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 20 

Abstract 21 
 22 
Background 23 
Recent innovations in single-cell Assay for Transposase Accessible Chromatin using 24 
sequencing (scATAC-seq) enable profiling of the epigenetic landscape of thousands of 25 
individual cells. scATAC-seq data analysis presents unique methodological challenges. 26 
scATAC-seq experiments sample DNA, which, due to low copy numbers (diploid in 27 
humans) lead to inherent data sparsity (1-10% of peaks detected per cell) compared to 28 
transcriptomic (scRNA-seq) data (20-50% of expressed genes detected per cell). Such 29 
challenges in data generation emphasize the need for informative features to assess cell 30 
heterogeneity at the chromatin level.   31 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2019. ; https://doi.org/10.1101/739011doi: bioRxiv preprint 

https://doi.org/10.1101/739011
http://creativecommons.org/licenses/by/4.0/


2 
 

 32 
Results 33 
We present a benchmarking framework that was applied to 10 computational methods 34 
for scATAC-seq on 13 synthetic and real datasets from different assays, profiling cell 35 
types from diverse tissues and organisms. Methods for processing and featurizing 36 
scATAC-seq data were evaluated by their ability to discriminate cell types when 37 
combined with common unsupervised clustering approaches. We rank evaluated 38 
methods and discuss computational challenges associated with scATAC-seq analysis 39 
including inherently sparse data, determination of features, peak calling, the effects of 40 
sequencing coverage and noise, and clustering performance. Running times and 41 
memory requirements are also discussed. 42 
 43 
Conclusions 44 
This reference summary of scATAC-seq methods offers recommendations for best 45 
practices with consideration for both the non-expert user and the methods developer. 46 
Despite variation across methods and datasets, SnapATAC, Cusanovich2018, and 47 
cisTopic outperform other methods in separating cell populations of different coverages 48 
and noise levels in both synthetic and real datasets. Notably, SnapATAC was the only 49 
method able to analyze a large dataset (> 80,000 cells).  50 
 51 
Keywords: scATAC-seq, feature matrix, benchmarking, regulatory genomics, 52 
clustering, visualization, featurization, dimensionality reduction 53 
 54 

Background 55 

Individual cell types within heterogenous tissues coordinate to perform complex 56 
biological functions, many of which are not fully understood. Recent technological 57 
advances in single-cell methodologies have resulted in an increased capacity to study 58 
cell-to-cell heterogeneity and the underlying molecular regulatory programs that drive 59 
such variation.  60 
 61 
To date, most single-cell profiling efforts have been performed via quantification of 62 
RNA by sequencing (scRNA-seq). While this provides snapshots of inter- and intra-63 
cellular variability in gene expression, investigation of the epigenomic landscape in 64 
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single cells holds great promise for uncovering an important component of the 65 
regulatory logic of gene expression programs. Enabled by advances in array-based 66 
technologies, droplet microfluidics and combinatorial indexing through split-pooling[1] 67 
(Fig. 1a), single-cell Assay for Transposase Accessible Chromatin using sequencing 68 
(scATAC-seq) has recently overcome previous limitations of technology and scale to 69 
generate chromatin accessibility data for thousands of single cells in a relatively easy 70 
and cost-effective manner.  71 
 72 
However, the analysis of scATAC-seq data presents methodological challenges distinct 73 
from those of single-cell transcriptomic (scRNA-seq) data. The primary difficulty arises 74 
from a difference in the number of RNA vs DNA molecules available for profiling in 75 
single cells. While for an expressed gene several RNA molecules are present in a single 76 
cell, scATAC-seq assays profile DNA, a molecule which is present in only few copies 77 
per cell (two in a diploid organism). The low copy number results in an inherent per-78 
cell data sparsity, where only 1-10% of expected accessible peaks are detected in single 79 
cells from scATAC-seq data, compared to 20-50% of expressed genes detected in single 80 
cells from scRNA-seq data. This emphasizes the need to recover informative features 81 
from sparse data to assess variability between cells in scATAC-seq analyses. Further, 82 
determination of which features best define cell state is currently unclear. 83 
 84 
The difference in readout (gene expression versus chromatin accessibility) has also 85 
motivated a variety of approaches to selecting informative features in scATAC-seq 86 
methods. While most processing pipelines share common upstream processing steps 87 
(i.e. alignment, peak calling, and counting; Fig. 1b), existing computational approaches 88 
differ in the way they obtain a feature matrix for downstream analyses. For example, 89 
some methods select features based on the sequence content of accessible regions (e.g. k-90 
mer frequencies[2, 3] or transcription factor (TF) motifs [3]), whereas other methods 91 
select features based on the genomic coordinates of the accessible regions (e.g. extended 92 
promoter regions to determine chromatin activity surrounding genes [2, 4]). Finally, the 93 
potential feature set in scATAC-seq, which includes genome-wide regions of accessible 94 
chromatin (Fig. 1c), is typically 10-20x the size of the feature set in scRNA-seq 95 
experiments (which is defined and limited by the number of genes expressed). This 96 
larger feature set could be valuable in distinguishing a wider variety of cell populations 97 
and inferring the dynamics underlying cell organization into complex tissues[5].  98 
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 99 
 100 
Figure 1. Schematic overview of single cell ATAC-seq assays and analysis steps. (a) 101 
Single cell ATAC libraries are created from single cells that have been exposed to the 102 
Tn5 transposase using one of three protocols: 1) Single cells are individually barcoded 103 
by a split-and-pool approach where unique barcodes added at each step can be used to 104 
identify reads originating from each cell 2) microfluidic droplet-based technologies 105 
provided by 10x Genomics and BioRad are used to extract and label DNA from each 106 
cell or 3) each single cell is deposited into a multi-well plate or array from ICELL8 or 107 
Fluidigm C1 for library preparation. (b) After sequencing, the raw reads obtained in 108 
.fastq format for each single cell are mapped to a reference genome, producing aligned 109 
reads in .bam format. Finally, peak calling and read counting return the genomic 110 
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position and the read count files in. bed and .txt format, respectively. Data in these file 111 
formats is then used for downstream analysis. (c) ATAC-seq peaks in bulk samples can 112 
generally be recapitulated in aggregated single cell samples, but not every single cell 113 
has a fragment at every peak. A feature matrix can be constructed from single cells (e.g., 114 
by counting the number of reads at each peak for every cell). (d) Following construction 115 
of the feature matrix, common downstream analyses including visualization, clustering, 116 
trajectory inference, determination of differential accessibility, and the prediction of cis-117 
regulatory networks can be performed using the methods benchmarked in this 118 
manuscript. 119 
 120 
However, the novelty and assay-specific challenges associated with these large-scale 121 
scATAC-seq datasets and the lack of analysis guidelines have resulted in diverging 122 
computational strategies to aggregate data across such an immense feature space with 123 
no clear indication as to which strategy or strategies are most advantageous.  124 
 125 
Here, we provide the first benchmark assessment of computational methods for the 126 
analysis of scATAC-seq data. We discuss the impact of feature matrix construction 127 
strategies (e.g. sequence content-based vs. genomic coordinates) on common 128 
downstream analysis, with a focus on clustering and visualization. This comprehensive 129 
survey of current available methods provides user-specific recommendations for best 130 
practices that aim to maximize inference-capability for current and future scATAC-seq 131 
workflows. Importantly, we provide more than 100 well-documented Jupyter 132 
Notebooks (https://github.com/pinellolab/scATAC-benchmarking/) to easily reproduce 133 
our analyses. We anticipate that this will be a valuable resource for future scATAC-seq 134 
benchmark studies. 135 
 136 

Results 137 

Benchmark Framework 138 

For this benchmarking study we created an unbiased framework to qualitatively and 139 
quantitatively survey the ability of available scATAC-seq methods to featurize 140 
chromatin accessibility data. Evaluated using this framework were several datasets of 141 
divergent size and profiling technologies. Using widely accepted quantitative metrics, 142 
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we explored how differences in feature matrix construction influence outcomes in 143 
exploratory visualization and clustering, two common downstream analyses. The 144 
general overview of our framework is presented in Fig. 2.  145 

For this study we collected public data from three published studies (aligned files in 146 
BAM format) and generated ten simulated datasets with various coverages and noise 147 
levels (see Methods). To calculate feature matrices for downstream analysis, for each 148 
method we followed the guidelines provided in the documentation in the original study 149 
or as suggested by the respective authors. After feature matrix construction, we used 150 
three commonly used clustering approaches (K-means, Louvain and Hierarchical 151 
Clustering)[6] and UMAP[7] projection to find putative subpopulations and visualize 152 
cell-to-cell similarities for each method. Next, the quality of the clustering solutions was 153 
evaluated by adjusted random index (ARI), adjusted mutual information (AMI) and 154 
homogeneity (H) when FACS-sorting labels or tissues were available (gold standard); or 155 
by a proposed Gini-index-based metric called Residual Average Gini Index (RAGI) 156 
when only known marker genes were available (silver standard). Finally, based on 157 
these metrics, the methods were ranked by the quality of their clustering solutions 158 
across datasets. 159 

 160 

Methods overview and featurization of chromatin accessibility data  161 

Several computational methods have been developed to address the inherent sparsity 162 
and high dimensionality of single cell ATAC-seq data, including BROCKMAN[3], 163 
chromVAR[2], Cicero[8], cisTopic[9], Cusanovich2018[1, 10, 11], Gene Scoring[12], 164 
scABC[13], Scasat[14], SCRAT[4], and SnapATAC[15]. Based on the proposed workflow 165 
of each method, we were able to compute different feature matrices defined as a 166 
features-by-cells matrix (e.g. read counts for each cell (columns) in a given open 167 
chromatin peak feature (rows) ) that could then be readily used for downstream analyses 168 
such as clustering. Starting from single cell BAM files, the feature matrix construction 169 
can be roughly summarized into four different common modules: define regions, count 170 
features, transformation, and dimensionality reduction as illustrated in Fig. 2. Not every 171 
method uses all steps, therefore we provide below, a short summary of the strategies 172 
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adopted by each method and a per module discussion to highlight key similarities and 173 
differences (for a more detailed description of each strategy see Methods). 174 

 175 

Figure 2. Benchmarking workflow. Starting from aligned read files in .bam format, 176 
feature matrices were constructed using each method. The feature matrix construction 177 
techniques used by each method were grouped into four broad categories: Define regions, 178 
Count features, Transformation and Dimension Reduction. A colored dot under a technique 179 
indicates that the method (signified by the respective color in the legend on the right) 180 
uses that technique. For each method, feature matrix files (defined as columns as cells 181 
and rows as features) are calculated and used to perform hierarchical, Louvain and k-182 
means clustering analysis. For datasets with a ground truth such as FACS-sorting labels 183 
or known tissues, clustering evaluation was performed according to the Adjusted 184 
Random Index (ARI), Adjusted Mutual Information (AMI) and homogeneity (H) scores. 185 
For datasets without ground truth, the clustering solutions were evaluated according to 186 
a Residual Average Gini Index (RAGI), a metric that compares cluster separation based 187 
on known marker genes against housekeeping genes. Lastly, a final score is assigned to 188 
each method. 189 
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Briefly, BROCKMAN[3] represents genomic sequences by gapped k-mers (short DNA 190 
sequences of length k) within transposon integration sites and infers the variation in k-191 
mer occupancy using principal component analysis (PCA). chromVAR[2] estimates the 192 
dispersion of chromatin accessibility within peaks sharing the same feature, e.g. motifs 193 
or k-mers. Cicero[8] calculates a gene activity score based on accessibility at a promoter 194 
region and the regulatory potential of peaks nearby. cisTopic[9] applies Latent Dirichlet 195 
Allocation (LDA) (a Bayesian topic modeling approach commonly used in natural 196 
language processing) to identify cell states from topic-cell distribution and explore cis-197 
regulatory regions from region-topic distribution. Previous approaches that utilize 198 
latent semantic indexing (LSI) (termed here as Cusanovich2018)[1, 10, 11] first partition 199 
the genome into windows, normalize reads within windows using the term frequency-200 
inverse document frequency transformation (TF-IDF), reduce dimensionality using 201 
singular value decomposition (SVD), and perform a first-round of clustering (referred 202 
to as ‘in silico cell sorting’) to generate clades and call peaks within them. Finally, the 203 
clusters are refined with a second-round of clustering after TF-IDF and SVD based on 204 
read counts in peaks. The Gene Scoring method[12] assigns each gene an accessibility 205 
score by summarizing peaks near its transcription start site (TSS) and weighting them 206 
by an exponential decay function based on their distances to the TSS. scABC[13] first 207 
calculates a global weight for each cell by taking into account the number of distinct 208 
reads in the regions flanking peaks (to estimate the expected background). Based on 209 
these weights, it then uses weighted k-medoids to cluster cells based on the reads in 210 
peaks. Scasat[14] binarizes peak accessibility and uses multidimensional scaling (MDS) 211 
based on the Jaccard distance to reduce dimensionality before clustering. SCRAT[4] 212 
summarizes read counts on different regulatory features (e.g. transcription factor 213 
binding motifs, gene TSS regions). SnapATAC[15] segments the genome into 214 
uniformly-sized bins and adjusts for differences in library size between cells using a 215 
regression-based normalization method; finally PCA is performed to select the most 216 
significant components for clustering analysis.  217 

Define Regions  218 
An essential aspect of feature matrix construction is the selection of a set of regions to 219 
describe the data (e.g. putative regulatory elements such as peaks, promoters etc.). Most 220 
methods described above, including chromVAR, Cicero, cisTopic, Gene Scoring, scABC, 221 
and Scasat, define regions based on peak calling from either a reference bulk ATAC-seq 222 
profile or an aggregated single cell ATAC-seq profile. Cusanovich2018, as briefly 223 
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mentioned above, instead of aggregating single cell to call peaks, first creates pseudo-224 
bulk clades by performing hierarchical clustering on the TF-IDF and SVD transformed 225 
matrix using the top frequently accessible windows. Then peaks are called by 226 
aggregating cells within each pseudo-bulk clade. In addition to relying on peaks, some 227 
methods have proposed different strategies. BROCKMAN uses the union of regions 228 
around transposon integration sites. Cusanovich2018 (before in silico sorting) and 229 
SnapATAC segment the genomes into fixed-size bins (windows) and count features 230 
within each bin. 231 

Count Features 232 
Once feature regions are defined, raw features within these regions are counted. Note 233 
that some methods (e.g. chromVAR) may support the counting of multiple features. For 234 
cisTopic, Cusanovich2018, scABC, and Scasat, reads overlapping peaks are counted. For 235 
Cusanovich2018 (before the in silico sorting step) and SnapATAC, reads overlapping bins 236 
are counted. k-mers are counted under peaks for chromVAR while gapped k-mers are 237 
counted for BROCKMAN around transposase cut sites. Similarly, transcription factor 238 
motifs (e.g. from the JASPAR database[16]) can be used as features by counting reads 239 
overlapping their binding sites in peaks (chromVAR) or genome-wide (SCRAT). If 240 
predefined genomic annotations such as coding genes are given, Gene Scoring, Cicero, 241 
and SCRAT use gene TSSs as anchor points to calculate gene enrichment scores based 242 
on reads nearby or just within peaks nearby.  243 

Transformation  244 
After building the initial raw feature matrix using the counting step, different 245 
transformation methods can be performed. Binarization of read counts is used by five 246 
out of the ten evaluated methods: Cicero, cisTopic, Cusanovich2018, Scasat, and 247 
SnapATAC. (Fig. 2). This step is based on the assumption that each site is present at 248 
most twice (for diploid genomes) and that the count matrix is inherently sparse. 249 
Binarization is advantageous in alleviating challenges arising from sequencing depth or 250 
PCR amplification artifacts. SnapATAC and Scasat convert the binary count matrix into 251 
a cell-pairwise Jaccard index similarity matrix. Cusanovich2018 normalizes the binary 252 
count matrix using the TF-IDF transformation. Cicero weights feature sites by their co-253 
accessibility, while Gene Scoring weights sites by a decaying function based on its 254 
distance to a gene TSS. Both chromVAR and SnapATAC perform a read coverage bias 255 
correction to account for the influence of sample depth. scABC also implements a 256 
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similar step but calculates a weight for each cell; even if these weights are not used to 257 
transform the matrix, they are used later in the clustering procedure. SCRAT adjusts for 258 
both library size and region length. chromVAR creates ‘background’ peaks consisting of 259 
an equal number of peaks matched for both average accessibility and GC content to 260 
calculate bias-corrected deviation. Both BROCKMAN and chromVAR compute z-scores 261 
to measure the gain or loss of chromatin accessibility across cells.  262 

Dimensionality Reduction  263 

In the final step before downstream analysis, several methods apply different 264 
dimensionality reduction techniques to project the cells into a space of fewer 265 
dimensions. This step can refine the feature space mitigating redundant features and 266 
potential artifacts, and potentially reducing the computation time of downstream 267 
analysis (Fig. 2). PCA is the most commonly used method (used by BROCKMAN, 268 
SnapATAC, and Cusanovich2018). cisTopic uses latent Dirichlet allocation (LDA) to 269 
generate two distributions including topic-cell distribution and region-topic 270 
distribution. Choosing the top topics based on the topic-cell distribution reduces the 271 
dimensionality. Scasat uses multidimensional scaling (MDS). When reviewing the 272 
different methods to include in our benchmark, we noticed that not all methods 273 
perform a dimensionality reduction step, which could skew the relative performance 274 
across methods. Therefore, for chromVAR, Cicero (gene activity score), Gene Scoring, 275 
scABC, and SCRAT, we considered in addition to the original feature matrix, also a new 276 
feature matrix after PCA transformation, since this is simple and commonly used 277 
technique for dimensionality reduction.  278 

To better evaluate the effects of different modules including define regions, count features, 279 
transformation, and dimensionality reduction, we also considered a simple control method, 280 
referred to as Control-Naïve, by combining the most common and simple steps for 281 
building a feature matrix, i.e. counting reads within peaks to obtain a peaks-by-cells 282 
raw count matrix and then performing PCA on it (the number of top principal 283 
components was determined based on the elbow plot for all the methods). Since the 284 
feature matrix of scABC is also a peaks-by-cells raw count matrix, this matrix after PCA 285 
will correspond to the one obtained by the Control-Naïve method (to avoid 286 
redundancies, in our assessment we refer to this matrix as Control-Naïve). 287 
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We also noticed that some methods might slightly diverge from the proposed four 288 
modules common framework. For example, Cicero calculates gene activity scores by 289 
first performing two transformations (binarize and weight features) and then 290 
performing the counting step around the annotated TSS. We believe the proposed 291 
modularization of the of the feature matrix construction can still serve as a useful 292 
framework to represent the core components of the different methods and provides an 293 
intuitive and informative summary of the diverse scATAC-seq methodologies. 294 

Once dimensionality reduction is completed, the transformed feature matrix can be 295 
used for unbiased clustering, visualization, or other downstream analyses. Here we 296 
have used the final feature matrices generated by each scATAC-seq analysis method, 297 
and evaluated their performance in uncovering different populations by unsupervised 298 
clustering.   299 

Clustering approaches and metrics used for performance evaluation  300 

This study employed three diverse types of commonly used unsupervised clustering 301 
methods for single cell analysis [6]: K-means clustering, Hierarchical Clustering, and the 302 
Louvain community detection algorithm (see Methods).  303 

Clustering results were evaluated by three commonly used metrics: adjusted random 304 
index (ARI), adjusted mutual information (AMI) and homogeneity when a gold 305 
standard solution was available (known labels for the simulation data and FACS-sorted 306 
cell populations or known tissues for the real datasets). We propose a Gini-index-based 307 
metric called Residual Average Gini Index (RAGI), which was used to evaluate the 308 
clustering results when no ground truth was available and only a few marker genes 309 
were known by which populations could be discriminated (see Methods). For each 310 
metric, we defined the clustering score as the highest score amongst the three clustering 311 
methods, i.e. the score which corresponded to the clustering solution that maximized 312 
the metric. 313 

This framework allowed for benchmarking the ability of each strategy to featurize 314 
chromatin accessibility data and its impact on important downstream analyses such as 315 
clustering and visualization. The following sections present the results of this 316 
evaluation for all above-described synthetic and real scATAC-seq datasets. 317 
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Clustering performance on simulated datasets 318 

We simulated 10 scATAC-seq datasets using available bulk ATAC-seq datasets with 319 
clear annotations from bone marrow and erythropoiesis[5, 17] using varying noise 320 
levels and read coverages. Briefly, to generate the peak by cell matrices, we defined a 321 
noise parameter (between 0 and 1) as the proportion of reads occurring in a random 322 
peak from one of the sorted populations. The remaining proportion of reads was 323 
distributed as a function of the bulk sample (see Methods).  A feature matrix with a 324 
noise level of 0 preserved perfectly the underlying cell type specificity of the reads 325 
within peaks. Conversely, a feature matrix with a noise level of 1, contained no 326 
information to discriminate cell types based on the reads within peaks. In our study, we 327 
considered three noise levels: no noise (0), moderate noise (0.2) and high noise (0.4). To 328 
better and more fairly evaluate the contribution of the core steps of each method (i.e. 329 
count features, transformation and dimensionality reduction) regardless of the preprocessing 330 
steps usually excluded from these methods (reads filtering, alignment, peak calling, 331 
etc.), we compared the performance of each method using a set of predefined peak 332 
regions from bulk ATAC-seq datasets. We selected the top 80,000 peaks based on the 333 
number of cells in which peaks were observed (each peak that was present in at least 334 
one cell) for all methods and all synthetic datasets.  335 

Using the bulk ATAC-seq bone marrow dataset, we simulated five additional datasets 336 
to explore the effect of coverage on clustering performance (5,000 fragments, 2,500 337 
fragments, 1,000 fragments, 500 fragments, 250 fragments respectively per cell).  338 

Each method was used to analyze all synthetic datasets as suggested in the method 339 
documentation (see Sup Note 1 and Sup Fig. 1).  340 

Simulated bone marrow datasets 341 
 342 
We generated chromatin accessibility profiles (2,500 fragments per cell) based on six 343 
different FACS-sorted bulk cell populations: hematopoietic stem cells (HSCs), common 344 
myeloid progenitor cells (CMPs), erythroid cells (Ery), and other three lymphoid cell 345 
types: natural killer cells (NK), CD4 and CD8 T-cells (see Fig. 3a). We used ARI, AMI 346 
and homogeneity metrics to compare the clustering solutions with the known cell type 347 
labels (Fig. 3b, Sup Fig. 2, Sup Table 1). The top three methods based on these 348 
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simulation settings were cisTopic, Cusanovich2018, and SnapATAC. They performed 349 
equally well with no noise and moderate noise (with clustering scores close to 1.0) (Sup 350 
Fig. 2, Sup Table 2).  At a noise level of 0.4, the methods showed more separation in 351 
performance accordingly to the three metrics (Fig. 3b, Sup Table 3). SnapATAC, 352 
Cusanovich2018, and cisTopic clearly outperformed the Control-Naïve method with 353 
consistently higher clustering scores across all metrics. Scasat performed slightly better 354 
than the Control-Naïve method, and the remaining methods under-performed relative 355 
to the Control-Naïve method. For scABC (i.e. peaks-by-cells raw count matrix), 356 
Hierarchical Clustering performs much better than the other two clustering methods. 357 
chromVAR performance using k-mers as features was superior to the approach using 358 
motifs. Another k-mer-based method, BROCKMAN demonstrated similar performance 359 
to the k-mer-based chromVAR method. Motif-based SCRAT performed better than 360 
motif-based chromVAR. Both Cicero gene activity scores and Gene Scoring (which 361 
summarize the chromatin accessibility around coding annotations without a 362 
dimensionality reduction step) generally performed poorly. PCA boosted performance 363 
of scABC, Cicero, and Gene Scoring. This step improved clustering performance 364 
regardless of the clustering method (also we noted again that scABC after PCA is 365 
equivalent to the Control-Naïve method), especially for the Louvain approach. PCA 366 
also slightly boosted performance of the k-mer-based chromVAR but did not markedly 367 
improve the results of the motif-based chromVAR or SCRAT analyses.  368 
 369 
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 370 
 371 
Figure 3. Benchmarking results in simulated bone marrow datasets at a noise level of 0.4 372 
and a coverage of 2,500 fragments. (a) Cell types used to create the simulated dataset. (b) 373 
Dot plot of scores for each metric to quantitatively measure the clustering performance 374 
of each method, sorted by maximum ARI score. (c) The two top-scoring pairings of 375 
scATAC-seq analysis method and clustering technique. Cell cluster assignments from 376 
each method are shown using the colors in the legend on the left. (d) UMAP visualization 377 
of the feature matrix produced by each method for the simulated dataset. Individual cells 378 
are colored indicating the cell type labels shown in (a). 379 
 380 
We next investigated qualitatively the obtained clustering solutions, using the 381 
respective feature matrices to project the cells onto a 2-D space using UMAP and 382 
colored them based on the obtained clustering solutions (Sup Fig. 3) or based on the 383 
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true population labels used to generate the data (Fig. 3d).  The top two clustering 384 
solutions based on the ARI (SnapATAC with k-means and SnapATAC with Louvain) 385 
are shown for ease of comparison (Fig. 3c). 386 
 387 
Cusanovich2018 and SnapATAC are the only two methods that clearly separated all six 388 
populations. cisTopic slightly mixed CD4 and CD8 T-cells. Scasat and the Control-389 
Naïve method failed to separate CD4 and CD8 T-cell populations. BROCKMAN slightly 390 
mixed NK with CD4 and CD8 T-cells and could not further separate CD4 and CD8 T-391 
cells. It also failed to clearly separate HSC and CMP. Both kmer-based and motif-based 392 
chromVAR as well as SCRAT could only separate the Ery population while failing to 393 
separate HSC and CMP as well as CD4, CD8 T-cells, and NK. The chromVAR k-mers-394 
based method mixed HSC and CMP to a lesser extent compared to the motifs-based 395 
method. There was no clear separation of cells using scABC (the peaks-by-cells raw 396 
count matrix), Cicero, or Gene Scoring. We observed that PCA clearly improved the 397 
separation of cell populations for Cicero and Gene Scoring. It also slightly improved the 398 
separation of CD4, CD8 T-cells, and NK populations by k-mer-based chromVAR. No 399 
clear improvement was observed for the motif-based chromVAR, or SCRAT methods. 400 
We further observed that a lack of visual separation of cell types in the UMAP plots 401 
(scABC, Cicero, and Gene Scoring), corresponded with substantial variation between 402 
the performances of the three clustering methods, showing better performance in the k-403 
means clustering (Fig. 3b,d). 404 
 405 
All methods except for Cusanovich2018 and SnapATAC demonstrated declining 406 
performance with increased noise level (Sup Fig. 2, 4a). Cusanovich2018 and SnapATAC 407 
were more robust to noise, showing no noticeable changes at increasing noise levels, 408 
while cisTopic was slightly more sensitive to noise; its performance dropped markedly 409 
when the noise level was increased to 0.4. 410 
 411 
Next, the effect of the coverage on clustering performance was investigated. We 412 
progressively decreased the number of fragments per cell from a high coverage of 5,000 413 
fragments, to a medium coverage of 2,500 fragments and 1,000 fragments, then to a low 414 
coverage of 500 fragments and finally to 250 fragments. The performance of all methods 415 
declined as coverage was decreased. (Sup Fig. 4b, Sup Fig. 5, Sup Table 4-5-6-7-8). 416 
Cusanovich2018, SnapATAC, Scasat, and Control-Naïve are relatively robust to low 417 
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coverage and outperform other methods. cisTopic worked well with high coverage but 418 
in contrast to the above listed methods, was more sensitive to lower coverages (Sup Fig. 419 
5e). 420 
 421 
Simulated erythropoiesis datasets 422 
Following the simulation of discrete sorted cell populations, we simulated three 423 
scATAC-seq datasets aimed at mimicking the continuous developmental erythropoiesis 424 
process and encompassing the following twelve populations: hematopoietic stem cells 425 
(HSC), common myeloid progenitors (CMP), megakaryocyte-erythroid progenitor 426 
(MEP), multipotent progenitors (MPP), myeloid progenitors (MyP), colony forming 427 
unit-erythroid (CFU-E), proerythroblasts (ProE1), proerythroblasts (ProE2), basophilic 428 
erythroblasts (BasoE), polychromatic erytrhoblasts (PolyE), orthochromatic 429 
erythroblasts (OrthoE) and OrthoE and reticulocytes (Orth/Ret). These datasets were 430 
generated as before with three noise levels (0, 0.2 and 0.4) and with 2,500 fragments per 431 
cell.  432 
 433 
To first quantitatively evaluate the clustering solutions we used ARI, AMI and the 434 
homogeneity metrics (Sup Fig. 6 and Sup Table 9). Without noise, SnapATAC, cisTopic 435 
BROCKMAN, Cusanovich2018, and Scasat consistently outperform the Control-Naïve 436 
across the three metrics (Sup Fig.6a). chromVAR as before, performs better using k-437 
mers as features than when using motifs. SCRAT and scABC work as well as k-mers-438 
based chromVAR. Again, methods such as Cicero and Gene Scoring that only 439 
summarize chromatin accessibility around TSS perform poorly. For scABC, Cicero and 440 
Gene Scoring, we also notice that there are significant discrepancies between the three 441 
clustering methods, but their performances become similar after PCA (scABC after PCA 442 
is equivalent to the Control-Naïve method). Again, we observe that PCA can 443 
significantly improve the clustering performance of Louvain for scABC, Cicero and 444 
Gene Scoring but not for chromVAR and SCRAT. 445 
 446 
As before, to qualitatively assess population separation, we inspected UMAP 447 
projections applied to the noise-free simulated dataset (Sup Fig. 6a). In accordance with 448 
the quantitative comparison, cisTopic, Cusanovich2018, SnapATAC, and BROCKMAN 449 
demonstrate better performance in separating cell types compared to the Control-Naïve 450 
method and are able to further separate BasoE and PolyE. Moreover, SnapATAC can 451 
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clearly distinguish CFU-E, ProE1, ProE2 while cisTopic, Cusanovich2018, and 452 
BROCKMAN are only able to separate ProE2 out of these three populations. Scasat 453 
performs similarly to the Control-Naïve method. chromVAR with k-mers as features 454 
and SCRAT are able to isolate six major groups including HSCs-MPPs, CMP, MEP, 455 
Myp, CFU-E-ProE1-ProE2, and BasoE-PolyE-OrthoE-Orth/Ret. chromVAR with k-mers 456 
performs well in preserving the order of CFU-E-ProE1-ProE2 and BasoE-PolyE-OrthoE-457 
Orth/Ret. SCRAT can further separate BasoE-PolyE from OrthoE-Orth/Ret while mixing 458 
up CFU-E-ProE1-ProE2. As before, we noticed that chromVAR using k-mers as features 459 
obtained a better separation of cell types than when using motifs. scABC is able to 460 
preserve well the order of major groups in a continuous way but fails to separate CFU-461 
E-ProE1-ProE2 and OrthoE-Orth/Ret. Cicero gene activity score and Gene Scoring 462 
mixed different cell types but after a simple PCA step they clearly separate cells into 463 
three major groups. scABC did not perform well and produced small noisy clusters 464 
with different cell types mixed together.  465 
 466 
As expected, we observed that increasing the level of noise resulted in clustering 467 
performance decrease and a decline of visual separation of cell types for all the methods 468 
(Sup Fig. 4c, Sup Fig. 6, Sup Table 10-11). SnapATAC, cisTopic, and Cusanovich2018 469 
performed reasonably well when increasing the noise level, with SnapATAC the most 470 
robust among the three. 471 
 472 

Clustering performance on real datasets 473 

Following the benchmark of the synthetic datasets, we assessed the performance of the 474 
methods on real datasets. These datasets were generated using different technologies: 475 
the Fluidigm C1 array[18], the 10X Genomics droplet based scATAC platform, and a 476 
recently-optimized split-pool protocol[1]. Each real dataset used was fundamentally 477 
different in its cellular makeup as well as size and subpopulation organization. Notably, 478 
as ‘true positive’ labels are not always available, in addition to the metrics used on the 479 
simulated datasets, here we introduced the RAGI, a simple metric based on the Gini 480 
Index that can be adopted when marker genes for the expected populations are known 481 
(see Methods). In our assessment of Cusanovich2018, to make a fair comparison, we use 482 
first the same set of peaks used for other methods instead of the peaks called from its 483 
pseudo-bulk-based procedure.  However, since this strategy may be important for the 484 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2019. ; https://doi.org/10.1101/739011doi: bioRxiv preprint 

https://doi.org/10.1101/739011
http://creativecommons.org/licenses/by/4.0/


18 
 

final clustering performance, the pseudo-bulk based peak calling strategy is tested and 485 
discussed in a subsequent section. 486 

Buenrostro2018 dataset 487 
The first and smallest dataset we used in our benchmarking contains single cell ATAC-488 
seq data from the human hematopoietic system (hereafter Buenrostro2018)[18]. This 489 
dataset consists of 2034 hematopoietic cells that were profiled and FACS-sorted from 10 490 
cell populations including hematopoietic stem cells (HSCs), multipotent progenitors 491 
(MPPs), lymphoid-primed multipotent progenitors (LMPPs), common myeloid 492 
progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), GMP-like cells, 493 
megakaryocyte-erythroid progenitors (MEPs), common lymphoid progenitor (CLPs), 494 
monocytes (mono) and plasmacytoid dendritic cells (pDCs). Fig. 4a illustrates the 495 
roadmap of hematopoietic differentiation. For this dataset, the FACS-sorting labels are 496 
used as gold standard. The analysis details for each method are documented in Sup 497 
Note 2. 498 
 499 
We started by evaluating the clustering solutions based on the feature matrices 500 
generated by the different methods. We used the same metrics used for the synthetic 501 
datasets: ARI, AMI and homogeneity (Fig. 4b, Sup Table 12). cisTopic, Cusanovich2018, 502 
chromVAR, SnapATAC, and Scasat outperform the other methods across all three 503 
metrics. We also observed that chromVAR with k-mers or TF motifs and with or 504 
without PCA performs consistently well. As before, k-mers-based features work better 505 
than motif-based features. This can be also observed when comparing BROCKMAN, 506 
another k-mers-based method, with SCRAT, which is a motifs-based method. TSS based 507 
methods including Cicero and Gene Scoring did not perform well. Cicero requires a 508 
preprocessing step to assess cell similarity; poor performance might be due to the 509 
internally incorrectly inferred coordinates (our assessment used the t-SNE procedure as 510 
suggested in their documentation). Implementing PCA consistently improves the 511 
performance of scABC (as mentioned before, scABC after PCA is equivalent to the 512 
Control-Naïve method) and Cicero but does not impact the performance of chromVAR, 513 
SCRAT, and Gene Scoring. We also observed that for this dataset, Louvain algorithm 514 
works consistently well across different metrics and methods and performs better than 515 
hierarchical clustering and k-means in almost all the cases.  516 
 517 
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We also qualitatively assessed the separation of different cell types by visualizing cells 518 
in UMAP projections based on the FACS-sorted labels (Fig. 4d) and clustering solutions 519 
(Sup Fig. 7). Fig. 4c shows the best two combinations based on ARI: cisTopic with 520 
Louvain and Cusanovich2018 with Louvain (the complete ranking is presented in Sup 521 
Table 12).  522 
 523 

 524 
Figure 4. Benchmarking results using the Buenrostro2018 scATAC-seq dataset. (a) 525 
Developmental roadmap of cell types analyzed. (b) Dot plot of scores for each metric to 526 
quantitatively measure the clustering performance of each method, sorted by maximum 527 
ARI score. (c) The two top-scoring pairings of scATAC-seq analysis method and 528 
clustering technique. UMAP visualization of the feature matrix produced by each method 529 
for the Buenrostro2018 dataset. Individual cells are colored indicating the cell type labels 530 
shown in (a). 531 
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As Fig. 4d shows, in accordance with the clustering analyses, cisTopic, Cusanovich2018, 532 
Scasat, SnapATAC, and chromVAR can generally separate cell types, and reasonably 533 
capture the expected hematopoietic hierarchy. cisTopic and SnapATAC show a clear 534 
and compact separation among groups, with SnapATAC recovering finer structure 535 
within each cell type cluster. chromVAR with k-mers or motifs corresponds to a more 536 
continuous progression of the different cell types. Control-Naïve and BROCKMAN 537 
perform comparably in distinguishing cell types and preserving the continuous 538 
hematopoietic differentiation. Cicero gene activity scores, SCRAT, and scABC show 539 
ambiguous patterns of distinct cell populations while Gene Scoring fails to separate 540 
different cell types. For Cicero gene activity score, after performing PCA, the separation 541 
of different cells is noticeably improved. For SCRAT, performing PCA does not show 542 
clear improvement. 543 

Peripheral blood mono nuclear cells (PBMCs) 10X dataset 544 
Next, we investigated a recent dataset produced by 10X Genomics profiling peripheral 545 
blood mononuclear cells (PBMCs) from a single healthy donor. In this dataset, 5335 546 
single nuclei were profiled (~42k read pairs per cell); no cell annotations are provided.  547 
Based on recent studies [9, 19], we expected ~8 populations: CD34+, Natural Killer and 548 
Dendritic cells, Monocytes, lymphocyte B and lymphocyte T cells, together with 549 
terminally differentiated CD4 and CD8 cells. Therefore, we used 8 as the number of 550 
expected populations for the clustering procedures. The analysis details for each 551 
method are documented in Sup Note 3. 552 

Several marker genes have been proposed to label the different populations or to 553 
annotate clustering solutions for PMBCs [9, 19]. To measure cluster relevance based on 554 
these marker genes, we can annotate the clusters (or alternatively any group of cells) 555 
according to the accessibility values at those marker genes. In addition, accessibility at 556 
marker genes should be more variable between clusters than accessibility at 557 
housekeeping genes (since they should be, by definition, more equally expressed across 558 
different populations). Based on these ideas, we proposed and calculated the Residual 559 
Average Gini Index (RAGI) score (see Methods) contrasting marker and housekeeping 560 
genes (Fig. 5a, Sup Table 13). For reasonable clustering solutions, we expect that the 561 
accessibility of marker genes defines clear populations corresponding to one or few 562 
clusters, whereas accessibility of the housekeeping genes is broadly distributed across 563 
all the clusters. 564 
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 565 
Figure 5. Benchmarking results using scATAC-seq data for 5k Peripheral blood 566 
mononuclear cells (PBMCs) from 10x Genomics. (a) Dot plot of RAGI scores for each 567 
method, sorted by the maximum RAGI score. A positive RAGI value indicates that a 568 
method is able to produce a clustering of PBMCs in which chromatin accessibility of each 569 
marker gene is high in only a few clusters relative to the number of clusters with high 570 
accessibility of housekeeping genes. (b) UMAP visualization of the feature matrix 571 
produced by the top two methods (top row: SnapATAC, bottom row: chromVAR using 572 
kmers). Chromatin accessibility of S100A12 (left, Monocyte marker gene), MS4A1 (center, 573 
B-cell marker gene) and GPDH (right, housekeeping gene) are projected onto the 574 
visualization. (c) UMAP visualization of the feature matrix produced by each method for 575 
the 5k PBMCs dataset from 10x genomics. Individual cells are colored indicating cluster 576 
assignments using Louvain clustering. 577 
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As expected, methods with the highest performance such as SnapATAC and 578 
chromVAR, showed a higher average accessibility for just one cluster for the same 579 
marker gene, while lower performing methods such as SCRAT or Gene Scoring showed 580 
higher average accessibility in multiple clusters for the same marker gene, further 581 
motivating the use of the RAGI metric (Sup Fig. 8).  Fig. 5b shows for the top two 582 
performing methods based on RAGI (SnapATAC and chromVAR with k-mers) the gene 583 
accessibility patterns for 3 genes (S100A12 - Monocytes-specific, MS4A1 - B cells specific 584 
and GAPDH - housekeeping.) The same three genes are also shown in UMAP plots of 585 
the other methods (Sup Fig. 9). Again, we observed that Louvain algorithm performed 586 
better than k-means and hierarchical clustering for almost all scATAC-seq methods. 587 
Importantly, negative RAGI score for a method (see for example the solutions obtained 588 
by the Gene Scoring in Fig. 5a, Sup Fig. 9) may suggest that its clustering solutions are 589 
defined by housekeeping genes rather than informative marker genes  590 

We also qualitatively evaluated the clustering solutions of the different methods using 591 
UMAP projections (Fig. 5c, Sup Fig. 10). We observed two major groups for all methods 592 
except for scABC. Among these methods, the UMAP projections based on feature 593 
matrices obtained by Control-Naïve, cisTopic, Cusanovich2018, Scasat SnapATAC, 594 
BROCKMAN and chromVAR showed additional smaller groups and finer structures. 595 
For Cicero gene activity scores, performing PCA helps to improve the separation of 596 
more putative cell types. Instead for SCRAT and Gene Scoring, the PCA step did not 597 
improve the separation. 598 

Given that the ranking of methods in datasets with ground truth is similar to the 599 
ranking based on the RAGI metric, we believe this simple approach is a reasonable 600 
surrogate metric that can be useful for evaluating unannotated datasets, a common 601 
scenario in single cell omics studies. 602 

sci-ATAC-seq mouse dataset 603 
 604 
The last dataset analyzed in our benchmark consists of sciATAC-seq data from 13 adult 605 
mouse tissues (bone marrow, cerebellum, heart, kidney, large intestine, liver, lung, pre-606 
frontal cortex, small intestine, spleen, testes, thymus and whole brain), of which 4 were 607 
analyzed in duplicate for a total of 17 samples and 81,173 single cells[1]. Each tissue can 608 
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be interpreted as a coarse ground truth, used later to evaluate clustering solutions (Fig. 609 
6a). The analysis details for each method are documented in Sup Note 4. 610 
 611 

 612 
 613 
Figure 6. Benchmarking results using the downsampled sci-ATAC-seq mouse dataset 614 
from 13 adult mouse tissues. (b) Dot plot of scores for each metric to quantitatively 615 
measure the clustering performance of each method, sorted by maximum ARI score. (c) 616 
The two top-scoring pairings of scATAC-seq analysis method and clustering technique. 617 
Cell cluster assignments from each method are shown using the colors in the legend on 618 
the left. (d) UMAP visualization of the feature matrix produced by each method for the 619 
downsampled sci-ATAC-seq mouse dataset. Individual cells colors indicate the cell type. 620 
 621 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2019. ; https://doi.org/10.1101/739011doi: bioRxiv preprint 

https://doi.org/10.1101/739011
http://creativecommons.org/licenses/by/4.0/


24 
 

Despite using a machine with 1 TB of memory, almost all the methods failed to even 622 
load this dataset, owing to its size. The only method capable of processing this dataset 623 
in a reasonable time was SnapATAC (~700 minutes). The other methods failed to run 624 
due to memory requirements. To understand the causes of this failure we did an in-625 
depth analysis of their scalability looking at their source code (Sup Note 5). Briefly, we 626 
found that the majority of the methods try to load the entire dataset in the central 627 
memory while SnapATAC uses a custom file format (.snap) based on HDF5 628 
(https://support.hdfgroup.org/HDF5/whatishdf5.html), allowing out of core 629 
computation by efficiently and progressively loading in the central memory only the 630 
data chunks required at any given moment of the analysis. 631 

On this dataset, SnapATAC was able to correctly cluster cells of the following tissues: 632 
kidney, lung, heart, cerebellum, whole brain and thymus. However, for the other 633 
tissues, including bone marrow and small intestine, cells are distributed in groups of 634 
mixed cell types (Sup Fig.11), as reflected by the score of the three metrics used for the 635 
other datasets evaluation (Sup Table 14), i.e. ARI= (HC=0.24, k-means=0.34, 636 
Louvain=0.39), AMI=(HC=0.55, k-means=0.55, Louvain=0.62), Homogeneity=( HC=0.52, 637 
k-means=0.54 , Louvain=0.60). 638 
 639 
To gain insight on the performance of the other methods on this this dataset, we 640 
randomly selected 15% of cells from each sample to construct a smaller sciATAC-seq 641 
dataset consisting of 12,178 cells.  642 
 643 
As Fig. 6b shows Cusanovich2018, k-mer-based chromVAR, cisTopic, SnapATAC, Scasat 644 
and Control-Naïve perform comparably well and have noticeably better clustering 645 
scores than the other methods (Sup Table 15). Consistent with what we observed 646 
previously, peaks or bins level methods generally work better. In this dataset, k-mers-647 
based chromVAR and its combination with PCA transformation performs equally well 648 
as peaks or bins-level methods and better than the motifs-based methods. Simply 649 
counting reads within peaks (scABC) and gene-level-featurization-based methods 650 
(Gene Scoring and Cicero) perform poorly overall. Adding a PCA step improves 651 
noticeably scABC (scABC after PCA is the same as Control-Naïve) and Gene Scoring. It 652 
also slightly improves Cicero but it does not affect chromVAR and SCRAT.  653 
 654 
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As before, all the clustering solutions of the different methods were visualized in 655 
UMAP plots (Sup Fig. 12). The top two combinations, i.e. Cusanovich2018 and 656 
chromVAR k-mers with PCA, are visualized in Fig.6c. To visually compare the 657 
separation of the different tissues across methods, we also inspected UMAP plots where 658 
cells are colored based on the tissue of origin. Similar to what we observed using the 659 
clustering analysis, cisTopic, Cusanovich2018, and SnapATAC are able to separate cells 660 
into the major tissues and also to capture finer discrete groups. The Control-Naïve 661 
method and Scasat are also able to distinguish the major tissues but show some mixing 662 
within each discrete cell population. K-mer-based chromVAR can separate out liver, 663 
kidney, and heart tissues and present the other tissues within a continuous bulk 664 
population while preserving the structure of the distinct tissues. We observed that after 665 
running PCA, k-mer-based chromVAR can recover an additional group of cells within 666 
the lung tissue and also detect finer structure within the cells from the brain. Compared 667 
with k-mer-based features, motif-based chromVAR and its combination with PCA 668 
transformation distinguished fewer tissue groups while mixing more cells from 669 
different tissues. BROCKMAN recovered a continuous structure with the different 670 
tissues but does not distinguished them clearly. Similarly, Gene Scoring put cells from 671 
different tissues into a big bulk population with limited separation. PCA improved its 672 
ability to separate out a few tissues, including liver, heart, and kidney. SCRAT and 673 
Cicero gene activity scores mixed most of the cells from different tissues and performed 674 
poorly on this dataset with or without PCA. 675 
 676 
 677 
Clustering performance summary  678 

To assess and compare the overall performance of scATAC-seq analysis methods, we 679 
ranked the methods based on each metric (ARI, AMI, Homogeneity, RAGI) by taking 680 
the best clustering solution for the three real datasets (Buenrostro2018 dataset, PBMCs 681 
10X dataset, and the down-sampled sci-ATAC-seq mouse dataset) and two synthetic 682 
datasets (simulated bone marrow dataset and simulated erythropoiesis dataset with the 683 
moderate noise level of 0.2 and a medium coverage of 2500 fragments per cell). Then for 684 
each dataset except for the PBMCs 10X dataset, we calculated the average rank across 685 
ARI, AMI, and Homogeneity. For the PBMCs 10X dataset, RAGI is calculated instead 686 
(Sup Fig.13a). Lastly, we calculated the average rank across different datasets. 687 
According to the average ranking, SnapATAC, cisTopic and Cusanovich2018 are the top 688 
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three methods to create feature matrices that can be used to cluster single cells into 689 
biologically-relevant subpopulations (Fig. 7a). SnapATAC consistently performed well 690 
across all datasets. Both cisTopic and Cusanovich2018 demonstrated satisfactory 691 
performance across all datasets except for the 10X PBMCs dataset.  692 

 693 
Figure 7.  Aggregate benchmark results. (a) For each method, the rank based on the best-694 
performing clustering method is measured for each metric (e.g. ARI, AMI, H, or RAGI). 695 
The average metric ranks for each dataset were used to calculate a performance score for 696 
each method. Each method was then assigned a cumulative average score based on its 697 
performance across all datasets. * indicates a downsampled dataset of the indicated 698 
original dataset.  (b) For methods that specify an end-to-end clustering pipeline, average 699 
rank and cumulative average scores for each method were calculated as in (a). (c) Plot of 700 
running time against performance for each method. Cumulative average scores, which 701 
were calculated in part (a) are shown on the x-axis, and the average running time across 702 
the three real datasets (Buenrostro2018, 10X PBMCs, and downsampled sci-ATAC-seq 703 
mouse) is shown on the y-axis. 704 
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Generally, methods that implement a dimensionality reduction step work better 705 
(SnapATAC, cisTopic, Cusanovich2018, Scasat, Control-Naïve, and BROCKMAN) than 706 
those without it (SCRAT, scABC, Cicero, and Gene Scoring). We also observed that 707 
chromVAR performs better in real datasets than in simulated datasets and that the 708 
kmer-based version of chromVAR consistently outperforms motif-based chromVAR. 709 
For the methods that do not implement dimensionality reduction, the PCA step does 710 
not always improve the performance except for scABC and Cicero, in which the PCA 711 
transformation consistently boosts the results. Interestingly, we observed that 712 
regardless of the method, the PCA consistently improves the clustering solutions 713 
obtained by the Louvain algorithm.  714 
 715 

Keeping the first PC vs removing the first PC 716 
 717 
In preparing this manuscript, we noticed that in some cases, the first principal 718 
component (PC) may only capture variation in sequencing depth instead of biologically 719 
meaningful variability. To make a thorough assessment of how the first PC affects the 720 
clustering results, we compared the effect of keeping vs removing the first PC on the 721 
three real datasets (for this comparison we consider both the methods that implemented 722 
PCA and the combination of PCA and the methods that did not implement a 723 
dimensionality reduction step) (Sup Fig.14). Across all three datasets, we observe that 724 
for Control-Naïve, BROCKMAN, SCRAT-PCA, and Gene Scoring-PCA, removing the 725 
first PC consistently helped in better separating the different populations in UMAP 726 
projections and improved clustering performance. In contrast, the performance of 727 
chromVAR-PCA with motifs as features consistently dropped after removing the first 728 
PC. Cusanovich2018 and SnapATAC performed similarly before and after removing the 729 
first PC across all datasets. For Cicero-PCA, removing first PC did not clearly affect its 730 
performance in Buenrostro2018 and 10X PBMCs datasets but improved its performance 731 
in the down-sampled sci-ATAC mouse dataset.  732 
 733 
Generally, the methods that implement binarization (e.g. Cusanovich2018, SnapATAC) 734 
or that implement cell coverage bias correction (e.g. chromVAR, SnapATAC), tend to be 735 
less affected by the sample sequencing depths. Therefore, for these methods we believe 736 
that the first PC does not capture the library size and removing it does not help to 737 
improve the clustering results. On the contrary, for methods that do not implement any 738 
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specific step to correct for potential artifacts associated with sequencing depth, the first 739 
PC is more likely to capture biologically irrelevant factors and therefore may reduce 740 
biology-driven differences. However, this operation must be applied with caution, since 741 
removing the first component could also in some cases remove some biological 742 
variation (e.g. motif-based chromVAR). 743 

Clustering performance when running methods as end to end pipelines  744 

When designing this study, we reasoned that a benchmark procedure could be 745 
approached from two very different perspectives. The first is the end user perspective, 746 
i.e. a user that runs a method as a black box following the provided documentation with 747 
the goal to obtain a reasonable clustering solution without worrying too much about the 748 
internal design choices and procedures.  In these settings, it is not trivial to 749 
systematically compare the methods and understand which part related to the 750 
featurization may influence the final clustering performance, especially if also the 751 
clustering algorithms used are different. The second perspective that was used instead 752 
in the rest of this benchmarking effort is the developer perspective, i.e. we tried to 753 
understand what are the key steps of each method that can boost clustering 754 
performance of common clustering approaches. Regardless, we reasoned that it is 755 
important to provide some insights on the user perspective, since some readers will use 756 
the tested methods as end-to-end pipelines. Therefore, we also compared the clustering 757 
solutions produced by running the complete analysis pipelines as outlined in tutorials 758 
for the methods that explicitly implement a clustering step (see Sup Note 6). We 759 
evaluated the clustering results using ARI, AMI and Homogeneity for the 760 
Buenrostro2018 and sci-ATAC-seq mouse datasets, and RAGI for the PBMCs 10X dataset 761 
(Sup Table 16-17-18). We observe the top three methods, i.e. Cusanovich2018, cisTopic 762 
and SnapATAC, still outperform the other methods but with a slightly different 763 
ranking. (Cusanovich2018 is ranked first followed by cisTopic and SnapATAC, Fig. 7b, 764 
Sup Fig. 13b). Also, both scABC and Cicero performed better than Scasat in this 765 
analysis. Interestingly, we observed that SnapATAC, cisTopic, Cusanovich2018, and 766 
Scasat have even better clustering solutions in our benchmarking framework compared 767 
to using their own clustering approach. On the other hand, scABC and Cicero had 768 
better clustering results when running their own clustering procedure. scABC uses an 769 
unsupervised clustering method tailored to single cell epigenomic data (including 770 
scATAC-seq). Although it uses the naïve peaks-by-cells raw count as its feature matrix, 771 
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it calculates cells weights by considering their sequencing coverage and giving more 772 
weight to cells with higher number of reads. Also, it performs two steps of clustering by 773 
using weighted k-medoid algorithm based on Spearman rank correlation to find 774 
landmarks first and then assigns cells to the landmarks. These specific steps help 775 
improve its clustering performance. For the Cicero clustering workflow, we used the 776 
gene activity scores and, as proposed in their tutorial, functions from Monocle2, to (i) 777 
normalize the scores and (ii) reduce the dimensionality with tSNE by using the top PCs 778 
before clustering cells. These extra steps helped in improving its clustering solutions. 779 
This suggests that appropriate normalization steps need to be properly performed to 780 
improve clustering analysis, in addition to simple transformations like binarizing 781 
counts and/or performing a PCA.  782 
 783 
Taken together, based on these analyses, we recommend using SnapATAC, cisTopic, or 784 
Cusanovich2018 to cluster cells in meaningful subpopulations. This step can be followed 785 
by methods such as Cicero, Gene Scores or with TF motifs (e.g. chromVar) to annotate 786 
clusters and to determine cell types in an integrative approach. 787 
 788 
Important considerations in defining informative regions for scATAC-seq analyses  789 

Feature sets of informative peaks for scATAC analyses may be computed from bulk 790 
samples available through large scale consortia such as ENCODE[20] and 791 
ROADMAP[21] or more precise tissue-specific cell types as in the 792 
murine ImmGen Project[22]. However, scATAC-seq analyses often require de 793 
novo inference of dataset-specific accessibility peaks in order to resolve cell types and 794 
regulatory activity.   795 

To date, there are three major methods for generating peak sets for scATAC 796 
experiments. The first strategy (pseudo-bulk from all single cells, PB-All) for inferring 797 
peaks is to call peaks on a pseudo-bulk sample omposed of all the reads from all cells in 798 
the library. The second (pseudo-bulk from FACS, PB-FACS) is to call peaks in a priori-799 
defined cell types isolated by FACS-sorting. A consensus peak set can be defined by 800 
combining summits of individual peaks using an iterative algorithm [5, 18, 23]. Finally, 801 
a third strategy (pseudo-bulk from clades, PB-Clades) uses a pre-clustering of cells to 802 
define initial populations[1, 10]. Subsequent peak calling is performed in each initial 803 
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cluster. Aggregate peak sets can then be defined from synthesizing the summits of each 804 
cluster-specific peak set as described above.   805 

Bulk ATAC-seq peaks vs aggregated scATAC-seq peaks 806 
To evaluate the effect of using peaks obtained from bulk ATAC-seq data versus peaks 807 
obtained from aggregated single cell profiles, we reanalyzed the Buenrostro2018 dataset 808 
in which both are available (Sup Fig. 15-16). Here we considered only the methods that 809 
use peaks as input (i.e. SnapATAC, SCRAT, BROCKMAN are excluded). For the 810 
aggregated scATAC-seq peaks, we merged cells of the same cell type based on the 811 
FACS sorting labels and performed peak calling within each cell type. Then peaks 812 
defined within each cell type were merged. For most methods we did not observe clear 813 
differences in performance between the two input peak strategies. For cisTopic, 814 
Cusanovich2018, and Cicero, aggregated scATAC-seq peaks overall perform better 815 
across all three metrics (Sup Fig. 17a, Sup Table 19).  816 

We also tested the strategy of defining pseudo bulk samples from clades when no 817 
sorting labels are provided. Cusanovich2018 is the only method that provides a 818 
workflow to identify initial clades and call peaks within each clade. It counts reads 819 
within the fixed-size windows and pre-clusters cells using hierarchical clustering to 820 
define initial clades from which peaks are called. We applied this strategy to all three 821 
real datasets (Sup Fig. 18). We observed that in all three datasets, Cusanovich2018 822 
performs well in identifying the isolated major groups and the identified clades match 823 
well the labels provided, including FACS-sorted labels, cell-ranger clustering solutions, 824 
and known tissues labels. Overall the Cusanovich2018 ‘pseudo bulk’ strategy for 825 
defining de novo peaks is able to capture the heterogeneity within single cell populations 826 
and can serve as a promising unsupervised way to define pseudo bulk subpopulations 827 
and to perform peak calling.   828 

The effect of excluding regions using the ENCODE blacklist annotation 829 
 830 
cisTopic, Scasat, SCRAT, and SnapATAC employ a blacklist filtering step to remove 831 
features annotated by ENCODE as belonging to a subset of genomic regions, which 832 
harbor the potential to produce artifacts in downstream analysis steps [24]. cisTopic and 833 
Scasat perform a peak filtering in the pre-processing steps of their pipeline. Our 834 
benchmarking pipeline makes use of the ENCODE ATAC-seq pre-processing pipeline, 835 
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which removes peaks overlapping with regions on the blacklist annotations list. 836 
Therefore, we tested the remaining two methods, which do not use peaks as features, 837 
SCRAT or SnapATAC. In particular, we wanted to test whether we would observe any 838 
change in downstream clustering performance upon opting to perform a blacklist 839 
removal step.  Through a qualitative and quantitative comparison of clustering 840 
performance, we determined that methods, which remove features according to 841 
blacklist annotations show no considerable advantage over those that permitted such 842 
features (Sup Fig.19). 843 
 844 
Rare cell type-specific peak detection 845 
As all cell identities may not be pre-defined in complex tissue types, we sought to 846 
examine PB-All and PB-Clades strategies to infer a chromatin accessibility feature set 847 
from the scATAC-seq libraries directly. To achieve this, we established a simulation 848 
setting where we mixed bulk ATAC-seq data from three sorted populations (B-cells, 849 
CD4+ T-cells, and monocytes from the PBMCs 10X dataset) that would be mixed in 850 
complex tissue (i.e. peripheral blood mononuclear cells) (Sup Fig. 17b). After peak 851 
calling on both the synthetic bulk and isolated reads from each cell type, we inferred the 852 
proportion of cell type-specific peaks from the minor cell population that were captured 853 
by the peak calling in the synthetic bulk mixture (see Methods).  854 

Overall, the results indicate that cell type-specific peaks may be vastly underestimated 855 
from performing peak calling on the mixture of single cells (PB-All) (Sup Fig. 17b). 856 
Specifically, only ~18% of cell type-specific peaks from very rare (1% prevalence) or 857 
~40% from rare (5% prevalence) cell populations were detected when peaks were called 858 
when treating the heterogenous source as a synthetic bulk experiment. Consequently, as 859 
these peaks would be vastly under-represented in a consensus peak set, virtually all 860 
computational algorithms will fail to identify rare populations. Moreover, as many 861 
common quality-control measures for scATAC involve filtering based on the proportion 862 
of reads in peaks, these cell populations may be under-represented in quality-controlled 863 
datasets.   864 

As observed in other studies [1, 25], these results suggest calling peaks on PB-All may 865 
result in sub-optimal performance. Alternatively, when isolated populations have been 866 
profiled (for example by FACS) peak sets can be defined by calling peaks using data 867 
from cells in each pre-defined population separately as discussed in the previous 868 
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section since this enables the resolution of rare subpopulations (for example HSC in the 869 
hematopoietic system). 870 

Frequency-based peak selection vs intensity-based peak selection  871 
Cusanovich2018 selects peaks that are present in at least a specified percentage of cells 872 
before performing TF-IDF transformation, while scABC selects peaks with the most 873 
reads to cluster cells. To evaluate the effect of selecting peaks based on their 874 
representation in the cell population or based on their intensity (defined as the sum of 875 
reads in that peak in all samples), we focus on the two methods that implement the step 876 
of peak selection, Cusanovich2018 and Control-Naïve (equivalent to scABC+PCA).  877 

To assess the two peak selection strategies, we ran both Cusanovich2018 and Control-878 
Naïve on both simulated bone marrow dataset at noise level of 0.2 with a coverage of 879 
2500 fragments and the Buenrostro2018 dataset by varying the cutoffs for peak inclusion 880 
(Sup Fig. 20-21). We calculated the intensity of peaks by counting the number of reads 881 
across all cells and calculated the frequency of peaks by counting the number of cells in 882 
which a peak is observed. For this analysis we selected the top peaks based on intensity 883 
and frequency with the following cutoffs: top 100%, 80%, 60%, 40%, 20%, 10%, 8%, 6%, 884 
4%, %2, 1%.  885 

For both Cusanovich2018 and Control-Naïve, the two peak selection strategies have 886 
similar clustering result scores when varying the cutoff (Sup Fig. 20a-b,21a-b). We 887 
observed reasonable and stable clustering performance using more than 20% of the 888 
ranked peaks. As the number of peaks is reduced, the scores start to decline noticeably 889 
and decrease almost monotonically. Below 1%, both methods perform poorly. In 890 
addition, we observed that the Louvain method produces more stable results than 891 
hierarchical clustering and k-means across  the considered settings.  892 

Running time of different methods 893 

In our analysis, we also collected the running time of each method on both simulated 894 
and real datasets (see Sup Note 6). For the simulated datasets, we only reported the 895 
execution time necessary to build a feature matrix starting from a peaks-by-cells count 896 
matrix. For real datasets, we considered the execution time to build a feature matrix 897 
from bam files. The running times are shown in Sup Fig. 22 (Sup Table 20).  All the 898 
tests were run on a machine with an Intel Xeon E5-2600 v4 X CPU with 44 cores and 1 899 
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TB of RAM with the CentOS 7 operating system. When analyzing real datasets with 900 
methods that rely on peaks but do not provide an explicit function to construct a peaks-901 
by-cells matrix (Cusanovich2018, Cicero, Gene Scoring and Scasat), we ran the same 902 
script on a Linux cluster to obtain the peaks-by-cells matrix such that the execution time 903 
of this step is equivalent across these methods. It is worthwhile to mention that not all 904 
the methods of this benchmark support parallel computing. For the methods that 905 
support parallel computing, including SnapATAC, chromVAR, and cisTopic, the 906 
execution time was reported using 10 cores. For the rest of methods, we run them using 907 
a single core. We selected this number reasoning that a typical lab may not have access 908 
to a machine with 44 cores and instead may use a mid-size computing node with 8-12 909 
cores. Notably, SnapATAC was the only method capable of processing the full sci-910 
ATAC-seq mouse dataset (~80,000 single cells).  911 

As shown in Sup Fig. 22, BROCKMAN and SCRAT have the largest greater execution 912 
time in all the real datasets while the methods that use a custom script to obtain a 913 
peaks-by-cells matrix tend to have shorter execution time (e.g. Scasat, Cusanovich2018, 914 
Gene Scoring). 915 

We also assessed the scalability of methods with respect to the increasing coverage (250, 916 
500, 1000, 2500 and 5000 fragments per peaks). We observe that with the increase of 917 
read coverage, for cisTopic there is an exponential increase of the running time whereas 918 
for other methods, the running time stays stable or increases linearly (Sup Fig. 22, Sup 919 
table 21). 920 

Finally, we compared execution time vs clustering performance (Fig. 7c). Interestingly, 921 
the most accurate methods (SnapATAC, cisTopic and Cusanovich2018) have a 922 
reasonable running time while outperforming the other methods for clustering quality 923 
across all the datasets. Considering the computational time as an important factor that 924 
must be carefully evaluated before the implementation of any bioinformatics pipeline, 925 
we believe that Cusanovich2018 is the best in balancing clustering performance with 926 
execution time.  927 

 928 

Discussion 929 
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scATAC technologies enable the epigenetic profiling of thousands of single cells, and 930 
many computational methods have been developed to analyze and interpret this data. 931 
However, the sparsity of scATAC-seq datasets provides unique challenges that must be 932 
addressed in order to perform essential analyses such as cluster identification, 933 
visualization and trajectory inference [26, 27]. Moreover, the rapid technological 934 
innovations that facilitate profiling accessible chromatin landscapes of 104 or 105 cells 935 
provide additional computational challenges to efficiently store and analyze data.  936 

In this study, we compared ten computational methods developed to construct 937 
informative feature matrices for the downstream analysis of scATAC-seq data. We 938 
developed a uniform processing framework that ranks methods based on their ability to 939 
discriminate cell types when combined with three common unsupervised clustering 940 
approaches, followed by evaluation of three well-accepted clustering metrics. We 941 
evaluated these methods on thirteen datasets, three of those obtained using different 942 
technologies (Fluidigm C1, 10X, and sci-ATAC), and five consisting of simulated data 943 
with varying noise levels. These datasets comprise cells from different tissues in both 944 
mouse and human. 945 

In addition to identifying various methodologies that perform optimally on real and 946 
simulated data, our benchmarking examination of scATAC-seq methodologies reveals 947 
general principles that will inform the development of future algorithms. First, peak-948 
level or bin-level feature counting generally performs better in distinguishing different 949 
cell types followed in turn by k-mer-level, TF motifs-level, and gene-centric level 950 
summarization. We interpret this finding as an indication of the complexity of gene 951 
regulatory circuits where precise enhancer elements may have distinct functions that 952 
cannot be sufficiently approximated by sequence context or proximity to gene bodies 953 
alone. Second, we note that the methods that implement a dimensionality reduction 954 
step generally perform better in the separation of cell types, since this step may help to 955 
remove the redundancy between a large number of raw features and to mitigate the 956 
effect of noise. Third, for the methods that do not implement a dimensionality reduction 957 
step, simply adding a PCA step could significantly improve the clustering results. In 958 
fact, PCA generally boosts Louvain clustering results. For methods that do not account 959 
for the differing sequencing coverage of cells, the first PC could be used to capture and 960 
correct for sample depth differences. In this case, removing the first PC may improve 961 
the performance of these methods. Fourth, we observe that the Louvain method overall 962 
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performs more consistently and accurately than k-means and hierarchical clustering. In 963 
contrast, k-means and hierarchical clustering are more sensitive to outliers and may 964 
result in suboptimal clustering solutions since some of clusters may correspond to 965 
single or few outlier cells. Fifth, the robustness of different methods to noise and 966 
coverage varies among different datasets. Among the top three methods, cisTopic is the  967 
most penalized by low coverage. Sixth, it was also observed that inappropriate 968 
transformations, such as log2 transformation and normalization based on region size as 969 
implemented in SCRAT may impact negatively clustering performance.  970 

We observe that many methods fail to scale to larger datasets, which are now available 971 
due to improvements in split-pool technology and droplet microfluidics. As 972 
technologies improve and individual labs and international consortia lead efforts to 973 
generate ever larger single-cell datasets, scalability will be an unavoidable goal of 974 
method developments on a par with accuracy. As many of our evaluated methods were 975 
designed in the context of data generated from the Fluidigm C1 platform (which 976 
produces ~102 cells), such approaches were often incapable of analyzing large datasets. 977 
In particular, the sci-ATAC-seq mouse dataset served as a useful resource to test the 978 
scalability of the methods that were benchmarked (~80,000 cells). Notably, our 979 
evaluation demonstrates that only SnapATAC was able to scale to process and analyze 980 
this large dataset. Future methods must be capable of processing datasets of this size 981 
especially adopting efficient data structures that allow out of core computing. Our 982 
findings reinforce the need for methods that not only are accurate but highly scalable 983 
for scATAC-seq data processing. 984 

Defining regions is an important step in constructing feature matrices. Selecting 985 
informative regions generally improves downstream analyses such as clustering to 986 
capture heterogeneity within cell populations. Peak calling is a popular and 987 
straightforward way to define regions of interest. We observe that clustering 988 
performance is not generally impacted by using peaks defined from bulk ATAC-seq 989 
data vs using peaks obtained from aggregating single cell data based on FACS-sorting 990 
labels. However, performing peak calling by simply pooling reads from single cells may 991 
obfuscate peaks specific to rare cell populations leading to failures in uncovering them. 992 
In addition, the Cusanovich2018 approach to identify pseudo-bulk clades is a promising 993 
unsupervised way to perform in silico-sorting without relying on FACS-sorting labels. 994 
This strategy potentially serves as a suitable way to preserve peaks specific to rare cell 995 
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types. Also choosing an appropriate number of peaks is important for improving the 996 
downstream analysis (for example based on intensity/frequency-based given that they 997 
perform similarly).  998 

We are aware of current limitations in our benchmarking effort. We have compared 999 
single cell ATAC-seq methods based on their ability to separate discrete cell 1000 
populations; however, this might not be ideal when dealing with a continuous cell 1001 
lineage landscape. We observe that chromVAR generally works better in preserving a 1002 
continuous space while SnapATAC tends to break a putative landscape into discrete 1003 
populations. The choice of method is ultimately case-specific and may be driven by the 1004 
downstream application. For example, the feature matrix obtained by chromVAR may 1005 
be more suitable for trajectory inference [26] while the one obtained from SnapATAC 1006 
may be more appropriate better identify discrete and well separated cell populations by 1007 
clustering. We acknowledge also that not all tested methods were specifically designed 1008 
to produce clustering results. For example, chromVAR, Cicero, and Gene Scoring were 1009 
designed to determine important marker genes, their regulatory logic, or to infer 1010 
enriched TF binding sites within accessible chromatin regions. However, because 1011 
clustering is a critical part of single-cell analysis and researchers frequently use output 1012 
from all methods to produce clustering results [1], we felt that evaluating the clustering 1013 
abilities using feature matrices produced by each method was a useful measure. An 1014 
additional limitation of our study is that it is impossible to create a simulation 1015 
framework that models an experimental outcome with perfect accuracy. Several 1016 
assumptions were made to enable our simulation of the data; these assumptions are 1017 
described in the methods section of this manuscript, where we detail explicitly how the 1018 
simulated data was generated.  1019 

Interestingly, we learnt that some combinations of feature matrices with the simple 1020 
clustering approaches included in our benchmarking framework perform even better 1021 
than the original combination proposed by the respective authors. This highlights the 1022 
value of this dual-characterization (user vs designer perspective) and provides a summary 1023 
of both perspectives to the readers. 1024 

We believe it is important to stress the distinction between biological realities and 1025 
computational performance, especially in the context of unsupervised clustering. A big 1026 
and critical assumption (or hope) of our field is that an unsupervised clustering 1027 
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procedure will provide clustering solutions that recapitulate different populations 1028 
corresponding to different cell types/states. Given that for several real datasets the 1029 
ground truth is not known, a current compromise during the exploratory clustering 1030 
analysis is to use known marker genes, sorted populations or known tissues to validate 1031 
the clustering solutions based on classic metrics. If we embrace this assumption, 1032 
keeping in mind that additional validation is required to truly delineate the 1033 
subpopulation structure of a population of cells, the two views, biological and 1034 
computational can be reconciled. Our benchmark procedure is aimed to provide some 1035 
guidelines based on explorative analyses that are currently adopted in several 1036 
published papers. 1037 

Looking forward, due to the wealth of data being produced by new scATAC 1038 
technologies, we hypothesize that more powerful machine learning frameworks may be 1039 
able to uncover complex cis and trans relationships that define cell-cell 1040 
relatedness.  Specifically, we anticipate autoencoder-like models that integrate genomic 1041 
sequence context, gene body positions, and precise accessible chromatin information 1042 
will yield information-rich features and that more advanced manifold learning methods 1043 
will help to remove redundancy and better preserve heterogeneity within single cell 1044 
populations. Such achievements may enable us to overcome the inherent sparsity and 1045 
high dimensionality that characterizes scATAC-seq data. 1046 

Conclusions 1047 

Our benchmarking results highlight SnapATAC, cisTopic, and Cusanovich2018 as the 1048 
top performing scATAC-seq data analysis methods to perform clustering across all 1049 
datasets and different metrics. Methods that preserve information at the peak-level 1050 
(cisTopic, Cusanovich2018, Scasat) or bin-level (SnapATAC) generally outperform those 1051 
that summarize accessible chromatin regions at the motif/k-mer level (chromVAR, 1052 
BROCKMAN, SCRAT) or over the gene-body (Cicero, Gene Scoring). In addition, 1053 
methods that implement a dimensionality reduction step (BROCKMAN, cisTopic, 1054 
Cusanovich2018, Scasat, SnapATAC) generally show advantages over the other 1055 
methods without this important step. SnapATAC is the most scalable method; it was 1056 
the only method capable of processing more than 80,000 cells. Cusanovich2018 is the 1057 
method that best balances analysis performance and running time.  1058 
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Taken together, our manuscript provides a framework for evaluating and 1059 
benchmarking new and existing methodologies as well as provides important 1060 
guidelines for the analysis of scATAC-seq data. Importantly, we provide more than 100 1061 
well organized and documented Jupyter notebooks to illustrate and reproduce all the 1062 
analyses performed in this benchmarking work. We believe our systematic analysis 1063 
could guide the development of computational approaches aimed at solving the 1064 
remaining challenges associated with analyzing scATAC-seq datasets.  1065 

Methods 1066 

Our assessment of methods was based on public scATAC-seq datasets made available 1067 
in public repositories by the respective authors (see Data and code availability). As 1068 
such, we refer to the original publications for further details on experimental design 1069 
and data pre-processing/alignment. For peak calling, we used the ENCODE pipeline 1070 
(https://www.encodeproject.org/atac-seq/) except for the 10X PBMCs data for which 1071 
peaks were already available through the Cell Ranger pipeline optimized for this 1072 
technology. Whenever changes were required for running a given method, those are 1073 
noted in the respective sections. 1074 

Datasets 1075 

Human hematopoiesis I (Buenrostro et al. 2018)  1076 

This dataset comprised of 10 FACS-sorted cell populations from CD34+ human bone 1077 
marrow, namely, hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), 1078 
lymphoid-primed multipotent progenitors (LMPPs), common-myeloid progenitors 1079 
(CMPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-erythrocyte 1080 
progenitors (MEPs), common-lymphoid progenitor (CLPs), plasmacytoid dendritic cells 1081 

(pDCs), monocytes, and an uncharacterized CD34+ CD38- CD45RA+ CD123- cell 1082 
population. A total of 2,034 cells from 6 human donors were used for analysis. A peak 1083 
file (including 491,437 peaks) obtained from bulk ATAC-seq dataset was provided. 1084 

sci-ATAC-seq mouse tissues (Cusanovich et al. 2018) 1085 

This dataset comprises cells from 13 tissues of adult mouse, namely, bone marrow, 1086 
cerebellum, heart, kidney, large intestine, liver, lung, prefrontal cortex, small intestine, 1087 
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spleen, testes, thymus, and whole brain, with over 2,000 cells per tissue. A total of 1088 
81,173 cells from 5 mice were used for analysis. A subset was obtained by randomly 1089 
down-sampling 15% cells from each tissue and was comprised of 12,178 cells.  1090 

Human hematopoiesis II (10X PBMCs) 1091 

This dataset is composed of peripheral blood mononuclear cells (PBMCs) from one 1092 
healthy donor. A total of 5,335 cells were used for analysis.  1093 

Simulated scATAC-seq datasets  1094 

In order to evaluate and benchmark various approaches, we generated synthetic 1095 
(labeled) data from down-sampling 18 FACS-sorted bulk populations that were 1096 
previously described [28]. For ease of interpretation, we considered only 6 isolated 1097 
populations (HSC, CMP, NK, CD4, CD8, Erythroblast). For the erythropoiesis 1098 
simulation, eight additional populations (P1-P8) originally described in [17] were also 1099 
considered. 1100 
 1101 
Our simulation framework starts with a peak x cell type counts matrix (from bulk 1102 
ATAC-seq) and generates a single-cell counts matrix (𝐶) for an arbitrary number of 1103 
synthetic single cells. Explicitly, for a simulated single cell 𝑗 and corresponding peak 𝑖 1104 
from bulk cell type 𝑡, we seek to generate 𝑐&,( where  𝑐&,( ∈ 	Error! 	Bookmark	not	defined., 1105 

noting that these values correspond to possible observations in a diploid genome. Next, 1106 
we define the rate (𝑟&;) at which the peak 𝑖 is prevalent in the bulk ATAC-seq data for 1107 
cell type 𝑡. This rate is determined by the ratio of reads observed in peak 𝑖 over the sum 1108 
of all reads. Assuming a total of 𝑘 peaks for the matrix 𝐶 and for user-defined 1109 
parameters 𝑞 (noise parameter; 𝑞	 ∈ 	 [0,1]) and 𝑛 (number of simulated fragments), we 1110 
define 𝑐&,( as follows: 1111 

 1112 
𝑐&,(	~	𝑟𝑏𝑖𝑛𝑜𝑚(2, 𝑝&	; ) 1113 

where  1114 
 1115 

𝑝&	; = (𝑟&;	)(
L
M
	𝑛)(1 − 𝑞) + (1/𝑘)(L

M
	𝑛)(𝑞) 1116 

 1117 
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Intuitively, the parameter 𝑝&	;  defines the probability that a count will be observed in 1118 
peak 𝑖 for a single cell. Additionally, 𝑝&	;  can be decomposed into the sum two terms. As 1119 
𝑞 → 0, the first term dominates, and the probability of observing a count in peak 𝑖 is 1120 
simply the scaled probability of the ratio of reads for that peak from the bulk ATAC-seq 1121 
data (𝑟&;). Thus, when 𝑞 = 0, the simulated data has no noise. Conversely as 𝑞 → 1, the 1122 
second term dominates, and 𝑝&	;  reduces to a flat probability that is no longer 1123 
parameterized by the peak 𝑖 or cell type 𝑡 and thus represents a random distribution of 1124 
𝑛 fragments into 𝑘 peaks. 1125 
 1126 
For bone marrow-based simulations we simulated 200 cells per labeled cell type while 1127 
for erythropoiesis-based simulation we simulated 100 cells per labeled cell type. 1128 
Eventually we have 1,200 cells for each simulated dataset. In the base simulations, we 1129 
parametrized 𝑛 = 2,500 fragments in peaks in expectation for all cells. For additional 1130 
simulations that compared different data coverages, we set 𝑛 to various values (5000, 1131 
2500, 1000, 500, 250 respectively) to benchmark this effect. To evaluate the effect of noise 1132 
in our simulation, we set 𝑞 to three values (0, 0.2, 0.4) to benchmark the robustness to 1133 
noise. At values of 𝑞	 > 	0.4, no method could reliably separate all the subpopulations.  1134 
Finally, since our simulation started at the reads in peaks level, for some methods, the 1135 
core algorithm associated with the method was extracted in order to benchmark it in 1136 
this setting. Additionally, full code to reproduce these simulated dataset matrices has 1137 
been made available with our online code resources.  1138 

Peak calling 1139 

For real datasets, peaks were called using the ENCODE ATAC-seq processing pipeline 1140 
(https://www.encodeproject.org/atac-seq). Briefly, single-cells were aggregated into cell 1141 
populations according to cell type, obtained either by FACS sorting or by tissue of 1142 
origin. Peaks were called for each cell population and merged into a single file with 1143 
bedtools [30]. 1144 

Building the features matrix 1145 

BROCKMAN This method starts by defining regions of interest, which will be scanned 1146 
for k-mer content, as 50 bp windows around each transposon integration site and 1147 
merging overlapping regions. Then, a frequency matrix of k-mers-by-cells is built by 1148 
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counting all possible gapped k-mers (for k from 1 to 8) within the previously defined 1149 
windows. This frequency matrix is scaled so that each k-mer has mean 0 and standard 1150 
deviation 1. Principal component analysis (PCA) is applied to the scaled k-mers-by-cells 1151 
frequency matrix, and significant principal components (PCs) as estimated with the 1152 
jackstraw method are selected to build a final features matrix for downstream analyses.  1153 

ChromVAR This method starts by counting reads under chromatin-accessible peaks in 1154 
order to build a count matrix of peaks-by-cells (X). Then, a set of chromatin features 1155 
such as transcription factor (TF) motifs or k-mers are considered. Reads mapping to 1156 
each peak that contains a given TF motif (or k-mer) are counted in order to build a 1157 
count matrix of motifs-by-cells or k-mers-by-cells (M). Moreover, a raw accessibility 1158 
deviation matrix of motifs (or k-mers)-by-cells (Y) is generated by calculating the 1159 
difference between M and the expected number of fragments based on X. Then, 1160 
background peak sets are created for each motif to remove technical confounders. 1161 
Background motifs-by-cells raw accessibility deviations are then used to calculate a bias 1162 
corrected deviation matrix and to compute a deviation z-score used for downstream 1163 
analyses.  1164 

cisTopic This method starts by building a peaks-by-cells binary matrix by checking if a 1165 
peak region is accessible, i.e., at least one read falls within the peak region. Then, latent 1166 
Dirichlet allocation (LDA) is performed on this binary matrix and two probability 1167 
distributions are generated, a topics-by-cells probability matrix and a regions-by-topics 1168 
probability matrix. The former is the final features matrix for downstream analyses.  1169 

Cicero This method defines promoter peaks as the union of annotated TSS minus 500 1170 
base pairs and macs2 defined peaks around the TSS. It takes as input the peaks-by-cells 1171 
binary matrix. It also requires either pseudo temporal ordering or coordinates in a low 1172 
dimensional space (t-SNE) so that cells can be readily grouped. It then computes the co-1173 
accessibility scores between sites using Graphical Lasso. To get the gene activity scores, 1174 
it selects sites that are proximal to gene TSS or distal sites linked to them and weight 1175 
them by their co-accessibility. Then all the sites are summed and weighted according to 1176 
their co-accessibility to produce a genes-by-cells feature matrix that is used in this 1177 
benchmarking analysis. 1178 
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Gene Scoring This method first constructs a peaks-by-cells count matrix and defines 1179 
regions of interest as the 50kb upstream and downstream of gene TSSs. Then it finds the 1180 
overlap between ATAC-seq peaks and TSS regions and the peaks are weighted by a 1181 
function of the distance to the linked genes. Finally, the peaks-by-cells count matrix is 1182 
converted into genes-by-cells weighted count matrix by multiplying the weighted peaks 1183 
by genes matrix. The genes-by-cells weighted count matrix is the final features matrix 1184 
for downstream analyses.  1185 

Cusanovich2018 This method starts by binning the genome into fixed-size windows (by 1186 
default, 5kbp), and building a binary matrix from evaluating whether any reads map to 1187 
each bin. Bins that overlap ENCODE-defined blacklist regions are filtered out, and the 1188 
top 20,000 most commonly used bins are retained. Then, the bins-by-cells binary matrix 1189 
is normalized and rescaled using the term frequency-inverse document frequency (TF-1190 
IDF) transformation. Next, singular value decomposition (SVD) is performed to 1191 
generate a PCs-by-cells LSI score matrix, which is used to group cells by hierarchical 1192 
clustering into different clades. Within each clade, peak calling is performed on the 1193 
aggregated scATAC-seq profiles, and identified peaks are combined into a new peaks-1194 
by-cells binary matrix. Finally, the new peaks-by-cells matrix is transformed with TF-1195 
IDF and SVD as before to get a matrix of PCs-by-cells, which is the final features matrix 1196 
for downstream analyses.  1197 

scABC This method starts by building a peaks-by-cells count matrix of read coverage 1198 
within peak regions. Then, the weights of cells are calculated by a nonlinear 1199 
transformation of the read coverage within the peaks background, defined as a 500 kb 1200 
region around peaks. Since the weights will be used as part of weighted K-medoids 1201 
clustering to define cell landmarks and further perform finer re-clustering instead of 1202 
normalizing the peaks-by-cells matrix, the feature matrix in scABC is defined as the 1203 
peaks-by-cells count matrix.  1204 

Scasat This method first constructs a peaks-by-cells binary accessibility matrix by 1205 
checking if at least one read overlaps with the peak region. Then Jaccard distance is 1206 
computed based on the binary matrix to get a cells-by-cells dissimilarity matrix. 1207 
Multidimensional scaling (MDS) is further performed to reduce the dimension and to 1208 
generate the final feature matrix for downstream analysis. 1209 
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SCRAT This method starts by aggregating reads from each cell according to different 1210 
features (such as TF motifs or region of interest of each gene), and then building a count 1211 
matrix of features-by-cells. The features-by-cells count matrix is normalized by library 1212 
and region size to get the final feature matrix for downstream analyses.  1213 

SnapATAC This method starts by binning the genome into fixed-size windows (by 1214 
default 5kb) and estimating read coverage for each bin to build a bins-by-cells binary 1215 
count matrix. Bins that overlap ENCODE-defined blacklist regions are filtered out, as 1216 
well as those with exceedingly high or low z-scored coverage. Then, the bins-by-cell 1217 
matrix is transformed into a cells-by-cells Jaccard index similarity matrix, which is 1218 
further transformed by normalization and regressing out coverage bias between cells. 1219 
Finally, PCA is applied to the normalized similarity matrix, and the top PCs are used to 1220 
build a PCs-by-cells matrix that is the final features matrix for downstream analyses.  1221 

Clustering 1222 

For this study we used three commonly used clustering methods: k-means, hierarchical 1223 
clustering (with default ward linkage) as implemented in the scikit-learn library [31] 1224 
and Louvain clustering (a community-detection-based method) [32, 33] as implemented 1225 
in Scanpy [34], For both hierarchical clustering and k-means, we set the number of 1226 
clusters to the number of unique FACS-sorted labels or known tissues. In the 10X 1227 
PBMCs scATAC-seq dataset, which lacks the FACS-sorted labels, we instead set the 1228 
number of clusters to 8 since this is the expected number of populations based on 1229 
previous studies [19]. For the Louvain algorithm, we set the size of local neighborhood 1230 
to 15 for all the datasets. Since Louvain method requires ‘resolution’ instead of the 1231 
number of clusters and different number of clusters will affect the clustering evaluation, 1232 
to make the comparison fair, we use the binary search algorithm on the ‘resolution’ 1233 
(ranging from 0.0 to 3.0) to find the same number of clusters as the other two clustering 1234 
methods. If the precise number of clusters did not match the desired value, the 1235 
‘resolution’ value inducing the closest number of clusters to the desired value was used.  1236 

Metrics for evaluating clustering results  1237 

To evaluate clustering solutions for datasets with a known ground truth (i.e. for each 1238 
cell we have a label that indicated the cell type) we used three well-established metrics: 1239 
Adjusted Rand Index (ARI), Mutual information and Homogeneity. Briefly, for the 1240 
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Adjusted Rand Index (ARI) first the Random Index (RI) is defined as a similarity 1241 
measure between two clusters considering all pairs of samples assigned in the same or 1242 
different clusters in the predicted and true clustering. Then, the raw RI score is adjusted 1243 
for chance in the ARI score as described in the following formula: 1244 

 1245 

𝐴𝑅𝐼 =
𝑅𝐼 − 𝐸(𝑅𝐼)

max(𝑅𝐼) − 𝐸(𝑅𝐼) 1246 

 1247 

 1248 

Where RI is the pre-computed random index and E is the expected random index. 1249 

Mutual Information is a measure of the mutual dependence between two variables. The 1250 
Mutual Information value is computed according to the following formula, where |Ui| 1251 
is the number of the samples in cluster Ui and |Vj| is the number of the samples in 1252 
cluster Vj:   1253 

𝑀𝐼(𝑈, 𝑉) =\\
|𝑈^ ∩ 𝑉(|

𝑁 𝑙𝑜𝑔
𝑁|𝑈& ∩ 𝑉(|
|𝑈&||𝑉(|

|c|

(dL

|e|

&dL

 1254 

 1255 

 1256 

The homogeneity score is used to check if the algorithm used for the clustering can 1257 
assign to each cluster only samples belonging to a single class. Its value h is bounded 1258 
between 0 and 1, and a low value indicates low homogeneity and vice versa. The score 1259 
is computed as follow: 1260 

ℎ = 1 −
𝐻(𝑌;ijk|𝑌likm)
𝐻(𝑌;ijk)

 1261 

 1262 
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 1263 

where H(Ytrue|Ypred) is the probability to assign true samples to a set of predicted 1264 
samples, while H(Ytrue) are the labels of the samples. 1265 

To evaluate clustering solutions for the 10X PBMCs dataset we proposed a simple score 1266 
called the Residual Average Gini Index (RAGI) and compared the accessibility of 1267 
housekeeping genes with previously characterized marker genes [19]. We reasoned that 1268 
a good clustering solution should contain clusters that are enriched for accessibility of 1269 
different marker genes, and each marker gene should be highly accessible in only one or 1270 
a few clusters. First, to quantify the accessibility of each gene in each cell we used the 1271 
Gene Scoring approach described above. Briefly, the accessibility at each TSS is the 1272 
distance-weighted sum of reads within or near the region. Second, to quantify the 1273 
enrichment of each gene in each cluster of cells, we computed the mean of the 1274 
accessibility values in all cells for each cluster. Third, based on the vector of mean 1275 
accessibility values (one per cluster), we computed the Gini Index [35] for each marker 1276 
gene. The Gini Index measures how imbalanced the accessibility of a gene is across 1277 
clusters. This score is bound by [0,1] where 1 means total imbalance (i.e. a gene is 1278 
accessible in one cluster only) and 0 means no enrichment. This score has been 1279 
previously used on scRNA-seq to perform clustering [36, 37].  As a control, we also 1280 
calculated the Gini Index for a set of annotated housekeeping genes reported in 1281 
(https://m.tau.ac.il/~elieis/HKG/HK_genes.txt). Housekeeping genes should show 1282 
minimal specificity for any given cluster since, by definition, they are highly expressed 1283 
in all cells. Based on the set of Gini Index values for marker and housekeeping genes we 1284 
calculated several metrics: (i) the mean Gini Index for the two groups; (ii) the difference 1285 
in means to assess the average residual specificity that a clustering solution has with 1286 
respect to marker genes (this is our proposed RAGI metric); and (iii) the Kolmogorov 1287 
Smirnov statistic and its p-value comparing the two groups of Gini Indices for marker 1288 
and house-keeping genes. We sorted the methods based on the descending order of the 1289 
differences in means (Sup Table 13); a positive value indicates that the marker genes on 1290 
average separate the clusters better than uninformative housekeeping genes. 1291 

Rare cell type-specific peak analysis 1292 
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FACS-sorted bulk ATAC-seq data was downloaded and processed from a previously 1293 
described resource [5]. For each simulation, we created a randomly-sampled set of 200 1294 
million unique (PCR-deduplicated) reads, which roughly represents a complexity 1295 
similar to recommendations from the 10X Chromium scATAC-seq solution. Cell type-1296 
specific peaks were defined using the full dataset for each of the three cell types. Peaks 1297 
were called using macs2 callpeak with custom parameters as in the ENCODE pipeline, 1298 
i.e. “--nomodel --shift - 100 --extsize 200” to account for Tn5 insertions rather than read 1299 
abundance when inferring peaks. Overlaps between the isolated minor population and 1300 
the synthetic mixtures were computed using GenomicRanges[38] findOverlaps 1301 
function, which is equivalent to bedtools[30] overlap. For each minor population (B-cell, 1302 
CD4+ T-cell, Monocyte) and each prevalence (1, 5, 10, 20, 30%), each simulation was 1303 
repeated 5 times for a total of 75 simulations. Reads from the other two (major) 1304 
populations were sampled equivalently to make up the synthetic mixture for 1305 
comparison.  1306 

Data and code availability 1307 

All the results presented in this manuscript can be reproduced using the Jupyter 1308 
notebooks available both at https://github.com/pinellolab/scATAC-benchmarking/ and 1309 
in the supplementary material (Sup Data). For the analyzed real datasets, the 1310 
Buentrostro2018 dataset was downloaded from GEO accession GSE96772, the 10X 1311 
PBMCs dataset was downloaded from https://support.10xgenomics.com/single-cell-1312 
atac/datasets/1.0.1/atac_v1_pbmc_5k, and the sci-ATAC-seq mouse dataset was 1313 
downloaded from 1314 
http://krishna.gs.washington.edu/content/members/ajh24/mouse_atlas_data_release/ba1315 
ms. For the simulated bone marrow dataset, data for the FACS-sorted bulk ATAC-seq 1316 
populations were downloaded from GEO accession GSE119453. For the simulated 1317 
erythropoiesis dataset, the additional populations were downloaded from GEO 1318 
accession GSE115672. 1319 
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T.A., L.P. performed clustering validation. C.L. simulated data. H.C. and C.L. analyzed 1324 
simulated data. L.P. and J.D.B. provided guidance. All the authors wrote the 1325 
manuscript.  1326 
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Supplementary Notes 1439 

 1440 

Supplementary Note 1:  Analysis of the simulated datasets  1441 

For all the synthetic datasets, the input is a peaks-by-cells raw count matrix generated 1442 
as described in the Methods section. For all methods, we first order peaks based on the 1443 
number of cells in which the peak is observed and select the top 8,000 peaks  (making 1444 
sure each of these peaks appear at least in one cell).  1445 
 1446 
For BROCKMAN, we scanned for gapped k-mers (the default setting is used, i.e. length 1447 
1–8, all possible gaps) within peaks to calculate the scaled k-mer frequencies for each 1448 
cell. For chromVAR, we used both TF binding motifs from the JASPAR database 1449 
(human) or short k-mers (k=6) within peaks to score the accessibility deviation across 1450 
cells. For Cicero, we run it with the default parameters to calculate gene activity scores. 1451 
For cisTopic, we run it with the same parameters shown in their online tutorial 1452 
(https://rawcdn.githack.com/aertslab/cisTopic/f628c6f60918511ba0fa4a85366ebf52db5941453 
0f7/vignettes/CompleteAnalysis.html). For Cusanovich2018 we first binarize the count 1454 
matrix and then perform the proposed TF-IDF transformation and SVD. For Gene 1455 
Scoring, we select peaks overlapping with the regions of 50,000 bp upstream and 1456 
downstream of TSSs as described in [1]. For scABC, since its feature matrix is the same 1457 
as input matrix of peaks-by-cells, we instead run the steps of calculating the weights of 1458 
cells that are used later for their proposed clustering approach. For Scasat, we first 1459 
binarize the count matrix and then calculate Jaccard distance, followed by Multi 1460 
Dimensional Scaling (MDS) with 10 dimensions (the same number of components as 1461 
used for the  Control-Naive). For SCRAT, the accessibility of TF binding motifs is 1462 
summarized within peaks. We attempted to adjust for the library size and peak region 1463 
length as suggested in the original study, however we noticed that this step 1464 
dramatically penalizes this method performance in all the tested conditions (Sup Fig. 1). 1465 
This step was therefore disabled for all the analyses performed with SCRAT. For 1466 
SnapATAC, we use the fixed-size peaks as its bins. The Jaccard Index is normalized 1467 
with the authors’ proposed method, normOVE. For methods that implement PCA step, 1468 
we use the elbow plot to decide the optimal number of PCs. For methods that do not 1469 
implement a step of dimensionality reduction, we use the R package irlba [2] to perform 1470 
PCA. 1471 
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 1472 
All the notebooks detailing the exact procedures are available at 1473 
https://github.com/pinellolab/scATAC-benchmarking/tree/master/Synthetic_Data. 1474 
 1475 
Supplementary Note 2: Analysis of the Buenrostro2018 dataset 1476 
 1477 
For this dataset we started with aligned files in bam format (one per cell). We removed 1478 
duplicated reads using the function MarkDuplicates version 2.20.2 with the option 1479 
REMOVE DUPLICATES = TRUE from Picard (https://broadinstitute.github.io/picard/). 1480 
 1481 
For the methods that do not provide an explicit function to read in bam files and count 1482 
reads under peaks, including Cicero, Cusanovich2018, GeneScoring, Scasat, and 1483 
Control-Naïve, we used a simple script to obtain a common peaks-by-cells raw count 1484 
matrix (e.g. https://github.com/pinellolab/scATAC-1485 
benchmarking/tree/master/Real_Data/Buenrostro_2018/run_methods/Cusanovich2018/c1486 
ount_reads_peaks.sh ). For the methods that implement the same strategy to filter peaks 1487 
based on their frequency, including Cicero, Control-Naive, Cusanovich2018, 1488 
GeneSoring, Scasat, and scABC, we filter out peaks that are observed in less than 1% of 1489 
cells. For chromVAR, we run its function filterPeaks with the default setting to filter out 1490 
peaks based on the minimum number of fragments and merge overlapping peaks. For 1491 
the methods that implement a PCA step, including BROCKMAN, Control-Naïve, 1492 
Cusanovich2018, and SnapATAC, we decided the number of PCs based on the elbow 1493 
plot. For Scasat, which implements MDS, we set the number of dimension as 15 1494 
according to its tutorial 1495 
https://github.com/ManchesterBioinference/Scasat/blob/master/ScAsAT_functions_Bue1496 
nrostro_All_Bam_Together.ipynb.  For cisTopic, the number of topics (dimensions) is 1497 
decided by its function selectModel with default settings.  1498 
 1499 
For the clustering analysis, we set the expected number of clusters as the number of 1500 
FACS-sorting labels (10 in this case). For k-means, we use the k-means++ to select the initial 1501 
cluster centers. For hierarchical clustering, we use the Ward linkage based on Euclidean 1502 
distance. Both k-means and hierarchical clustering are implemented in scikit-learn 1503 
package[3]. For Louvain, we set the number of neighbors to 15 and the resolution is 1504 
decided using a binary search with 20 steps that explores values of the resolution 1505 
parameter in the interval 0~3 . The Louvain algorithm used is implemented in Scanpy[4]. 1506 
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 1507 
For the UMAP visualization, we run the function ‘umap’ from the R package umap with  1508 
default settings. 1509 
 1510 
All the notebooks for this analysis are available at 1511 
https://github.com/pinellolab/scATAC-1512 
benchmarking/tree/master/Real_Data/Buenrostro_2018 and 1513 
https://github.com/pinellolab/scATAC-1514 
benchmarking/tree/master/Real_Data/Buenrostro_2018_bulkpeaks. 1515 
 1516 
Supplementary Note 3: Analysis of 10x PBMCs dataset 1517 
 1518 
For this dataset, we started with a single merged bam file downloaded from the 10x 1519 
website and preprocessed with Cell Ranger: https://support.10xgenomics.com/single-1520 
cell-atac/datasets/1.0.1/atac_v1_pbmc_5k. We noticed that all the methods except 1521 
SnapATAC don’t support this format i.e. a single bam file for multiple cells. Therefore, 1522 
using the cell barcodes passing quality filtering from Cell Ranger, we split this file in 1523 
multiple bam files, one per cell recovering 5,335 single-cell bam files. We also removed 1524 
duplicate reads using Picard and performed UMAP visualization as discussed in 1525 
Supplementary Note 2 .  For the clustering analysis, we set the expected number of 1526 
clusters as the number of putative cell types (8 in this case) as previous studies suggested 1527 
[5, 6]. 1528 
 1529 
All the notebooks are available at https://github.com/pinellolab/scATAC-1530 
benchmarking/tree/master/Real_Data/10x_PBMC_5k. 1531 
  1532 
Supplementary Note 4: Analysis of the sci-ATAC-seq mouse dataset 1533 
 1534 
For this dataset, we started with multiple merged bam file from 17 samples across 13 1535 
tissues downloaded from 1536 
http://krishna.gs.washington.edu/content/members/ajh24/mouse_atlas_data_release/ba1537 
ms. For each tissue we performed the same steps as in 10x PBMCs dataset to decompose 1538 
the single merged bam file to multiple single cell bam files (81,173 bam files). The 1539 
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downloaded bam files were already deduplicated. The downsampled dataset of 12,178 1540 
cells is generated by randomly selecting 15% from each sample.  1541 
 1542 
The scATAC-seq methods and UMAP visualization are implemented as in 1543 
Supplementary Note 2.  For the clustering analysis, we set the expected number of 1544 
clusters as the number of tissues (13 in this case).  1545 
 1546 
All the notebooks are available at https://github.com/pinellolab/scATAC-1547 
benchmarking/tree/master/Real_Data/Cusanovich_2018  and  1548 
https://github.com/pinellolab/scATAC-1549 
benchmarking/tree/master/Real_Data/Cusanovich_2018_subset. 1550 
 1551 
Supplementary Note 5: Memory requirements and implementation choices  1552 
 1553 
As mentioned in the main text, SnapATAC is the only methods that allows to process 1554 
successfully large datasets, as the sciATAC-seq mouse dataset with ~80000 cells. Here we 1555 
investigate why the other methods failed to analyze this large dataset. We hypothesize 1556 
that main reason is related to the way the methods load/process the data in memory. In 1557 
fact, we discovered that several methods require to load the entire dataset in the central 1558 
memory (RAM).  1559 
  1560 
BROCKMAN, Cicero and Gene Scoring try to load the entire dataset in memory using 1561 
the read.table function or the fread function within the data.table package in R. Other 1562 
methods such as: Cusanovic, Scrat, chromVAR, scABC and Scasat, store the entire 1563 
dataset in memory within a Matrix object in R. CisTopic, has an optimized step to map 1564 
the reads into the genome using the Rsubread function. This function creates a hash table 1565 
of the entire genome and allows the user to select the amount of memory to use. At the 1566 
end, the entire dataset is stored in the computer memory in a CisTopicObject data 1567 
structure.  1568 
  1569 
SnapATAC, preprocess the entire dataset and store it a .snap file. This file is based on the 1570 
HDF5 technology that allows out of core computation. In SnapATAC  the Python library 1571 
h5py (a wrapper for HDF5 core library) is used to create the custom snap file 1572 
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format. More information about this custom file are available here : 1573 
https://github.com/r3fang/SnapTools/blob/master/docs/snap_format.docx . 1574 
 1575 
Supplementary Note 6: End-to-end user-perspective clustering analysis 1576 
 1577 
For the methods that explicitly implement the step of clustering in their tutorials, 1578 
including Cusanovich2018, cisTopic, SnapATAC, scABC, Cicero, and Scasat, in addition 1579 
to the three clustering methods used in this benchmark framework, we also performed 1580 
the clustering analysis as shown in each tutorial. For Cusanovich2018, we followed the 1581 
tutorial at http://atlas.gs.washington.edu/fly-atac/docs/ and used density peak 1582 
algorithm [7] to identify clusters. For cisTopic, we followed the tutorial at 1583 
https://rawcdn.githack.com/aertslab/cisTopic/f628c6f60918511ba0fa4a85366ebf52db59401584 
f7/vignettes/CompleteAnalysis.html and used ward hierarchical clustering to cluster 1585 
cells. For SnapATAC, we followed tutorial at 1586 
https://github.com/r3fang/SnapATAC/blob/master/examples/10X_P50/README.md 1587 
and used Leiden algorithm to cluster cells. For scABC we followed the tutorial at 1588 
https://github.com/SUwonglab/scABC/blob/master/vignettes/ExampleWorkflow.html 1589 
and used weighted k-medoids clustering. For Cicero we followed the tutorial at 1590 
https://www.bioconductor.org/packages/devel/bioc/vignettes/cicero/inst/doc/website.ht1591 
ml . To be consistent with the feature matrix used in the benchmarking framework, 1592 
instead of using its default peaks-by-cells count matrix, we used gene activity scores as 1593 
the input of clustering analysis. After reducing the dimensionality with tSNE, density 1594 
peak clustering algorithm is used to cluster cells. For Scasat, we follow the tutorial at 1595 
https://github.com/ManchesterBioinference/Scasat/blob/master/ScAsAT_functions_Bue1596 
nrostro_All_Bam_Together.ipynb and use ward.D2 hierarchical clustering for clustering. 1597 
 1598 
We run all the six methods on three real datasets, Buenrostro2018, 10x PBMCs 10x 1599 
dataset, sci-ATAC-seq mouse dataset. For Buenrostro2018 and sci-ATAC-seq mouse 1600 
dataset, we specified the number of clusters as the number of FACS-sorted labels and 1601 
the number of tissues respectively. For 10x PBMCs, we specified the number of clusters 1602 
as 8 as suggested by the previous studies [5, 6].  1603 
 1604 
 1605 
Supplementary Note 7: Running time 1606 
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 1607 
For the real datasets, we recorded the execution time of each method to generate a 1608 
feature matrix starting from an aligned and deduplicated bam file. We noticed that not 1609 
all the methods provide specific functions to read in bam files. Some methods only start 1610 
with features by cells raw matrix (e.g. Cicero). In addition,  the functions to count reads 1611 
of some methods were not generalizable across the different scATAC-seq techniques 1612 
(e.g. Cusanovich2018). Therefore, to make a fair comparison we used a common script 1613 
(https://github.com/pinellolab/scATAC-1614 
benchmarking/blob/master/Real_Data/Buenrostro_2018/run_methods/Control/count_reads_1615 
peaks.sh) to obtain the peaks by cells matrix starting from bam files for the following 4 1616 
methods: Control-Naïve, Cusanovich2018, Gene Scoring, Scasat. BROCKMAN, perform 1617 
two steps to obtain the final feature matrix (q bash script to count k-mer frequency and 1618 
a R function to assemble the matrix), so we are considering the sum of their running 1619 
times. Similarly, the running time for SnapATAC is based on two steps: the snaptools 1620 
utility that converts a bam to the required .snap format and the R function that generates 1621 
the feature matrix. 1622 
 1623 
For the simulated datasets, we recorded the execution time of generating feature 1624 
matrices starting from a simulated peaks-by-cell count matrix. For scABC, since its 1625 
feature matrix is the same as the input, to have a useful running time, we instead record 1626 
the time to calculate the cells weights, which are necessary for downstream analysis. 1627 
 1628 
We also assessed the scalability of the methods with respect to the read coverage (250, 1629 
500, 1000, 2500 and 5000 fragments per peaks). We observed that the running time of most 1630 
methods is not affected by the read coverage. This is not surprising given that our 1631 
simulation them number of peaks is fixed, so the dimensionality of the matrix is 1632 
unchanged.  However, for cisTopic, we noticed an exponential increase in running times 1633 
as we increase the number of fragments (Sup Fig. 22). We assume this might be due to 1634 
the topic modelling approach used by cisTopic since it tries to learn the probability 1635 
distribution over the regions for each topic while high coverage will result in the increase 1636 
in the number of accessible regions. 1637 

 1638 
 1639 
1. Lareau, C.A., et al., Droplet-based combinatorial indexing for massive scale single-cell 1640 

epigenomics. bioRxiv, 2019: p. 612713. 1641 
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Supplementary Figures 1679 

 1680 

 1681 

 1682 
 1683 
Figure S1. UMAP visualization of cells based on SCRAT feature matrix with different parameter 1684 
settings (Left: log2transform=FALSE, adjustlen=FALSE. Middle: log2transform=TRUE, 1685 
adjustlen=FALSE.  Right: log2transform=FALSE, adjustlen=TRUE) in three datasets.  (a) simulated 1686 
bone marrow dataset at a noise level of 0.2 with a coverage of 2,500 fragments (b) simulated 1687 
erythropoiesis dataset at a noise level of 0.2 with a coverage of 2,500 fragments (c) Buenrostro 1688 
2018 dataset. 1689 
 1690 
 1691 
 1692 
 1693 
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 1694 
 1695 
Figure S2. Clustering evaluation according to AMI, ARI and Homogeneity metrics (left) and UMAP 1696 
visualization of cells colored by known cell labels (right) in simulated bone morrow datasets with 1697 
a coverage of 2,500 fragments at (a) no noise (0), (b) moderate noise (0.2) and (c) high noise 1698 
(0.4). 1699 
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 1705 
Figure S3. UMAP visualization of cells colored by clustering solution on the simulated bone 1706 
marrow dataset with a noise level of 0.4 and a coverage of 2,500 fragments using (a) Louvain 1707 
algorithm, (b) k-means clustering, and (c) hierarchical clustering (HC). 1708 
 1709 
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 1711 
Figure S4. Summary of clustering scores at different noise levels and coverages based on three 1712 
different clustering methods including hierarchical clustering (HC), k-means clustering and the 1713 
Louvain algorithm. (a) clustering scores at noise levels of 0, 0.2, and 0.4 for the simulated bone 1714 
marrow dataset with a coverage of 2,500. (b) clustering scores at the coverages of 5000, 2500, 1715 
1000, 500, 250 in the simulated bone marrow dataset at the noise level of 0.2. (c) clustering 1716 
scores at the noise levels of 0, 0.2, and 0.4 for the simulated erythropoiesis dataset with a 1717 
coverage of 2,500. 1718 
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 1719 
Figure S5. Clustering evaluation according to AMI, ARI and Homogeneity metrics (left) and 1720 
UMAP visualization of cells colored by known cell labels (right) for the simulated bone marrow 1721 
dataset with a noise level of 0.2 and varying coverages: (a) 5000 reads, (b) 2500 reads, (c) 1000 1722 
reads, (d) 500 reads, and (e) 250 reads.  1723 
 1724 
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 1725 
 1726 
Figure S6. Clustering evaluation according to AMI, ARI and Homogeneity metrics (left) and 1727 
UMAP visualization of cells colored by known cell labels (right) for the simulated erythropoiesis 1728 
datasets with a coverage of 2,500 fragments and (a) no noise (0), (b) moderate noise (0.2) or (c) 1729 
high noise (0.4). 1730 
 1731 
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 1737 
 1738 

Figure S7. UMAP visualization of cells colored by the clustering solution on the Buenrostro2018 1739 
dataset using (a) the Louvain algorithm, (b) k-means clustering, and (c) hierarchical clustering 1740 
(HC). 1741 
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 1742 
 1743 
Figure S8. Heatmap for the average accessibility across clusters (columns) and the marker genes 1744 
(rows) that are used to calculate the RAGI metric on the 10X PBMCs dataset. (a) Louvain 1745 
clustering solution (b) k-means clustering solution (c) hierarchical clustering (HC) clustering 1746 
solution. 1747 
 1748 
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 1759 
 1760 

Figure S9. UMAP visualization of cells colored by the accessibility of marker genes: (a) S100A12 1761 
and (b) MS4A1 and (c) GAPDH (housekeeping gene) and on the 10X PBMCs dataset. 1762 
 1763 
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 1764 
 1765 
Figure S10. UMAP visualization of cells colored by the clustering solution on 10X PBMCs dataset 1766 
using (a) k-means clustering and (b) hierarchical clustering (HC). 1767 
 1768 
 1769 
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 1774 
 1775 
Figure S11. Assessment of SnapATAC on the full sci-ATAC-seq mouse dataset. (a) Clustering 1776 
scores according to AMI, ARI and Homogeneity metrics (b) UMAP visualization of cells colored 1777 
by the known tissues. (c) UMAP visualization of cells colored by three clustering solutions: the 1778 
Louvain algorithm, k-means clustering, and hierarchical clustering (HC). 1779 
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 1789 
 1790 

Figure S12. UMAP visualization of cells colored by the clustering solution on the downsampled 1791 
sci-ATAC-seq mouse dataset using (a) the Louvain algorithm, (b) k-means clustering, and (c) 1792 
hierarchical clustering (HC).  1793 
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 1794 
Figure S13. Ranking of method performance. (a) Rank was based on the best-performing 1795 
clustering method for each metric on all methods and datasets. The column on the left shows 1796 
the averaged rank per method across all datasets. * indicates a downsampled dataset of the 1797 
indicated original dataset. (b) Rank of each method based on the best-performing clustering 1798 
approach for each metric on methods assessed with an end-to-end clustering pipeline (termed 1799 
as a ‘blackbox’) applied to the Buenrostro2018, downsampled sci-ATAC-seq mouse and 10X 1800 
PBMCs datasets. The column on the left shows the averaged rank per method over these three 1801 
datasets. * indicates a downsampled dataset of the indicated original dataset. (c) Dot plot of 1802 
clustering scores for each metric applied to the Buenrostro2018 dataset, including the 1803 
‘blackbox’ approach. (d) Dot plot of clustering scores for each metric applied to the 10X 1804 
PBMCs dataset, including the ‘blackbox’ approach. (e) Dot plot of scores for each metric 1805 
applied to the downsampled sci-ATAC-seq mouse dataset, including the ‘blackbox’ approach. 1806 
 1807 
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 1809 
 1810 

Figure S14. Comparison between keeping the first PC and removing the first PC. Left: Clustering 1811 
scores when the first PC is kept and for removal of the first PC, for each metric. Right: UMAP 1812 
visualization of cells colored by known cell labels. The analyses are performed on (a) the 1813 
Buenrostro2018 dataset. (b) the 10X PBMCs dataset. (c) the downsampled sci-ATAC-seq mouse 1814 
dataset. 1815 
 1816 
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 1818 
 1819 
Figure S15.  Assessment of methods using the peaks called from bulk ATAC-seq on the 1820 
Buenrostro2018 dataset. Only the methods that rely on peaks are included. (a) Clustering 1821 
evaluation according to AMI, ARI and Homogeneity metrics (b) UMAP visualization of cells 1822 
colored by known cell labels. 1823 
 1824 
 1825 
 1826 
 1827 
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 1830 
Figure S16. UMAP visualization of cells colored by the clustering solution on the 1831 
Buenrostro2018 dataset paired with bulk peaks using (a) k-means clustering and (b) hierarchical 1832 
clustering (HC). 1833 
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 1834 
 1835 
 1836 
Figure S17. (a) Comparison of clustering scores between bulk ATAC-seq peaks and aggregated 1837 
scATAC-seq peaks for each metric on the Buenrostro2018 dataset. (b) Top: Simulation 1838 
procedure from bulk ATAC-seq data. The three cell types (B-cells, CD4+ T-cells, and monocytes) 1839 
are mixed in various proportions for each synthetic mixture. Bottom: The results of simulation 1840 
in (b) Top: The x-axis reflects the proportion of the minor population. The y-axis reflects the 1841 
percentage of recovered cell-type-specific peaks after performing peak calling on each mixture 1842 
of single cells. 1843 
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 1861 

Figure S18. Comparison between the known populations and the identified clades (pseudo-1862 
bulk) using Cusanovich2018. Left: UMAP visualization of cells colored by the known labels. 1863 
Right: UMAP visualization of cells colored by the identified clades using Cusanovich2018. The 1864 
analyses are performed on (a) the Buenrostro2018 dataset. (b) the 10X PBMCs dataset. (c) the 1865 
downsampled sci-ATAC-seq mouse dataset. 1866 
 1867 
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 1868 
Figure S19. Assessment of the effect of ENCODE blacklisted regions on the benchmarking 1869 
results in the Buenrostro2018 dataset. (a) Comparison of clustering scores between filtering or 1870 
not filtering the blacklisted regions (b) UMAP visualization based on SnapATAC (left) and SCRAT 1871 
(right) feature matrices after filtering the ENCODE blacklisted regions. Cell are colored by the 1872 
FACS-sorting labels. (c) UMAP visualization based on SnapATAC (left) and SCRAT (right) feature 1873 
matrices without filtering the ENCODE blacklisted regions. Cell are colored by the FACS-sorting 1874 
labels. 1875 
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 1882 
 1883 
Figure S20. Comparison between frequency-based and intensity-based peak selection for each 1884 
metric on the simulated bone marrow dataset with a noise level of 0.2 with a coverage of 2,500 1885 
fragments. (a) Clustering scores for each metric and clustering method across different cutoffs 1886 
for the Control-Naïve method. (b) Clustering scores for each metric and clustering method 1887 
across different cutoffs for the Cusanovich2018 method. (c) UMAP visualization of cells colored 1888 
by the known labels using a frequency-based peak selection for Control-naïve method. (d) 1889 
UMAP visualization of cells colored by the known labels using a frequency-based peak selection 1890 
for the Cusanovich2018 method. (e) UMAP visualization of cells colored by the known labels 1891 
using an intensity-based peak selection for Control-naïve method. (f) UMAP visualization of 1892 
cells colored by the known labels using an intensity-based peak selection for the 1893 
Cusanovich2018 method. 1894 
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 1895 
 1896 
Figure S21. Comparison between frequency-based and intensity-based peak selection for each 1897 
metric on the Buenrostro2018 dataset. (a) Clustering scores for each metric and clustering 1898 
method across different cutoffs for the Control-Naïve method. (b) Clustering scores for each 1899 
metric and clustering method across different cutoffs for the Cusanovich2018 method. (c) 1900 
UMAP visualization of cells colored by FACS-sorting labels using a frequency-based peak 1901 
selection for the Control-naïve method. (d) UMAP visualization of cells colored by FACS-sorting 1902 
labels using a frequency-based peak selection for the Cusanovich2018 method. (e) UMAP 1903 
visualization of cells colored by FACS-sorting labels using an intensity-based peak selection for 1904 
the Control-naïve method. (f) UMAP visualization of cells colored by the FACS-sorting labels 1905 
using an intensity-based peak selection for the Cusanovich2018 method. 1906 
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 1908 
 1909 
Figure S22. Running time results. (a) Running time, in minutes for each method applied to the 1910 
Buenrostro2018, 10X PBMCs, and downsampled sci-ATAC-seq mouse datasets. (b) Running 1911 
time, in minutes for each method on the simulated bone marrow dataset at a noise level of 0.2 1912 
with read coverages of 250, 500, 1000, 2500, and 5000 fragments. 1913 
 1914 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2019. ; https://doi.org/10.1101/739011doi: bioRxiv preprint 

https://doi.org/10.1101/739011
http://creativecommons.org/licenses/by/4.0/

