *P<0.05, **P<0.01, ****P<0.0001.  
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Figure 6. Siro+Nin corrects a gene expression signature detected in the tBMP9/10ib mouse liver. (A) 
Scatter plots comparing the liver gene expression changes (logFC, log fold change) observed upon 
treatment with Siro+Nin or individual drug (Siro or Nin), to the liver gene expression logFCs observed 
between tBMP9/10ib and normal control (CTRL) mice. The negative slope of the plots indicates that each 
treatment contributed to normalize the liver gene expression changes seen in tBMP9/10ib vs. CTRL mice. 
Correlation coefficients (r2) indicate a more robust normalization with the drug combination than with 
individual drugs. (B) Heatmap of liver transcripts synergistically differentially expressed by the drug 
combination. We identified the genes that responded to the drug combination differently than would be 
expected assuming an additive effect of both drugs. Non-interacting drug would produce a COMBO 
expression equal to the average of gene expression measured with each treatment (NIN or SIRO). The 
significant effects that we detected, measured with the statistical contrast COMBO-(NIN+SIRO)/2,  
produced gene expression changes that deviate from this average independent effect expectation. 
Transcripts were selected with FDR≤0.5%, log average expression >-5. For reference, liver transcripts in 
CTRL mice are shown on the heatmap. Gene expression in CTRL mice were used for normalization, but 
were not used in the selected transcripts that displayed synergistic drug response. 
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Figure 7. Siro+Nin effectively reduces GI bleeding and ameliorates anemia in adult Alk1 iKO mice. 
(A-C) Gastrointestinal (GI) tract from stomach to rectum of 2-4 month-old CreER-negative control (CTRL, 
A) and Alk1 iKO mice treated with vehicle (DMSO, B) or Siro+Nin (C). Higher magnifications show the 
cecum. Scale bars, 10 mm (A-C). (D-G) Scatter plots measuring cecum bleeding index (D), hematocrit 
(HCT) level (E), red blood cell (RBC) number (F), and hemoglobin (Hb) level (G). Data represent mean ± 
SEM (n = 2-4, 7-8, 10 mice for the CTRL, DMSO, and Siro+Nin groups, respectively); one-way ANOVA 
(E and F) and two-way ANOVA (G), Tukey’s multiple comparison test; **P<0.01, ***P<0.001, 
****P<0.0001. 
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Figure 8. In tBMP9/10ib mice, Siro and Nin prevent endothelial overactivation of mTOR and 
VEGFR2, respectively. (A-F) Control (CTRL) and tBMP9/10ib mice were treated with DMSO and Siro 
(A-C) or Nin (D-F). Protein homogenates of whole liver from P6 mice (A) and of liver ECs isolated from 
P9 mice (D) were analyzed by WB using antibodies directed against the indicated proteins. Scatter plots 
show p-S6 (B) and p-VEGFR2 (E) positive area analyzed by IHC in the retina of P6 CTRL and tBMP9/10ib 
mice treated with DMSO and Siro (B) or Nin (E), expressed as a percentage of the retinal vascular area 
occupied by immunofluorescence staining. Data represent mean ± SEM (n = 4, 3, 3 mice for the CTRL, 
DMSO, and Siro (B) or Nin (E) groups, respectively); p-S6 analysis: Kruskal-Wallis test, post hoc Dunn’s 
multiple comparison test; p-VEGFR2 analysis: one-way ANOVA, Tukey’s multiple comparison test; 
***P<0.001, ****P<0.0001. Representative immunofluorescence images show P6 retinas from 
tBMP9/10ib mice treated as in (B and E) stained with fluorescent isolectin B4 [green, (C and F)], anti-p-
S6 [magenta, (C)], anti-p-VEGFR2 [red, (F)], and anti-Erg [white, (F)] antibodies. Scale bars, 100 µm (C) 
and 50 µm (F). 
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Figure 9. Siro rescues Smad1/5/8 signaling by activating ALK2. (A-D) HUVECs (A-C) and HHT2 
patient-derived BOECs (D) were treated for 3h with vehicle (DMSO) or Siro in complete medium 
(conditioned for 2-3 days) and at the indicated concentrations (A and D) or at 300 nM (B and C), in the 
absence or presence of LDN-193189 [LDN, 1 µM, (B)], or the indicated siRNA treatments (C). Cell extracts 
were analyzed by WB using antibodies directed against the indicated proteins. (E) Scatter plot measuring 
p-Smad1/5/8 positive area in the retina of P6 control (CTRL) and tBMP9/10ib mice treated with DMSO or 
Siro, expressed as a percentage of the retinal vascular area occupied by immunostaining. Data represent 
mean ± SEM (n = 4, 3, 3 mice for the CTRL, DMSO, and Siro groups, respectively); ***P<0.001, 
****P<0.0001; one-way ANOVA, Tukey’s multiple comparison test. (F) Representative images showing 
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P6 retinas from tBMP9/10ib mice treated as in (E) stained with fluorescent isolectin B4 (green), anti-Erg 
(white), and anti-p-Smad1/5/8 (red). Scale bars, 50 µm. (G) Schematic illustration of the proposed 
synergistic effects of Siro and Nin on endothelial Smad1/5/8, mTOR, and VEGFR2 signaling pathways. 
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SUPPLEMENTAL FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Siro+Nin does not affect normal vascular development in the mouse retina. Scatter 
plot shows retinal vascular length in P6 pups non-treated or treated with DMSO or Siro+Nin, as 
in Figure 1A. Data show the % of total retinal length occupied by the vasculature and represent 
mean ± SEM (n = 6, 4, 5 mice for the non-treated, DMSO, and Siro+Nin groups, respectively). 
One-way ANOVA and Tukey’s multiple comparison tests revealed no significant difference 
between groups. 
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Figure S2. Siro does not inhibit VEGF-mediated ERK1/2 or p38 activation. HUVECs treated 
with vehicle [DMSO, (-)], Siro (300 nM), or Nin (300 nM), were stimulated for 5 min with VEGF 
(25 ng/mL), following a 24h starvation in 0.05% FBS-containing medium. Cell extracts were 
analyzed by WB using antibodies directed against the indicated proteins. 
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Figure S3. Siro+Nin does not affect cardiac function in tBMP9/10ib mice. Scatter plots show 
heart rate (A), cardiac output (B), and PAT/PET ratio (C) of P9 CTRL and tBMP9/10ib mice 
treated as in Figure 2A. Data represent mean ± SEM (n = 8, 10, 10 mice for the CTRL, DMSO, 
and Siro+Nin groups, respectively); one-way ANOVA, Tukey’s multiple comparison test; 
*P<0.05. 
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Figure S4. Siro+Nin prevents vein dilation, hypervascularization, and AVMs in the 
tBMP9/10ib mouse retina. (A-I) Representative images of retinas stained with fluorescent 
isolectin B4 (green) from P9 CTRL and tBMP9/10ib mice treated with DMSO and Siro+Nin, as 
in Figure 2A. Higher magnification in (D-F) shows retinal vein diameter [yellow arrowheads in (E 
and F) and retinal vascular fields (plexus area) between an artery (a) and a vein (v) (G-I). White 
arrows denote AVMs. Scale bars, 500 µm (A-C) and 100 µm (G-I). 
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Figure S5. Siro+Nin reverses vein dilation, hypervascularization, and AVMs in the 
tBMP9/10ib mouse retina. (A-L) Representative images of retinas stained with fluorescent 
isolectin B4 (green) from CTRL and tBMP9/10ib mice (at the indicated postnatal day) treated with 
DMSO and Siro+Nin, as in Figure 3A. Higher magnification in (E-H) shows retinal vein diameter 
[yellow arrowheads in (E, F, and G)] and retinal vascular fields (plexus area) between an artery 
(a) and a vein (v) (I-L). White arrows denote AVMs. Scale bars, 500 µm (A-D) and 100 µm (I-L). 
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Figure S6. Transmammary-delivered BMP9 and BMP10 blocking antibodies persist in the 
circulation of mouse neonates. ELISAs were performed to measure anti-BMP9 (A) and anti-
BMP10 (B) IgG concentration in the serum of P6 and P9 pups treated either at P3-P5 or P3-P8 
through lactation from dams injected i.p. with PBS, isotype controls (IgG2a/b), or anti-BMP9 + 
anti-BMP10 antibodies (anti-BMP9+10). Data represent mean ± SEM (n = 6 and 5 mice for the 
P6 and P9 groups, respectively). One-way ANOVA and Tukey’s multiple comparison tests 
revealed no significant difference between P6 and P9 mice for the anti-BMP9+10 groups. 
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Figure S7. Siro+Nin attenuates hepatocyte toxicity in the liver of the tBMP9/10ib mice. 
Scatter plots of hepatocyte vacuolation (A) and hepatocellular necrosis (B) from liver of P9 control 
(CTRL) and tBMP9/10ib mice treated with DMSO and Siro+Nin, as in Figure 2A. Liver 
histological evaluation was performed according to the standardized semi-quantitative scoring 
system previously described (1). Data represent the mean of means ± SEM (5 random images of 
the liver per mouse, n = 3, 4, 4 mice for the CTRL, DMSO, and Siro+Nin groups, respectively); 
Kluskal-Wallis test, Dunn’s multiple comparison test; ***P<0.001,****P<0.0001. 
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Figure S8. RNA-Seq quality control. We constructed an MA plot to visualize the effectiveness 
of the normalization and covariate control procedures employed during analysis of gene 
expression. The MA plot corresponds to the heatmap shown in Figure 6. The plot shows that the 
normalization and covariate adjustments employed were adequate for this dataset (most genes lie 
on a horizontal line corresponding to no change in gene expression with, as expected, more spread 
along the vertical for genes measured with low expression). Genes detected significant with a 
FDR≤1% are shown in red. 
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Figure S9. Siro+Nin inhibits S6 phosphorylation in vivo in tBMP9/10ib mice. P6 control 
(CTRL) and tBMP9/10ib mice were treated with DMSO or Siro+Nin, as in Figure 1A. Protein 
homogenates of whole liver were analyzed by WB using antibodies directed against the indicated 
proteins. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S10. Nin prevents endothelial VEGFR2 overactivation in vivo in tBMP9/10ib mice. 
Densitometric analysis of the WB shown in Figure 8D quantifying phospho-VEGFR2 / total 
VEGFR2 ratio (p-VEGFR2/VEGFR2) in liver ECs isolated from CTRL and tBMP9/10ib mice 
treated with DMSO and Nin. FC, fold change. Data represent mean ± SEM (n = 5); one-way 
ANOVA, Tukey’s multiple comparison test; *P<0.05.  
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Figure S11. Siro rescues Smad1/5/8 signaling by activating ALK2. (A) C2C12 cells were 
treated for 3h with Siro in complete medium (conditioned for 2-3 days) and at the indicated 
concentrations. Cell extracts were analyzed by WB using antibodies directed against the indicated 
proteins. (B) Histogram showing ACVRL1 (ALK1) and ACVR1 (ALK2) expression   (2-𝛥𝛥Ct) in 
HUVECs treated with CTRL or ACVRL1- and ACVR1-targeting siRNA. Data represent mean ± 
SEM (n = 3); one-way ANOVA, Tukey’s multiple comparison test; ****P<0.0001. 
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Figure S12. Siro+Nin increases the number of reticulocytes in the bone marrow of the 
tBMP9/10ib mice. Histogram shows reticulocyte counts determined in the bone marrow and 
spleen of P9 tBMP9/10ib mice treated as in Figure 2A with DMSO or Siro+Nin, and based on the 
expression levels of CD44 and Ter119, as described in (2). Data represent the mean of means ± 
SEM (n = 3 and 4 mice for the DMSO and Siro+Nin groups, respectively); two-way ANOVA, 
Bonferroni’s multiple comparison test; **P<0.01. 
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SUPPLEMENTAL TABLE LEGENDS 
  
Table S1. Transcripts differentially expressed upon synergistic drug treatment. Transcripts shown 
in the heatmap of Figure 6 are presented in table form. Selection was the same as the heatmap: 
FDR≤0.5%, log average expression >-5. The transcripts were annotated with Biomart and ensembl 
genes 94 annotations.  
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SUPPLEMENTAL METHODS 
  
Reagents and antibodies. BMP9 (3209-BP) and VEGF165 (293-VE) were obtained R&D Systems. 
Sirolimus (Siro, S1039), nintedanib (Nin, S1010), and LDN-193189 (S2618) were from Selleck 
Chemicals. For WB, antibodies directed against p-S6 (4858), S6 (2217), p-Ser2448-mTOR (2971), 
mTOR (2983), p-VEGFR2 (2478), VEGFR2 (2479), p-Smad1/5/8 (13820), Smad1 (9743), p-
ERK1/2 (9101), ERK1/2 (9102), p-p38 (4511), and p38 (9212) were obtained from Cell Signaling 
Technology. Anti-ID1 antibody was from BioCheck (BCH-1/195-14). Anti-actin antibody was 
from BD Transduction Laboratories (612656). For IHC, anti-PAI-1 (ab66705), anti-HIF-1α (ab1), 
and anti-Erg (ab92513) antibodies were obtained from Abcam, anti-Ter119 antibody from R&D 
Systems (MAB1125), and anti-p-S6 (4858), anti-p-VEGFR2 (2478) and p-Smad1/5/8 (13820) 
antibodies from Cell Signaling Technology. Alexa Fluor 594 anti-rabbit or anti-rat goat secondary 
antibodies were used for IHC (Molecular Probes). 
  
Transmammary-delivered immunoblocking of BMP9 and BMP10. For vascular disease 
induction in mouse pups, lactating dams were injected i.p. once at P3 with mouse monoclonal anti-
BMP9 and anti-BMP10 antibodies (15 mg/kg bw, IgG2b, MAB3209; 15 mg/kg, IgG2a, 
MAB2926; R&D Systems, respectively), or with mouse monoclonal isotype controls (15 mg/kg, 
IgG2b, MAB004; 15 mg/kg, IgG2a, MAB003; R&D Systems) to obtain control mouse groups. 
 
Measurements of antibody levels by ELISA in neonatal mouse serum. ELISAs were performed 
as described before (3), with the following modifications. 96-well ELISA plates (Maxisorp, Nunc) 
were coated with 100 µL of 1 µg/mL recombinant BMP9 or BMP10 (R&D Systems) in coating 
buffer (15 mM K2HPO4, 25 mM KH2PO4, 0.1 M NaCl2, 0.1 mM EDTA, 7.5 mM NaN3) and 
incubated overnight at 4 °C. Plates were then washed 3 times with 0.05% Tween PBS (PBST) and 
blocked for 1 h at room temperature (RT) with 1% BSA in PBS. After washing 3 times with PBST, 
serial dilutions of individual mouse serum samples and reference mouse anti-BMP9 and anti-
BMP10 IgGs (R&D Systems) (diluted in 1% BSA PBS) were prepared and 100 µL/well were 
incubated for 2 h at RT. After 3 more washes, 100 µL/well horseradish peroxidase (HRP)-
conjugated goat anti-mouse secondary antibody (Southern Biotech, diluted 1:500 in 1% BSA PBS) 
was incubated for 1 h at room temperature. TMB substrate was added after 5 washes and the 
reaction was allowed to develop for 30 min at room temperature. The optical density was measured 
at 450 nm using a TECAN GENios Pro plate reader. 
 
Blue latex dye injection. P9 pups were processed for cardiac perfusion after euthanasia, following 
procedures described before (3). Briefly, the thorax and abdomen were opened. The left ventricles 
were injected manually with 600 µL of blue latex dye (BR80B, Connecticut Valley Biological 
Supply) using an insulin syringe U-100 (329652, BD Biosciences) and the right atrium was opened 
to drain the blood. After perfusion, liver, lungs, tongue, and palate were dissected, fixed in 4% 
paraformaldehyde (PFA), washed in phosphate-buffered saline (PBS) and either mounted in 80% 
glycerol (direct observation of the liver and lungs) or embedded in low gelling temperature agarose 
(A0701, Sigma) (tongue and palate). Blocks were dehydrated in methanol series and cleared with 
organic solvent (benzyl alcohol/benzyl benzoate, 1:1, Sigma). Images of the whole organ or tissue 
were acquired using an Olympus SZX7 stereomicroscope attached to an Olympus DP27 camera. 
Measurements and quantifications were performed using Fiji. For liver analysis, images from the 
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same liver lobe and at the same location in the lobe were acquired at 1x magnification. The 
diameter of every hepatic vessel was measured at a distance of 2,000 µm from the margin of the 
lobe using the concentric circle tool plugin in Fiji. For the tongue and palate, images of the organs 
were acquired using 2x magnification and transversal lines were superimposed half-way in their 
anterior-posterior axis using the grid Fiji’s plugin, where the vessel diameter was measured. For 
the lungs, images of lobes were acquired and main vessels’ diameter was measured. 
 
IHC. To analyze the retinal vasculature, eyes were enucleated and fixed in 4% PFA for 20 min on 
ice and retinas were isolated and analyzed as before (3, 4). Briefly, retinas were dissected, cut four 
times to flatten them into a petal flower shapes, and fixed with methanol for 20 min on ice. After 
removing methanol, retinas were washed in PBS for 5 min on a shaker at room temperature, and 
blocked in blocking solution (0.3% Triton, 0.2% BSA in PBS) for 1 h on a shaker at room 
temperature. Retinas were then incubated in Alexa Fluor 488 isolectin B4 (I21411, Molecular 
Probes) and/or primary antibodies in blocking solution on a shaker overnight at 4°C. Retinas were 
then washed four times in 0.3% Triton in PBS for 10 min on a shaker, incubated with the 
corresponding secondary antibodies, washed four times in 0.3% Triton in PBS for 10 min followed 
by two washes in PBS for 5 min on a shaker and mounted in Vectashield (H-1000, Vector 
Laboratories). 

Liver, heart, and spleen were fixed in 4% PFA for 24 h and sent for sectioning, H&E 
staining, and anti-HIF-1α IHC at HistoWiz. Unstained liver sections were dewaxed and antigen 
retrieval was performed. Sections (5 µm) were then washed in PBS for 5 min on a shaker at room 
temperature, and blocked in blocking solution (0.3% Triton, 0.2% BSA in PBS) for 1 h in a humid 
chamber at room temperature. Immunostaining was performed using primary antibodies in 
blocking solution in a humid chamber overnight at 4°C. Sections were then washed four times in 
0.3% Triton in PBS for 10 min, incubated with the corresponding secondary antibody, washed 
four times in 0.3% Triton in PBS for 10 min followed by one incubation with DAPI (KPL 710300) 
in PBS and two washes in PBS for 5 min on a shaker before being mounted in Vectashield. 

High resolution images for vascular network analysis were acquired using a Zeiss 880 laser 
confocal microscope. In cases where low magnification was enough for the analyses, an automated 
EVOS FL Auto 2 Invitrogen microscope was used. Measurements, quantifications, and 3D 
analysis were performed using Fiji. Briefly, low magnification images were acquired using a 4x 
and 10x lens to measure the retina vascular length (percentage of vasculature/retina length). A 20x 
lens was used to acquire images at the optic nerve to quantify AVM number, and AVM and vein 
diameter, and at the vascular plexus (3-5 fields per retina, between an artery and a vein) to quantify 
the vascular density. All measurements and qualifications were done using Fiji. The vascular 
density quantification was done by using the measure particles tool, working with 8-bit images, 
adjusting the threshold, and measuring the area occupied by the vasculature in a region of interest 
of 200 x 200 µm2. The bleeding area quantification was performed on 3 by 3 tiled image stacks 
using a 10x lens, and the 3D analysis by using the 3D project and the orthogonal view tools. 
Quantification of p-S6, p-VEGFR2, and p-Smad1/5/8 was performed by acquiring higher 
magnifications images using a 63x lens, analyzing 2 to 5 fields per retina and calculating the 
percentage of retinal vascular area occupied by immunostaining. 
  
CBC. Blood samples from tBMP9/10ib mice were obtained through heart puncture using a 0.3 mL 
insulin syringe (324910, BD Biosciences). Blood was transferred to a tube containing 5 mM EDTA 
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(Invitrogen) and HCT, RBC number, and Hb levels were determined on a Beckman Coulter AcT 
analyzer, no more than 30 min after blood collection. 
 
Drug efficacy testing in adult Alk1 iKO mice. Tamoxifen was injected i.p. at 0.1 mg/g of body 
weight (b.w.) to 2-4 month-old R26+/+;Alk12f/2f (control group) and R26CreER/+;Alk12f/2f males and 
females on Day 0. Siro and Nin stock solutions were made in DMSO at 20 mg/mL and 10 mg/mL, 
respectively. The drugs were diluted in saline to 1X and adequate volume of drugs (Sir:Nin = 
0.5:0.3 mg/kg bw) were injected i.p. once a day starting on Day 0. Saline containing 1% DMSO 
was used as vehicle control. Hb concentration in a drop of blood from tail snip was measured on 
Day 0, Day 7, and the last day (Day 9), using a Hb photometer (Hemopoint H2, STANBIO 
Laboratory). Any mice whose Hb levels were below 4 were subjected to termination on the day of 
measurement. At termination, mice were anesthetized by ketamine/xylazine (100/10 mg/kg bw), 
and GI tract was visually inspected and photographed. GI bleeding index was applied as 3 = severe; 
2 = moderate; 1 = weak; 0 = none. Blood collected from abdominal vein was used for CBC on a 
HT5 Veterinary Hematology Analyzer (Heska).  The whole body was fixed in formalin and 
bleeding was further inspected after collecting guts from stomach to rectum. 
 
Cell cultures and RNAi. HUVECs were isolated from umbilical veins obtained from anonymous 
donors and subcultured in 5% fetal bovine serum (FBS)-containing EC growth medium 
(ScienCell), as described before (5). C2C12 cells were obtained from ATCC and were maintained 
in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FBS, penicillin, and 
streptomycin. RNA interference (RNAi) was performed in HUVECs using Accell SMARTpool 
siRNAs targeting ACVRL1 (E-005302-00) and ACVR1 (E-004924-00), or using an Accell non-
targeting pool control (D-001910-10), and by following the manufacturer’s recommended 
protocols (Dharmacon). 
 
Liver EC isolation. ECs were isolated from P9 mouse livers using anti-CD31 microbeads 
(Miltenyi Biotec GmbH), following the manufacturer’s instructions. 
 
WB analyses and proteomic array. For WBs, protein extracts were processed as before (4), with 
the following modifications. Cultured cells, isolated liver ECs, or whole liver tissue were 
solubilized in RIPA buffer (20-188, EMD Millipore) supplemented with 1× Complete protease 
inhibitor mixture (11697498001, Roche). 5-20 µg of proteins (depending on the primary antibody 
used) were separated by SDS-PAGE, transferred onto nitrocellulose membranes, which were 
probed with primary and secondary antibodies. A standard ECL detection procedure was used. For 
proteomic array, whole liver tissue homogenates were prepared and protein extracts were applied 
to the arrays following the manufacturer’s instructions (ARY015, Proteome Profiler Mouse 
Angiogenesis Array Kit, R&D Systems). 
  
RT-qPCR. Three days after siRNA treatment, cells were harvested and RT-qPCR was performed 
on pellets of ~100,000 cells per sample by using high capacity cDNA reverse transcription kit 
(Applied Biosystems) and by following the manufacturer’s protocol. PCR was performed using 
TaqMan assays targeting ACVRL1 (Hs00953798_m1), ACVR1 (Hs00153836_m1) and GAPDH 
(Hs03929097_g1) on ABI 7900 HT (Applied Biosystems, Life Technologies). ACVRL1 and 
ACVR1 expression levels were normalized to the reference gene GAPDH. Relative changes in 
gene expression were determined by the ΔΔCt method and using control values normalized to 1.0. 
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RNA-Seq. Livers were rinsed with PBS and processed for RNA extraction using RNeasy mini kit 
(Qiagen), according to the manufacturer’s instructions. Total RNA quality was verified using 
Thermo Scientific NanoDrop and Agilent Bioanalyzer. RNA was processed for RNA-Seq at the 
Genomics Resources Core Facility, Weill Cornell Medical College, New York, NY. Briefly, 
cDNA conversion and library preparation were performed using the TrueSeq v2 Illumina library 
preparation kit, following manufacturers’ recommended protocols. Libraries were multiplexed 9 
per lane and sequenced on 8 lanes of an Illumina HiSeq 4000 instrument. While the original and 
agreed upon design called for 8 lanes of sequencing in one run, the core facility sequenced these 
lanes in three separate runs, sequencing a subset of lanes twice, but not others. Analysis took this 
deviation into account by encoding which libraries had been sequenced with the altered design in 
the covariate matrix used for differential expression (the factor SEQUENCING_MOD encodes 
this information). 
 
Gene expression differential expression analysis. RNA-Seq transcript counts were analyzed with 
analysis scripts written with the MetaR languages (6). Briefly, gene expression analysis used 
Limma Voom to estimate statistics of differential expression while correcting for covariates. 
Depending on the analysis, covariates included drug treatment, antibody used to induce the disease 
phenotype, and sequencing modality (e.g., libraries sequenced in a single lane by the core facility, 
or sequenced on two lanes in separate runs, then pooled). Disease phenotype consists of 
HEALTHY (or CTRL) and DISEASE (or tBMP9/10ib). 
 
Model used for Figure 6 (statistical analysis and heatmap): 
We fit the RNASeq read counts with Limma Voom using the following model: 
Count ~ DRUG + ANTIBODY + SEQUENCING_MOD 
Where Count is transcript read count; DRUG is COMBO=the Siro+Nin combination, SIRO=Siro 
alone, or NIN=Nin administered alone; ANTIBODY is tBMP9/10ib or CTRL, and 
SEQUENCING_MOD is sequencing modality. To identify genes whose expression indicate an 
interaction of the drug (synergistic effect), we selected genes for which the quantity (contrast for 
the statistical test of significance):   COMBO - (SIRO+NIN)/ 2 significantly differed from zero. A 
contrast that differs from zero identifies genes whose expression changes are not additive with 
respect to the effect of each individual drug (because genes with additive drug effects would result 
in COMBO measuring the average expression across the drugs each administered alone). The MA 
plot for this differential expression analysis is shown in Figure S8. 
  
Human BOECs isolation and characterization. BOECs were isolated as described before (4) 
from an HHT2 patient carrying the T372fsX truncation [ACVRL1 c.1112dup, first reported in Ref. 
(7)]. 
 
Preparation of the standard and quality control solutions for liquid chromatography-mass 
spectrometry (LC-MS). Standard stock solution of Siro and Nin were prepared in DMSO and 
diluted with ion-free water to prepare working solutions at concentrations of 0.01, 0.1, 1, and 10 
µg/mL. Standard solutions in a concentration range between 0 and 1000 ng/mL for Siro and 
between 0 and 2500 ng/mL for Nin were prepared diluting the working solutions with either 50% 
MeOH in 5 mM ammonium formate water or 50% AcCN in 0.1% formic acid water, respectively. 
Quality control solutions used in the validation were prepared in the same manner as the standard 
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solutions by using blank plasma collected from mice. All solutions were stored at -20°C before 
use. 
  
Sample preparation and LC-MS analysis. Samples (calibrator, control, and plasma) were mixed 
either with a 70:30 mix of acetonitrile and 0.1 M zinc sulfate in water or with acetonitrile (for Siro 
and Nin samples, respectively), followed by vortex mixing for 30 sec. After mixing, samples were 
left at room temperature for 10 min and centrifuged (10,000 x g) for 10 min. The supernatant was 
dried under nitrogen and the residue was reconstituted either with 50 µL of 5 mM ammonium 
formate/MeOH (50:50%, v/v) or 40 µL of water/acetonitrile, with formic acid (0.1% v/v). 
Reconstituted residue was vortexed for 10 sec and centrifuged at 13,000 x g for 10 min. The final 
extract was transferred into polypropylene vials, and then 10 µL was injected and analyzed on a 
LTQ XL™ Linear Ion Trap MS coupled to a vanquish UHPLC system (Thermo Scientific), with 
a Accucore™ Vanquish™ C18+ UHPLC Column (1.5 µm, 2.1 x 50 mm) at 45ºC. A linear gradient 
of 50-100% methanol in 5 mM ammonium formate water (0.1% formic acid) or 2-95% acetonitrile 
was used for 6 and 10 min with flow rates of 0.2 and 0.4 mL/min, respectively. Data was analyzed 
using Xcalibur 3.1 (Thermo Scientific, USA), and Siro and Nin were identified through accurate 
mass measurements by comparison with pure standards. Peak areas of Siro and Nin were integrated 
and quantitated through the use of a calibration curve. 
 
Cardiac ultrasound measurements and analysis. During ultrasound examination, mice were 
lightly anesthetized using isoflurane (3% induction dose, 1.5% maintenance dose) plus oxygen 
(1.5 L/min). Body temperature was maintained in a physiological range using build-in heat pad. 
Chest and upper abdominal hair was removed by a chemical hair remover (Nair, Church & Dwight 
Co., Inc, NJ); then, ultrasound gel was applied to the skin to facilitate sound transmission and to 
reduce contact artifacts. Echocardiography was done with a Vevo 3100 instrument (VisualSonics, 
Canada). MX550D high-resolution transducer was used under mouse (small) cardiology mode 
(frequency: 40 MHz; acquisition frame rate: 232 lps; gain: 29 dB; depth of penetration 10 mm; 
width: 12.08 mm) and color doppler mode (frequency: 32 MHz; PRF: 30 KHz; acquisition frame 
rate: 33 lps; gain: 30 dB). Measurement was performed using build-in cardiac package of RV and 
PV function to obtain parameters of heart rate (beats per min, BPM), cardiac output (mL/min) by 
LV area long under B-mode and LV area under M-mode, and PAT (ms), PET (ms), PAT/PET 
ratio under PW Doppler mode (8). 
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