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Abstract 

Background: Chest pain is one of the most common complaints among patients presenting to 

the emergency department (ED). Causes of chest pain can be benign or life threatening, 

making its accurate risk stratification a critical issue in the ED. In addition to the use of 

established clinical scores, some studies attempted to create predictive models with heart rate 

variability (HRV). In this study, we proposed heart rate n-variability (HRnV), an alternative 

representation of beat-to-beat-variation in electrocardiogram (ECG) and investigated its 

association with major adverse cardiac events (MACE) for ED patients with chest pain.  

Methods: We conducted a retrospective analysis of data collected from the ED of a 

Singapore tertiary hospital between September 2010 and July 2015. Patients >20 years old 

who presented to the ED with chief complaint of chest pain were conveniently recruited. Five 

to six-minute single-lead (lead II) ECGs, demographics, medical history, troponin, and other 

required variables were collected. We developed the HRnV-Calc software to calculate the 

HRnV parameters. The primary outcome was 30-day MACE, including all-cause death, acute 

myocardial infarction, and revascularization. Univariable and multivariable logistic 

regression analyses were conducted to investigate individual risk factors, and to develop a 

HRnV prediction model, respectively. The receiver operating characteristic (ROC) analysis 

was performed to compare the HRnV model against other clinical scores in predicting 30-day 

MACE. 

Results: A total of 795 patients were included in the analysis, of which 247 (31%) had 

MACE within 30 days. The MACE group was older and had a higher proportion of male 

patients. Twenty-one conventional HRV and 115 HRnV parameters were calculated. In 

univariable analysis, eleven HRV parameters and 48 HRnV parameters were significantly 

associated with 30-day MACE. The stepwise logistic regression selected 16 predictors to 

construct a multivariable prediction model, which consisted of one HRV, seven HRnV 
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parameters, troponin, ST segment changes, and several other factors. The HRnV model 

outperformed several clinical scores in the ROC analysis (area under the ROC curve of 

0.917).  

Conclusions: The novel HRnV representation demonstrated its value of augmenting HRV 

and traditional risk factors in designing a robust risk stratification tool for patients with chest 

pain at the ED. 

 

Keywords: Heart rate variability (HRV), heart rate n-variability (HRnV), electrocardiogram, 

chest pain, risk stratification, emergency department. 

 

Introduction 

 

Chest pain is one of the most common presenting complaints in the emergency department 

(ED)1, 2, which may be due to life-threatening myocardial infarction (MI) or benign 

musculoskeletal pain3. Majority of chest pain patients are subjected to extensive diagnostic 

tests to rule out acute coronary syndrome (ACS), resulting in oftentimes, unnecessary 

prolonged and costly ED admission, since only a small proportion of these patients will 

eventually receive a diagnosis of ACS3. Hence, early identification of chest pain patients at 

high-risk of developing adverse cardiac events has been a pressing issue to contend with in 

the ED. Several established clinical scores have been used for risk stratifying chest pain 

patients in the ED4, 5, including the History, ECG, Age, Risk factors and Troponin (HEART)6, 

the Thrombolysis in Myocardial Infarction (TIMI)7, and the Global Registry of Acute 

Coronary Events (GRACE)8 scores. Among these scores, the HEART score is the best 

performing one with its ability to identify low and high risk patients with only a small 
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percentage of mis-classification5, 9-12. Further research included the development of risk 

score-based clinical pathways for safe discharge of low-risk patients1, 3, 13.  

 

Reported in a recent review of clinical scores for ED patients with chest pain5, heart rate 

variability (HRV) demonstrated its feasibility of creating an alternative approach to build 

predictive models for risk stratification14-16. As a widely adopted tool for evaluating changes 

in cardiac autonomic regulation, HRV is believed to be strongly associated with the 

autonomic nervous system (ANS)17-19. HRV analysis characterizes the beat-to-beat variation 

in an electrocardiogram (ECG) by utilizing time domain, frequency domain, and nonlinear 

analyses18. Reduced HRV was found to be a significant predictor of adverse outcomes20, 

although the impact of the ANS on HRV remains controversial19. Given the complexity of 

quantifying HRV representation, several tools such as the PhysioNet Cardiovascular Signal 

Toolbox21 and Kubios HRV22 have been developed to standardize HRV analyses. 

 

Based on the principle of parameter calculation on normal R-R intervals (RRIs; in this paper, 

RRIs are equivalent to normal-to-normal [NN] intervals, in which abnormal beats have been 

removed), HRV analysis generates only one set of parameters from a fixed length of ECG 

record. This limits the amount of information that can be extracted from raw ECG signals. In 

this paper, we proposed a novel representation of beat-to-beat variation, named as heart rate 

n-variability (HRnV) to characterize RRIs from a different perspective. With the use of 

HRnV measures, multiple sets of parameters were calculated from the same ECG record, 

which greatly boosted the amount of extracted information. Our study was the first clinical 

application of the HRnV representation, in which the value of this novel measure was 

evaluated in risk stratification of chest pain patients in the ED. With the hypothesis that 

HRnV is closely related to conventional HRV while providing supplementary information, 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2019. ; https://doi.org/10.1101/738989doi: bioRxiv preprint 

https://doi.org/10.1101/738989
http://creativecommons.org/licenses/by-nd/4.0/


6 

 

we aimed to explore its association with adverse cardiac complications, and to investigate the 

potential use of HRnV to develop an effective risk prediction tool.  

 

Methods 

 

Study Design and Setting 

We conducted a retrospective analysis of data collected in our previous study on risk 

stratification of chest pain patients in the ED9. A convenience sample of patients was 

recruited at the ED of Singapore General Hospital between September 2010 and July 2015. 

This was a tertiary hospital with around-the-clock primary percutaneous coronary 

intervention capabilities and a median door-to-balloon time of 101 minutes23. Patients >20 

years old who presented to the ED with chief complaint of chest pain were included in the 

study. Patients were excluded if they had ST-elevation myocardial infarction (STEMI) or an 

obvious non-cardiac etiology of chest pain diagnosed by the primary emergency physician. 

Patients were also excluded if their ECGs had high percentage of noise or they were in non-

sinus rhythm; these criteria were applied to ensure the quality of HRV and HRnV analyses. 

The ethical approval was obtained from the Centralized Institutional Review Board (CIRB, 

Ref: 2014/584/C) of SingHealth, the largest public healthcare system in Singapore that 

includes the Singapore General Hospital as a key partner. In the ethical approval, patient 

consent was waived. 

 

Data Collection 

During the data collection period, five to six-minute single-lead (lead II) ECG tracings were 

retrieved from the X-Series Monitor (ZOLL Medical Corporation, Chelmsford, MA). The 

first set of vital signs and troponin values from the recruited patients were extracted from the 
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hospital’s electronic health records (EHR). In this study, the cardiac troponin-T was used, and 

an abnormal value was defined as greater than the 99th percentile for the assay (0.03 ng/mL); 

it was further coded as 0 if the value was <99th percentile, 1 if the value was between 1 and 3 

times 99th percentile, and 2 if the value was >3 times the 99th percentile. Additionally, the 

patients’ first 12-lead ECG records were interpreted by two independent clinical reviewers; 

ST-elevation, ST-depression, T-wave inversions, and Q-waves were recorded. In addition, 

patient demographics, medical history, and information required for computing the HEART, 

TIMI, and GRACE scores were retrospectively reviewed and obtained from the hospital’s 

EHR. 

 

Proposed HRnV Representation of Beat-to-Beat Variation in ECG 

 

HRnV: A Novel Measure with Non-Overlapped RRIs 

Prior to introducing the new HRnV measure, we define a new type of RRI called RRnI, where 

1 ≤ 𝑛 ≤  𝑁, and 𝑁 ≪ 𝑁̂. 𝑁̂ is the total number of RRIs. The definition of RRnI is illustrated 

in Figure 1a. When 𝑛 = 1, RRnI becomes conventional RRI, that is, RR1I is equal to RRI. 

When 𝑛 > 1, every 𝑛 adjacent RRI is connected to form a new sequence of RRnIs. By using 

this strategy, we can create a maximum number of (𝑁 − 1) new RRnI sequences from 

conventional single RRI sequence. With these newly generated RRnI sequences, the 

calculation of HRnV parameters is straightforward and can be accomplished by applying 

established quantitative methods including time domain analysis, frequency domain analysis, 

and nonlinear analysis17, 18. In describing this new measure, we use the term “HRnV” prior to 

parameter names to indicate that these parameters are calculated from RRnI sequences. As 

noted in the above, HRnV is a novel measure based on newly generated, non-overlapped 

RRnIs. The computed HRnV parameters include but are not limited to the following: the 
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average of RRnIs (HRnV mean NN), standard deviation of RRnIs (HRnV SDNN), square root 

of the mean squared differences between RRnIs (HRnV RMSSD), the number of times that 

the absolute difference between two successive RRnIs exceeds 50 ms (HRnV NN50), HRnV 

NN50 divided by the total number of RRnIs (HRnV pNN50), the integral of the RRnI 

histogram divided by the height of the histogram (HRnV triangular index), low frequency 

power (HRnV LF power), high frequency power (HRnV HF power), approximate entropy 

(HRnV ApEn), sample entropy (HRnV SampEn), and detrended fluctuation analysis (HRnV 

DFA), among others. Notably, two new parameters NN50n and pNN50n are created, where 

50×n ms is set as the threshold to assess the difference between pairs of consecutive RRnIs. 

 

HRnVm: A Novel Measure with Overlapped RRIs 

Like RRnI that is used in HRnV, to define the HRnVm measure we introduce another type of 

RRI called RRnIm, where 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑁 − 1, and 𝑁 ≪ 𝑁̂. In the RRnIm sequence, 

𝑚 is used to indicate the level of overlap between consecutive RRnIm sequences. As 

illustrated in Figure 1b, (𝑛 − 𝑚) RRIs form the overlapped portions. When 𝑚 = 𝑛, RRnIm 

becomes RRnI; therefore, the upper limit of 𝑚 is 𝑁 − 1. By controlling the overlap among 

these newly generated RRnIm sequences, we can create a maximum number of (𝑁 × (𝑁 −

1)/2) RRnIm sequences (excluding the RRnI sequence) from conventional single RRI 

sequence. For each of the newly created RRnIm sequences, we apply time domain analysis, 

frequency domain analysis, and nonlinear analysis to calculate HRnVm parameters. We add 

the term “HRnVm” prior to the parameters to denote that they are computed from RRnIm 

sequences. For example, the average RRnIm intervals and the sample entropy are written as 

HRnVm mean NN and HRnVm SampEn, respectively. The HRnVm measure extracts additional 

information than HRnV does, by adopting a strategy of controlling sequence overlap. 
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HRnV Analysis and Parameter Calculation 

We developed the HRnV-Calc software suite (https://github.com/HRnV) to calculate HRnV 

parameters. The HRnV-Calc software integrates functions from the PhysioNet 

Cardiovascular Signal Toolbox21 to perform standardized ECG signal processing and QRS 

complex detection. Given the short ECG records in this study, the upper limit of 𝑛 was set as 

three; thus, six sets of parameters were calculated, namely HRV, HR2V, HR2V1, HR3V, 

HR3V1, and HR3V2.  

 

Clinical Outcomes 

The primary endpoint in this study was a composite outcome of major adverse cardiac events 

(MACE)24, including all-cause death, acute myocardial infarction (AMI), and 

revascularization (coronary artery bypass graft [CABG] and percutaneous coronary 

intervention [PCI]) within 30 days of ED presentation.  

 

Statistical Analysis 

Continuous variables were presented in terms of mean and standard deviation, and also 

compared between the two categories of the primary outcome (MACE) using two-sample t-

test. Categorical variables were presented in terms of frequency and percentage, and also 

compared between the two categories of the primary outcome (MACE) using chi-square test. 

A statistically significant difference was defined as p<0.05. To evaluate the HRnV 

parameters and other risk factors, we conducted univariable and multivariable analyses and 

subsequently developed a simple prediction model using traditional logistic regression 

analysis. In building the HRnV prediction model, we selected candidate variables with p<0.2 

in the univariable analysis and fed them into a multivariable stepwise logistic regression 

model. 
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The receiver operating characteristic (ROC) analysis25 was performed to compare prediction 

performances among the HRnV model, HEART, TIMI and GRACE scores. The area under 

the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) were reported as the predictive measures. Data preparation, 

descriptive analysis, and predictive model development were performed in R version 3.6.0 (R 

Foundation, Vienna, Austria), and the ROC analysis was conducted in MATLAB R2019a 

(MathWorks, Natick, MA). 

 

Results 

 

A total of 795 patients were selected from the originally recruited 922 patients9, in which 28 

were excluded for ECG recording issues, four were excluded for clearly non-cardiac chest 

pain, and 95 were excluded for irregular rhythm/artifacts. Among the included 795 patients, 

247 (31%) met the primary outcome, i.e., 30-day MACE. Table 1 shows patient baseline 

characteristics. MACE group was older (mean age 61.1 years vs. 59.0 years, p=0.035) and 

had a higher proportion of male patients (76.1% vs. 64.6%, p=0.002). There were no 

statistical differences between MACE and non-MACE groups in terms of patient ethnicity. 

Factors such as history of diabetes and current smoking status showed statistical differences 

between the two outcome groups. 

 

Descriptive analyses of HRV and HRnV parameters are tabulated in Table 2. In this clinical 

case study, 𝑁 was set as 3, thus HR2V, HR2V1, HR2V, HR3V1 and HR3V2 parameters were 

calculated. Among time domain parameters such as mean NN, SDNN and RMSSD, the 

HRnV and HRnVm values were generally incremental with an increase in 𝑛. Notably, HR2V 
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NN50 and HR3V NN50 were much lower than conventional HRV NN50. Moreover, NN50n 

and pNN50n are the parameters specifically applicable to the HRnV representation. Like time 

domain parameters, the same trend of changes in frequency domain parameters were 

observed. One exception was the normalized HF power, whose HRnV and HRnVm parameters 

were smaller than that of HRV. In nonlinear analysis, the differences in Poincaré SD2 values 

were obvious between HRV and HRnV parameters. HR2V SampEn and HR3V SampEn were 

remarkably larger compared to SampEn parameters of HRV, HR2V1, HR3V1, and HR3V2, as 

the confidence interval of SampEn was wide when data points were less than 20018, since our 

ECG recordings were only five to six-minute long. HR2V1, HR3V1 and HR3V2 were free from 

this issue as they were calculated from overlapping RRnIm sequences where more than 200 

data points were available. 

 

Tables 3 and 4 present the results of univariable analyses of HRnV and HRnVm parameters, 

respectively. Eleven out of 21 conventional HRV parameters were statistically significant. 

Additionally, 13 HR2V, six HR3V, 11 HR2V1, seven HR3V1 and 11 HR3V2 parameters were 

also significant. Overall, additional 115 HRnV parameters were derived, among which 48 

showed statistical significance between patients who had 30-day MACE and who did not. 

Among all HRV and HRnV parameters, mean NN, SDNN, RMSSD, NN50, pNN50, HF 

power, Poincaré SD1 and SD2 appeared statistically significant in at least five out of six 

measures (i.e., HRV, HR2V, HR2V1, HR3V, HR3V1, and HR3V2). Furthermore, skewness, LF 

power, SampEn, and ApEn that were not significant in conventional HRV analysis became 

statistically significant in HRnV representation. 

 

Table 5 lists the 16 variables that were selected through stepwise logistic regression to build 

the prediction model for 30-day MACE. Among several statistically significant predictors, in 
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addition to traditional biomarkers such as ST segment changes and troponin, HR2V ApEn 

(OR=0.095; 95% CI 0.014-0.628), HR2V1 ApEn (OR=19.700; 95% CI 2.942-131.900) and 

HR3V skewness (1.560; 95% CI 1.116-2.181) also demonstrated strong predictive power in 

assessing the risk of 30-day MACE for chest pain patients in the ED. In the final prediction 

model, one HRV parameters and seven HRnV parameters were chosen as independent 

predictors. Table 6 presents the results of ROC analysis in evaluating the predictive 

performances by the HRnV model, HEART, TIMI, and GRACE scores. Our HRnV model 

achieved the highest AUC value and outperformed HEART, TIMI, and GRACE scores in 

terms of sensitivity, specificity, PPV, and NPV at the optimal cutoff scores, defined as the 

points nearest to the upper-left corner of the ROC curves. 

 

Discussion 

 

HRV has been well investigated in the past decades17, 18, 26. While the majority of efforts in 

HRV research were focused on development of advanced nonlinear techniques to derive 

novel parameters27, 28, few investigated alternative approaches to analyze RRIs. Vollmer29 

used relative RRIs to describe the relative variation of consecutive RRIs, with which HRV 

parameters were calculated. Likewise, we proposed a novel HRnV representation, providing 

additional HRnV parameters than conventional HRV analysis. In this paper, we introduced 

two measures of HRnV, namely HRnV and HRnVm. HRnV is calculated based on non-

overlapped RRnI sequences, while HRnVm is computed from overlapped RRnIm sequences. 

HRnV is not developed to replace the conventional HRV; instead, this representation is a 

natural extension of HRV. It enables us to create additional parameters from raw ECGs, and 

thus empowers the extraction of supplementary information.  
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In our clinical study, we investigated the predictive values of HRnV parameters to assess the 

risk of 30-day MACE outcome for chest pain patients in the ED. In addition to 21 HRV 

parameters, 115 HRnV parameters were derived, of which 48 were found to be statistically 

significant in their associations with the outcome. Notably, even with a small 𝑛 (three in our 

study), newly generated HRnV parameters have greatly boosted the number of candidate 

predictors. When longer ECG records are available, more HRnV parameters can be 

calculated. We also built a HRnV model with predictors such as HRnV parameters, HRV 

parameters, vital signs, and several established risk factors. The final HRnV model consisted 

of age, diastolic BP, pain score, ST-elevation, ST-depression, Q wave, cardiac history, 

troponin, one conventional HRV parameters and seven HRnV parameters. In addition to 

traditional risk factors like ST segment changes, HR2V ApEn, HR2V1 ApEn, and HR3V 

skewness were found as strong predictors for 30-day MACE. Comparing with the HEART, 

TIMI, and GRACE scores, the HRnV model presented superior discrimination performance 

in achieving the highest AUC, sensitivity, specificity, PPV, and NPV values. This study 

demonstrated a proof of concept that HRnV was clinically useful in determining the risk of 

30-day MACE for ED patients with chest pain. 

 

Due to the wide differential diagnosis for chest pain, accurate stratification of chest pain 

patients is vital, particularly for ruling-out low-risk patients to avert high medical expenses3. 

The TIMI and GRACE scores have been validated for risk prediction of patients with chest 

pain in the ED4, 30, 31, although they were not originally developed for this cohort of patients. 

They have been reported to be flawed and inappropriate in their applications to 

undifferentiated chest pain cohorts in the ED1. In comparison, the HEART score was derived 

from a group of ED patients with chest pain, and has been extensively validated worldwide10, 

13, 24, 32. It has proven its applicability in identifying both low-risk patients for possible early 
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discharge and high-risk patients for urgent intervention. Built upon established scores, many 

chest pain pathways33-36 have been implemented and tested, particularly for the management 

of low-risk patients. Than et al.36 evaluated a TIMI score-based accelerated diagnostic 

protocol (ADP) and reported a sensitivity of 99.3% and NPV of 99.1%. Similarly, reported in 

a systematic review by Laureano-Phillips et al.37, the HEART score achieved both sensitivity 

and NPV of 100% in several validation studies. Furthermore, a cost-effectiveness study 

conducted in Brisbane, Australia reported economic benefits by adopting an ADP in the ED, 

with its associated reduction in expected cost and length of stay amongst patients with chest 

pain38. 

 

Most established clinical scores use conventional risk factors such as biomarkers, medical 

history, and presenting vital signs. Many factors are either subjective such as history of 

cardiac conditions or require significant amount of time to obtain, e.g., troponin. HRV, as a 

noninvasive measure, can be easily calculated from ECGs; it is an objective tool to assess the 

activities of the ANS18. It also has the advantage of requiring only five minutes to acquire (in 

our protocol), which is much faster than serum biomarkers. Over the past decades, HRV has 

been widely investigated in a broad range of clinical applications, particularly in 

cardiovascular research. HRV was found to be closely associated with sudden cardiac death17. 

It also showed significant correlations with clinical outcomes in prehospital setting39 and with 

MACE outcomes in ED patients with chest pain16. HRV parameters have been integrated 

with other risk factors into machine learning algorithms to predict adverse outcomes40, 41. 

These promising results motivated the use of HRV to develop objective and computerized 

risk stratification tools for chest pain patients42, 43. In an updated review of clinical scores for 

chest pain, Liu et al.5 summarized several studies which aimed to develop alternative 

techniques for risk stratification. 
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This study was the first clinical validation of the HRnV representation and its measures. 

Although the HRnV parameters showed promising performance in identifying high-risk chest 

pain patients, this study was not intended to create a ready-to-use clinical tool. Instead, we 

have demonstrated the feasibility of utilizing HRnV parameters to augment conventional 

HRV and risk factors in designing a powerful prediction tool/score. These HRnV parameters 

can be readily calculated without the collection of supplementary data. In this study, with five 

to six-minute ECG and 𝑛 = 3, five-fold more HRnV parameters were calculated compared to 

HRV. When longer ECGs are available and parameter 𝑛 is set as a larger number, more 

HRnV parameters can be derived. To build a HRnV-based risk stratification tool, a 

systematic approach is needed to derive a point-based, consistent score to ease its clinical 

application and practical implementation.  

 

As a natural extension of conventional HRV, HRnV representation creates the opportunity to 

generate additional parameters. This representation could also serve as a signal smoother for 

RRIs, by filtering out unexpected spikes and sudden changes that are not due to abnormal 

heart beats. However, since HRnV is a novel representation of beat-to-beat variations in ECG, 

many technical issues need to be resolved in future research. For instance, as shown in Table 

2, SampEn became larger when the available number of data points was less than 20018, 

suggesting that more research is required to investigate its applicability on short ECG records. 

Moreover, parameters NN50n and pNN50n are newly introduced in HRnV representation 

only. They characterize the number of times that the absolute difference between two 

successive RRnI sequences exceeds 50×n ms, by assuming that the absolute difference may 

be magnified when the corresponding RRnI is 𝑛 times longer than RRI. Thus, in-depth 

investigations and more evidence are needed in the selection of appropriate thresholds. More 
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importantly, physiological interpretations of the HRnV parameters and their norms are 

needed26. 

 

Beyond its use in risk stratification of ED patients with chest pain, HRnV foresees potentials 

in many clinical domains where conventional HRV has been extensively investigated44-47. 

With the augmented RRnI and RRnIm sequences, HRnV could possibly capture more dynamic 

changes in cardiac rhythms than HRV. This capability enables the extraction of extra 

information from limited raw data, i.e., ECGs. This study utilized HRnV parameters as 

independent risk factors and analyzed them with traditional biostatistical methods. There are 

multiple ways to use HRnV parameters, e.g., each set of HRnV parameters can be analyzed 

individually and are subsequently combined with an ensemble learning48 (a special type of 

machine learning algorithm49) architecture to reach a final decision. However, artificial 

intelligence and machine learning methods generally create black-box predictive models, 

making interpretation a challenge50.  

 

Limitations 

This study has several limitations. First, the primary aim of this study was to demonstrate the 

feasibility of using HRnV parameters and common risk factors to build a prediction model 

for stratification of patients with chest pain in the ED. Therefore, no scoring tool was 

developed for practical clinical use. Second, the HRnV model built in this study was not 

validated on a separate patient cohort, which could have inflated the model’s predictive 

performance. When a HRnV-based scoring tool is ready, it is necessary to conduct external 

validations on cohorts with diverse patient characteristics. Furthermore, properly designed 

clinical pathways are needed as well. Third, the patients included in this study were mainly 

from the high acuity group, resulting in a higher 30-day MACE rate (i.e., 31%) compared to 
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other similar studies10, 37. As a result, the generalizability of the HRnV model developed in 

this study may be uncertain in other patient cohorts. Fourth, the calculated HRnV and HRV 

parameters depended on the choice of tools and methods for ECG signal analysis. Thus, the 

values of these parameters may vary across studies. Lastly, the physiological interpretations 

of HRnV parameters are mostly unknown, which require future collaborative efforts between 

clinicians and scientists to address.  

 

Conclusions 

 

In this study, we proposed a novel HRnV representation and investigated the use of HRnV 

and established risk factors to develop a predictive model for risk stratification of patients 

with chest pain in the ED. Multiple HRnV parameters were found as statistically significant 

predictors, which effectively augmented conventional HRV, vital signs, troponin, and cardiac 

risk factors in building an effective model with good discrimination performance. The HRnV 

model outperformed the HEART, TIMI, and GRACE scores in the ROC analysis; it also 

demonstrated its capability in identifying low-risk patients, which can facilitate possible early 

discharge. Moving forward, we suggest further development of a point-based, ready-to-use 

HRnV risk stratification tool, and its subsequent external validations. Although some issues 

remain to be addressed, we hope to stimulate a new stream of research on HRnV. We believe 

that future endeavors in this field will lead to the possibility of in-depth evaluation of the 

associations between HRnV measures and various human diseases. 
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Table 1: Patient baseline characteristics. 

 Total (n=795) MACE 

(n=247) 

Non-MACE 

(n=548) 

p-value 

Age, mean (SD) 59.63 (12.88) 61.06 (11.38) 58.99 (13.47) 0.035 

Male gender, n (%) 542 (68.2) 188 (76.1) 354 (64.6) 0.002 

Race, n (%) 
   

0.623 

    Chinese 492 (61.9) 159 (64.4) 333 (60.8) 
 

    Indian 129 (16.2) 34 (13.8) 95 (17.3) 
 

    Malay 150 (18.9) 46 (18.6) 104 (19.0) 
 

    Other 24 (3.0) 8 (3.2) 16 (2.9) 
 

Medical history, n (%) 
    

    Ischemic heart disease 343 (43.1) 115 (46.6) 228 (41.6) 0.22 

    Diabetes 278 (35.0) 106 (42.9) 172 (31.4) 0.002 

    Hypertension 509 (64.0) 161 (65.2) 348 (63.5) 0.707 

    Hypercholesterolemia 476 (59.9) 151 (61.1) 325 (59.3) 0.683 

    Stroke 58 (7.3) 15 (6.1) 43 (7.8) 0.458 

    Cancer 29 (3.6) 7 (2.8) 22 (4.0) 0.537 

    Respiratory disease 31 (3.9) 5 (2.0) 26 (4.7) 0.102 

    Chronic kidney disease 87 (10.9) 26 (10.5) 61 (11.1) 0.32 

    Congestive heart failure 38 (4.8) 9 (3.6) 29 (5.3) 0.407 

    History of PCI 199 (25.0) 68 (27.5) 131 (23.9) 0.316 

    History of CABG 71 (8.9) 26 (10.5) 45 (8.2) 0.355 

    History of AMI 133 (16.7) 48 (19.4) 85 (15.5) 0.288 

    Active smoker 197 (24.8) 73 (29.6) 124 (22.6) 0.003 

MACE, major adverse cardiac events; SD, standard deviation; PCI, percutaneous coronary 

intervention; CABG, coronary artery bypass graft; AMI, acute myocardial infarction. 
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Table 2: Descriptive analyses of heart rate variability (HRV) and heart rate n-variability 

(HRnV) parameters.   

 HRV HR2V HR2V1 HR3V HR3V1 HR3V2 

Mean NN (s) 829.40 (169.49)   1656.65 (339.85)   1658.81 (338.99)   2484.80 (509.33) 2488.22 (508.50) 2485.02 (509.84) 

SDNN (s) 38.16 (25.49)    62.28 (45.45) 68.81 (47.00)   82.06 (62.47) 97.79 (67.46) 87.77 (64.52) 

RMSSD (s) 30.04 (23.07)    32.61 (26.68) 33.79 (25.67) 34.83 (28.86)    36.27 (26.50) 34.98 (27.43)    

Skewness -0.65 (2.34) -0.41 (1.66) -0.59 (1.95) -0.29 (1.29) -0.55 (1.69) -0.38 (1.42)     

Kurtosis 14.59 (26.83) 7.33 (13.58)   10.17 (17.90) 5.15 (8.13) 8.06 (12.92)   5.98 (9.75)    

Triangular index 7.68 (4.19)   10.38 (5.10) 12.60 (6.45)     11.47 (5.29) 16.25 (7.94) 13.06 (6.04) 

NN50 (count) 21.08 (33.98)    14.46 (20.35) 29.35 (40.03) 11.57 (15.05)    35.29 (44.34) 17.41 (22.51)    

pNN50 (%) 6.31 (11.08)    8.66 (13.18) 8.75 (12.97) 10.31 (14.27) 10.38 (13.95) 10.28 (14.20) 

NN50n (count) - 4.16 (9.72) 8.45 (18.76) 1.37 (3.72)    4.37 (10.72) 2.08 (5.48)   

pNN50n (%) - 2.60 (6.67) 2.64 (6.47)   1.32 (3.95) 1.39 (3.86) 1.33 (3.87)   

Total power (ms2) 2518.30 (4797.05) 7797.46 

(16947.44) 

9156.26 

(17970.75) 

13904.78 

(37182.24) 

18714.67 

(37620.26) 

15706.11 

(34845.52) 

VLF power (ms2) 985.18 (1991.52) 3401.42 (6569.37) 3922.74 (7987.46) 6503.53 

(14205.11) 

8772.26 

(17986.63) 

7567.79 

(14666.32) 

LF power (ms2) 732.36 (1841.88) 2626.83 (7593.16) 2782.48 (7212.62) 5091.49 

(18402.20) 

5740.99 

(15243.38) 

5397.76 

(16001.18) 

HF power (ms2) 527.27 (1232.69) 1328.86 (4033.96) 1361.53 (3433.55) 1661.69 (7237.55) 1762.45 (4851.11) 1761.05 (6477.63) 

LF power norm 

(nu) 

56.76 (19.20)    66.82 (18.17) 66.42 (17.35) 76.53 (15.32)    77.65 (14.55) 77.93 (14.95) 

HF power norm 

(nu) 

43.24 (19.20)    33.18 (18.17) 33.58 (17.35) 23.47 (15.32)   22.35 (14.55) 22.07 (14.95) 

LF/HF 1.99 (1.93)     3.24 (2.95)    3.04 (2.73)   5.60 (5.21) 5.79 (4.99)   6.06 (5.18)     

Poincaré SD1 

(ms) 

21.27 (16.34)    23.12 (18.93)   23.92 (18.18)    24.72 (20.50)    25.68 (18.77)   24.80 (19.46) 

Poincaré SD2 

(ms) 

48.82 (33.29) 84.47 (62.15) 93.88 (64.58) 112.87 (86.62)    135.55 (94.02)   121.20 (89.72) 

SampEn  1.57 (0.51) 83.84 (2324.24) 1.33 (0.48) 248.48 (4020.64) 1.06 (0.41)   1.14 (0.45) 

ApEn 0.99 (0.20) 0.72 (0.18)     0.91 (0.17)   0.60 (0.15) 0.84 (0.17) 0.70 (0.15)   

DFA, α1 0.99 (0.31) 1.24 (0.29)   1.23 (0.27) 1.41 (0.27) 1.42 (0.23) 1.42 (0.25) 
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DFA, α2 0.95 (0.22)   0.98 (0.35)    0.98 (0.22) 0.86 (0.65) 1.01 (0.22) 1.02 (0.36) 

HRV, heart rate variability; mean NN, average of R-R intervals; SDNN, standard deviation of 

R-R intervals; RMSSD, square root of the mean squared differences between R-R intervals; 

NN50, the number of times that the absolute difference between 2 successive R-R intervals 

exceeds 50 ms; pNN50, NN50 divided by the total number of R-R intervals; NN50n, the 

number of times that the absolute difference between 2 successive RRnI/RRnIm sequences 

exceeds 50×n ms; pNN50n, NN50n divided by the total number of RRnI/RRnIm sequences; 

VLF, very low frequency; LF, low frequency; HF, high frequency; SD: standard deviation; 

SampEn, sample entropy; ApEn, approximate entropy; DFA: detrended fluctuation analysis. 
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Table 3: Univariable analysis of HRnV parameters.  

 HRV HR2V HR3V 

 OR (95% CI) p OR (95% CI) p OR (95% CI) p 

Mean NN 0.999 (0.998-1.000) 0.023* 0.999 (0.999-1.000) 0.023* 1.000 (0.999-1.000) 0.023* 

SDNN 0.992 (0.986-0.999) 0.023* 0.996 (0.992-1.000) 0.028* 0.997 (0.995-1.000) 0.060 

RMSSD 0.990 (0.982-0.998) 0.010* 0.992 (0.985-0.998) 0.011* 0.994 (0.988-0.999) 0.030* 

Skewness 1.059 (0.991-1.132) 0.088 1.079 (0.981-1.186) 0.118 1.139 (1.006-1.290) 0.040* 

Kurtosis 1.006 (1.000-1.011) 0.038* 1.009 (0.998-1.019) 0.113 1.011 (0.993-1.029) 0.242 

Triangular index 0.961 (0.925-0.998) 0.039* 0.967 (0.938-0.997) 0.032* 0.978 (0.950-1.007) 0.133 

NN50 0.993 (0.987-0.998) 0.008* 0.989 (0.981-0.998) 0.012* 0.988 (0.977-0.999) 0.031* 

pNN50 0.978 (0.962-0.995) 0.009* 0.984 (0.971-0.997) 0.014* 0.987 (0.976-0.999) 0.027* 

NN50n - - 0.982 (0.964-1.001) 0.065 0.952 (0.905-1.002) 0.059 

pNN50n - - 0.974 (0.946-1.002) 0.069 0.951 (0.903-1.001) 0.054 

Total power 1.000 (1.000-1.000) 0.031* 1.000 (1.000-1.000) 0.021* 1.000 (1.000-1.000) 0.072 

VLF power 1.000 (1.000-1.000) 0.132 1.000 (1.000-1.000) 0.070 1.000 (1.000-1.000) 0.133 

LF power 1.000 (1.000-1.000) 0.077 1.000 (1.000-1.000) 0.023* 1.000 (1.000-1.000) 0.063 

HF power 1.000 (0.999-1.000) 0.002* 1.000 (1.000-1.000) 0.014* 1.000 (1.000-1.000) 0.074 

LF power norm 1.001 (0.994-1.009) 0.738 0.999 (0.99-1.007) 0.733 0.994 (0.985-1.004) 0.248 

HF power norm 0.999 (0.991-1.007) 0.738 1.001 (0.993-1.01) 0.733 1.006 (0.996-1.015) 0.248 

LF/HF 1.034 (0.959-1.116) 0.381 1.014 (0.964-1.066) 0.592 1.001 (0.973-1.031) 0.923 

Poincaré SD1 0.986 (0.975-0.997) 0.010* 0.988 (0.979-0.997) 0.011* 0.991 (0.983-0.999) 0.029* 

Poincaré SD2 0.995 (0.990-1.000) 0.032* 0.997 (0.994-1.000) 0.032* 0.998 (0.996-1.000) 0.063 

SampEn 0.813 (0.604-1.095) 0.173 0.730 (0.545-0.977) 0.035* 1.000 (1.000-1.000) 0.932 

ApEn 1.645 (0.752-3.598) 0.213 2.319 (1.003-5.357) 0.049* 1.241 (0.463-3.327) 0.667 

DFA, α1 0.953 (0.585-1.552) 0.846 1.031 (0.611-1.741) 0.908 0.968 (0.560-1.672) 0.907 

DFA, α2 1.532 (0.773-3.034) 0.221 1.202 (0.782-1.848) 0.401 1.184 (0.934-1.500) 0.163 

HRV, heart rate variability; OR, odds ratio; CI, confidence interval; mean NN, average of R-

R intervals; SDNN, standard deviation of R-R intervals; RMSSD, square root of the mean 

squared differences between R-R intervals; NN50, the number of times that the absolute 

difference between 2 successive R-R intervals exceeds 50 ms; pNN50, NN50 divided by the 

total number of R-R intervals; NN50n, the number of times that the absolute difference 
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between 2 successive RRnI/RRnIm sequences exceeds 50×n ms; pNN50n, NN50n divided by 

the total number of RRnI/RRnIm sequences; VLF, very low frequency; LF, low frequency; HF, 

high frequency; SD: standard deviation; SampEn, sample entropy; ApEn, approximate 

entropy; DFA: detrended fluctuation analysis. 
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Table 4: Univariable analysis of HRnVm parameters. 

 HR2V1 HR3V1 HR3V2 

 OR (95% CI) p OR (95% CI) p OR (95% CI) p 

Mean NN 0.999 (0.999-1.000) 0.023* 1.000 (0.999-1.000) 0.023* 1.000 (0.999-1.000) 0.023* 

SDNN 0.996 (0.993-1.000) 0.034* 0.997 (0.995-1.000) 0.042* 0.997 (0.995-1.000) 0.034* 

RMSSD 0.991 (0.984-0.998) 0.010* 0.992 (0.986-0.999) 0.016* 0.993 (0.986-0.999) 0.016* 

Skewness 1.061 (0.980-1.149) 0.144 1.072 (0.978-1.176) 0.139 1.098 (0.982-1.227) 0.100 

Kurtosis 1.007 (0.999-1.015) 0.082 1.006 (0.994-1.017) 0.333 1.010 (0.995-1.025) 0.195 

Triangular index 0.981 (0.958-1.005) 0.119 0.982 (0.963-1.001) 0.065 0.974 (0.949-0.999) 0.040* 

NN50 0.995 (0.991-0.999) 0.018* 0.996 (0.993-1.000) 0.052 0.992 (0.985-0.999) 0.035* 

pNN50 0.984 (0.972-0.997) 0.020* 0.988 (0.977-1.000) 0.049* 0.988 (0.976-0.999) 0.035* 

NN50n 0.989 (0.979-1.000) 0.043* 0.982 (0.964-1.000) 0.054 0.974 (0.943-1.007) 0.118 

pNN50n 0.969 (0.939-0.999) 0.046* 0.947 (0.895-1.002) 0.058 0.960 (0.914-1.009) 0.109 

Total power 1.000 (1.000-1.000) 0.048* 1.000 (1.000-1.000) 0.072 1.000 (1.000-1.000) 0.029* 

VLF power 1.000 (1.000-1.000) 0.139 1.000 (1.000-1.000) 0.145 1.000 (1.000-1.000) 0.074 

LF power 1.000 (1.000-1.000) 0.084 1.000 (1.000-1.000) 0.092 1.000 (1.000-1.000) 0.027* 

HF power 1.000 (1.000-1.000) 0.005* 1.000 (1.000-1.000) 0.010* 1.000 (1.000-1.000) 0.022* 

LF power norm 1.000 (0.991-1.008) 0.937 0.995 (0.985-1.006) 0.382 0.995 (0.986-1.005) 0.356 

HF power norm 1.000 (0.992-1.009) 0.937 1.005 (0.994-1.015) 0.382 1.005 (0.995-1.015) 0.356 

LF/HF 1.024 (0.970-1.080) 0.387 1.003 (0.973-1.033) 0.863 0.999 (0.971-1.029) 0.966 

Poincaré SD1 0.987 (0.978-0.997) 0.010* 0.989 (0.980-0.998) 0.016* 0.989 (0.981-0.998) 0.016* 

Poincaré SD2 0.997 (0.995-1.000) 0.039* 0.998 (0.996-1.000) 0.045* 0.998 (0.996-1.000) 0.037* 

SampEn 0.854 (0.623-1.171) 0.328 0.802 (0.553-1.161) 0.242 0.709 (0.500-1.005) 0.053 

ApEn 2.065 (0.842-5.064) 0.113 1.207 (0.499-2.922) 0.677 2.558 (0.906-7.222) 0.076 

DFA, α1 0.888 (0.514-1.537) 0.672 1.039 (0.547-1.971) 0.907 1.004 (0.549-1.835) 0.991 

DFA, α2 1.557 (0.782-3.098) 0.208 1.554 (0.780-3.093) 0.210 1.169 (0.764-1.789) 0.472 

HRV, heart rate variability; OR, odds ratio; CI, confidence interval; mean NN, average of R-

R intervals; SDNN, standard deviation of R-R intervals; RMSSD, square root of the mean 

squared differences between R-R intervals; NN50, the number of times that the absolute 

difference between 2 successive R-R intervals exceeds 50 ms; pNN50, NN50 divided by the 

total number of R-R intervals; NN50n, the number of times that the absolute difference 
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between 2 successive RRnI/RRnIm sequences exceeds 50×n ms; pNN50n, NN50n divided by 

the total number of RRnI/RRnIm sequences; VLF, very low frequency; LF, low frequency; HF, 

high frequency; SD: standard deviation; SampEn, sample entropy; ApEn, approximate 

entropy; DFA: detrended fluctuation analysis. 
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Table 5: The heart rate n-variability (HRnV) model built with multivariable logistic 

regression for prediction of 30-day major adverse cardiac events. 

Variable Adjusted OR 95% CI 

Age 1.021 1.002-1.041 

Diastolic BP 1.018 1.003-1.034 

Pain score 1.082 1.003-1.168 

ST-elevation 6.449 2.762-15.059 

ST-depression 4.827 2.511-9.277 

Q wave 3.383 1.668-6.860 

Cardiac history 7.838 5.192-11.832 

Troponin 4.406 3.218-6.033 

HRV NN50 0.981 0.970-0.991 

HR2V skewness 0.806 0.622-1.045 

HR2V SampEn 0.600 0.348-1.035 

HR2V ApEn 0.095 0.014-0.628 

HR2V1 ApEn 19.700 2.942-131.900 

HR3V RMSSD 1.024 1.008-1.040 

HR3V skewness         1.560 1.116-2.181 

HR3V2 HF power 1.000 1.000-1.000 

BP, blood pressure; HRV, heart rate variability; OR, odds ratio; CI, confidence interval; 

mean NN, average of R-R intervals; RMSSD, square root of the mean squared differences 

between R-R intervals; NN50, the number of times that the absolute difference between 2 

successive R-R intervals exceeds 50 ms; LF, low frequency; HF, high frequency; SampEn, 

sample entropy; ApEn, approximate entropy. 
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Table 6: Comparison of performance of the HRnV model, HEART, TIMI, and GRACE 

scores in predicting 30-day major adverse cardiac events (MACE). 

 AUC (95% CI) Cut-off Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

PPV (95% CI) NPV (95% CI) 

HRnV 

Model 

0.917 (0.892-

0.941) 

0.2896† 87.9% (83.8% - 

91.9%) 

79.9% (76.6% - 

83.3%) 

66.4% (61.2% - 

71.5%) 

93.6% (91.4% - 

95.8%) 

 - 0.0329 99.6% (98.8% - 

100.0%) 

38.0% (33.9% - 

42.0%) 

42.0% (38.0% - 

46.0%) 

99.5% (98.6% - 

100.0%) 

HEART 0.841 (0.808-

0.874) 

5† 78.9% (73.9% - 

84.0%) 

72.8% (69.1% - 

76.5%) 

56.7% (51.4% - 

61.9%) 

88.5% (85.5% - 

91.4%) 

 - 3 99.6% (98.8% - 

100.0%) 

35.8% (31.8% - 

39.8%) 

41.1% (37.2% - 

45.1%) 

99.5% (98.5% - 

100.0%) 

TIMI 0.681 (0.639-

0.723) 

2† 63.6% (57.6% - 

69.6%) 

58.4% (54.3% - 

62.5%) 

40.8% (35.9% - 

45.7%) 

78.0% (74.0% - 

82.1%) 

 - 0 98.4% (96.8% - 

100.0%) 

19.3% (16.0% - 

22.7%) 

35.5% (31.9% - 

39.1%) 

96.4% (92.9% - 

99.9%) 

GRACE 0.665 (0.623-

0.707) 

107† 64.0% (58.0% - 

70.0%) 

60.8% (56.7% - 

64.9%) 

42.4% (37.3% - 

47.4%) 

78.9% (75.0% - 

82.8%) 

 - 60 98.8% (97.4% - 

100.0%) 

8.0% (5.8% - 

10.3%) 

32.6% (29.3% - 

36.0%) 

93.6% (86.6% - 

100.0%) 

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, 

negative predictive value; HEART, History, ECG, Age, Risk factors and Troponin; TIMI, 

Thrombolysis in Myocardial Infarction; GRACE, Global Registry of Acute Coronary Events. 

† Optimal cut-off values, defined as the points nearest to the upper-left corner on the ROC 

curves. 
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Figure Legends 

 

Figure 1: (a) Illustration of R-R intervals (RRIs) and the definition of RRnI where 1 ≤ 𝑛 ≤

𝑁 and 𝑁 ≪ 𝑁̂. 𝑁̂ is the total number of RRIs; (b) Illustration of RRIs and the definition of 

RRnIm where 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑁 − 1, and 𝑁 ≪ 𝑁̂. 𝑁̂ is the total number of RRIs and 𝑚 

indicates the non-overlapped portion between two consecutive RRnIm sequences. 

 

Figure 2: The receiver operating characteristic (ROC) curves produced by the heart rate n-

variability (HRnV) model, the History, ECG, Age, Risk factors and Troponin (HEART) score, 

the Thrombolysis in Myocardial Infarction (TIMI) score, and the Global Registry of Acute 

Coronary Events (GRACE) score. 
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Figure 1: (a) Illustration of R-R intervals (RRIs) and the definition of RRnI where 1 ≤ 𝑛 ≤

𝑁 and 𝑁 ≪ 𝑁̂. 𝑁̂ is the total number of RRIs; (b) Illustration of RRIs and the definition of 

RRnIm where 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑁 − 1, and 𝑁 ≪ 𝑁̂. 𝑁̂ is the total number of RRIs and 𝑚 

indicates the non-overlapped portion between two consecutive RRnIm sequences. 
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Figure 2: The receiver operating characteristic (ROC) curves produced by the heart rate n-

variability (HRnV) model, the History, ECG, Age, Risk factors and Troponin (HEART) score, 

the Thrombolysis in Myocardial Infarction (TIMI) score, and the Global Registry of Acute 

Coronary Events (GRACE) score. 
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