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Abstract

Background

Recent innovations in single-cell Assay for Transposase Accessible Chromatin using
sequencing (scATAC-seq) enable profiling of the epigenetic landscape of thousands of
individual cells. scATAC-seq data analysis presents unique methodological challenges.
scATAC-seq experiments sample DNA, which, due to low copy numbers (diploid in
humans) lead to inherent data sparsity (1-10% of peaks detected per cell) compared to
transcriptomic (scRNA-seq) data (20-50% of expressed genes detected per cell). Such
challenges in data generation emphasize the need for informative features to assess cell

heterogeneity at the chromatin level.
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Results

We present a benchmarking framework that was applied to 10 computational methods
for scATAC-seq on 13 synthetic and real datasets from different assays, profiling cell
types from diverse tissues and organisms. Methods for processing and featurizing
scATAC-seq data were evaluated by their ability to discriminate cell types when
combined with common unsupervised clustering approaches. We rank evaluated
methods and discuss computational challenges associated with scATAC-seq analysis
including inherently sparse data, determination of features, peak calling, the effects of
sequencing coverage and noise, and clustering performance. Running times and

memory requirements are also discussed.

Conclusions

This reference summary of scATAC-seq methods offers recommendations for best
practices with consideration for both the non-expert user and the methods developer.
Despite variation across methods and datasets, SnapATAC, Cusanovich2018, and
cisTopic outperform other methods in separating cell populations of different coverages
and noise levels in both synthetic and real datasets. Notably, SnapATAC was the only
method able to analyze a large dataset (> 80,000 cells).

Keywords: scATAC-seq, feature matrix, benchmarking, regulatory genomics,

clustering, visualization, featurization, dimensionality reduction

Background

Individual cell types within heterogenous tissues coordinate to perform complex
biological functions, many of which are not fully understood. Recent technological
advances in single-cell methodologies have resulted in an increased capacity to study
cell-to-cell heterogeneity and the underlying molecular regulatory programs that drive

such variation.

To date, most single-cell profiling efforts have been performed via quantification of
RNA by sequencing (scRNA-seq). While this provides snapshots of inter- and intra-

cellular variability in gene expression, investigation of the epigenomic landscape in
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single cells holds great promise for uncovering an important component of the
regulatory logic of gene expression programs. Enabled by advances in array-based
technologies, droplet microfluidics and combinatorial indexing through split-pooling[1]
(Fig. 1a), single-cell Assay for Transposase Accessible Chromatin using sequencing
(scATAC-seq) has recently overcome previous limitations of technology and scale to
generate chromatin accessibility data for thousands of single cells in a relatively easy

and cost-effective manner.

However, the analysis of scATAC-seq data presents methodological challenges distinct
from those of single-cell transcriptomic (scRNA-seq) data. The primary difficulty arises
from a difference in the number of RNA vs DNA molecules available for profiling in
single cells. While for an expressed gene several RN A molecules are present in a single
cell, scATAC-seq assays profile DNA, a molecule which is present in only few copies
per cell (two in a diploid organism). The low copy number results in an inherent per-
cell data sparsity, where only 1-10% of expected accessible peaks are detected in single
cells from scATAC-seq data, compared to 20-50% of expressed genes detected in single
cells from scRNA-seq data. This emphasizes the need to recover informative features
from sparse data to assess variability between cells in scATAC-seq analyses. Further,

determination of which features best define cell state is currently unclear.

The difference in readout (gene expression versus chromatin accessibility) has also
motivated a variety of approaches to selecting informative features in scATAC-seq
methods. While most processing pipelines share common upstream processing steps
(i.e. alignment, peak calling, and counting; Fig. 1b), existing computational approaches
differ in the way they obtain a feature matrix for downstream analyses. For example,
some methods select features based on the sequence content of accessible regions (e.g. k-
mer frequencies[2, 3] or transcription factor (TF) motifs [3]), whereas other methods
select features based on the genomic coordinates of the accessible regions (e.g. extended
promoter regions to determine chromatin activity surrounding genes [2, 4]). Finally, the
potential feature set in scATAC-seq, which includes genome-wide regions of accessible
chromatin (Fig. 1c), is typically 10-20x the size of the feature set in scRNA-seq
experiments (which is defined and limited by the number of genes expressed). This
larger feature set could be valuable in distinguishing a wider variety of cell populations

and inferring the dynamics underlying cell organization into complex tissues[5].
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Figure 1. Schematic overview of single cell ATAC-seq assays and analysis steps. (a)

Single cell ATAC libraries are created from single cells that have been exposed to the

Tn5 transposase using one of three protocols: 1) Single cells are individually barcoded

by a split-and-pool approach where unique barcodes added at each step can be used to

identify reads originating from each cell 2) microfluidic droplet-based technologies

provided by 10x Genomics and BioRad are used to extract and label DNA from each

cell or 3) each single cell is deposited into a multi-well plate or array from ICELLS or

Fluidigm C1 for library preparation. (b) After sequencing, the raw reads obtained in

fastq format for each single cell are mapped to a reference genome, producing aligned

reads in .bam format. Finally, peak calling and read counting return the genomic
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position and the read count files in. bed and .txt format, respectively. Data in these file
formats is then used for downstream analysis. (c) ATAC-seq peaks in bulk samples can
generally be recapitulated in aggregated single cell samples, but not every single cell
has a fragment at every peak. A feature matrix can be constructed from single cells (e.g.,
by counting the number of reads at each peak for every cell). (d) Following construction
of the feature matrix, common downstream analyses including visualization, clustering,
trajectory inference, determination of differential accessibility, and the prediction of cis-
regulatory networks can be performed using the methods benchmarked in this

manuscript.

However, the novelty and assay-specific challenges associated with these large-scale
scATAC-seq datasets and the lack of analysis guidelines have resulted in diverging
computational strategies to aggregate data across such an immense feature space with

no clear indication as to which strategy or strategies are most advantageous.

Here, we provide the first benchmark assessment of computational methods for the
analysis of scATAC-seq data. We discuss the impact of feature matrix construction
strategies (e.g. sequence content-based vs. genomic coordinates) on common
downstream analysis, with a focus on clustering and visualization. This comprehensive
survey of current available methods provides user-specific recommendations for best
practices that aim to maximize inference-capability for current and future scATAC-seq
workflows. Importantly, we provide more than 100 well-documented Jupyter
Notebooks (https://github.com/pinellolab/scATAC-benchmarking/) to easily reproduce

our analyses. We anticipate that this will be a valuable resource for future scATAC-seq

benchmark studies.

Results
Benchmark Framework

For this benchmarking study we created an unbiased framework to qualitatively and
quantitatively survey the ability of available scATAC-seq methods to featurize
chromatin accessibility data. Evaluated using this framework were several datasets of

divergent size and profiling technologies. Using widely accepted quantitative metrics,
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143 we explored how differences in feature matrix construction influence outcomes in
144  exploratory visualization and clustering, two common downstream analyses. The

145  general overview of our framework is presented in Fig. 2.

146  For this study we collected public data from three published studies (aligned files in

147 BAM format) and generated ten simulated datasets with various coverages and noise
148  levels (see Methods). To calculate feature matrices for downstream analysis, for each
149  method we followed the guidelines provided in the documentation in the original study
150  or as suggested by the respective authors. After feature matrix construction, we used
151  three commonly used clustering approaches (K-means, Louvain and Hierarchical

152 Clustering)[6] and UMAP[7] projection to find putative subpopulations and visualize
153  cell-to-cell similarities for each method. Next, the quality of the clustering solutions was
154  evaluated by adjusted random index (ARI), adjusted mutual information (AMI) and

155  homogeneity (H) when FACS-sorting labels or tissues were available (gold standard); or
156 by a proposed Gini-index-based metric called Residual Average Gini Index (RAGI)

157  when only known marker genes were available (silver standard). Finally, based on

158  these metrics, the methods were ranked by the quality of their clustering solutions

159  across datasets.
160
161 Methods overview and featurization of chromatin accessibility data

162  Several computational methods have been developed to address the inherent sparsity
163  and high dimensionality of single cell ATAC-seq data, including BROCKMAN]3],

164  chromVAR]2], Cicero[8], cisTopic[9], Cusanovich2018[1, 10, 11], Gene Scoring[12],

165  scABC[13], Scasat[14], SCRAT[4], and SnapATAC[15]. Based on the proposed workflow
166  of each method, we were able to compute different feature matrices defined as a

167  features-by-cells matrix (e.g. read counts for each cell (columns) in a given open

168  chromatin peak feature (rows) ) that could then be readily used for downstream analyses
169  such as clustering. Starting from single cell BAM files, the feature matrix construction
170  can be roughly summarized into four different common modules: define regions, count
171  features, transformation, and dimensionality reduction as illustrated in Fig. 2. Not every

172  method uses all steps, therefore we provide below, a short summary of the strategies
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173  adopted by each method and a per module discussion to highlight key similarities and

174  differences (for a more detailed description of each strategy see Methods).

Feature Matrix Construction

Define regions Count features Transformation Dimension Reduction

Peaks on bulk data Peaks Binarize

PCA
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Bins
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175

176  Figure 2. Benchmarking workflow. Starting from aligned read files in .bam format,
177  feature matrices were constructed using each method. The feature matrix construction
178  techniques used by each method were grouped into four broad categories: Define regions,
179  Count features, Transformation and Dimension Reduction. A colored dot under a technique
180 indicates that the method (signified by the respective color in the legend on the right)
181  uses that technique. For each method, feature matrix files (defined as columns as cells
182  and rows as features) are calculated and used to perform hierarchical, Louvain and k-
183  means clustering analysis. For datasets with a ground truth such as FACS-sorting labels
184  or known tissues, clustering evaluation was performed according to the Adjusted
185 Random Index (ARI), Adjusted Mutual Information (AMI) and homogeneity (H) scores.
186  For datasets without ground truth, the clustering solutions were evaluated according to
187  a Residual Average Gini Index (RAGI), a metric that compares cluster separation based
188  on known marker genes against housekeeping genes. Lastly, a final score is assigned to
189  each method.
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190  Briefly, BROCKMAN][3] represents genomic sequences by gapped k-mers (short DNA
191  sequences of length k) within transposon integration sites and infers the variation in k-
192  mer occupancy using principal component analysis (PCA). chromVAR][2] estimates the
193  dispersion of chromatin accessibility within peaks sharing the same feature, e.g. motifs
194  or k-mers. Cicero[8] calculates a gene activity score based on accessibility at a promoter
195 region and the regulatory potential of peaks nearby. cisTopic[9] applies Latent Dirichlet
196  Allocation (LDA) (a Bayesian topic modeling approach commonly used in natural

197 language processing) to identify cell states from topic-cell distribution and explore cis-
198 regulatory regions from region-topic distribution. Previous approaches that utilize

199 latent semantic indexing (LSI) (termed here as Cusanovich2018)[1, 10, 11] first partition
200 the genome into windows, normalize reads within windows using the term frequency-
201  inverse document frequency transformation (TF-IDF), reduce dimensionality using
202  singular value decomposition (SVD), and perform a first-round of clustering (referred
203  toas ‘insilico cell sorting”) to generate clades and call peaks within them. Finally, the
204  clusters are refined with a second-round of clustering after TF-IDF and SVD based on
205 read counts in peaks. The Gene Scoring method[12] assigns each gene an accessibility
206  score by summarizing peaks near its transcription start site (TSS) and weighting them
207 by an exponential decay function based on their distances to the TSS. scABC[13] first
208  calculates a global weight for each cell by taking into account the number of distinct
209 reads in the regions flanking peaks (to estimate the expected background). Based on
210  these weights, it then uses weighted k-medoids to cluster cells based on the reads in
211  peaks. Scasat[14] binarizes peak accessibility and uses multidimensional scaling (MDS)
212 based on the Jaccard distance to reduce dimensionality before clustering. SCRAT[4]
213 summarizes read counts on different regulatory features (e.g. transcription factor

214 binding motifs, gene TSS regions). SnapATAC[15] segments the genome into

215  uniformly-sized bins and adjusts for differences in library size between cells using a
216  regression-based normalization method; finally PCA is performed to select the most

217  significant components for clustering analysis.

218  Define Regions

219  An essential aspect of feature matrix construction is the selection of a set of regions to

220  describe the data (e.g. putative regulatory elements such as peaks, promoters etc.). Most
221  methods described above, including chromVAR, Cicero, cisTopic, Gene Scoring, scABC,
222  and Scasat, define regions based on peak calling from either a reference bulk ATAC-seq

223  profile or an aggregated single cell ATAC-seq profile. Cusanovich2018, as briefly

8
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mentioned above, instead of aggregating single cell to call peaks, first creates pseudo-
bulk clades by performing hierarchical clustering on the TF-IDF and SVD transformed
matrix using the top frequently accessible windows. Then peaks are called by
aggregating cells within each pseudo-bulk clade. In addition to relying on peaks, some
methods have proposed different strategies. BROCKMAN uses the union of regions
around transposon integration sites. Cusanovich2018 (before in silico sorting) and
SnapATAC segment the genomes into fixed-size bins (windows) and count features

within each bin.

Count Features

Once feature regions are defined, raw features within these regions are counted. Note
that some methods (e.g. chromVAR) may support the counting of multiple features. For
cisTopic, Cusanovich2018, scABC, and Scasat, reads overlapping peaks are counted. For
Cusanovich2018 (before the in silico sorting step) and SnapATAC, reads overlapping bins
are counted. k-mers are counted under peaks for chromVAR while gapped k-mers are
counted for BROCKMAN around transposase cut sites. Similarly, transcription factor
motifs (e.g. from the JASPAR database[16]) can be used as features by counting reads
overlapping their binding sites in peaks (chromVAR) or genome-wide (SCRAT). If
predefined genomic annotations such as coding genes are given, Gene Scoring, Cicero,
and SCRAT use gene TSSs as anchor points to calculate gene enrichment scores based

on reads nearby or just within peaks nearby.

Transformation

After building the initial raw feature matrix using the counting step, different
transformation methods can be performed. Binarization of read counts is used by five
out of the ten evaluated methods: Cicero, cisTopic, Cusanovich2018, Scasat, and
SnapATAC. (Fig. 2). This step is based on the assumption that each site is present at
most twice (for diploid genomes) and that the count matrix is inherently sparse.
Binarization is advantageous in alleviating challenges arising from sequencing depth or
PCR amplification artifacts. SnapATAC and Scasat convert the binary count matrix into
a cell-pairwise Jaccard index similarity matrix. Cusanovich2018 normalizes the binary
count matrix using the TF-IDF transformation. Cicero weights feature sites by their co-
accessibility, while Gene Scoring weights sites by a decaying function based on its
distance to a gene TSS. Both chromVAR and SnapATAC perform a read coverage bias

correction to account for the influence of sample depth. scABC also implements a
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257  similar step but calculates a weight for each cell; even if these weights are not used to
258  transform the matrix, they are used later in the clustering procedure. SCRAT adjusts for
259  both library size and region length. chromVAR creates ‘background’ peaks consisting of
260 an equal number of peaks matched for both average accessibility and GC content to

261  calculate bias-corrected deviation. Both BROCKMAN and chromVAR compute z-scores

262  to measure the gain or loss of chromatin accessibility across cells.

263  Dimensionality Reduction

264  In the final step before downstream analysis, several methods apply different

265 dimensionality reduction techniques to project the cells into a space of fewer

266  dimensions. This step can refine the feature space mitigating redundant features and
267  potential artifacts, and potentially reducing the computation time of downstream

268  analysis (Fig. 2). PCA is the most commonly used method (used by BROCKMAN,
269  SnapATAC, and Cusanovich2018). cisTopic uses latent Dirichlet allocation (LDA) to
270  generate two distributions including topic-cell distribution and region-topic

271  distribution. Choosing the top topics based on the topic-cell distribution reduces the
272 dimensionality. Scasat uses multidimensional scaling (MDS). When reviewing the
273  different methods to include in our benchmark, we noticed that not all methods

274  perform a dimensionality reduction step, which could skew the relative performance
275  across methods. Therefore, for chromVAR, Cicero (gene activity score), Gene Scoring,
276 scABC, and SCRAT, we considered in addition to the original feature matrix, also a new
277  feature matrix after PCA transformation, since this is simple and commonly used

278  technique for dimensionality reduction.

279  To better evaluate the effects of different modules including define regions, count features,
280  transformation, and dimensionality reduction, we also considered a simple control method,
281  referred to as Control-Naive, by combining the most common and simple steps for

282  building a feature matrix, i.e. counting reads within peaks to obtain a peaks-by-cells
283  raw count matrix and then performing PCA on it (the number of top principal

284  components was determined based on the elbow plot for all the methods). Since the

285  feature matrix of scABC is also a peaks-by-cells raw count matrix, this matrix after PCA
286  will correspond to the one obtained by the Control-Naive method (to avoid

287 redundancies, in our assessment we refer to this matrix as Control-Naive).

10
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We also noticed that some methods might slightly diverge from the proposed four
modules common framework. For example, Cicero calculates gene activity scores by
tirst performing two transformations (binarize and weight features) and then
performing the counting step around the annotated TSS. We believe the proposed
modularization of the of the feature matrix construction can still serve as a useful
framework to represent the core components of the different methods and provides an

intuitive and informative summary of the diverse scATAC-seq methodologies.

Once dimensionality reduction is completed, the transformed feature matrix can be
used for unbiased clustering, visualization, or other downstream analyses. Here we
have used the final feature matrices generated by each scATAC-seq analysis method,
and evaluated their performance in uncovering different populations by unsupervised

clustering.
Clustering approaches and metrics used for performance evaluation

This study employed three diverse types of commonly used unsupervised clustering
methods for single cell analysis [6]: K-means clustering, Hierarchical Clustering, and the

Louvain community detection algorithm (see Methods).

Clustering results were evaluated by three commonly used metrics: adjusted random
index (ARI), adjusted mutual information (AMI) and homogeneity when a gold
standard solution was available (known labels for the simulation data and FACS-sorted
cell populations or known tissues for the real datasets). We propose a Gini-index-based
metric called Residual Average Gini Index (RAGI), which was used to evaluate the
clustering results when no ground truth was available and only a few marker genes
were known by which populations could be discriminated (see Methods). For each
metric, we defined the clustering score as the highest score amongst the three clustering
methods, i.e. the score which corresponded to the clustering solution that maximized

the metric.

This framework allowed for benchmarking the ability of each strategy to featurize
chromatin accessibility data and its impact on important downstream analyses such as
clustering and visualization. The following sections present the results of this

evaluation for all above-described synthetic and real scATAC-seq datasets.

11
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Clustering performance on simulated datasets

We simulated 10 scATAC-seq datasets using available bulk ATAC-seq datasets with
clear annotations from bone marrow and erythropoiesis[5, 17] using varying noise
levels and read coverages. Briefly, to generate the peak by cell matrices, we defined a
noise parameter (between 0 and 1) as the proportion of reads occurring in a random
peak from one of the sorted populations. The remaining proportion of reads was
distributed as a function of the bulk sample (see Methods). A feature matrix with a
noise level of 0 preserved perfectly the underlying cell type specificity of the reads
within peaks. Conversely, a feature matrix with a noise level of 1, contained no
information to discriminate cell types based on the reads within peaks. In our study, we
considered three noise levels: no noise (0), moderate noise (0.2) and high noise (0.4). To
better and more fairly evaluate the contribution of the core steps of each method (i.e.
count features, transformation and dimensionality reduction) regardless of the preprocessing
steps usually excluded from these methods (reads filtering, alignment, peak calling,
etc.), we compared the performance of each method using a set of predefined peak
regions from bulk ATAC-seq datasets. We selected the top 80,000 peaks based on the
number of cells in which peaks were observed (each peak that was present in at least

one cell) for all methods and all synthetic datasets.

Using the bulk ATAC-seq bone marrow dataset, we simulated five additional datasets
to explore the effect of coverage on clustering performance (5,000 fragments, 2,500

fragments, 1,000 fragments, 500 fragments, 250 fragments respectively per cell).

Each method was used to analyze all synthetic datasets as suggested in the method

documentation (see Sup Note 1 and Sup Fig. 1).

Simulated bone marrow datasets

We generated chromatin accessibility profiles (2,500 fragments per cell) based on six
different FACS-sorted bulk cell populations: hematopoietic stem cells (HSCs), common
myeloid progenitor cells (CMPs), erythroid cells (Ery), and other three lymphoid cell
types: natural killer cells (NK), CD4 and CD8 T-cells (see Fig. 3a). We used ARI, AMI
and homogeneity metrics to compare the clustering solutions with the known cell type
labels (Fig. 3b, Sup Fig. 2, Sup Table 1). The top three methods based on these
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simulation settings were cisTopic, Cusanovich2018, and SnapATAC. They performed
equally well with no noise and moderate noise (with clustering scores close to 1.0) (Sup
Fig. 2, Sup Table 2). At a noise level of 0.4, the methods showed more separation in
performance accordingly to the three metrics (Fig. 3b, Sup Table 3). SnapATAC,
Cusanovich2018, and cisTopic clearly outperformed the Control-Naive method with
consistently higher clustering scores across all metrics. Scasat performed slightly better
than the Control-Naive method, and the remaining methods under-performed relative
to the Control-Naive method. For scABC (i.e. peaks-by-cells raw count matrix),
Hierarchical Clustering performs much better than the other two clustering methods.
chromVAR performance using k-mers as features was superior to the approach using
motifs. Another k-mer-based method, BROCKMAN demonstrated similar performance
to the k-mer-based chromVAR method. Motif-based SCRAT performed better than
motif-based chromVAR. Both Cicero gene activity scores and Gene Scoring (which
summarize the chromatin accessibility around coding annotations without a
dimensionality reduction step) generally performed poorly. PCA boosted performance
of scABC, Cicero, and Gene Scoring. This step improved clustering performance
regardless of the clustering method (also we noted again that scABC after PCA is
equivalent to the Control-Naive method), especially for the Louvain approach. PCA
also slightly boosted performance of the k-mer-based chromVAR but did not markedly
improve the results of the motif-based chromVAR or SCRAT analyses.

13
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371
372  Figure 3. Benchmarking results in simulated bone marrow datasets at a noise level of 0.4
373  and a coverage of 2,500 fragments. (a) Cell types used to create the simulated dataset. (b)
374 Dot plot of scores for each metric to quantitatively measure the clustering performance
375 of each method, sorted by maximum ARI score. (¢) The two top-scoring pairings of
376  scATAC-seq analysis method and clustering technique. Cell cluster assignments from
377  each method are shown using the colors in the legend on the left. (d) UMAP visualization
378  of the feature matrix produced by each method for the simulated dataset. Individual cells
379  are colored indicating the cell type labels shown in (a).
380
381  We next investigated qualitatively the obtained clustering solutions, using the
382 respective feature matrices to project the cells onto a 2-D space using UMAP and
383  colored them based on the obtained clustering solutions (Sup Fig. 3) or based on the
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true population labels used to generate the data (Fig. 3d). The top two clustering
solutions based on the ARI (SnapATAC with k-means and SnapATAC with Louvain)

are shown for ease of comparison (Fig. 3c).

Cusanovich2018 and SnapATAC are the only two methods that clearly separated all six
populations. cisTopic slightly mixed CD4 and CD8 T-cells. Scasat and the Control-
Naive method failed to separate CD4 and CD8 T-cell populations. BROCKMAN slightly
mixed NK with CD4 and CDS8 T-cells and could not further separate CD4 and CD8 T-
cells. It also failed to clearly separate HSC and CMP. Both kmer-based and motif-based
chromVAR as well as SCRAT could only separate the Ery population while failing to
separate HSC and CMP as well as CD4, CD8 T-cells, and NK. The chromVAR k-mers-
based method mixed HSC and CMP to a lesser extent compared to the motifs-based
method. There was no clear separation of cells using scABC (the peaks-by-cells raw
count matrix), Cicero, or Gene Scoring. We observed that PCA clearly improved the
separation of cell populations for Cicero and Gene Scoring. It also slightly improved the
separation of CD4, CD8 T-cells, and NK populations by k-mer-based chromVAR. No
clear improvement was observed for the motif-based chromVAR, or SCRAT methods.
We further observed that a lack of visual separation of cell types in the UMAP plots
(scABC, Cicero, and Gene Scoring), corresponded with substantial variation between
the performances of the three clustering methods, showing better performance in the k-

means clustering (Fig. 3b,d).

All methods except for Cusanovich2018 and SnapATAC demonstrated declining
performance with increased noise level (Sup Fig. 2, 4a). Cusanovich2018 and SnapATAC
were more robust to noise, showing no noticeable changes at increasing noise levels,
while cisTopic was slightly more sensitive to noise; its performance dropped markedly

when the noise level was increased to 0.4.

Next, the effect of the coverage on clustering performance was investigated. We
progressively decreased the number of fragments per cell from a high coverage of 5,000
fragments, to a medium coverage of 2,500 fragments and 1,000 fragments, then to a low
coverage of 500 fragments and finally to 250 fragments. The performance of all methods
declined as coverage was decreased. (Sup Fig. 4b, Sup Fig. 5, Sup Table 4-5-6-7-8).
Cusanovich2018, SnapATAC, Scasat, and Control-Naive are relatively robust to low
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coverage and outperform other methods. cisTopic worked well with high coverage but
in contrast to the above listed methods, was more sensitive to lower coverages (Sup Fig.
5e).

Simulated erythropoiesis datasets

Following the simulation of discrete sorted cell populations, we simulated three
scATAC-seq datasets aimed at mimicking the continuous developmental erythropoiesis
process and encompassing the following twelve populations: hematopoietic stem cells
(HSC), common myeloid progenitors (CMP), megakaryocyte-erythroid progenitor
(MEP), multipotent progenitors (MPP), myeloid progenitors (MyP), colony forming
unit-erythroid (CFU-E), proerythroblasts (ProE1), proerythroblasts (ProE2), basophilic
erythroblasts (BasoE), polychromatic erytrhoblasts (PolyE), orthochromatic
erythroblasts (OrthoE) and OrthoE and reticulocytes (Orth/Ret). These datasets were
generated as before with three noise levels (0, 0.2 and 0.4) and with 2,500 fragments per

cell.

To first quantitatively evaluate the clustering solutions we used ARI, AMI and the
homogeneity metrics (Sup Fig. 6 and Sup Table 9). Without noise, SnapATAC, cisTopic
BROCKMAN, Cusanovich2018, and Scasat consistently outperform the Control-Naive
across the three metrics (Sup Fig.6a). chromVAR as before, performs better using k-
mers as features than when using motifs. SCRAT and scABC work as well as k-mers-
based chromVAR. Again, methods such as Cicero and Gene Scoring that only
summarize chromatin accessibility around TSS perform poorly. For scABC, Cicero and
Gene Scoring, we also notice that there are significant discrepancies between the three
clustering methods, but their performances become similar after PCA (scABC after PCA
is equivalent to the Control-Naive method). Again, we observe that PCA can
significantly improve the clustering performance of Louvain for scABC, Cicero and
Gene Scoring but not for chromVAR and SCRAT.

As before, to qualitatively assess population separation, we inspected UMAP
projections applied to the noise-free simulated dataset (Sup Fig. 6a). In accordance with
the quantitative comparison, cisTopic, Cusanovich2018, SnapATAC, and BROCKMAN
demonstrate better performance in separating cell types compared to the Control-Naive

method and are able to further separate BasoE and PolyE. Moreover, SnapATAC can
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452  clearly distinguish CFU-E, ProE1, ProE2 while cisTopic, Cusanovich2018, and

453  BROCKMAN are only able to separate ProE2 out of these three populations. Scasat

454  performs similarly to the Control-Naive method. chromVAR with k-mers as features
455  and SCRAT are able to isolate six major groups including HSCs-MPPs, CMP, MEP,

456  Myp, CFU-E-ProE1-ProE2, and BasoE-PolyE-OrthoE-Orth/Ret. chromVAR with k-mers
457  performs well in preserving the order of CFU-E-ProE1-ProE2 and BasoE-PolyE-OrthoE-
458  Orth/Ret. SCRAT can further separate BasoE-PolyE from OrthoE-Orth/Ret while mixing
459  up CFU-E-ProE1-ProE2. As before, we noticed that chromVAR using k-mers as features
460 obtained a better separation of cell types than when using motifs. scABC is able to

461  preserve well the order of major groups in a continuous way but fails to separate CFU-
462  E-ProE1-ProE2 and OrthoE-Orth/Ret. Cicero gene activity score and Gene Scoring

463  mixed different cell types but after a simple PCA step they clearly separate cells into
464  three major groups. scABC did not perform well and produced small noisy clusters

465  with different cell types mixed together.

466

467  As expected, we observed that increasing the level of noise resulted in clustering

468  performance decrease and a decline of visual separation of cell types for all the methods
469  (Sup Fig. 4c, Sup Fig. 6, Sup Table 10-11). SnapATAC, cisTopic, and Cusanovich2018
470  performed reasonably well when increasing the noise level, with SnapATAC the most
471  robust among the three.

472

473  Clustering performance on real datasets

474  Following the benchmark of the synthetic datasets, we assessed the performance of the
475 methods on real datasets. These datasets were generated using different technologies:
476  the Fluidigm C1 array[18], the 10X Genomics droplet based scATAC platform, and a
477  recently-optimized split-pool protocol[1]. Each real dataset used was fundamentally

478  different in its cellular makeup as well as size and subpopulation organization. Notably,
479  as’true positive’ labels are not always available, in addition to the metrics used on the
480 simulated datasets, here we introduced the RAGI, a simple metric based on the Gini

481 Index that can be adopted when marker genes for the expected populations are known
482  (see Methods). In our assessment of Cusanovich2018, to make a fair comparison, we use
483  first the same set of peaks used for other methods instead of the peaks called from its

484  pseudo-bulk-based procedure. However, since this strategy may be important for the
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485  final clustering performance, the pseudo-bulk based peak calling strategy is tested and

486  discussed in a subsequent section.

487  Buenrostro2018 dataset

488  The first and smallest dataset we used in our benchmarking contains single cell ATAC-

489  seq data from the human hematopoietic system (hereafter Buenrostro2018)[18]. This

490  dataset consists of 2034 hematopoietic cells that were profiled and FACS-sorted from 10
491  cell populations including hematopoietic stem cells (HSCs), multipotent progenitors
492  (MPPs), lymphoid-primed multipotent progenitors (LMPPs), common myeloid

493  progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), GMP-like cells,
494  megakaryocyte-erythroid progenitors (MEPs), common lymphoid progenitor (CLPs),
495 monocytes (mono) and plasmacytoid dendritic cells (pDCs). Fig. 4a illustrates the

496 roadmap of hematopoietic differentiation. For this dataset, the FACS-sorting labels are
497  used as gold standard. The analysis details for each method are documented in Sup
498  Note 2.

499

500 We started by evaluating the clustering solutions based on the feature matrices

501 generated by the different methods. We used the same metrics used for the synthetic
502 datasets: ARI, AMI and homogeneity (Fig. 4b, Sup Table 12). cisTopic, Cusanovich2018,
503 chromVAR, SnapATAC, and Scasat outperform the other methods across all three

504 metrics. We also observed that chromVAR with k-mers or TF motifs and with or

505 without PCA performs consistently well. As before, k-mers-based features work better
506 than motif-based features. This can be also observed when comparing BROCKMAN,
507 another k-mers-based method, with SCRAT, which is a motifs-based method. TSS based
508 methods including Cicero and Gene Scoring did not perform well. Cicero requires a
509 preprocessing step to assess cell similarity; poor performance might be due to the

510 internally incorrectly inferred coordinates (our assessment used the t-SNE procedure as
511 suggested in their documentation). Implementing PCA consistently improves the

512  performance of scABC (as mentioned before, scABC after PCA is equivalent to the

513  Control-Naive method) and Cicero but does not impact the performance of chromVAR,
514 SCRAT, and Gene Scoring. We also observed that for this dataset, Louvain algorithm
515 works consistently well across different metrics and methods and performs better than
516  hierarchical clustering and k-means in almost all the cases.

517
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518 We also qualitatively assessed the separation of different cell types by visualizing cells
519  in UMAP projections based on the FACS-sorted labels (Fig. 4d) and clustering solutions
520 (Sup Fig. 7). Fig. 4c shows the best two combinations based on ARI: cisTopic with

521  Louvain and Cusanovich2018 with Louvain (the complete ranking is presented in Sup
522 Table 12).
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525 Figure 4. Benchmarking results using the Buenrostro2018 scATAC-seq dataset. (a)
526  Developmental roadmap of cell types analyzed. (b) Dot plot of scores for each metric to
527  quantitatively measure the clustering performance of each method, sorted by maximum
528 ARI score. (c) The two top-scoring pairings of scATAC-seq analysis method and
529  clustering technique. UMAP visualization of the feature matrix produced by each method
530 for the Buenrostro2018 dataset. Individual cells are colored indicating the cell type labels

531 shown in (a).
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As Fig. 4d shows, in accordance with the clustering analyses, cisTopic, Cusanovich2018,
Scasat, SnapATAC, and chromVAR can generally separate cell types, and reasonably
capture the expected hematopoietic hierarchy. cisTopic and SnapATAC show a clear
and compact separation among groups, with SnapATAC recovering finer structure
within each cell type cluster. chromVAR with k-mers or motifs corresponds to a more
continuous progression of the different cell types. Control-Naive and BROCKMAN
perform comparably in distinguishing cell types and preserving the continuous
hematopoietic differentiation. Cicero gene activity scores, SCRAT, and scABC show
ambiguous patterns of distinct cell populations while Gene Scoring fails to separate
different cell types. For Cicero gene activity score, after performing PCA, the separation
of different cells is noticeably improved. For SCRAT, performing PCA does not show

clear improvement.

Peripheral blood mono nuclear cells (PBMCs) 10X dataset

Next, we investigated a recent dataset produced by 10X Genomics profiling peripheral

blood mononuclear cells (PBMCs) from a single healthy donor. In this dataset, 5335
single nuclei were profiled (~42k read pairs per cell); no cell annotations are provided.
Based on recent studies [9, 19], we expected ~8 populations: CD34+, Natural Killer and
Dendritic cells, Monocytes, lymphocyte B and lymphocyte T cells, together with
terminally differentiated CD4 and CDS8 cells. Therefore, we used 8 as the number of
expected populations for the clustering procedures. The analysis details for each

method are documented in Sup Note 3.

Several marker genes have been proposed to label the different populations or to
annotate clustering solutions for PMBCs [9, 19]. To measure cluster relevance based on
these marker genes, we can annotate the clusters (or alternatively any group of cells)
according to the accessibility values at those marker genes. In addition, accessibility at
marker genes should be more variable between clusters than accessibility at
housekeeping genes (since they should be, by definition, more equally expressed across
different populations). Based on these ideas, we proposed and calculated the Residual
Average Gini Index (RAGI) score (see Methods) contrasting marker and housekeeping
genes (Fig. 5a, Sup Table 13). For reasonable clustering solutions, we expect that the
accessibility of marker genes defines clear populations corresponding to one or few
clusters, whereas accessibility of the housekeeping genes is broadly distributed across

all the clusters.
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566  Figure 5. Benchmarking results using scATAC-seq data for 5k Peripheral blood
567 mononuclear cells (PBMCs) from 10x Genomics. (a) Dot plot of RAGI scores for each
568 method, sorted by the maximum RAGI score. A positive RAGI value indicates that a
569 method is able to produce a clustering of PBMCs in which chromatin accessibility of each
570 marker gene is high in only a few clusters relative to the number of clusters with high
571 accessibility of housekeeping genes. (b) UMAP visualization of the feature matrix
572 produced by the top two methods (top row: SnapATAC, bottom row: chromVAR using
573  kmers). Chromatin accessibility of SI00A12 (left, Monocyte marker gene), MS4A1 (center,
574  B-cell marker gene) and GPDH (right, housekeeping gene) are projected onto the
575  visualization. (c) UMARP visualization of the feature matrix produced by each method for
576  the 5k PBMCs dataset from 10x genomics. Individual cells are colored indicating cluster
577  assignments using Louvain clustering.
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As expected, methods with the highest performance such as SnapATAC and
chromVAR, showed a higher average accessibility for just one cluster for the same
marker gene, while lower performing methods such as SCRAT or Gene Scoring showed
higher average accessibility in multiple clusters for the same marker gene, further
motivating the use of the RAGI metric (Sup Fig. 8). Fig. 5b shows for the top two
performing methods based on RAGI (SnapATAC and chromVAR with k-mers) the gene
accessibility patterns for 3 genes (5100A12 - Monocytes-specific, MS4A1 - B cells specific
and GAPDH - housekeeping.) The same three genes are also shown in UMAP plots of
the other methods (Sup Fig. 9). Again, we observed that Louvain algorithm performed
better than k-means and hierarchical clustering for almost all scATAC-seq methods.
Importantly, negative RAGI score for a method (see for example the solutions obtained
by the Gene Scoring in Fig. 5a, Sup Fig. 9) may suggest that its clustering solutions are

defined by housekeeping genes rather than informative marker genes

We also qualitatively evaluated the clustering solutions of the different methods using
UMAP projections (Fig. 5c, Sup Fig. 10). We observed two major groups for all methods
except for scABC. Among these methods, the UMAP projections based on feature
matrices obtained by Control-Naive, cisTopic, Cusanovich2018, Scasat SnapATAC,
BROCKMAN and chromVAR showed additional smaller groups and finer structures.
For Cicero gene activity scores, performing PCA helps to improve the separation of
more putative cell types. Instead for SCRAT and Gene Scoring, the PCA step did not

improve the separation.

Given that the ranking of methods in datasets with ground truth is similar to the
ranking based on the RAGI metric, we believe this simple approach is a reasonable
surrogate metric that can be useful for evaluating unannotated datasets, a common

scenario in single cell omics studies.

sci-ATAC-seq mouse dataset

The last dataset analyzed in our benchmark consists of sciATAC-seq data from 13 adult
mouse tissues (bone marrow, cerebellum, heart, kidney, large intestine, liver, lung, pre-
frontal cortex, small intestine, spleen, testes, thymus and whole brain), of which 4 were

analyzed in duplicate for a total of 17 samples and 81,173 single cells[1]. Each tissue can
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be interpreted as a coarse ground truth, used later to evaluate clustering solutions (Fig.

6a). The analysis details for each method are documented in Sup Note 4.
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Figure 6. Benchmarking results using the downsampled sci-ATAC-seq mouse dataset

from 13 adult mouse tissues. (b) Dot plot of scores for each metric to quantitatively

measure the clustering performance of each method, sorted by maximum ARI score. (c)

The two top-scoring pairings of scATAC-seq analysis method and clustering technique.

Cell cluster assignments from each method are shown using the colors in the legend on
the left. (d) UMAP visualization of the feature matrix produced by each method for the

downsampled sci-ATAC-seq mouse dataset. Individual cells colors indicate the cell type.
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Despite using a machine with 1 TB of memory, almost all the methods failed to even
load this dataset, owing to its size. The only method capable of processing this dataset
in a reasonable time was SnapATAC (~700 minutes). The other methods failed to run
due to memory requirements. To understand the causes of this failure we did an in-
depth analysis of their scalability looking at their source code (Sup Note 5). Briefly, we
found that the majority of the methods try to load the entire dataset in the central
memory while SnapATAC uses a custom file format (.snap) based on HDF5

(https://support.hdfgroup.org/HDF5/whatishdf5.html), allowing out of core

computation by efficiently and progressively loading in the central memory only the

data chunks required at any given moment of the analysis.

On this dataset, SnapATAC was able to correctly cluster cells of the following tissues:
kidney, lung, heart, cerebellum, whole brain and thymus. However, for the other
tissues, including bone marrow and small intestine, cells are distributed in groups of
mixed cell types (Sup Fig.11), as reflected by the score of the three metrics used for the
other datasets evaluation (Sup Table 14), i.e. ARI= (HC=0.24, k-means=0.34,
Louvain=0.39), AMI=(HC=0.55, k-means=0.55, Louvain=0.62), Homogeneity=( HC=0.52,
k-means=0.54 , Louvain=0.60).

To gain insight on the performance of the other methods on this this dataset, we
randomly selected 15% of cells from each sample to construct a smaller sciATAC-seq

dataset consisting of 12,178 cells.

As Fig. 6b shows Cusanovich2018, k-mer-based chromVAR, cisTopic, SnapATAC, Scasat
and Control-Naive perform comparably well and have noticeably better clustering
scores than the other methods (Sup Table 15). Consistent with what we observed
previously, peaks or bins level methods generally work better. In this dataset, k-mers-
based chromVAR and its combination with PCA transformation performs equally well
as peaks or bins-level methods and better than the motifs-based methods. Simply
counting reads within peaks (scABC) and gene-level-featurization-based methods
(Gene Scoring and Cicero) perform poorly overall. Adding a PCA step improves
noticeably scABC (scABC after PCA is the same as Control-Naive) and Gene Scoring. It
also slightly improves Cicero but it does not affect chromVAR and SCRAT.
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655  As before, all the clustering solutions of the different methods were visualized in

656  UMAP plots (Sup Fig. 12). The top two combinations, i.e. Cusanovich2018 and

657 chromVAR k-mers with PCA, are visualized in Fig.6¢c. To visually compare the

658 separation of the different tissues across methods, we also inspected UMAP plots where
659  cells are colored based on the tissue of origin. Similar to what we observed using the
660  clustering analysis, cisTopic, Cusanovich2018, and SnapATAC are able to separate cells
661 into the major tissues and also to capture finer discrete groups. The Control-Naive

662 method and Scasat are also able to distinguish the major tissues but show some mixing
663  within each discrete cell population. K-mer-based chromVAR can separate out liver,
664  kidney, and heart tissues and present the other tissues within a continuous bulk

665 population while preserving the structure of the distinct tissues. We observed that after
666 running PCA, k-mer-based chromVAR can recover an additional group of cells within
667 the lung tissue and also detect finer structure within the cells from the brain. Compared
668  with k-mer-based features, motif-based chromVAR and its combination with PCA

669 transformation distinguished fewer tissue groups while mixing more cells from

670  different tissues. BROCKMAN recovered a continuous structure with the different

671  tissues but does not distinguished them clearly. Similarly, Gene Scoring put cells from
672  different tissues into a big bulk population with limited separation. PCA improved its
673  ability to separate out a few tissues, including liver, heart, and kidney. SCRAT and

674  Cicero gene activity scores mixed most of the cells from different tissues and performed
675  poorly on this dataset with or without PCA.

676

677

678  Clustering performance summary

679 To assess and compare the overall performance of scATAC-seq analysis methods, we
680 ranked the methods based on each metric (ARI, AMI, Homogeneity, RAGI) by taking
681  the best clustering solution for the three real datasets (Buenrostro2018 dataset, PBMCs
682 10X dataset, and the down-sampled sci-ATAC-seq mouse dataset) and two synthetic

683  datasets (simulated bone marrow dataset and simulated erythropoiesis dataset with the
684 moderate noise level of 0.2 and a medium coverage of 2500 fragments per cell). Then for
685 each dataset except for the PBMCs 10X dataset, we calculated the average rank across
686  ARI, AMI, and Homogeneity. For the PBMCs 10X dataset, RAGI is calculated instead
687  (Sup Fig.13a). Lastly, we calculated the average rank across different datasets.

688  According to the average ranking, SnapATAC, cisTopic and Cusanovich2018 are the top

25


https://doi.org/10.1101/739011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/739011; this version posted August 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

689  three methods to create feature matrices that can be used to cluster single cells into
690  biologically-relevant subpopulations (Fig. 7a). SnapATAC consistently performed well
691  across all datasets. Both cisTopic and Cusanovich2018 demonstrated satisfactory

692  performance across all datasets except for the 10X PBMCs dataset.
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693
694  Figure 7. Aggregate benchmark results. (a) For each method, the rank based on the best-

695 performing clustering method is measured for each metric (e.g. ARL, AMI, H, or RAGI).
696 The average metric ranks for each dataset were used to calculate a performance score for
697 each method. Each method was then assigned a cumulative average score based on its
698  performance across all datasets. * indicates a downsampled dataset of the indicated
699 original dataset. (b) For methods that specify an end-to-end clustering pipeline, average
700 rank and cumulative average scores for each method were calculated as in (a). (c) Plot of
701  running time against performance for each method. Cumulative average scores, which
702 were calculated in part (a) are shown on the x-axis, and the average running time across
703  the three real datasets (Buenrostro2018, 10X PBMCs, and downsampled sci-ATAC-seq

704  mouse) is shown on the y-axis.
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705  Generally, methods that implement a dimensionality reduction step work better

706  (SnapATAC, cisTopic, Cusanovich2018, Scasat, Control-Naive, and BROCKMAN) than
707  those without it (SCRAT, scABC, Cicero, and Gene Scoring). We also observed that
708  chromVAR performs better in real datasets than in simulated datasets and that the
709  kmer-based version of chromVAR consistently outperforms motif-based chromVAR.
710  For the methods that do not implement dimensionality reduction, the PCA step does
711  not always improve the performance except for scABC and Cicero, in which the PCA
712 transformation consistently boosts the results. Interestingly, we observed that

713 regardless of the method, the PCA consistently improves the clustering solutions

714  obtained by the Louvain algorithm.

715

716  Keeping the first PC vs removing the first PC
717

718  In preparing this manuscript, we noticed that in some cases, the first principal

719  component (PC) may only capture variation in sequencing depth instead of biologically
720 meaningful variability. To make a thorough assessment of how the first PC affects the
721  clustering results, we compared the effect of keeping vs removing the first PC on the
722  three real datasets (for this comparison we consider both the methods that implemented
723  PCA and the combination of PCA and the methods that did not implement a

724  dimensionality reduction step) (Sup Fig.14). Across all three datasets, we observe that
725  for Control-Naive, BROCKMAN, SCRAT-PCA, and Gene Scoring-PCA, removing the
726  first PC consistently helped in better separating the different populations in UMAP

727  projections and improved clustering performance. In contrast, the performance of

728  chromVAR-PCA with motifs as features consistently dropped after removing the first
729  PC. Cusanovich2018 and SnapATAC performed similarly before and after removing the
730  first PC across all datasets. For Cicero-PCA, removing first PC did not clearly affect its
731  performance in Buenrostro2018 and 10X PBMCs datasets but improved its performance
732 in the down-sampled sci-ATAC mouse dataset.

733

734 Generally, the methods that implement binarization (e.g. Cusanovich2018, SnapATAC)
735  or that implement cell coverage bias correction (e.g. chromVAR, SnapATAC), tend to be
736  less affected by the sample sequencing depths. Therefore, for these methods we believe
737  that the first PC does not capture the library size and removing it does not help to

738  improve the clustering results. On the contrary, for methods that do not implement any
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739  specific step to correct for potential artifacts associated with sequencing depth, the first
740  PCis more likely to capture biologically irrelevant factors and therefore may reduce

741  biology-driven differences. However, this operation must be applied with caution, since
742 removing the first component could also in some cases remove some biological

743  variation (e.g. motif-based chromVAR).

744  Clustering performance when running methods as end to end pipelines

745  When designing this study, we reasoned that a benchmark procedure could be

746  approached from two very different perspectives. The first is the end user perspective,
747  i.e.auser that runs a method as a black box following the provided documentation with
748  the goal to obtain a reasonable clustering solution without worrying too much about the
749  internal design choices and procedures. In these settings, it is not trivial to

750  systematically compare the methods and understand which part related to the

751  featurization may influence the final clustering performance, especially if also the

752  clustering algorithms used are different. The second perspective that was used instead
753  in the rest of this benchmarking effort is the developer perspective, i.e. we tried to

754  understand what are the key steps of each method that can boost clustering

755  performance of common clustering approaches. Regardless, we reasoned that it is

756  important to provide some insights on the user perspective, since some readers will use
757  the tested methods as end-to-end pipelines. Therefore, we also compared the clustering
758  solutions produced by running the complete analysis pipelines as outlined in tutorials
759  for the methods that explicitly implement a clustering step (see Sup Note 6). We

760  evaluated the clustering results using ARI, AMI and Homogeneity for the

761  Buenrostro2018 and sci-ATAC-seq mouse datasets, and RAGI for the PBMCs 10X dataset
762  (Sup Table 16-17-18). We observe the top three methods, i.e. Cusanovich2018, cisTopic
763  and SnapATAG, still outperform the other methods but with a slightly different

764  ranking. (Cusanovich2018 is ranked first followed by cisTopic and SnapATAC, Fig. 7b,
765  Sup Fig. 13b). Also, both scABC and Cicero performed better than Scasat in this

766  analysis. Interestingly, we observed that SnapATAC, cisTopic, Cusanovich2018, and
767  Scasat have even better clustering solutions in our benchmarking framework compared
768  to using their own clustering approach. On the other hand, scABC and Cicero had

769  Dbetter clustering results when running their own clustering procedure. scABC uses an
770  unsupervised clustering method tailored to single cell epigenomic data (including

771 scATAC-seq). Although it uses the naive peaks-by-cells raw count as its feature matrix,
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it calculates cells weights by considering their sequencing coverage and giving more
weight to cells with higher number of reads. Also, it performs two steps of clustering by
using weighted k-medoid algorithm based on Spearman rank correlation to find
landmarks first and then assigns cells to the landmarks. These specific steps help
improve its clustering performance. For the Cicero clustering workflow, we used the
gene activity scores and, as proposed in their tutorial, functions from Monocle2, to (i)
normalize the scores and (ii) reduce the dimensionality with tSNE by using the top PCs
before clustering cells. These extra steps helped in improving its clustering solutions.
This suggests that appropriate normalization steps need to be properly performed to
improve clustering analysis, in addition to simple transformations like binarizing

counts and/or performing a PCA.

Taken together, based on these analyses, we recommend using SnapATAC, cisTopic, or
Cusanovich2018 to cluster cells in meaningful subpopulations. This step can be followed
by methods such as Cicero, Gene Scores or with TF motifs (e.g. chromVar) to annotate

clusters and to determine cell types in an integrative approach.

Important considerations in defining informative regions for scATAC-seq analyses

Feature sets of informative peaks for scATAC analyses may be computed from bulk
samples available through large scale consortia such as ENCODE[20] and
ROADMAP[21] or more precise tissue-specific cell types as in the

murine ImmGen Project[22]. However, scATAC-seq analyses often require de

novo inference of dataset-specific accessibility peaks in order to resolve cell types and

regulatory activity.

To date, there are three major methods for generating peak sets for scATAC
experiments. The first strategy (pseudo-bulk from all single cells, PB-All) for inferring
peaks is to call peaks on a pseudo-bulk sample omposed of all the reads from all cells in
the library. The second (pseudo-bulk from FACS, PB-FACS) is to call peaks in a priori-
defined cell types isolated by FACS-sorting. A consensus peak set can be defined by
combining summits of individual peaks using an iterative algorithm [5, 18, 23]. Finally,
a third strategy (pseudo-bulk from clades, PB-Clades) uses a pre-clustering of cells to

define initial populations[1, 10]. Subsequent peak calling is performed in each initial
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804  cluster. Aggregate peak sets can then be defined from synthesizing the summits of each

805 cluster-specific peak set as described above.

806  Bulk ATAC-seq peaks vs aggregated scATAC-seq peaks
807 To evaluate the effect of using peaks obtained from bulk ATAC-seq data versus peaks

808 obtained from aggregated single cell profiles, we reanalyzed the Buenrostro2018 dataset
809  in which both are available (Sup Fig. 15-16). Here we considered only the methods that
810 use peaks as input (i.e. SnapATAC, SCRAT, BROCKMAN are excluded). For the

811 aggregated scATAC-seq peaks, we merged cells of the same cell type based on the

812  FACS sorting labels and performed peak calling within each cell type. Then peaks

813  defined within each cell type were merged. For most methods we did not observe clear
814  differences in performance between the two input peak strategies. For cisTopic,

815  Cusanovich2018, and Cicero, aggregated scATAC-seq peaks overall perform better

816 across all three metrics (Sup Fig. 17a, Sup Table 19).

817 We also tested the strategy of defining pseudo bulk samples from clades when no

818  sorting labels are provided. Cusanovich2018 is the only method that provides a

819  workflow to identify initial clades and call peaks within each clade. It counts reads

820  within the fixed-size windows and pre-clusters cells using hierarchical clustering to
821  define initial clades from which peaks are called. We applied this strategy to all three
822  real datasets (Sup Fig. 18). We observed that in all three datasets, Cusanovich2018

823  performs well in identifying the isolated major groups and the identified clades match
824  well the labels provided, including FACS-sorted labels, cell-ranger clustering solutions,
825 and known tissues labels. Overall the Cusanovich2018 “pseudo bulk” strategy for

826  defining de novo peaks is able to capture the heterogeneity within single cell populations
827 and can serve as a promising unsupervised way to define pseudo bulk subpopulations

828 and to perform peak calling.

829  The effect of excluding regions using the ENCODE blacklist annotation
830
831 cisTopic, Scasat, SCRAT, and SnapATAC employ a blacklist filtering step to remove

832 features annotated by ENCODE as belonging to a subset of genomic regions, which
833  harbor the potential to produce artifacts in downstream analysis steps [24]. cisTopic and
834  Scasat perform a peak filtering in the pre-processing steps of their pipeline. Our

835 benchmarking pipeline makes use of the ENCODE ATAC-seq pre-processing pipeline,
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which removes peaks overlapping with regions on the blacklist annotations list.
Therefore, we tested the remaining two methods, which do not use peaks as features,
SCRAT or SnapATAC. In particular, we wanted to test whether we would observe any
change in downstream clustering performance upon opting to perform a blacklist
removal step. Through a qualitative and quantitative comparison of clustering
performance, we determined that methods, which remove features according to
blacklist annotations show no considerable advantage over those that permitted such
teatures (Sup Fig.19).

Rare cell type-specific peak detection

As all cell identities may not be pre-defined in complex tissue types, we sought to
examine PB-All and PB-Clades strategies to infer a chromatin accessibility feature set
from the scATAC-seq libraries directly. To achieve this, we established a simulation
setting where we mixed bulk ATAC-seq data from three sorted populations (B-cells,
CD4+ T-cells, and monocytes from the PBMCs 10X dataset) that would be mixed in
complex tissue (i.e. peripheral blood mononuclear cells) (Sup Fig. 17b). After peak
calling on both the synthetic bulk and isolated reads from each cell type, we inferred the
proportion of cell type-specific peaks from the minor cell population that were captured

by the peak calling in the synthetic bulk mixture (see Methods).

Overall, the results indicate that cell type-specific peaks may be vastly underestimated
from performing peak calling on the mixture of single cells (PB-All) (Sup Fig. 17b).
Specifically, only ~18% of cell type-specific peaks from very rare (1% prevalence) or
~40% from rare (5% prevalence) cell populations were detected when peaks were called
when treating the heterogenous source as a synthetic bulk experiment. Consequently, as
these peaks would be vastly under-represented in a consensus peak set, virtually all
computational algorithms will fail to identify rare populations. Moreover, as many
common quality-control measures for scATAC involve filtering based on the proportion
of reads in peaks, these cell populations may be under-represented in quality-controlled

datasets.

As observed in other studies [1, 25], these results suggest calling peaks on PB-All may
result in sub-optimal performance. Alternatively, when isolated populations have been
profiled (for example by FACS) peak sets can be defined by calling peaks using data

from cells in each pre-defined population separately as discussed in the previous
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section since this enables the resolution of rare subpopulations (for example HSC in the

hematopoietic system).

Frequency-based peak selection vs intensity-based peak selection

Cusanovich2018 selects peaks that are present in at least a specified percentage of cells
before performing TF-IDF transformation, while scABC selects peaks with the most
reads to cluster cells. To evaluate the effect of selecting peaks based on their
representation in the cell population or based on their intensity (defined as the sum of
reads in that peak in all samples), we focus on the two methods that implement the step

of peak selection, Cusanovich2018 and Control-Naive (equivalent to scABC+PCA).

To assess the two peak selection strategies, we ran both Cusanovich2018 and Control-
Naive on both simulated bone marrow dataset at noise level of 0.2 with a coverage of
2500 fragments and the Buenrostro2018 dataset by varying the cutoffs for peak inclusion
(Sup Fig. 20-21). We calculated the intensity of peaks by counting the number of reads
across all cells and calculated the frequency of peaks by counting the number of cells in
which a peak is observed. For this analysis we selected the top peaks based on intensity
and frequency with the following cutoffs: top 100%, 80%, 60%, 40%, 20%, 10%, 8%, 6%,
4%, %2, 1%.

For both Cusanovich2018 and Control-Naive, the two peak selection strategies have
similar clustering result scores when varying the cutoff (Sup Fig. 20a-b,21a-b). We
observed reasonable and stable clustering performance using more than 20% of the
ranked peaks. As the number of peaks is reduced, the scores start to decline noticeably
and decrease almost monotonically. Below 1%, both methods perform poorly. In
addition, we observed that the Louvain method produces more stable results than

hierarchical clustering and k-means across the considered settings.

Running time of different methods

In our analysis, we also collected the running time of each method on both simulated
and real datasets (see Sup Note 6). For the simulated datasets, we only reported the
execution time necessary to build a feature matrix starting from a peaks-by-cells count
matrix. For real datasets, we considered the execution time to build a feature matrix
from bam files. The running times are shown in Sup Fig. 22 (Sup Table 20). All the

tests were run on a machine with an Intel Xeon E5-2600 v4 X CPU with 44 cores and 1
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900 TB of RAM with the CentOS 7 operating system. When analyzing real datasets with
901 methods that rely on peaks but do not provide an explicit function to construct a peaks-
902  by-cells matrix (Cusanovich2018, Cicero, Gene Scoring and Scasat), we ran the same

903  script on a Linux cluster to obtain the peaks-by-cells matrix such that the execution time
904  of this step is equivalent across these methods. It is worthwhile to mention that not all
905 the methods of this benchmark support parallel computing. For the methods that

906 support parallel computing, including SnapATAC, chromVAR, and cisTopic, the

907  execution time was reported using 10 cores. For the rest of methods, we run them using
908 asingle core. We selected this number reasoning that a typical lab may not have access
909 to a machine with 44 cores and instead may use a mid-size computing node with 8-12
910 cores. Notably, SnapATAC was the only method capable of processing the full sci-

911  ATAC-seq mouse dataset (~80,000 single cells).

912  Asshown in Sup Fig. 22, BROCKMAN and SCRAT have the largest greater execution
913  time in all the real datasets while the methods that use a custom script to obtain a
914  peaks-by-cells matrix tend to have shorter execution time (e.g. Scasat, Cusanovich2018,

915  Gene Scoring).

916  We also assessed the scalability of methods with respect to the increasing coverage (250,
917 500, 1000, 2500 and 5000 fragments per peaks). We observe that with the increase of

918 read coverage, for cisTopic there is an exponential increase of the running time whereas
919 for other methods, the running time stays stable or increases linearly (Sup Fig. 22, Sup
920 table 21).

921  Finally, we compared execution time vs clustering performance (Fig. 7c). Interestingly,
922  the most accurate methods (SnapATAC, cisTopic and Cusanovich2018) have a

923  reasonable running time while outperforming the other methods for clustering quality
924  across all the datasets. Considering the computational time as an important factor that
925 must be carefully evaluated before the implementation of any bioinformatics pipeline,
926  we believe that Cusanovich2018 is the best in balancing clustering performance with

927 execution time.

928

929 Discussion
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scATAC technologies enable the epigenetic profiling of thousands of single cells, and
many computational methods have been developed to analyze and interpret this data.
However, the sparsity of scATAC-seq datasets provides unique challenges that must be
addressed in order to perform essential analyses such as cluster identification,
visualization and trajectory inference [26, 27]. Moreover, the rapid technological
innovations that facilitate profiling accessible chromatin landscapes of 10* or 10° cells

provide additional computational challenges to efficiently store and analyze data.

In this study, we compared ten computational methods developed to construct
informative feature matrices for the downstream analysis of scATAC-seq data. We
developed a uniform processing framework that ranks methods based on their ability to
discriminate cell types when combined with three common unsupervised clustering
approaches, followed by evaluation of three well-accepted clustering metrics. We
evaluated these methods on thirteen datasets, three of those obtained using different
technologies (Fluidigm C1, 10X, and sci-ATAC), and five consisting of simulated data
with varying noise levels. These datasets comprise cells from different tissues in both

mouse and human.

In addition to identifying various methodologies that perform optimally on real and
simulated data, our benchmarking examination of scATAC-seq methodologies reveals
general principles that will inform the development of future algorithms. First, peak-
level or bin-level feature counting generally performs better in distinguishing different
cell types followed in turn by k-mer-level, TF motifs-level, and gene-centric level
summarization. We interpret this finding as an indication of the complexity of gene
regulatory circuits where precise enhancer elements may have distinct functions that
cannot be sufficiently approximated by sequence context or proximity to gene bodies
alone. Second, we note that the methods that implement a dimensionality reduction
step generally perform better in the separation of cell types, since this step may help to
remove the redundancy between a large number of raw features and to mitigate the
effect of noise. Third, for the methods that do not implement a dimensionality reduction
step, simply adding a PCA step could significantly improve the clustering results. In
fact, PCA generally boosts Louvain clustering results. For methods that do not account
for the differing sequencing coverage of cells, the first PC could be used to capture and
correct for sample depth differences. In this case, removing the first PC may improve

the performance of these methods. Fourth, we observe that the Louvain method overall
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performs more consistently and accurately than k-means and hierarchical clustering. In
contrast, k-means and hierarchical clustering are more sensitive to outliers and may
result in suboptimal clustering solutions since some of clusters may correspond to
single or few outlier cells. Fifth, the robustness of different methods to noise and
coverage varies among different datasets. Among the top three methods, cisTopic is the
most penalized by low coverage. Sixth, it was also observed that inappropriate
transformations, such as log2 transformation and normalization based on region size as

implemented in SCRAT may impact negatively clustering performance.

We observe that many methods fail to scale to larger datasets, which are now available
due to improvements in split-pool technology and droplet microfluidics. As
technologies improve and individual labs and international consortia lead efforts to
generate ever larger single-cell datasets, scalability will be an unavoidable goal of
method developments on a par with accuracy. As many of our evaluated methods were
designed in the context of data generated from the Fluidigm C1 platform (which
produces ~10? cells), such approaches were often incapable of analyzing large datasets.
In particular, the sci-ATAC-seq mouse dataset served as a useful resource to test the
scalability of the methods that were benchmarked (~80,000 cells). Notably, our
evaluation demonstrates that only SnapATAC was able to scale to process and analyze
this large dataset. Future methods must be capable of processing datasets of this size
especially adopting efficient data structures that allow out of core computing. Our
tindings reinforce the need for methods that not only are accurate but highly scalable

for scATAC-seq data processing.

Defining regions is an important step in constructing feature matrices. Selecting
informative regions generally improves downstream analyses such as clustering to
capture heterogeneity within cell populations. Peak calling is a popular and
straightforward way to define regions of interest. We observe that clustering
performance is not generally impacted by using peaks defined from bulk ATAC-seq
data vs using peaks obtained from aggregating single cell data based on FACS-sorting
labels. However, performing peak calling by simply pooling reads from single cells may
obfuscate peaks specific to rare cell populations leading to failures in uncovering them.
In addition, the Cusanovich2018 approach to identify pseudo-bulk clades is a promising
unsupervised way to perform in silico-sorting without relying on FACS-sorting labels.

This strategy potentially serves as a suitable way to preserve peaks specific to rare cell
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types. Also choosing an appropriate number of peaks is important for improving the
downstream analysis (for example based on intensity/frequency-based given that they

perform similarly).

We are aware of current limitations in our benchmarking effort. We have compared
single cell ATAC-seq methods based on their ability to separate discrete cell
populations; however, this might not be ideal when dealing with a continuous cell
lineage landscape. We observe that chromV AR generally works better in preserving a
continuous space while SnapATAC tends to break a putative landscape into discrete
populations. The choice of method is ultimately case-specific and may be driven by the
downstream application. For example, the feature matrix obtained by chromVAR may
be more suitable for trajectory inference [26] while the one obtained from SnapATAC
may be more appropriate better identify discrete and well separated cell populations by
clustering. We acknowledge also that not all tested methods were specifically designed
to produce clustering results. For example, chromVAR, Cicero, and Gene Scoring were
designed to determine important marker genes, their regulatory logic, or to infer
enriched TF binding sites within accessible chromatin regions. However, because
clustering is a critical part of single-cell analysis and researchers frequently use output
from all methods to produce clustering results [1], we felt that evaluating the clustering
abilities using feature matrices produced by each method was a useful measure. An
additional limitation of our study is that it is impossible to create a simulation
framework that models an experimental outcome with perfect accuracy. Several
assumptions were made to enable our simulation of the data; these assumptions are
described in the methods section of this manuscript, where we detail explicitly how the

simulated data was generated.

Interestingly, we learnt that some combinations of feature matrices with the simple
clustering approaches included in our benchmarking framework perform even better
than the original combination proposed by the respective authors. This highlights the
value of this dual-characterization (user vs designer perspective) and provides a summary

of both perspectives to the readers.

We believe it is important to stress the distinction between biological realities and
computational performance, especially in the context of unsupervised clustering. A big

and critical assumption (or hope) of our field is that an unsupervised clustering
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1028  procedure will provide clustering solutions that recapitulate different populations

1029 corresponding to different cell types/states. Given that for several real datasets the
1030  ground truth is not known, a current compromise during the exploratory clustering
1031  analysis is to use known marker genes, sorted populations or known tissues to validate
1032  the clustering solutions based on classic metrics. If we embrace this assumption,

1033  keeping in mind that additional validation is required to truly delineate the

1034  subpopulation structure of a population of cells, the two views, biological and

1035 computational can be reconciled. Our benchmark procedure is aimed to provide some
1036  guidelines based on explorative analyses that are currently adopted in several

1037  published papers.

1038  Looking forward, due to the wealth of data being produced by new scATAC

1039  technologies, we hypothesize that more powerful machine learning frameworks may be
1040  able to uncover complex cis and trans relationships that define cell-cell

1041 relatedness. Specifically, we anticipate autoencoder-like models that integrate genomic
1042  sequence context, gene body positions, and precise accessible chromatin information
1043  will yield information-rich features and that more advanced manifold learning methods
1044  will help to remove redundancy and better preserve heterogeneity within single cell
1045  populations. Such achievements may enable us to overcome the inherent sparsity and
1046  high dimensionality that characterizes scATAC-seq data.

1047 Conclusions

1048  Our benchmarking results highlight SnapATAC, cisTopic, and Cusanovich2018 as the
1049  top performing scATAC-seq data analysis methods to perform clustering across all

1050 datasets and different metrics. Methods that preserve information at the peak-level

1051  (cisTopic, Cusanovich2018, Scasat) or bin-level (SnapATAC) generally outperform those
1052  that summarize accessible chromatin regions at the motif/k-mer level (chromVAR,

1053 BROCKMAN, SCRAT) or over the gene-body (Cicero, Gene Scoring). In addition,

1054  methods that implement a dimensionality reduction step (BROCKMAN, cisTopic,

1055  Cusanovich2018, Scasat, SnapATAC) generally show advantages over the other

1056  methods without this important step. SnapATAC is the most scalable method; it was
1057  the only method capable of processing more than 80,000 cells. Cusanovich2018 is the

1058 method that best balances analysis performance and running time.

37


https://doi.org/10.1101/739011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/739011; this version posted August 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1059
1060
1061
1062
1063
1064
1065

1066

1067
1068
1069
1070
1071
1072
1073
1074

1075

1076

1077
1078
1079
1080
1081

1082
1083
1084

1085

1086
1087

aCC-BY 4.0 International license.

Taken together, our manuscript provides a framework for evaluating and
benchmarking new and existing methodologies as well as provides important
guidelines for the analysis of scATAC-seq data. Importantly, we provide more than 100
well organized and documented Jupyter notebooks to illustrate and reproduce all the
analyses performed in this benchmarking work. We believe our systematic analysis
could guide the development of computational approaches aimed at solving the

remaining challenges associated with analyzing scATAC-seq datasets.
Methods

Our assessment of methods was based on public scATAC-seq datasets made available
in public repositories by the respective authors (see Data and code availability). As
such, we refer to the original publications for further details on experimental design
and data pre-processing/alignment. For peak calling, we used the ENCODE pipeline
(https://www.encodeproject.org/atac-seq/) except for the 10X PBMCs data for which

peaks were already available through the Cell Ranger pipeline optimized for this
technology. Whenever changes were required for running a given method, those are

noted in the respective sections.
Datasets
Human hematopoiesis I (Buenrostro et al. 2018)

This dataset comprised of 10 FACS-sorted cell populations from CD34* human bone
marrow, namely, hematopoietic stem cells (HSCs), multipotent progenitors (MPPs),
lymphoid-primed multipotent progenitors (LMPPs), common-myeloid progenitors
(CMPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-erythrocyte
progenitors (MEPs), common-lymphoid progenitor (CLPs), plasmacytoid dendritic cells

(pDCs), monocytes, and an uncharacterized CD34* CD38- CD45RA* CD123" cell
population. A total of 2,034 cells from 6 human donors were used for analysis. A peak
tile (including 491,437 peaks) obtained from bulk ATAC-seq dataset was provided.

sci-ATAC-seq mouse tissues (Cusanovich et al. 2018)

This dataset comprises cells from 13 tissues of adult mouse, namely, bone marrow,

cerebellum, heart, kidney, large intestine, liver, lung, prefrontal cortex, small intestine,
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1088  spleen, testes, thymus, and whole brain, with over 2,000 cells per tissue. A total of
1089 81,173 cells from 5 mice were used for analysis. A subset was obtained by randomly

1090  down-sampling 15% cells from each tissue and was comprised of 12,178 cells.
1091 Human hematopoiesis II (10X PBMCs)

1092  This dataset is composed of peripheral blood mononuclear cells (PBMCs) from one

1093  healthy donor. A total of 5,335 cells were used for analysis.
1094  Simulated scATAC-seq datasets

1095 In order to evaluate and benchmark various approaches, we generated synthetic

1096 (labeled) data from down-sampling 18 FACS-sorted bulk populations that were

1097  previously described [28]. For ease of interpretation, we considered only 6 isolated
1098  populations (HSC, CMP, NK, CD4, CDS8, Erythroblast). For the erythropoiesis

1099  simulation, eight additional populations (P1-P8) originally described in [17] were also
1100  considered.

1101

1102 Our simulation framework starts with a peak x cell type counts matrix (from bulk

1103  ATAC-seq) and generates a single-cell counts matrix (C) for an arbitrary number of
1104  synthetic single cells. Explicitly, for a simulated single cell j and corresponding peak i
1105  from bulk cell type t, we seek to generate c; ; where ¢; ; € Error! Bookmark not defined.,
1106  noting that these values correspond to possible observations in a diploid genome. Next,
1107  we define the rate (1) at which the peak i is prevalent in the bulk ATAC-seq data for
1108  cell type t. This rate is determined by the ratio of reads observed in peak i over the sum
1109  of all reads. Assuming a total of k peaks for the matrix C and for user-defined

1110  parameters q (noise parameter; g € [0,1]) and n (number of simulated fragments), we
1111 define ¢;; as follows:

1112

1113 ¢ j ~ rbinom(2,p{)

1114 where

1115

1116 pf =GN - )+ (1/KGM(9)

1117
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Intuitively, the parameter p{ defines the probability that a count will be observed in
peak i for a single cell. Additionally, p{ can be decomposed into the sum two terms. As
q — 0, the first term dominates, and the probability of observing a count in peak i is
simply the scaled probability of the ratio of reads for that peak from the bulk ATAC-seq
data (r). Thus, when g = 0, the simulated data has no noise. Conversely as g — 1, the
second term dominates, and p{ reduces to a flat probability that is no longer
parameterized by the peak i or cell type t and thus represents a random distribution of

n fragments into k peaks.

For bone marrow-based simulations we simulated 200 cells per labeled cell type while
for erythropoiesis-based simulation we simulated 100 cells per labeled cell type.
Eventually we have 1,200 cells for each simulated dataset. In the base simulations, we
parametrized n = 2,500 fragments in peaks in expectation for all cells. For additional
simulations that compared different data coverages, we set n to various values (5000,
2500, 1000, 500, 250 respectively) to benchmark this effect. To evaluate the effect of noise
in our simulation, we set q to three values (0, 0.2, 0.4) to benchmark the robustness to
noise. At values of ¢ > 0.4, no method could reliably separate all the subpopulations.
Finally, since our simulation started at the reads in peaks level, for some methods, the
core algorithm associated with the method was extracted in order to benchmark it in
this setting. Additionally, full code to reproduce these simulated dataset matrices has

been made available with our online code resources.
Peak calling

For real datasets, peaks were called using the ENCODE ATAC-seq processing pipeline
(https://www.encodeproject.org/atac-seq). Briefly, single-cells were aggregated into cell
populations according to cell type, obtained either by FACS sorting or by tissue of
origin. Peaks were called for each cell population and merged into a single file with
bedtools [30].

Building the features matrix

BROCKMAN This method starts by defining regions of interest, which will be scanned
for k-mer content, as 50 bp windows around each transposon integration site and

merging overlapping regions. Then, a frequency matrix of k-mers-by-cells is built by
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1149  counting all possible gapped k-mers (for k from 1 to 8) within the previously defined
1150  windows. This frequency matrix is scaled so that each k-mer has mean 0 and standard
1151  deviation 1. Principal component analysis (PCA) is applied to the scaled k-mers-by-cells
1152  frequency matrix, and significant principal components (PCs) as estimated with the

1153  jackstraw method are selected to build a final features matrix for downstream analyses.

1154  ChromVAR This method starts by counting reads under chromatin-accessible peaks in
1155  order to build a count matrix of peaks-by-cells (X). Then, a set of chromatin features
1156  such as transcription factor (TF) motifs or k-mers are considered. Reads mapping to
1157  each peak that contains a given TF motif (or k-mer) are counted in order to build a

1158  count matrix of motifs-by-cells or k-mers-by-cells (M). Moreover, a raw accessibility
1159  deviation matrix of motifs (or k-mers)-by-cells (Y) is generated by calculating the

1160  difference between M and the expected number of fragments based on X. Then,

1161  background peak sets are created for each motif to remove technical confounders.

1162  Background motifs-by-cells raw accessibility deviations are then used to calculate a bias
1163  corrected deviation matrix and to compute a deviation z-score used for downstream

1164  analyses.

1165  cisTopic This method starts by building a peaks-by-cells binary matrix by checking if a
1166  peak region is accessible, i.e., at least one read falls within the peak region. Then, latent
1167  Dirichlet allocation (LDA) is performed on this binary matrix and two probability

1168  distributions are generated, a topics-by-cells probability matrix and a regions-by-topics

1169  probability matrix. The former is the final features matrix for downstream analyses.

1170  Cicero This method defines promoter peaks as the union of annotated TSS minus 500
1171  base pairs and macs2 defined peaks around the TSS. It takes as input the peaks-by-cells
1172 binary matrix. It also requires either pseudo temporal ordering or coordinates in a low
1173  dimensional space (t-SNE) so that cells can be readily grouped. It then computes the co-
1174  accessibility scores between sites using Graphical Lasso. To get the gene activity scores,
1175 it selects sites that are proximal to gene TSS or distal sites linked to them and weight
1176  them by their co-accessibility. Then all the sites are summed and weighted according to
1177  their co-accessibility to produce a genes-by-cells feature matrix that is used in this

1178  benchmarking analysis.
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Gene Scoring This method first constructs a peaks-by-cells count matrix and defines
regions of interest as the 50kb upstream and downstream of gene TSSs. Then it finds the
overlap between ATAC-seq peaks and TSS regions and the peaks are weighted by a
function of the distance to the linked genes. Finally, the peaks-by-cells count matrix is
converted into genes-by-cells weighted count matrix by multiplying the weighted peaks
by genes matrix. The genes-by-cells weighted count matrix is the final features matrix

for downstream analyses.

Cusanovich2018 This method starts by binning the genome into fixed-size windows (by
default, 5kbp), and building a binary matrix from evaluating whether any reads map to
each bin. Bins that overlap ENCODE-defined blacklist regions are filtered out, and the
top 20,000 most commonly used bins are retained. Then, the bins-by-cells binary matrix
is normalized and rescaled using the term frequency-inverse document frequency (TF-
IDF) transformation. Next, singular value decomposition (SVD) is performed to
generate a PCs-by-cells LSI score matrix, which is used to group cells by hierarchical
clustering into different clades. Within each clade, peak calling is performed on the
aggregated scATAC-seq profiles, and identified peaks are combined into a new peaks-
by-cells binary matrix. Finally, the new peaks-by-cells matrix is transformed with TF-
IDF and SVD as before to get a matrix of PCs-by-cells, which is the final features matrix

for downstream analyses.

scABC This method starts by building a peaks-by-cells count matrix of read coverage
within peak regions. Then, the weights of cells are calculated by a nonlinear
transformation of the read coverage within the peaks background, defined as a 500 kb
region around peaks. Since the weights will be used as part of weighted K-medoids
clustering to define cell landmarks and further perform finer re-clustering instead of
normalizing the peaks-by-cells matrix, the feature matrix in scABC is defined as the

peaks-by-cells count matrix.

Scasat This method first constructs a peaks-by-cells binary accessibility matrix by
checking if at least one read overlaps with the peak region. Then Jaccard distance is
computed based on the binary matrix to get a cells-by-cells dissimilarity matrix.
Multidimensional scaling (MDS) is further performed to reduce the dimension and to

generate the final feature matrix for downstream analysis.
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SCRAT This method starts by aggregating reads from each cell according to different
features (such as TF motifs or region of interest of each gene), and then building a count
matrix of features-by-cells. The features-by-cells count matrix is normalized by library

and region size to get the final feature matrix for downstream analyses.

SnapATAC This method starts by binning the genome into fixed-size windows (by
default 5kb) and estimating read coverage for each bin to build a bins-by-cells binary
count matrix. Bins that overlap ENCODE-defined blacklist regions are filtered out, as
well as those with exceedingly high or low z-scored coverage. Then, the bins-by-cell
matrix is transformed into a cells-by-cells Jaccard index similarity matrix, which is
turther transformed by normalization and regressing out coverage bias between cells.
Finally, PCA is applied to the normalized similarity matrix, and the top PCs are used to

build a PCs-by-cells matrix that is the final features matrix for downstream analyses.
Clustering

For this study we used three commonly used clustering methods: k-means, hierarchical
clustering (with default ward linkage) as implemented in the scikit-learn library [31]
and Louvain clustering (a community-detection-based method) [32, 33] as implemented
in Scanpy [34], For both hierarchical clustering and k-means, we set the number of
clusters to the number of unique FACS-sorted labels or known tissues. In the 10X
PBMCs scATAC-seq dataset, which lacks the FACS-sorted labels, we instead set the
number of clusters to 8 since this is the expected number of populations based on
previous studies [19]. For the Louvain algorithm, we set the size of local neighborhood
to 15 for all the datasets. Since Louvain method requires ‘resolution” instead of the
number of clusters and different number of clusters will affect the clustering evaluation,
to make the comparison fair, we use the binary search algorithm on the ‘resolution’
(ranging from 0.0 to 3.0) to find the same number of clusters as the other two clustering
methods. If the precise number of clusters did not match the desired value, the

‘resolution’ value inducing the closest number of clusters to the desired value was used.
Metrics for evaluating clustering results

To evaluate clustering solutions for datasets with a known ground truth (i.e. for each
cell we have a label that indicated the cell type) we used three well-established metrics:
Adjusted Rand Index (ARI), Mutual information and Homogeneity. Briefly, for the
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Adjusted Rand Index (ARI) first the Random Index (RI) is defined as a similarity
measure between two clusters considering all pairs of samples assigned in the same or
different clusters in the predicted and true clustering. Then, the raw RI score is adjusted

for chance in the ARI score as described in the following formula:

_ RI-ERD
~ max(RI) — E(R])

ARI

Where Rl is the pre-computed random index and E is the expected random index.

Mutual Information is a measure of the mutual dependence between two variables. The
Mutual Information value is computed according to the following formula, where | Uil
is the number of the samples in cluster Ui and |Vjl is the number of the samples in

cluster Vj:

[l v

MI(U,V) = Zz U, anllogNlUi vl
’ N [Ui 11V

i=1 j=1

The homogeneity score is used to check if the algorithm used for the clustering can
assign to each cluster only samples belonging to a single class. Its value / is bounded
between 0 and 1, and a low value indicates low homogeneity and vice versa. The score

is computed as follow:

_ H(Ytruelypred)
H(Ytrue)
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1263

1264  where H(Yiruel Yyred) is the probability to assign true samples to a set of predicted
1265  samples, while H(Yu.) are the labels of the samples.

1266  To evaluate clustering solutions for the 10X PBMCs dataset we proposed a simple score
1267  called the Residual Average Gini Index (RAGI) and compared the accessibility of

1268  housekeeping genes with previously characterized marker genes [19]. We reasoned that
1269  a good clustering solution should contain clusters that are enriched for accessibility of
1270  different marker genes, and each marker gene should be highly accessible in only one or
1271  afew clusters. First, to quantify the accessibility of each gene in each cell we used the
1272 Gene Scoring approach described above. Briefly, the accessibility at each TSS is the

1273  distance-weighted sum of reads within or near the region. Second, to quantify the

1274  enrichment of each gene in each cluster of cells, we computed the mean of the

1275  accessibility values in all cells for each cluster. Third, based on the vector of mean

1276  accessibility values (one per cluster), we computed the Gini Index [35] for each marker
1277  gene. The Gini Index measures how imbalanced the accessibility of a gene is across
1278  clusters. This score is bound by [0,1] where 1 means total imbalance (i.e. a gene is

1279  accessible in one cluster only) and 0 means no enrichment. This score has been

1280  previously used on scRNA-seq to perform clustering [36, 37]. As a control, we also
1281  calculated the Gini Index for a set of annotated housekeeping genes reported in

1282  (https://m.tau.ac.il/~elieis/ HKG/HK genes.txt). Housekeeping genes should show

1283  minimal specificity for any given cluster since, by definition, they are highly expressed
1284  in all cells. Based on the set of Gini Index values for marker and housekeeping genes we
1285 calculated several metrics: (i) the mean Gini Index for the two groups; (ii) the difference
1286  in means to assess the average residual specificity that a clustering solution has with
1287  respect to marker genes (this is our proposed RAGI metric); and (iii) the Kolmogorov
1288  Smirnov statistic and its p-value comparing the two groups of Gini Indices for marker
1289  and house-keeping genes. We sorted the methods based on the descending order of the
1290  differences in means (Sup Table 13); a positive value indicates that the marker genes on

1291  average separate the clusters better than uninformative housekeeping genes.

1292 Rare cell type-specific peak analysis
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FACS-sorted bulk ATAC-seq data was downloaded and processed from a previously
described resource [5]. For each simulation, we created a randomly-sampled set of 200
million unique (PCR-deduplicated) reads, which roughly represents a complexity
similar to recommendations from the 10X Chromium scATAC-seq solution. Cell type-
specific peaks were defined using the full dataset for each of the three cell types. Peaks
were called using macs2 callpeak with custom parameters as in the ENCODE pipeline,
i.e. “—-nomodel —-shift - 100 --extsize 200" to account for Tn5 insertions rather than read
abundance when inferring peaks. Overlaps between the isolated minor population and
the synthetic mixtures were computed using GenomicRanges[38] findOverlaps
function, which is equivalent to bedtools[30] overlap. For each minor population (B-cell,
CD4+ T-cell, Monocyte) and each prevalence (1, 5, 10, 20, 30%), each simulation was
repeated 5 times for a total of 75 simulations. Reads from the other two (major)
populations were sampled equivalently to make up the synthetic mixture for

comparison.
Data and code availability

All the results presented in this manuscript can be reproduced using the Jupyter
notebooks available both at https://github.com/pinellolab/scATAC-benchmarking/ and
in the supplementary material (Sup Data). For the analyzed real datasets, the
Buentrostro2018 dataset was downloaded from GEO accession GSE96772, the 10X
PBMCs dataset was downloaded from https://support.10xgenomics.com/single-cell-

atac/datasets/1.0.1/atac_v1_pbmc_5k, and the sci-ATAC-seq mouse dataset was
downloaded from
http://krishna.gs.washington.edu/content/members/ajh24/mouse_atlas_data_release/ba
ms. For the simulated bone marrow dataset, data for the FACS-sorted bulk ATAC-seq
populations were downloaded from GEO accession GSE119453. For the simulated
erythropoiesis dataset, the additional populations were downloaded from GEO
accession GSE115672.
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Supplementary Notes

Supplementary Note 1: Analysis of the simulated datasets

For all the synthetic datasets, the input is a peaks-by-cells raw count matrix generated
as described in the Methods section. For all methods, we first order peaks based on the
number of cells in which the peak is observed and select the top 8,000 peaks (making

sure each of these peaks appear at least in one cell).

For BROCKMAN, we scanned for gapped k-mers (the default setting is used, i.e. length
1-8, all possible gaps) within peaks to calculate the scaled k-mer frequencies for each
cell. For chromVAR, we used both TF binding motifs from the JASPAR database
(human) or short k-mers (k=6) within peaks to score the accessibility deviation across
cells. For Cicero, we run it with the default parameters to calculate gene activity scores.
For cisTopic, we run it with the same parameters shown in their online tutorial
(https://rawcdn.githack.com/aertslab/cisTopic/f628c6£60918511ba0fa4a85366ebf52db594

0f7/vignettes/CompleteAnalysis.html). For Cusanovich2018 we first binarize the count

matrix and then perform the proposed TF-IDF transformation and SVD. For Gene
Scoring, we select peaks overlapping with the regions of 50,000 bp upstream and
downstream of TSSs as described in [1]. For scABC, since its feature matrix is the same
as input matrix of peaks-by-cells, we instead run the steps of calculating the weights of
cells that are used later for their proposed clustering approach. For Scasat, we first
binarize the count matrix and then calculate Jaccard distance, followed by Multi
Dimensional Scaling (MDS) with 10 dimensions (the same number of components as
used for the Control-Naive). For SCRAT, the accessibility of TF binding motifs is
summarized within peaks. We attempted to adjust for the library size and peak region
length as suggested in the original study, however we noticed that this step
dramatically penalizes this method performance in all the tested conditions (Sup Fig. 1).
This step was therefore disabled for all the analyses performed with SCRAT. For
SnapATAC, we use the fixed-size peaks as its bins. The Jaccard Index is normalized
with the authors” proposed method, normOVE. For methods that implement PCA step,
we use the elbow plot to decide the optimal number of PCs. For methods that do not
implement a step of dimensionality reduction, we use the R package irlba [2] to perform
PCA.
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All the notebooks detailing the exact procedures are available at
https://github.com/pinellolab/scATAC-benchmarking/tree/master/Synthetic Data.

Supplementary Note 2: Analysis of the Buenrostro2018 dataset

For this dataset we started with aligned files in bam format (one per cell). We removed
duplicated reads using the function MarkDuplicates version 2.20.2 with the option
REMOVE DUPLICATES = TRUE from Picard (https://broadinstitute.github.io/picard/).

For the methods that do not provide an explicit function to read in bam files and count
reads under peaks, including Cicero, Cusanovich2018, GeneScoring, Scasat, and
Control-Naive, we used a simple script to obtain a common peaks-by-cells raw count
matrix (e.g. https://github.com/pinellolab/scATAC-

benchmarking/tree/master/Real Data/Buenrostro 2018/run methods/Cusanovich2018/c

ount reads peaks.sh ). For the methods that implement the same strategy to filter peaks

based on their frequency, including Cicero, Control-Naive, Cusanovich2018,
GeneSoring, Scasat, and scABC, we filter out peaks that are observed in less than 1% of
cells. For chromVAR, we run its function filterPeaks with the default setting to filter out
peaks based on the minimum number of fragments and merge overlapping peaks. For
the methods that implement a PCA step, including BROCKMAN, Control-Naive,
Cusanovich2018, and SnapATAC, we decided the number of PCs based on the elbow
plot. For Scasat, which implements MDS, we set the number of dimension as 15
according to its tutorial
https://github.com/ManchesterBioinference/Scasat/blob/master/ScAsAT functions Bue

nrostro All Bam Together.ipynb. For cisTopic, the number of topics (dimensions) is

decided by its function selectModel with default settings.

For the clustering analysis, we set the expected number of clusters as the number of
FACS-sorting labels (10 in this case). For k-means, we use the k-means++ to select the initial
cluster centers. For hierarchical clustering, we use the Ward linkage based on Euclidean
distance. Both k-means and hierarchical clustering are implemented in scikit-learn
package[3]. For Louvain, we set the number of neighbors to 15 and the resolution is
decided using a binary search with 20 steps that explores values of the resolution

parameter in the interval 0~3 . The Louvain algorithm used is implemented in Scanpy[4].
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For the UMAP visualization, we run the function ‘umap’ from the R package umap with

default settings.

All the notebooks for this analysis are available at
https://github.com/pinellolab/scATAC-
benchmarking/tree/master/Real Data/Buenrostro 2018 and
https://github.com/pinellolab/scATAC-
benchmarking/tree/master/Real Data/Buenrostro 2018 bulkpeaks.

Supplementary Note 3: Analysis of 10x PBMCs dataset

For this dataset, we started with a single merged bam file downloaded from the 10x
website and preprocessed with Cell Ranger: https://support.10xgenomics.com/single-
cell-atac/datasets/1.0.1/atac_ vl pbmc 5k. We noticed that all the methods except

SnapATAC don’t support this format i.e. a single bam file for multiple cells. Therefore,
using the cell barcodes passing quality filtering from Cell Ranger, we split this file in
multiple bam files, one per cell recovering 5,335 single-cell bam files. We also removed
duplicate reads using Picard and performed UMAP visualization as discussed in
Supplementary Note 2 . For the clustering analysis, we set the expected number of
clusters as the number of putative cell types (8 in this case) as previous studies suggested
[5, 6].

All the notebooks are available at https://github.com/pinellolab/scATAC-
benchmarking/tree/master/Real Data/10x PBMC 5k.

Supplementary Note 4: Analysis of the sci-ATAC-seq mouse dataset

For this dataset, we started with multiple merged bam file from 17 samples across 13
tissues downloaded from

http://krishna.gs.washington.edu/content/members/ajh24/mouse atlas data release/ba

ms. For each tissue we performed the same steps as in 10x PBMCs dataset to decompose

the single merged bam file to multiple single cell bam files (81,173 bam files). The
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1540 downloaded bam files were already deduplicated. The downsampled dataset of 12,178
1541  cells is generated by randomly selecting 15% from each sample.

1542

1543 The scATAC-seq methods and UMAP visualization are implemented as in
1544  Supplementary Note 2. For the clustering analysis, we set the expected number of
1545  clusters as the number of tissues (13 in this case).

1546

1547  All the notebooks are available at https://github.com/pinellolab/scATAC-

1548  benchmarking/tree/master/Real Data/Cusanovich 2018 and

1549  https://github.com/pinellolab/scATAC-

1550  benchmarking/tree/master/Real Data/Cusanovich 2018 subset.

1551

1552  Supplementary Note 5: Memory requirements and implementation choices

1553

1554  As mentioned in the main text, SnapATAC is the only methods that allows to process

1555  successfully large datasets, as the sciATAC-seq mouse dataset with ~80000 cells. Here we
1556  investigate why the other methods failed to analyze this large dataset. We hypothesize
1557  that main reason is related to the way the methods load/process the data in memory. In
1558  fact, we discovered that several methods require to load the entire dataset in the central
1559  memory (RAM).

1560

1561 BROCKMAN, Cicero and Gene Scoring try to load the entire dataset in memory using
1562  the read.table function or the fread function within the data.table package in R. Other
1563 methods such as: Cusanovic, Scrat, chromVAR, scABC and Scasat, store the entire
1564  dataset in memory within a Matrix object in R. CisTopic, has an optimized step to map
1565  the reads into the genome using the Rsubread function. This function creates a hash table
1566  of the entire genome and allows the user to select the amount of memory to use. At the
1567 end, the entire dataset is stored in the computer memory in a CisTopicObject data
1568  structure.

1569

1570  SnapATAC, preprocess the entire dataset and store it a .snap file. This file is based on the
1571  HDF5 technology that allows out of core computation. In SnapATAC the Python library
1572 h5py (a wrapper for HDF5 core library) is used to create the custom snap file
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format. More information about this custom file are available here

https://github.com/r3fang/SnapTools/blob/master/docs/snap format.docx .

Supplementary Note 6: End-to-end user-perspective clustering analysis

For the methods that explicitly implement the step of clustering in their tutorials,
including Cusanovich2018, cisTopic, SnapATAC, scABC, Cicero, and Scasat, in addition
to the three clustering methods used in this benchmark framework, we also performed

the clustering analysis as shown in each tutorial. For Cusanovich2018, we followed the

tutorial at http://atlas.gs.washington.edu/fly-atac/docs/ and used density peak
algorithm [7] to identify clusters. For cisTopic, we followed the tutorial at
https://rawcdn.githack.com/aertslab/cisTopic/f628c6f60918511ba0fa4a85366ebf52db5940

t7/vignettes/CompleteAnalysis.html and used ward hierarchical clustering to cluster

cells. For SnapATAC, we followed tutorial at

https://github.com/r3fang/Snap ATAC/blob/master/examples/10X P50/README.md
and used Leiden algorithm to cluster cells. For scABC we followed the tutorial at
https://github.com/SUwonglab/scABC/blob/master/vignettes/ExampleWorkflow.html

and used weighted k-medoids clustering. For Cicero we followed the tutorial at

https://www.bioconductor.org/packages/devel/bioc/vignettes/cicero/inst/doc/website.ht

ml . To be consistent with the feature matrix used in the benchmarking framework,
instead of using its default peaks-by-cells count matrix, we used gene activity scores as
the input of clustering analysis. After reducing the dimensionality with tSNE, density
peak clustering algorithm is used to cluster cells. For Scasat, we follow the tutorial at

https://github.com/ManchesterBioinference/Scasat/blob/master/ScAsAT functions Bue

nrostro_All Bam Together.ipynb and use ward.D2 hierarchical clustering for clustering.

We run all the six methods on three real datasets, Buenrostro2018, 10x PBMCs 10x
dataset, sci-ATAC-seq mouse dataset. For Buenrostro2018 and sci-ATAC-seq mouse
dataset, we specified the number of clusters as the number of FACS-sorted labels and
the number of tissues respectively. For 10x PBMCs, we specified the number of clusters

as 8 as suggested by the previous studies [5, 6].

Supplementary Note 7: Running time
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For the real datasets, we recorded the execution time of each method to generate a
feature matrix starting from an aligned and deduplicated bam file. We noticed that not
all the methods provide specific functions to read in bam files. Some methods only start
with features by cells raw matrix (e.g. Cicero). In addition, the functions to count reads
of some methods were not generalizable across the different scATAC-seq techniques
(e.g. Cusanovich2018). Therefore, to make a fair comparison we used a common script
(https://github.com/pinellolab/scATAC-

benchmarking/blob/master/Real Data/Buenrostro 2018/run methods/Control/count reads

peaks.sh) to obtain the peaks by cells matrix starting from bam files for the following 4
methods: Control-Naive, Cusanovich2018, Gene Scoring, Scasat. BROCKMAN, perform
two steps to obtain the final feature matrix (q bash script to count k-mer frequency and
a R function to assemble the matrix), so we are considering the sum of their running
times. Similarly, the running time for SnapATAC is based on two steps: the snaptools
utility that converts a bam to the required .snap format and the R function that generates

the feature matrix.

For the simulated datasets, we recorded the execution time of generating feature
matrices starting from a simulated peaks-by-cell count matrix. For scABC, since its
feature matrix is the same as the input, to have a useful running time, we instead record

the time to calculate the cells weights, which are necessary for downstream analysis.

We also assessed the scalability of the methods with respect to the read coverage (250,
500, 1000, 2500 and 5000 fragments per peaks). We observed that the running time of most
methods is not affected by the read coverage. This is not surprising given that our
simulation them number of peaks is fixed, so the dimensionality of the matrix is
unchanged. However, for cisTopic, we noticed an exponential increase in running times
as we increase the number of fragments (Sup Fig. 22). We assume this might be due to
the topic modelling approach used by cisTopic since it tries to learn the probability
distribution over the regions for each topic while high coverage will result in the increase

in the number of accessible regions.

1. Lareau, C.A., et al., Droplet-based combinatorial indexing for massive scale single-cell
epigenomics. bioRxiv, 2019: p. 612713.
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1684  Figure S1. UMAP visualization of cells based on SCRAT feature matrix with different parameter
1685  settings (Left: log2transform=FALSE, adjustlen=FALSE. Middle: log2transform=TRUE,
1686  adjustlen=FALSE. Right: log2transform=FALSE, adjustlen=TRUE) in three datasets. (a) simulated
1687 bone marrow dataset at a noise level of 0.2 with a coverage of 2,500 fragments (b) simulated
1688 erythropoiesis dataset at a noise level of 0.2 with a coverage of 2,500 fragments (c) Buenrostro
1689 2018 dataset.
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1696  Figure S2. Clustering evaluation according to AMI, ARl and Homogeneity metrics (left) and UMAP
1697  visualization of cells colored by known cell labels (right) in simulated bone morrow datasets with
1698 a coverage of 2,500 fragments at (a) no noise (0), (b) moderate noise (0.2) and (c) high noise

1699  (0.4).
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1711 T
1712  Figure S4. Summary of clustering scores at different noise levels and coverages based on three

1713  different clustering methods including hierarchical clustering (HC), k-means clustering and the
1714  Louvain algorithm. (a) clustering scores at noise levels of 0, 0.2, and 0.4 for the simulated bone
1715 marrow dataset with a coverage of 2,500. (b) clustering scores at the coverages of 5000, 2500,
1716 1000, 500, 250 in the simulated bone marrow dataset at the noise level of 0.2. (c) clustering
1717  scores at the noise levels of 0, 0.2, and 0.4 for the simulated erythropoiesis dataset with a
1718 coverage of 2,500.
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1719
1720  Figure S5. Clustering evaluation according to AMI, ARl and Homogeneity metrics (left) and

1721  UMAP visualization of cells colored by known cell labels (right) for the simulated bone marrow
1722  dataset with a noise level of 0.2 and varying coverages: (a) 5000 reads, (b) 2500 reads, (c) 1000
1723  reads, (d) 500 reads, and (e) 250 reads.
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Figure S6. Clustering evaluation according to AMI, ARl and Homogeneity metrics (left) and
UMAP visualization of cells colored by known cell labels (right) for the simulated erythropoiesis
datasets with a coverage of 2,500 fragments and (a) no noise (0), (b) moderate noise (0.2) or (c)
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Figure S7. UMAP visualization of cells colored by the clustering solution on the Buenrostro2018
dataset using (a) the Louvain algorithm, (b) k-means clustering, and (c) hierarchical clustering
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1742
1743

1744  Figure S8. Heatmap for the average accessibility across clusters (columns) and the marker genes
1745  (rows) that are used to calculate the RAGI metric on the 10X PBMCs dataset. (a) Louvain
1746  clustering solution (b) k-means clustering solution (c) hierarchical clustering (HC) clustering
1747  solution.
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1761  Figure S9. UMAP visualization of cells colored by the accessibility of marker genes: (a) S100A12
1762  and (b) MS4A1 and (c) GAPDH (housekeeping gene) and on the 10X PBMCs dataset.
1763
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Figure $10. UMAP visualization of cells colored by the clustering solution on 10X PBMCs dataset
using (a) k-means clustering and (b) hierarchical clustering (HC).
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Figure S11. Assessment of SnapATAC on the full sci-ATAC-seq mouse dataset. (a) Clustering
scores according to AMI, ARl and Homogeneity metrics (b) UMAP visualization of cells colored
by the known tissues. (c) UMAP visualization of cells colored by three clustering solutions: the
Louvain algorithm, k-means clustering, and hierarchical clustering (HC).
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Figure $12. UMAP visualization of cells colored by the clustering solution on the downsampled
sci-ATAC-seq mouse dataset using (a) the Louvain algorithm, (b) k-means clustering, and (c)

hierarchical clustering (HC).
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Figure S13. Ranking of method performance. (a) Rank was based on the best-performing
clustering method for each metric on all methods and datasets. The column on the left shows
the averaged rank per method across all datasets. * indicates a downsampled dataset of the
indicated original dataset. (b) Rank of each method based on the best-performing clustering
approach for each metric on methods assessed with an end-to-end clustering pipeline (termed
as a ‘blackbox’) applied to the Buenrostro2018, downsampled sci-ATAC-seq mouse and 10X
PBMCs datasets. The column on the left shows the averaged rank per method over these three
datasets. * indicates a downsampled dataset of the indicated original dataset. (c) Dot plot of
clustering scores for each metric applied to the Buenrostro2018 dataset, including the
‘blackbox’ approach. (d) Dot plot of clustering scores for each metric applied to the 10X
PBMCs dataset, including the ‘blackbox’ approach. (e) Dot plot of scores for each metric
applied to the downsampled sci-ATAC-seq mouse dataset, including the ‘blackbox’ approach.
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Figure $14. Comparison between keeping the first PC and removing the first PC. Left: Clustering
scores when the first PC is kept and for removal of the first PC, for each metric. Right: UMAP
visualization of cells colored by known cell labels. The analyses are performed on (a) the
Buenrostro2018 dataset. (b) the 10X PBMCs dataset. (c) the downsampled sci-ATAC-seq mouse
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Figure S15. Assessment of methods using the peaks called from bulk ATAC-seq on the

Buenrostro2018 dataset. Only the methods that rely on peaks are included. (a) Clustering
evaluation according to AMI, ARl and Homogeneity metrics (b) UMAP visualization of cells
colored by known cell labels.
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Figure $16. UMAP visualization of cells colored by the clustering solution on the
Buenrostro2018 dataset paired with bulk peaks using (a) k-means clustering and (b) hierarchical
clustering (HC).
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Figure S17. (a) Comparison of clustering scores between bulk ATAC-seq peaks and aggregated
scATAC-seq peaks for each metric on the Buenrostro2018 dataset. (b) Top: Simulation
procedure from bulk ATAC-seq data. The three cell types (B-cells, CD4+ T-cells, and monocytes)
are mixed in various proportions for each synthetic mixture. Bottom: The results of simulation
in (b) Top: The x-axis reflects the proportion of the minor population. The y-axis reflects the
percentage of recovered cell-type-specific peaks after performing peak calling on each mixture
of single cells.
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1862  Figure S18. Comparison between the known populations and the identified clades (pseudo-
1863  bulk) using Cusanovich2018. Left: UMAP visualization of cells colored by the known labels.
1864  Right: UMAP visualization of cells colored by the identified clades using Cusanovich2018. The
1865 analyses are performed on (a) the Buenrostro2018 dataset. (b) the 10X PBMCs dataset. (c) the
1866  downsampled sci-ATAC-seq mouse dataset.
1867
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1868
1869  Figure S19. Assessment of the effect of ENCODE blacklisted regions on the benchmarking

1870 results in the Buenrostro2018 dataset. (@) Comparison of clustering scores between filtering or
1871 not filtering the blacklisted regions (b) UMAP visualization based on SnapATAC (left) and SCRAT
1872  (right) feature matrices after filtering the ENCODE blacklisted regions. Cell are colored by the
1873  FACS-sorting labels. (c) UMAP visualization based on SnapATAC (left) and SCRAT (right) feature
1874  matrices without filtering the ENCODE blacklisted regions. Cell are colored by the FACS-sorting
1875 labels.
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Figure S20. Comparison between frequency-based and intensity-based peak selection for each
metric on the simulated bone marrow dataset with a noise level of 0.2 with a coverage of 2,500
fragments. (a) Clustering scores for each metric and clustering method across different cutoffs
for the Control-Naive method. (b) Clustering scores for each metric and clustering method
across different cutoffs for the Cusanovich2018 method. (c¢) UMAP visualization of cells colored
by the known labels using a frequency-based peak selection for Control-naive method. (d)
UMARP visualization of cells colored by the known labels using a frequency-based peak selection
for the Cusanovich2018 method. (e) UMAP visualization of cells colored by the known labels
using an intensity-based peak selection for Control-naive method. (f) UMAP visualization of
cells colored by the known labels using an intensity-based peak selection for the
Cusanovich2018 method.
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1897  Figure S21. Comparison between frequency-based and intensity-based peak selection for each
1898  metric on the Buenrostro2018 dataset. (a) Clustering scores for each metric and clustering
1899 method across different cutoffs for the Control-Naive method. (b) Clustering scores for each
1900 metric and clustering method across different cutoffs for the Cusanovich2018 method. (c)
1901  UMAP visualization of cells colored by FACS-sorting labels using a frequency-based peak

1902 selection for the Control-naive method. (d) UMAP visualization of cells colored by FACS-sorting
1903 labels using a frequency-based peak selection for the Cusanovich2018 method. (e) UMAP
1904  visualization of cells colored by FACS-sorting labels using an intensity-based peak selection for
1905 the Control-naive method. (f) UMAP visualization of cells colored by the FACS-sorting labels
1906 using an intensity-based peak selection for the Cusanovich2018 method.
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Figure $22. Running time results. (a) Running time, in minutes for each method applied to the
Buenrostro2018, 10X PBMCs, and downsampled sci-ATAC-seq mouse datasets. (b) Running
time, in minutes for each method on the simulated bone marrow dataset at a noise level of 0.2
with read coverages of 250, 500, 1000, 2500, and 5000 fragments.
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