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Abstract

Background: Chest pain is one of the most common complaints among patients presenting to
the emergency department (ED). Causes of chest pain can be benign or life threatening,
making its accurate risk stratification a critical issue in the ED. In addition to the use of
established clinical scores, some studies attempted to create predictive models with heart rate
variability (HRV). In this study, we proposed heart rate n-variability (HRnV), an alternative
representation of beat-to-beat-variation in electrocardiogram (ECG) and investigated its
association with major adverse cardiac events (MACE) for ED patients with chest pain.
Methods: We conducted a retrospective analysis of data collected from the ED of a
Singapore tertiary hospital between September 2010 and July 2015. Patients >20 years old
who presented to the ED with chief complaint of chest pain were conveniently recruited. Five
to six-minute single-lead (lead 11) ECGs, demographics, medical history, troponin, and other
required variables were collected. We developed the HRnV-Calc software to calculate the
HRnV parameters. The primary outcome was 30-day MACE, including all-cause death, acute
myocardial infarction, and revascularization. Univariable and multivariable logistic
regression analyses were conducted to investigate individual risk factors, and to develop a
HRnV prediction model, respectively. The receiver operating characteristic (ROC) analysis
was performed to compare the HRnV model against other clinical scores in predicting 30-day
MACE.

Results: A total of 795 patients were included in the analysis, of which 247 (31%) had
MACE within 30 days. The MACE group was older and had a higher proportion of male
patients. Twenty-one conventional HRV and 115 HRnV parameters were calculated. In
univariable analysis, eleven HRV parameters and 48 HRnV parameters were significantly
associated with 30-day MACE. The stepwise logistic regression selected 16 predictors to

construct a multivariable prediction model, which consisted of one HRV, seven HRnV
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parameters, troponin, ST segment changes, and several other factors. The HRnV model
outperformed several clinical scores in the ROC analysis (area under the ROC curve of
0.917).

Conclusions: The novel HRnV representation demonstrated its value of augmenting HRV
and traditional risk factors in designing a robust risk stratification tool for patients with chest

pain at the ED.

Keywords: Heart rate variability (HRV), heart rate n-variability (HRnV), electrocardiogram,

chest pain, risk stratification, emergency department.

Introduction

Chest pain is one of the most common presenting complaints in the emergency department
(ED)* 2, which may be due to life-threatening myocardial infarction (M) or benign
musculoskeletal pain®. Majority of chest pain patients are subjected to extensive diagnostic
tests to rule out acute coronary syndrome (ACS), resulting in oftentimes, unnecessary
prolonged and costly ED admission, since only a small proportion of these patients will
eventually receive a diagnosis of ACS®. Hence, early identification of chest pain patients at
high-risk of developing adverse cardiac events has been a pressing issue to contend with in
the ED. Several established clinical scores have been used for risk stratifying chest pain
patients in the ED* %, including the History, ECG, Age, Risk factors and Troponin (HEART)S,
the Thrombolysis in Myocardial Infarction (TIMI), and the Global Registry of Acute
Coronary Events (GRACE)? scores. Among these scores, the HEART score is the best

performing one with its ability to identify low and high risk patients with only a small
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percentage of mis-classification® %2, Further research included the development of risk

score-based clinical pathways for safe discharge of low-risk patients® 3 13,

Reported in a recent review of clinical scores for ED patients with chest pain®, heart rate
variability (HRV) demonstrated its feasibility of creating an alternative approach to build
predictive models for risk stratification*6, As a widely adopted tool for evaluating changes
in cardiac autonomic regulation, HRV is believed to be strongly associated with the
autonomic nervous system (ANS)Y"-1°, HRV analysis characterizes the beat-to-beat variation
in an electrocardiogram (ECG) by utilizing time domain, frequency domain, and nonlinear
analyses'®. Reduced HRV was found to be a significant predictor of adverse outcomes?,
although the impact of the ANS on HRV remains controversial*®. Given the complexity of

quantifying HRV representation, several tools such as the PhysioNet Cardiovascular Signal

Toolbox?! and Kubios HRV?? have been developed to standardize HRV analyses.

Based on the principle of parameter calculation on normal R-R intervals (RRIs; in this paper,
RRIs are equivalent to normal-to-normal [NN] intervals, in which abnormal beats have been
removed), HRV analysis generates only one set of parameters from a fixed length of ECG
record. This limits the amount of information that can be extracted from raw ECG signals. In
this paper, we proposed a novel representation of beat-to-beat variation, named as heart rate
n-variability (HRnV) to characterize RRIs from a different perspective. With the use of
HRnV measures, multiple sets of parameters were calculated from the same ECG record,
which greatly boosted the amount of extracted information. Our study was the first clinical
application of the HRnV representation, in which the value of this novel measure was
evaluated in risk stratification of chest pain patients in the ED. With the hypothesis that

HRnV is closely related to conventional HRV while providing supplementary information,
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we aimed to explore its association with adverse cardiac complications, and to investigate the

potential use of HRnV to develop an effective risk prediction tool.

Methods

Study Design and Setting

We conducted a retrospective analysis of data collected in our previous study on risk
stratification of chest pain patients in the ED®. A convenience sample of patients was
recruited at the ED of Singapore General Hospital between September 2010 and July 2015.
This was a tertiary hospital with around-the-clock primary percutaneous coronary
intervention capabilities and a median door-to-balloon time of 101 minutes?3. Patients >20
years old who presented to the ED with chief complaint of chest pain were included in the
study. Patients were excluded if they had ST-elevation myocardial infarction (STEMI) or an
obvious non-cardiac etiology of chest pain diagnosed by the primary emergency physician.
Patients were also excluded if their ECGs had high percentage of noise or they were in non-
sinus rhythm; these criteria were applied to ensure the quality of HRV and HRnV analyses.
The ethical approval was obtained from the Centralized Institutional Review Board (CIRB,
Ref: 2014/584/C) of SingHealth, the largest public healthcare system in Singapore that
includes the Singapore General Hospital as a key partner. In the ethical approval, patient

consent was waived.

Data Collection
During the data collection period, five to six-minute single-lead (lead I1) ECG tracings were
retrieved from the X-Series Monitor (ZOLL Medical Corporation, Chelmsford, MA). The

first set of vital signs and troponin values from the recruited patients were extracted from the


https://doi.org/10.1101/738989
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738989; this version posted August 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

hospital’s electronic health records (EHR). In this study, the cardiac troponin-T was used, and
an abnormal value was defined as greater than the 99" percentile for the assay (0.03 ng/mL);
it was further coded as 0 if the value was <99™ percentile, 1 if the value was between 1 and 3
times 99™" percentile, and 2 if the value was >3 times the 99" percentile. Additionally, the
patients’ first 12-lead ECG records were interpreted by two independent clinical reviewers;
ST-elevation, ST-depression, T-wave inversions, and Q-waves were recorded. In addition,
patient demographics, medical history, and information required for computing the HEART,
TIMI, and GRACE scores were retrospectively reviewed and obtained from the hospital’s

EHR.

Proposed HRnV Representation of Beat-to-Beat Variation in ECG

HRnV: A Novel Measure with Non-Overlapped RRIs

Prior to introducing the new HRnV measure, we define a new type of RRI called RRnl, where
1<n< N,and N « N. N is the total number of RRIs. The definition of RRnl is illustrated
in Figure 1a. When n = 1, RRnl becomes conventional RRI, that is, RR1l is equal to RRI.
When n > 1, every n adjacent RRI is connected to form a new sequence of RRnls. By using
this strategy, we can create a maximum number of (N — 1) new RRnl sequences from
conventional single RRI sequence. With these newly generated RRnl sequences, the
calculation of HR,V parameters is straightforward and can be accomplished by applying
established quantitative methods including time domain analysis, frequency domain analysis,
and nonlinear analysis'” 8. In describing this new measure, we use the term “HRnV” prior to
parameter names to indicate that these parameters are calculated from RRnl sequences. As
noted in the above, HR,V is a novel measure based on newly generated, non-overlapped

RRnls. The computed HR,V parameters include but are not limited to the following: the
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average of RRnls (HRnV mean NN), standard deviation of RRnls (HR,V SDNN), square root
of the mean squared differences between RRnls (HR\V RMSSD), the number of times that
the absolute difference between two successive RRnls exceeds 50 ms (HR,V NN50), HR,V
NN50 divided by the total number of RRqls (HRnV pNN50), the integral of the RRql
histogram divided by the height of the histogram (HR,V triangular index), low frequency
power (HR,V LF power), high frequency power (HR,V HF power), approximate entropy
(HRnV ApEN), sample entropy (HRnV SampEn), and detrended fluctuation analysis (HR,V
DFA), among others. Notably, two new parameters NN50n and pNN50n are created, where

50xn ms is set as the threshold to assess the difference between pairs of consecutive RRyls.

HRnVm: A Novel Measure with Overlapped RRIs

Like RRnl that is used in HR\V, to define the HRnVm measure we introduce another type of
RRI called RRnlm, where 1 <n < N, 1 <m < N —1,and N < N. In the RRqln sequence,
m is used to indicate the level of overlap between consecutive RRnlm sequences. As
illustrated in Figure 1b, (n — m) RRIs form the overlapped portions. When m = n, RRnln
becomes RRnl; therefore, the upper limit of m is N — 1. By controlling the overlap among
these newly generated RRnlm sequences, we can create a maximum number of (N X (N —
1)/2) RRnlm sequences (excluding the RRnl sequence) from conventional single RRI
sequence. For each of the newly created RRnlm sequences, we apply time domain analysis,
frequency domain analysis, and nonlinear analysis to calculate HR,Vm parameters. We add
the term “HR\Vn” prior to the parameters to denote that they are computed from RRnlm
sequences. For example, the average RRxlIn intervals and the sample entropy are written as
HRnVm mean NN and HRnVm SampEn, respectively. The HR,Vm measure extracts additional

information than HR,V does, by adopting a strategy of controlling sequence overlap.
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HRNV Analysis and Parameter Calculation

We developed the HRnV-Calc software suite (https://github.com/HRnV) to calculate HRnV

parameters. The HRnV-Calc software integrates functions from the PhysioNet
Cardiovascular Signal Toolbox?! to perform standardized ECG signal processing and QRS
complex detection. Given the short ECG records in this study, the upper limit of n was set as
three; thus, six sets of parameters were calculated, namely HRV, HR2V, HR2V1, HR3V,

HR3V1, and HR3V>.

Clinical Outcomes

The primary endpoint in this study was a composite outcome of major adverse cardiac events
(MACE)?, including all-cause death, acute myocardial infarction (AMI), and
revascularization (coronary artery bypass graft [CABG] and percutaneous coronary

intervention [PCI]) within 30 days of ED presentation.

Statistical Analysis

Continuous variables were presented in terms of mean and standard deviation, and also
compared between the two categories of the primary outcome (MACE) using two-sample t-
test. Categorical variables were presented in terms of frequency and percentage, and also
compared between the two categories of the primary outcome (MACE) using chi-square test.
A statistically significant difference was defined as p<0.05. To evaluate the HRnV
parameters and other risk factors, we conducted univariable and multivariable analyses and
subsequently developed a simple prediction model using traditional logistic regression
analysis. In building the HRnV prediction model, we selected candidate variables with p<0.2
in the univariable analysis and fed them into a multivariable stepwise logistic regression

model.
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The receiver operating characteristic (ROC) analysis? was performed to compare prediction
performances among the HRnV model, HEART, TIMI and GRACE scores. The area under
the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) were reported as the predictive measures. Data preparation,
descriptive analysis, and predictive model development were performed in R version 3.6.0 (R
Foundation, Vienna, Austria), and the ROC analysis was conducted in MATLAB R2019a

(MathWorks, Natick, MA).

Results

A total of 795 patients were selected from the originally recruited 922 patients®, in which 28
were excluded for ECG recording issues, four were excluded for clearly non-cardiac chest
pain, and 95 were excluded for irregular rhythm/artifacts. Among the included 795 patients,
247 (31%) met the primary outcome, i.e., 30-day MACE. Table 1 shows patient baseline
characteristics. MACE group was older (mean age 61.1 years vs. 59.0 years, p=0.035) and
had a higher proportion of male patients (76.1% vs. 64.6%, p=0.002). There were no
statistical differences between MACE and non-MACE groups in terms of patient ethnicity.
Factors such as history of diabetes and current smoking status showed statistical differences

between the two outcome groups.

Descriptive analyses of HRV and HRnV parameters are tabulated in Table 2. In this clinical
case study, N was set as 3, thus HR2V, HR2V1, HR2V, HR3V1 and HR3V:2 parameters were
calculated. Among time domain parameters such as mean NN, SDNN and RMSSD, the

HRnV and HR\Vm values were generally incremental with an increase in n. Notably, HR>V

10
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NN50 and HR3V NN50 were much lower than conventional HRV NN50. Moreover, NN50n
and pNN50n are the parameters specifically applicable to the HRnV representation. Like time
domain parameters, the same trend of changes in frequency domain parameters were
observed. One exception was the normalized HF power, whose HR,V and HR\V, parameters
were smaller than that of HRV. In nonlinear analysis, the differences in Poincaré SD2 values
were obvious between HRV and HRnV parameters. HR>V SampEn and HR3V SampEn were
remarkably larger compared to SampEn parameters of HRV, HR2V1, HR3V1, and HR3V>, as
the confidence interval of SampEn was wide when data points were less than 2008, since our
ECG recordings were only five to six-minute long. HR2V1, HR3V1 and HR3V2 were free from
this issue as they were calculated from overlapping RRnIm sequences where more than 200

data points were available.

Tables 3 and 4 present the results of univariable analyses of HR,V and HR,Vm parameters,
respectively. Eleven out of 21 conventional HRV parameters were statistically significant.
Additionally, 13 HR2V, six HR3V, 11 HR2V1, seven HRsV1 and 11 HRsV2 parameters were
also significant. Overall, additional 115 HRnV parameters were derived, among which 48
showed statistical significance between patients who had 30-day MACE and who did not.
Among all HRV and HRnV parameters, mean NN, SDNN, RMSSD, NN50, pNN50, HF
power, Poincaré SD1 and SD2 appeared statistically significant in at least five out of six
measures (i.e., HRV, HR2V, HR2V1, HR3V, HR3V1, and HR3V?2). Furthermore, skewness, LF
power, SampEn, and ApEn that were not significant in conventional HRV analysis became

statistically significant in HRnV representation.

Table 5 lists the 16 variables that were selected through stepwise logistic regression to build

the prediction model for 30-day MACE. Among several statistically significant predictors, in
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addition to traditional biomarkers such as ST segment changes and troponin, HR2V ApEn
(OR=0.095; 95% CI 0.014-0.628), HR2V1 ApEn (OR=19.700; 95% CI 2.942-131.900) and
HR3V skewness (1.560; 95% CI 1.116-2.181) also demonstrated strong predictive power in
assessing the risk of 30-day MACE for chest pain patients in the ED. In the final prediction
model, one HRV parameters and seven HRnV parameters were chosen as independent
predictors. Table 6 presents the results of ROC analysis in evaluating the predictive
performances by the HRnV model, HEART, TIMI, and GRACE scores. Our HRnV model
achieved the highest AUC value and outperformed HEART, TIMI, and GRACE scores in
terms of sensitivity, specificity, PPV, and NPV at the optimal cutoff scores, defined as the

points nearest to the upper-left corner of the ROC curves.

Discussion

HRV has been well investigated in the past decades!” 18 26, While the majority of efforts in
HRV research were focused on development of advanced nonlinear techniques to derive
novel parameters?” 28, few investigated alternative approaches to analyze RRIs. VVollmer?®
used relative RRIs to describe the relative variation of consecutive RRIs, with which HRV
parameters were calculated. Likewise, we proposed a novel HRnV representation, providing
additional HRnV parameters than conventional HRV analysis. In this paper, we introduced
two measures of HRnV, namely HR,V and HR\Vm. HR\V is calculated based on non-
overlapped RRxl sequences, while HR,Vn is computed from overlapped RRnlm sequences.
HRnNV is not developed to replace the conventional HRV; instead, this representation is a
natural extension of HRV. It enables us to create additional parameters from raw ECGs, and

thus empowers the extraction of supplementary information.

12


https://doi.org/10.1101/738989
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738989; this version posted August 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

In our clinical study, we investigated the predictive values of HRnV parameters to assess the
risk of 30-day MACE outcome for chest pain patients in the ED. In addition to 21 HRV
parameters, 115 HRnV parameters were derived, of which 48 were found to be statistically
significant in their associations with the outcome. Notably, even with a small n (three in our
study), newly generated HRnV parameters have greatly boosted the number of candidate
predictors. When longer ECG records are available, more HRnV parameters can be
calculated. We also built a HRnV model with predictors such as HRnV parameters, HRV
parameters, vital signs, and several established risk factors. The final HRnV model consisted
of age, diastolic BP, pain score, ST-elevation, ST-depression, Q wave, cardiac history,
troponin, one conventional HRV parameters and seven HRnV parameters. In addition to
traditional risk factors like ST segment changes, HR2V ApEn, HR2V1 ApEn, and HR3V
skewness were found as strong predictors for 30-day MACE. Comparing with the HEART,
TIMI, and GRACE scores, the HRnV model presented superior discrimination performance
in achieving the highest AUC, sensitivity, specificity, PPV, and NPV values. This study
demonstrated a proof of concept that HRnV was clinically useful in determining the risk of

30-day MACE for ED patients with chest pain.

Due to the wide differential diagnosis for chest pain, accurate stratification of chest pain
patients is vital, particularly for ruling-out low-risk patients to avert high medical expenses®.
The TIMI and GRACE scores have been validated for risk prediction of patients with chest
pain in the ED* 3231 although they were not originally developed for this cohort of patients.
They have been reported to be flawed and inappropriate in their applications to
undifferentiated chest pain cohorts in the ED®. In comparison, the HEART score was derived
from a group of ED patients with chest pain, and has been extensively validated worldwide'®

13,2432 It has proven its applicability in identifying both low-risk patients for possible early
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discharge and high-risk patients for urgent intervention. Built upon established scores, many
chest pain pathways®*-%® have been implemented and tested, particularly for the management
of low-risk patients. Than et al.® evaluated a TIMI score-based accelerated diagnostic
protocol (ADP) and reported a sensitivity of 99.3% and NPV of 99.1%. Similarly, reported in
a systematic review by Laureano-Phillips et al.*’, the HEART score achieved both sensitivity
and NPV of 100% in several validation studies. Furthermore, a cost-effectiveness study
conducted in Brisbane, Australia reported economic benefits by adopting an ADP in the ED,
with its associated reduction in expected cost and length of stay amongst patients with chest

pain®e,

Most established clinical scores use conventional risk factors such as biomarkers, medical
history, and presenting vital signs. Many factors are either subjective such as history of
cardiac conditions or require significant amount of time to obtain, e.g., troponin. HRV, as a
noninvasive measure, can be easily calculated from ECGs; it is an objective tool to assess the
activities of the ANS*®. It also has the advantage of requiring only five minutes to acquire (in
our protocol), which is much faster than serum biomarkers. Over the past decades, HRV has
been widely investigated in a broad range of clinical applications, particularly in
cardiovascular research. HRV was found to be closely associated with sudden cardiac death®’.
It also showed significant correlations with clinical outcomes in prehospital setting® and with
MACE outcomes in ED patients with chest pain®. HRV parameters have been integrated
with other risk factors into machine learning algorithms to predict adverse outcomes*® 41,
These promising results motivated the use of HRV to develop objective and computerized
risk stratification tools for chest pain patients** “3. In an updated review of clinical scores for
chest pain, Liu et al.> summarized several studies which aimed to develop alternative

techniques for risk stratification.
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This study was the first clinical validation of the HRnV representation and its measures.
Although the HRnV parameters showed promising performance in identifying high-risk chest
pain patients, this study was not intended to create a ready-to-use clinical tool. Instead, we
have demonstrated the feasibility of utilizing HRnV parameters to augment conventional
HRV and risk factors in designing a powerful prediction tool/score. These HRnV parameters
can be readily calculated without the collection of supplementary data. In this study, with five
to six-minute ECG and n = 3, five-fold more HRnV parameters were calculated compared to
HRV. When longer ECGs are available and parameter n is set as a larger number, more
HRNV parameters can be derived. To build a HRnV-based risk stratification tool, a
systematic approach is needed to derive a point-based, consistent score to ease its clinical

application and practical implementation.

As a natural extension of conventional HRV, HRnV representation creates the opportunity to
generate additional parameters. This representation could also serve as a signal smoother for
RRIs, by filtering out unexpected spikes and sudden changes that are not due to abnormal
heart beats. However, since HRnV is a novel representation of beat-to-beat variations in ECG,
many technical issues need to be resolved in future research. For instance, as shown in Table
2, SampEn became larger when the available number of data points was less than 2008,
suggesting that more research is required to investigate its applicability on short ECG records.
Moreover, parameters NN50n and pNN50n are newly introduced in HRnV representation
only. They characterize the number of times that the absolute difference between two
successive RRnl sequences exceeds 50xn ms, by assuming that the absolute difference may

be magnified when the corresponding RRxl is n times longer than RRI. Thus, in-depth

investigations and more evidence are needed in the selection of appropriate thresholds. More
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importantly, physiological interpretations of the HRnV parameters and their norms are

needed?.

Beyond its use in risk stratification of ED patients with chest pain, HRnV foresees potentials
in many clinical domains where conventional HRV has been extensively investigated*+*’,
With the augmented RRnl and RRnIm sequences, HRnV could possibly capture more dynamic
changes in cardiac rhythms than HRV. This capability enables the extraction of extra
information from limited raw data, i.e., ECGs. This study utilized HRnV parameters as
independent risk factors and analyzed them with traditional biostatistical methods. There are
multiple ways to use HRnV parameters, e.g., each set of HRnV parameters can be analyzed
individually and are subsequently combined with an ensemble learning® (a special type of
machine learning algorithm?*®) architecture to reach a final decision. However, artificial
intelligence and machine learning methods generally create black-box predictive models,

making interpretation a challenge®°.

Limitations

This study has several limitations. First, the primary aim of this study was to demonstrate the
feasibility of using HRnV parameters and common risk factors to build a prediction model
for stratification of patients with chest pain in the ED. Therefore, no scoring tool was
developed for practical clinical use. Second, the HRnV model built in this study was not
validated on a separate patient cohort, which could have inflated the model’s predictive
performance. When a HRnV-based scoring tool is ready, it is necessary to conduct external
validations on cohorts with diverse patient characteristics. Furthermore, properly designed
clinical pathways are needed as well. Third, the patients included in this study were mainly

from the high acuity group, resulting in a higher 30-day MACE rate (i.e., 31%) compared to
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other similar studies'® 37, As a result, the generalizability of the HRnV model developed in
this study may be uncertain in other patient cohorts. Fourth, the calculated HRnV and HRV
parameters depended on the choice of tools and methods for ECG signal analysis. Thus, the
values of these parameters may vary across studies. Lastly, the physiological interpretations
of HRnV parameters are mostly unknown, which require future collaborative efforts between

clinicians and scientists to address.

Conclusions

In this study, we proposed a novel HRnV representation and investigated the use of HRnV
and established risk factors to develop a predictive model for risk stratification of patients
with chest pain in the ED. Multiple HRnV parameters were found as statistically significant
predictors, which effectively augmented conventional HRV, vital signs, troponin, and cardiac
risk factors in building an effective model with good discrimination performance. The HRnV
model outperformed the HEART, TIMI, and GRACE scores in the ROC analysis; it also
demonstrated its capability in identifying low-risk patients, which can facilitate possible early
discharge. Moving forward, we suggest further development of a point-based, ready-to-use
HRnV risk stratification tool, and its subsequent external validations. Although some issues
remain to be addressed, we hope to stimulate a new stream of research on HRnV. We believe
that future endeavors in this field will lead to the possibility of in-depth evaluation of the

associations between HRnV measures and various human diseases.
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Table 1: Patient baseline characteristics.

Total (n=795) MACE Non-MACE p-value
(n=247) (n=548)
Age, mean (SD) 59.63(12.88) | 61.06(11.38) | 58.99 (13.47) 0.035
Male gender, n (%) 542 (68.2) 188 (76.1) 354 (64.6) 0.002
Race, n (%) 0.623
Chinese 492 (61.9) 159 (64.4) 333(60.8)
Indian 129 (16.2) 34 (13.8) 95 (17.3)
Malay 150 (18.9) 46 (18.6) 104 (19.0)
Other 24 (3.0) 8(3.2) 16 (2.9)
Medical history, n (%)
Ischemic heart disease 343 (43.1) 115 (46.6) 228 (41.6) 0.22
Diabetes 278 (35.0) 106 (42.9) 172 (31.4) 0.002
Hypertension 509 (64.0) 161 (65.2) 348 (63.5) 0.707
Hypercholesterolemia 476 (59.9) 151 (61.1) 325 (59.3) 0.683
Stroke 58 (7.3) 15 (6.1) 43 (7.8) 0.458
Cancer 29 (3.6) 7(2.8) 22 (4.0) 0.537
Respiratory disease 31(3.9) 5(2.0) 26 (4.7) 0.102
Chronic kidney disease 87 (10.9) 26 (10.5) 61 (11.1) 0.32
Congestive heart failure 38 (4.8) 9 (3.6) 29 (5.3) 0.407
History of PCI 199 (25.0) 68 (27.5) 131 (23.9) 0.316
History of CABG 71 (8.9) 26 (10.5) 45 (8.2) 0.355
History of AMI 133 (16.7) 48 (19.4) 85 (15.5) 0.288
Active smoker 197 (24.8) 73 (29.6) 124 (22.6) 0.003

MACE, major adverse cardiac events; SD, standard deviation; PCI, percutaneous coronary

intervention; CABG, coronary artery bypass graft; AMI, acute myocardial infarction.

25


https://doi.org/10.1101/738989
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738989; this version posted August 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Table 2: Descriptive analyses of heart rate variability (HRV) and heart rate n-variability

(HRnV) parameters.

HRV HR2V HR2V: HRsV HR3V1 HR3V>
Mean NN (s) 829.40 (169.49) | 1656.65 (339.85) | 1658.81(338.99) | 2484.80 (509.33) | 2488.22 (508.50) | 2485.02 (509.84)
SDNN (s) 38.16 (25.49) 62.28 (45.45) 68.81 (47.00) 82.06 (62.47) 97.79 (67.46) 87.77 (64.52)
RMSSD (5) 30.04 (23.07) 32.61 (26.68) 33.79 (25.67) 34.83 (28.86) 36.27 (26.50) 34.98 (27.43)
Skewness -0.65 (2.34) -0.41 (1.66) -0.59 (1.95) -0.29 (1.29) -0.55 (1.69) -0.38 (1.42)
Kurtosis 1459 (26.83) 7.33 (13.58) 10.17 (17.90) 5.15 (8.13) 8.06 (12.92) 5.98 (9.75)
Triangular index 7.68 (4.19) 10.38 (5.10) 12.60 (6.45) 11.47 (5.29) 16.25 (7.94) 13.06 (6.04)
NN50 (count) 21.08 (33.98) 14.46 (20.35) 29.35 (40.03) 11.57 (15.05) 35.29 (44.34) 17.41 (22.51)
PNN50 (%) 6.31 (11.08) 8.66 (13.18) 8.75 (12.97) 10.31 (14.27) 10.38 (13.95) 10.28 (14.20)
NN50n (count) - 4.16 (9.72) 8.45 (18.76) 1.37 3.72) 4.37 (10.72) 2.08 (5.48)
pNN50n (%) - 2.60 (6.67) 2.64 (6.47) 1.32 (3.95) 1.39 (3.86) 1.33 (3.87)
Total power (ms?) | 2518.30 (4797.05) 7797.46 9156.26 13904.78 18714.67 15706.11
(16947.44) (17970.75) (37182.24) (37620.26) (34845.52)
VLF power (ms?) | 985.18 (1991.52) | 3401.42 (6569.37) | 3922.74 (7987.46) 6503.53 8772.26 7567.79
(14205.11) (17986.63) (14666.32)
LF power (ms?) 732.36 (1841.88) | 2626.83 (7593.16) | 2782.48 (7212.62) 5091.49 5740.99 5397.76
(18402.20) (15243.38) (16001.18)
HF power (ms?) 527.27 (1232.69) | 1328.86 (4033.96) | 1361.53 (3433.55) | 1661.69 (7237.55) | 1762.45 (4851.11) | 1761.05 (6477.63)
LF power norm 56.76 (19.20) 66.82 (18.17) 66.42 (17.35) 76.53 (15.32) 77.65 (14.55) 77.93 (14.95)
(nu)
HF power norm 43.24 (19.20) 33.18 (18.17) 33.58 (17.35) 23.47 (15.32) 22.35 (14.55) 22.07 (14.95)
(nu)
LF/HF 1.99 (1.93) 3.24 (2.95) 3.04 (2.73) 5.60 (5.21) 5.79 (4.99) 6.06 (5.18)
Poincaré SD1 21.27 (16.34) 23.12 (18.93) 23.92 (18.18) 24.72 (20.50) 25.68 (18.77) 24.80 (19.46)
(ms)
Poincaré SD2 48.82 (33.29) 84.47 (62.15) 93.88 (64.58) 112.87 (86.62) 135.55 (94.02) 121.20 (89.72)
(ms)
SampEn 1.57 (0.51) 83.84 (2324.24) 1.33(0.48) | 248.48 (4020.64) 1.06 (0.41) 1.14 (0.45)
ApEn 0.99 (0.20) 0.72 (0.18) 0.91 (0.17) 0.60 (0.15) 0.84 (0.17) 0.70 (0.15)
DFA, ol 0.99 (0.31) 1.24 (0.29) 1.23(0.27) 1.41(0.27) 1.42 (0.23) 1.42 (0.25)
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DFA, 02

0.95 (0.22) 0.98 (0.35) 0.98 (0.22) 0.86 (0.65) 1.01(0.22)

1.02 (0.36)

HRYV, heart rate variability; mean NN, average of R-R intervals; SDNN, standard deviation of
R-R intervals; RMSSD, square root of the mean squared differences between R-R intervals;
NNS50, the number of times that the absolute difference between 2 successive R-R intervals
exceeds 50 ms; pNN50, NN50 divided by the total number of R-R intervals; NN50n, the
number of times that the absolute difference between 2 successive RRnl/RRnlm Sequences
exceeds 50xn ms; pNN50n, NN50n divided by the total number of RRnl/RRnIm Sequences;
VLF, very low frequency; LF, low frequency; HF, high frequency; SD: standard deviation;

SampEn, sample entropy; ApEn, approximate entropy; DFA: detrended fluctuation analysis.
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Table 3: Univariable analysis of HR\V parameters.

HRV HR.V HRsV
OR (95% Cl) P OR (95% Cl) P OR (95% Cl) p
Mean NN 0.999 (0.998-1.000) | 0.023* | 0.999 (0.999-1.000) | 0.023* | 1.000 (0.999-1.000) | 0.023*
SDNN 0.992 (0.986-0.999) | 0.023* | 0.996 (0.992-1.000) | 0.028* | 0.997 (0.995-1.000) | 0.060
RMSSD 0.990 (0.982-0.998) | 0.010* | 0.992 (0.985-0.998) | 0.011* | 0.994 (0.988-0.999) | 0.030*
Skewness 1.059 (0.991-1.132) | 0.088 | 1.079 (0.981-1.186) | 0.118 | 1.139 (1.006-1.290) | 0.040*
Kurtosis 1.006 (1.000-1.011) | 0.038* | 1.009 (0.998-1.019) | 0.113 | 1.011 (0.993-1.029) | 0.242
Triangular index 0.961 (0.925-0.998) | 0.039* | 0.967 (0.938-0.997) | 0.032* | 0.978 (0.950-1.007) | 0.133
NN50 0.993 (0.987-0.998) | 0.008* | 0.989 (0.981-0.998) | 0.012* | 0.988 (0.977-0.999) | 0.031*
pNN50 0.978 (0.962-0.995) | 0.009* | 0.984 (0.971-0.997) | 0.014* | 0.987 (0.976-0.999) | 0.027*
NN50n - - 0.982 (0.964-1.001) | 0.065 | 0.952(0.905-1.002) | 0.059
pNN50n - - 0.974 (0.946-1.002) | 0.069 | 0.951 (0.903-1.001) | 0.054
Total power 1.000 (1.000-1.000) | 0.031* | 1.000 (1.000-1.000) | 0.021* | 1.000 (1.000-1.000) | 0.072
VLF power 1.000 (1.000-1.000) | 0.132 | 1.000 (1.000-1.000) | 0.070 | 1.000 (1.000-1.000) | 0.133
LF power 1.000 (1.000-1.000) | 0.077 | 1.000 (1.000-1.000) | 0.023* | 1.000 (1.000-1.000) | 0.063
HF power 1.000 (0.999-1.000) | 0.002* | 1.000 (1.000-1.000) | 0.014* | 1.000 (1.000-1.000) | 0.074
LF power norm 1.001 (0.994-1.009) | 0.738 | 0.999 (0.99-1.007) | 0.733 | 0.994 (0.985-1.004) | 0.248
HF power norm 0.999 (0.991-1.007) | 0.738 | 1.001 (0.993-1.01) | 0.733 | 1.006 (0.996-1.015) | 0.248
LF/HF 1.034 (0.959-1.116) | 0.381 | 1.014 (0.964-1.066) | 0.592 | 1.001 (0.973-1.031) | 0.923
Poincaré SD1 0.986 (0.975-0.997) | 0.010* | 0.988 (0.979-0.997) | 0.011* | 0.991 (0.983-0.999) | 0.029*
Poincaré SD2 0.995 (0.990-1.000) | 0.032* | 0.997 (0.994-1.000) | 0.032* | 0.998 (0.996-1.000) | 0.063
SampEn 0.813 (0.604-1.095) | 0.173 | 0.730 (0.545-0.977) | 0.035* | 1.000 (1.000-1.000) | 0.932
ApEn 1.645 (0.752-3.598) | 0.213 | 2.319 (1.003-5.357) | 0.049* | 1.241 (0.463-3.327) | 0.667
DFA, al 0.953 (0.585-1.552) | 0.846 | 1.031(0.611-1.741) | 0.908 | 0.968 (0.560-1.672) | 0.907
DFA, o2 1532 (0.773-3.034) | 0.221 | 1.202 (0.782-1.848) | 0.401 | 1.184 (0.934-1.500) | 0.163

HRV, heart rate variability; OR, odds ratio; CI, confidence interval; mean NN, average of R-

R intervals; SDNN, standard deviation of R-R intervals; RMSSD, square root of the mean

squared differences between R-R intervals; NN50, the number of times that the absolute

difference between 2 successive R-R intervals exceeds 50 ms; pNN50, NN50 divided by the

total number of R-R intervals; NN50n, the number of times that the absolute difference
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between 2 successive RRnI/RRnlm sequences exceeds 50xn ms; pNN50n, NN50n divided by
the total number of RRal/RRnlm sequences; VLF, very low frequency; LF, low frequency; HF,
high frequency; SD: standard deviation; SampEn, sample entropy; ApEn, approximate

entropy; DFA: detrended fluctuation analysis.
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Table 4: Univariable analysis of HRnVm parameters.

HRoV1 HRaV1 HR3V>
OR (95% Cl) P OR (95% Cl) P OR (95% Cl) p
Mean NN 0.999 (0.999-1.000) | 0.023* | 1.000 (0.999-1.000) | 0.023* | 1.000 (0.999-1.000) | 0.023*
SDNN 0.996 (0.993-1.000) | 0.034* | 0.997 (0.995-1.000) | 0.042* | 0.997 (0.995-1.000) | 0.034*
RMSSD 0.991 (0.984-0.998) | 0.010* | 0.992 (0.986-0.999) | 0.016* | 0.993 (0.986-0.999) | 0.016*
Skewness 1.061 (0.980-1.149) | 0.144 | 1.072 (0.978-1.176) | 0.139 | 1.098 (0.982-1.227) | 0.100
Kurtosis 1.007 (0.999-1.015) | 0.082 | 1.006 (0.994-1.017) | 0.333 | 1.010 (0.995-1.025) | 0.195
Triangular index 0.981 (0.958-1.005) | 0.119 | 0.982 (0.963-1.001) | 0.065 | 0.974 (0.949-0.999) | 0.040*
NN50 0.995 (0.991-0.999) | 0.018* | 0.996 (0.993-1.000) | 0.052 | 0.992 (0.985-0.999) | 0.035*
pNN50 0.984 (0.972-0.997) | 0.020* | 0.988 (0.977-1.000) | 0.049* | 0.988 (0.976-0.999) | 0.035*
NN50n 0.989 (0.979-1.000) | 0.043* | 0.982 (0.964-1.000) | 0.054 | 0.974 (0.943-1.007) | 0.118
pNN50n 0.969 (0.939-0.999) | 0.046* | 0.947 (0.895-1.002) | 0.058 | 0.960 (0.914-1.009) | 0.109
Total power 1.000 (1.000-1.000) | 0.048* | 1.000 (1.000-1.000) | 0.072 | 1.000 (1.000-1.000) | 0.029*
VLF power 1.000 (1.000-1.000) | 0.139 | 1.000 (1.000-1.000) | 0.145 | 1.000 (1.000-1.000) | 0.074
LF power 1.000 (1.000-1.000) | 0.084 | 1.000 (1.000-1.000) | 0.092 | 1.000 (1.000-1.000) | 0.027*
HF power 1.000 (1.000-1.000) | 0.005* | 1.000 (1.000-1.000) | 0.010* | 1.000 (1.000-1.000) | 0.022*
LF power norm 1.000 (0.991-1.008) | 0.937 | 0.995 (0.985-1.006) | 0.382 | 0.995 (0.986-1.005) | 0.356
HF power norm 1.000 (0.992-1.009) | 0.937 | 1.005 (0.994-1.015) | 0.382 | 1.005 (0.995-1.015) | 0.356
LF/HF 1.024 (0.970-1.080) | 0.387 | 1.003 (0.973-1.033) | 0.863 | 0.999 (0.971-1.029) | 0.966
Poincaré SD1 0.987 (0.978-0.997) | 0.010* | 0.989 (0.980-0.998) | 0.016* | 0.989 (0.981-0.998) | 0.016*
Poincaré SD2 0.997 (0.995-1.000) | 0.039* | 0.998 (0.996-1.000) | 0.045* | 0.998 (0.996-1.000) | 0.037*
SampEn 0.854 (0.623-1.171) | 0.328 | 0.802 (0.553-1.161) | 0.242 | 0.709 (0.500-1.005) | 0.053
ApEn 2.065 (0.842-5.064) | 0.113 | 1.207 (0.499-2.922) | 0.677 | 2.558 (0.906-7.222) | 0.076
DFA, al 0.888 (0.514-1.537) | 0.672 | 1.039 (0.547-1.971) | 0.907 | 1.004 (0.549-1.835) | 0.991
DFA, 02 1557 (0.782-3.098) | 0.208 | 1.554 (0.780-3.093) | 0.210 | 1.169 (0.764-1.789) | 0.472

HRV, heart rate variability; OR, odds ratio; Cl, confidence interval; mean NN, average of R-

R intervals; SDNN, standard deviation of R-R intervals; RMSSD, square root of the mean

squared differences between R-R intervals; NN50, the number of times that the absolute

difference between 2 successive R-R intervals exceeds 50 ms; pNN50, NN50 divided by the

total number of R-R intervals; NN50n, the number of times that the absolute difference
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between 2 successive RRqI/RRnlm sequences exceeds 50xn ms; pNN50n, NN50n divided by
the total number of RRal/RRnlm sequences; VLF, very low frequency; LF, low frequency; HF,
high frequency; SD: standard deviation; SampEn, sample entropy; ApEn, approximate

entropy; DFA: detrended fluctuation analysis.
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Table 5: The heart rate n-variability (HRnV) model built with multivariable logistic

regression for prediction of 30-day major adverse cardiac events.

Variable Adjusted OR 95% CI
Age 1.021 1.002-1.041
Diastolic BP 1.018 1.003-1.034
Pain score 1.082 1.003-1.168
ST-elevation 6.449 2.762-15.059
ST-depression 4.827 2.511-9.277
Q wave 3.383 1.668-6.860
Cardiac history 7.838 5.192-11.832
Troponin 4.406 3.218-6.033
HRV NN50 0.981 0.970-0.991
HR2V skewness 0.806 0.622-1.045
HR2V SampEn 0.600 0.348-1.035
HR2V ApEn 0.095 0.014-0.628
HR2V1 ApEn 19.700 2.942-131.900
HRsV RMSSD 1.024 1.008-1.040
HR3V skewness 1.560 1.116-2.181
HR3V2 HF power 1.000 1.000-1.000

BP, blood pressure; HRV, heart rate variability; OR, odds ratio; Cl, confidence interval;

mean NN, average of R-R intervals; RMSSD, square root of the mean squared differences

between R-R intervals; NN50, the number of times that the absolute difference between 2

successive R-R intervals exceeds 50 ms; LF, low frequency; HF, high frequency; SampEn,

sample entropy; ApEn, approximate entropy.
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Table 6: Comparison of performance of the HRnV model, HEART, TIMI, and GRACE

scores in predicting 30-day major adverse cardiac events (MACE).

AUC (95% CI) | Cut-off Sensitivity Specificity | PPV (95% CI) | NPV (95% ClI)
(95% CI) (95% CI)
HRnV 0.917 (0.892- | 0.2896+1 | 87.9% (83.8% - | 79.9% (76.6% - | 66.4% (61.2% - | 93.6% (91.4% -
Model 0.941) 91.9%) 83.3%) 71.5%) 95.8%)
- | 0.0329 | 99.6% (98.8% - | 38.0% (33.9% - | 42.0% (38.0% - | 99.5% (98.6% -
100.0%) 42.0%) 46.0%) 100.0%)
HEART 0.841 (0.808- 5% | 78.9% (73.9% - | 72.8% (69.1% - | 56.7% (51.4% - | 88.5% (85.5% -
0.874) 84.0%) 76.5%) 61.9%) 91.4%)
- 3| 99.6% (98.8% - | 35.8% (31.8% - | 41.1% (37.2%- | 99.5% (98.5% -
100.0%) 39.8%) 45.1%) 100.0%)
TIMI 0.681 (0.639- 27 | 63.6% (57.6% - | 58.4% (54.3% - | 40.8% (35.9% - | 78.0% (74.0% -
0.723) 69.6%) 62.5%) 45.7%) 82.1%)
- 0| 98.4% (96.8% - | 19.3% (16.0% - | 35.5% (31.9%- | 96.4% (92.9% -
100.0%) 22.7%) 39.1%) 99.9%)
GRACE 0.665 (0.623- 107+ | 64.0% (58.0% - | 60.8% (56.7% - | 42.4% (37.3% - | 78.9% (75.0% -
0.707) 70.0%) 64.9%) 47.4%) 82.8%)
- 60 | 98.8% (97.4% - 8.0% (5.8% - | 32.6% (29.3% - | 93.6% (86.6% -
100.0%) 10.3%) 36.0%) 100.0%)

AUC, area under the curve; Cl, confidence interval; PPV, positive predictive value; NPV,

negative predictive value; HEART, History, ECG, Age, Risk factors and Troponin; TIMI,

Thrombolysis in Myocardial Infarction; GRACE, Global Registry of Acute Coronary Events.

T Optimal cut-off values, defined as the points nearest to the upper-left corner on the ROC

curves.
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Figure Legends

Figure 1: (a) Hlustration of R-R intervals (RRIs) and the definition of RRnl where 1 < n <
N and N « N. N is the total number of RRIs; (b) Illustration of RRIs and the definition of
RRnlmwhere1 <n <N,1<m <N —1,and N < N. N is the total number of RRIs and m

indicates the non-overlapped portion between two consecutive RRnIm sequences.

Figure 2: The receiver operating characteristic (ROC) curves produced by the heart rate n-
variability (HRnV) model, the History, ECG, Age, Risk factors and Troponin (HEART) score,
the Thrombolysis in Myocardial Infarction (TIMI) score, and the Global Registry of Acute

Coronary Events (GRACE) score.
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Figure 1: (a) lllustration of R-R intervals (RRIs) and the definition of RRnl where 1 < n <
N and N « N. N is the total number of RRIs; (b) Illustration of RRIs and the definition of
RRolmwhere1 <n<N,1<m<N-1,and N < N. N is the total number of RRIs and m

indicates the non-overlapped portion between two consecutive RRnlm Sequences.
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Figure 2: The receiver operating characteristic (ROC) curves produced by the heart rate n-
variability (HRnV) model, the History, ECG, Age, Risk factors and Troponin (HEART) score,
the Thrombolysis in Myocardial Infarction (TIMI) score, and the Global Registry of Acute

Coronary Events (GRACE) score.
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