

1 **Title:** Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation.

2 **Authors:**

3 A. Rahman^{1,2}, K. M. Henry^{1,3}, K. D. Herman^{1,3}, A. A. R Thompson¹, H. M. Isles^{1,3}, C.
4 Tulotta^{1,3}, D. Sammut¹, J. J. Y. Rougeot⁴, N. Khoshaein¹, A. E. Reese¹, K. Higgins¹, C.
5 Tabor³, I. Sabroe¹, W. J. Zuercher⁵, C. O. Savage^{6†}, A. H. Meijer⁴, M. K. B. Whyte⁷, D. H.
6 Dockrell^{1,7}, S. A. Renshaw^{1,3*}, L. R. Prince^{1*}

7 **Affiliations**

8 ¹Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield,
9 Sheffield, UK.

10 ²Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences,
11 University of Dhaka, Dhaka, Bangladesh.

12 ³The Bateson Centre, University of Sheffield, UK.

13 ⁴Institute of Biology, Leiden University, Leiden, The Netherlands.

14 ⁵SGC-UNC, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School
15 of Pharmacy, University of North Carolina at Chapel Hill, USA.

16 ⁶Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development
17 Ltd., Stevenage, UK.

18 ⁷MRC centre for Inflammation Research, University of Edinburgh, UK.

19 †Currently at: Institute of Immunology and Immunotherapy, University of Birmingham, UK.

20 *Joint corresponding authors: Lynne Prince (L.r.prince@sheffield.ac.uk) and Stephen
21 Renshaw (s.a.renshaw@sheffield.ac.uk)

22

23 **Abstract**

24 Neutrophilic inflammation with prolonged neutrophil survival is common to many
25 inflammatory conditions, including chronic obstructive pulmonary disease (COPD). There
26 are few specific therapies that reverse neutrophilic inflammation, but uncovering
27 mechanisms regulating neutrophil survival is likely to identify novel therapeutic targets.
28 Screening of 367 kinase inhibitors in human neutrophils and a zebrafish tail fin injury model
29 identified ErbBs as common targets of compounds that accelerated inflammation resolution.
30 The ErbB inhibitors gefitinib, CP-724714, erbstatin and tyrphostin AG825 significantly
31 accelerated apoptosis of human neutrophils, including neutrophils from people with COPD.
32 Neutrophil apoptosis was also increased in Tyrphostin AG825 treated-zebrafish *in vivo*.
33 Tyrphostin AG825 decreased peritoneal inflammation in zymosan-treated mice, and
34 increased lung neutrophil apoptosis and macrophage efferocytosis in a murine acute lung
35 injury model. Tyrphostin AG825 and knockdown of *egfra* and *erbb2* by CRISPR/Cas9
36 reduced inflammation in zebrafish. Our work shows that inhibitors of ErbB kinases have
37 therapeutic potential in neutrophilic inflammatory disease.

38

39 **Introduction**

40 Neutrophilic inflammation is central to chronic inflammatory diseases such as rheumatoid
41 arthritis and chronic obstructive pulmonary disease (COPD), which impose an increasing
42 social and economic burden on our aging population. In these diseases, clearance of
43 neutrophils by apoptosis is dysregulated, but to date it has not been possible to
44 therapeutically modify this. The anti-inflammatory phosphodiesterase-4 inhibitor, roflumilast,
45 targets systemic inflammation associated with COPD and reduces moderate to severe
46 exacerbations in severe disease, possibly via effects on eosinophils (Martinez et al., 2018;
47 Rabe et al., 2018). Recognising the urgent need for new therapies, we interrogated
48 neutrophil inflammation and survival pathways using an unbiased approach focusing on
49 potentially druggable kinases. Neutrophil persistence in tissues, caused by a delay in

50 apoptosis, can result in a destructive cellular phenotype, whereby neutrophils have greater
51 potential to expel histotoxic factors such as proteases and oxidative molecules onto
52 surrounding tissue. This can occur either actively (by degranulation) or passively (by
53 secondary necrosis). In COPD, among other diseases, delayed apoptosis is considered to
54 be a key part of the pathogenesis, occurring either as a result of pro-survival factors that are
55 present in the lung microenvironment or an innate apoptosis defect (Brown, Elborn, Bradley,
56 & Ennis, 2009; Haslett, 1999; Pletz, Ioanas, de Roux, Burkhardt, & Lode, 2004; J. Zhang,
57 He, Xia, Chen, & Chen, 2012). Despite this mechanistic understanding, there are no
58 effective treatment strategies in clinical use to specifically reverse this cellular mechanism.
59 Accelerating neutrophil apoptosis has been shown to promote the resolution of inflammation
60 in multiple experimental models (Burgon et al., 2014; Chello et al., 2007; Ren et al., 2008;
61 Rossi et al., 2006). A number of studies highlight the importance of protein kinases in
62 regulating neutrophil apoptosis (Burgon et al., 2014; Rossi et al., 2006; Webb et al., 2000)
63 and therefore reveal potential therapeutically targetable pathways for inflammatory disease.
64 A growing class of clinically-exploited small molecule kinase inhibitors are being intensively
65 developed (Wu, Nielsen, & Clausen, 2015), making this a timely investigation. Using parallel
66 unbiased screening approaches *in vitro* and *in vivo*, we here identify inhibitors of the ErbB
67 family of receptor tyrosine kinases (RTKs) as potential therapeutic drivers of inflammation
68 resolution. The ErbB family consist of four RTKs with structural homology to the human
69 epidermal growth factor receptor (EGFR/ErbB1/Her-1). In an *in vivo* zebrafish model of
70 inflammation, we show that inhibition of ErbBs, pharmacologically and genetically, reduced
71 the number of neutrophils at the site of injury. Furthermore, ErbB inhibitors reduced
72 inflammation in a murine peritonitis model and promoted neutrophil apoptosis and clearance
73 by macrophages in the mouse lung. This study reveals an opportunity for the use of ErbB
74 inhibitors as a treatment for chronic neutrophilic inflammatory disease.

76 **Results**

77 **Identifying kinases regulating the resolution of neutrophilic inflammation *in vivo***

78 Using a well-characterised transgenic zebrafish inflammation model (Henry, Loynes, Whyte,
79 & Renshaw, 2013; Renshaw et al., 2006), we adopted a chemical genetics approach, which
80 has great potential for accelerated drug discovery (Jones & Bunnage, 2017). We initiated
81 inflammation by controlled tissue injury of the zebrafish tail fin and screened a library of
82 kinase inhibitors in order to establish which kinases could be exploited to enhance
83 inflammation resolution *in vivo* (Fig. S1A). We quantified the ability of a library of 367 publicly
84 available kinase inhibitors (PKIS) (Elkins et al., 2016) to reduce neutrophil number at the site
85 of injury during the resolution phase of inflammation. The screen identified 16 hit compounds
86 which reduced neutrophil number at the site of injury in the zebrafish model (Fig. 1A). For
87 each compound the degree of kinase inhibition had been established (Elkins et al., 2016)
88 (Fig. 1A). A number of kinases were inhibited by the 16 compounds, with Abelson murine
89 leukaemia viral homolog 1 (ABL1), Platelet-derived growth factor receptor (PDGFR) α ,
90 PDGFR β , p38 α and ErbB4 being the top five most frequently targeted kinases overall. In
91 addition to frequency of target, we also interrogated selectivity of compound. The most
92 selective compounds, i.e. those that strongly inhibited individual kinases or kinase families,
93 targeted the kinases YES, ABL1, p38 and the ErbB family. Apoptosis is an important
94 mechanism contributing to inflammation resolution; we therefore sought to identify kinases
95 common to both inflammation resolution and neutrophil apoptosis pathways.

96 **Identifying kinases regulating neutrophil apoptosis *in vitro***

97 Circulating neutrophils have a short half-life *in vivo* (Summers et al., 2010) and undergo
98 spontaneous apoptosis in the absence of growth factors *in vitro*. We re-screened PKIS
99 library compounds in a human neutrophil apoptosis assay for their ability to accelerate
100 apoptosis (Fig. S1B). PKIS compounds were screened at 62 μ M in order to maximise the
101 chance of identifying 'hits' and resulted in 62 compounds that accelerated neutrophil
102 apoptosis ≥ 2 -fold compared to DMSO control (Fig. 1B and Table S1). Secondary screening

103 of top 38 compounds (chosen from the 62 hits based on greatest selectivity for kinase
104 targets) was carried out at 10 μ M in order to reduce false positives. This yielded 11
105 compounds that accelerated neutrophil apoptosis \geq 2-fold over control (as indicated by
106 dashed green line, Fig. 1C). Kinases targeted by these compounds included DYRK1B, KIT,
107 EGFR, ErbB2 & ErbB4, PDGFR, CDK6 and p38 (Fig. 1C, inset). The identification of known
108 regulators of neutrophil survival (p38, PI3K) was encouraging support for the screen design
109 and execution. We found that members of the ErbB family of RTKs were the next most
110 frequently inhibited kinase family, being targeted by 3 highly selective compounds out of the
111 11 hits (Fig. 1C, inset). Since inhibitors of the ErbB family were common hits in both
112 zebrafish and human screens, we hypothesised that targeting ErbBs may be a potential
113 strategy to reduce inflammation.

114 **ErbB inhibitors accelerate neutrophil apoptosis**

115 To address a role for ErbB antagonists in regulating neutrophil apoptosis we tested a range
116 of clinical and non-clinical ErbB-targeting compounds. We show that among inhibitors of
117 ErbBs that are in clinical use, the EGFR inhibitor, gefitinib, is the most effective in promoting
118 neutrophil apoptosis, reaching significance at 50 μ M (Fig. 2A). The ErbB2-selective inhibitor,
119 CP-724714 (Jani et al., 2007) also promoted neutrophil apoptosis in a dose-dependent
120 manner (Fig. 2B) as did Erbstatin and tyrphostin AG825, selective for EGFR and ErbB2
121 respectively (Osherov, Gazit, Gilon, & Levitzki, 1993; Umezawa & Imoto, 1991) (Fig. 2C-D).
122 Since caspase-dependent apoptosis is an anti-inflammatory and pro-resolution form of cell
123 death, engagement of the apoptosis programme was verified biochemically by measuring
124 phosphatidylserine (PS) exposure by Annexin-V staining (Fig. S2A-C). Furthermore, the
125 pan-caspase inhibitor Q-VD-OPh (Wardle et al., 2011) completely abrogated Erbstatin and
126 tyrphostin AG825-driven neutrophil apoptosis, confirming the caspase dependence of
127 inhibitor mediated cell death (Fig. S2D-E).

128 COPD is a chronic inflammatory disease associated with functionally defective circulating
129 neutrophils, including a resistance to undergoing apoptosis during exacerbations (Pletz et

130 al., 2004; Sapey et al., 2011). To show ErbB inhibition is effective in driving apoptosis in
131 subjects with systemic inflammation, we isolated neutrophils from the blood of patients with
132 COPD and age-matched healthy control subjects. Erbstatin and tyrphostin AG825
133 significantly increased apoptosis of neutrophils from both COPD patients and healthy control
134 subjects in a dose dependent manner at both 6h (Fig. 2E-F) and 20h (data not shown).

135 ErbB inhibition overcomes neutrophil survival stimuli. Neutrophils are exposed to multiple
136 pro-survival stimuli at sites of inflammation, which could undermine the therapeutic potential
137 of anti-inflammatory drugs. Factors that raise intracellular cAMP concentration ($[cAMP]_i$) are
138 present during inflammation, and elevated $[cAMP]_i$ is known to prolong neutrophil survival via
139 activation of cAMP-dependent protein kinases (Krakstad, Christensen, & Doskeland, 2004;
140 Vaughan et al., 2007). We show that erbstatin and tyrphostin AG825 significantly reversed
141 N^6 -monobutyryl-cAMP (N^6 -MB-cAMP)-mediated survival (Fig. 3A-B). Similar effects were
142 observed in neutrophils from patients with COPD (Fig. 3C). GMCSF is a key neutrophil
143 chemoattractant and pro-survival factor, and is closely associated with the severity of
144 inflammation in disease (Klein et al., 2000; Wicks & Roberts, 2016). We show that erbstatin
145 and tyrphostin AG825 prevent GMCSF-mediated survival in COPD and age-matched
146 healthy control neutrophils (Fig. 3D-E). GMCSF is known to promote neutrophil survival via
147 the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, ultimately leading to the stabilisation
148 of the anti-apoptotic Bcl-2 family member, Mcl-1 (Derouet, Thomas, Cross, Moots, &
149 Edwards, 2004; Klein et al., 2000). To investigate potential mechanisms underpinning the
150 ability of tyrphostin AG825 to prevent GMCSF-mediated survival, we assessed AKT-
151 phosphorylation as a measure of PI3K activation and found that tyrphostin AG825 reduced
152 GMCSF-induced AKT phosphorylation after 15 and 30 min of treatment (Fig. 3F). Tyrphostin
153 AG825 accelerated the spontaneous downregulation of Mcl-1 and also prevented GMCSF-
154 induced stabilisation of Mcl-1 (Fig. 3G). These data show ErbB inhibition engages neutrophil
155 apoptosis even in the presence of inflammatory stimuli and therefore has the potential to
156 drive apoptosis at inflammatory sites.

157 Kinase microarray profiling reveals ErbB2 is phosphorylated by neutrophil survival stimuli.
158 To explore whether ErbB family members are phosphorylated in response to survival stimuli
159 we studied the activated kinome in human neutrophils stimulated with N⁶-MB-cAMP
160 (Vaughan et al., 2007). A Kinex™ antibody microarray was performed to detect the
161 phosphorylation of over 400 kinases and kinase-associated proteins and this data set was
162 interrogated to seek evidence of activation of ErbB by N⁶-MB-cAMP. Of the phospho-specific
163 antibodies, 17 yielded an increase over baseline control of ≥ 1.5 at 30 min and 8 at 60 min
164 (Table 1). Among these targets, ErbB2 phosphorylation was detected at 30 min (1.94 >
165 control) and 60 min (1.53 > control, Table 1). This suggests that ErbB is part of the
166 neutrophil signalling response to survival stimuli. In support of this, we detected the
167 presence of ErbB2 mRNA in human neutrophils by RT-PCR (Fig. S3) and a 60kD protein
168 (Guillaudeau et al., 2012; Siegel, Ryan, Cardiff, & Muller, 1999; T. M. Ward et al., 2013),
169 which was upregulated by GMCSF and dbcAMP (Fig. S3). ErbB3 was also detected in
170 human neutrophils by ELISA (Fig. S3), at levels similar to those observed in other tissues in
171 literature (Buta et al., 2016). We found ErbB3 expression was not regulated by growth
172 factors, which may in part be due to regulation being primarily at the post-translational level.

173 **ErbB inhibitors and genetic knockdown increase apoptosis and reduce neutrophil
174 number at the site of inflammation *in vivo***

175 To determine the ability of ErbB inhibition to exert an effect on neutrophil number and
176 apoptosis *in vivo*, we used three complementary animal models of acute inflammation. To
177 specifically address whether tyrphostin AG825 was able to accelerate apoptosis of
178 neutrophils in the mammalian lung, we used a murine model of LPS-induced airway
179 inflammation (Thompson et al., 2014). C57BL/6 mice nebulised with LPS developed an
180 acute pulmonary neutrophilia after 48h, to a degree seen previously (Fig. 4A-B) (Thompson
181 et al., 2014). Tyrphostin AG825 had no effect on percentage of, or absolute number of
182 neutrophils or macrophages compared to DMSO control (Fig. 4A-B). Tyrphostin AG825
183 significantly increased the percentage of neutrophil apoptosis, both visualised as 'free'

184 apoptotic cells (closed circles) and as a summation of both free apoptotic cells and apoptotic
185 inclusions within macrophages in order to capture those that had been efferocytosed (closed
186 triangles, Fig. 4C). Macrophage efferocytosis was also significantly elevated by tyrphostin
187 AG825, compared to vehicle control (Fig. 4D), determined by counting the number of
188 macrophages containing apoptotic inclusions as a proportion of total macrophages (Fig. 4E).
189 We next tested the anti-inflammatory potential of tyrphostin AG825 when administered once
190 inflammation was established, which is more representative of the clinical scenario. Mice
191 were i.p injected with zymosan to induce peritonitis and after 4h were treated (i.p.) with
192 tyrphostin AG825 or vehicle control. Total cell counts in peritoneal lavage were 2.2×10^6 in
193 PBS vs 1.7×10^7 in zymosan treated animals at 4h demonstrating established inflammation
194 at this time point (Navarro-Xavier et al., 2010). Importantly, tyrphostin AG825 does not
195 induce leukopenia (Fig. 4F), however significantly fewer inflammatory cells were found in
196 peritoneal lavage following tyrphostin AG825 treatment (Fig. 4G). The neutrophil
197 chemoattractant and proinflammatory cytokine, KC, was reduced in tyrphostin AG825
198 treated mice, and concomitant with this, a trend for less IL-6 was also observed (Fig. 4H).
199 IgM, which correlates with the number and activation of peritoneal B lymphocytes (Almeida
200 et al., 2001), is significantly reduced in tyrphostin AG825-treated mice (Fig. 4I).
201 To further extend this observation, we tested the ability of ErbB inhibitors to modulate
202 neutrophilic inflammation resolution as a whole, in a model which encompasses multiple
203 mechanisms of neutrophil removal including both apoptosis and reverse migration. In the
204 *mpx*:GFP zebrafish tail fin injury model (Renshaw et al., 2006) (Fig. 5A) we were able to
205 show that tyrphostin AG825 (Fig. 5B) and CP-724714 (Fig. 5C) significantly reduced the
206 number of neutrophils at the site of injury at 4 and 8 hpi. Simultaneous gene knockdown of
207 *egfra* and *erbb2* via CRISPR/Cas9 (referred to as ‘crisprants’) also recapitulated this
208 phenotype (Fig. 5D). Tyrphostin AG825 did not affect total neutrophil number (Fig. 5E), but
209 *egfra* and *erbb2* crisprants had significantly fewer neutrophils (Fig. 5F). As demonstrated by
210 TSA and TUNEL double staining (Fig. 5G), tyrphostin AG825 upregulated neutrophil

211 apoptosis at both the site of injury (Fig. 5H) and in the caudal hematopoietic tissue (CHT) of
212 zebrafish (Fig. 5I). CHT neutrophil counts were unchanged between conditions (data not
213 shown). *egfra* and *erbb2* crispants had increased numbers of apoptotic neutrophils at the
214 site of injury, but this was not significant (Fig. 5J), perhaps suggesting the presence of
215 compensatory mechanisms. These findings show that inhibiting ErbB RTKs accelerate
216 neutrophil apoptosis *in vitro* and *in vivo* and enhance inflammation resolution, making ErbB
217 inhibitors an attractive therapeutic strategy for inflammatory disease.

218 **Discussion**

219 Neutrophils are powerful immune cells because of their destructive anti-microbial contents. A
220 deleterious by-product of this is their remarkable histotoxic potential to host tissue, ordinarily
221 held in check by the onset of apoptosis. The inappropriate suppression of neutrophil
222 apoptosis underpins a number of chronic inflammatory diseases, and we are yet to have
223 available an effective treatment strategy that can reverse this cellular defect in clinical
224 practice. Here we show in human, mouse and zebrafish models of inflammation and
225 neutrophil cell death that targeting the ErbB family of RTKs regulates neutrophil survival and
226 resolves inflammation.

227 Promoting neutrophil apoptosis is a desirable approach for the resolution of inflammation,
228 since apoptosis functionally downregulates the cell, promotes rapid cell clearance by
229 efferocytosis and engages an anti-inflammatory phenotype in phagocytosing cells (Savill et
230 al., 1989; Whyte, Renshaw, Lawson, & Bingle, 1999). As proof of principle, driving apoptosis
231 experimentally promotes the resolution of inflammation across multiple disease models
232 (Chello et al., 2007; Ren et al., 2008; Rossi et al., 2006). Several compounds targeting the
233 ErbB family have been approved as medicines for the treatment of cancer (Singh, Attri, Gill,
234 & Bariwal, 2016). Our findings open up the possibility of repurposing well-tolerated ErbB
235 inhibitors for patients with inflammatory disease, potentially addressing a currently unmet
236 clinical need.

237 The ErbB family are critical regulators of cell proliferation and are associated with the
238 development of many human malignancies (Roskoski, 2014). In addition to the development
239 of cancer, ErbB members have known roles in inflammatory diseases of the airway, skin and
240 gut (Davies, Polosa, Puddicombe, Richter, & Holgate, 1999; Finigan et al., 2011; Frey &
241 Brent Polk, 2014; Hamilton et al., 2003; Pastore, Mascia, Mariani, & Girolomoni, 2008). In
242 the context of lung inflammation, ErbB2 is upregulated in whole lung lysates in murine
243 bleomycin models of lung injury and EGFR ligands are increased in BAL from acute lung
244 injury patients receiving mechanical ventilation (Finigan et al., 2011), suggesting ErbB
245 signalling axes may play a role in the process of airway inflammation *in vivo*. We show, in
246 murine models where Tyrphostin AG825 was administered either at the time of inflammatory
247 stimulus or once inflammation was established, an impact on cell number, proinflammatory
248 cytokine production and neutrophil apoptosis, further validating the use of ErbB inhibitors to
249 reduce inflammation. The benefit of EGFR inhibitors in reducing inflammation in ventilator-
250 induced and OVA/LPS-induced lung injury rodent models is shown by others, further
251 supporting the targetting of this pathway in inflammatory disease settings (Bierman,
252 Yerrapureddy, Reddy, Hassoun, & Reddy, 2008; Shimizu et al., 2018; Takezawa, Ogawa,
253 Shimizu, & Shimizu, 2016).

254 Others have reported that neutrophils express members of the ErbB family (Lewkowicz,
255 Tchorzewski, Dytnerska, Banasik, & Lewkowicz, 2005), particularly ErbB2 at low levels
256 (Petryszak et al., 2016) and we show that they are phosphorylated and regulated following
257 exposure to inflammatory stimuli. ErbBs have known roles in suppressing apoptosis of
258 epithelial cells and keratinocytes, but this study is the first to show a role for ErbBs in
259 survival signalling of myeloid cells. Little is known about the roles of ErbBs in neutrophil
260 function. Erbstatin has been shown to inhibit neutrophil ROS production (Dreiem, Myhre, &
261 Fonnum, 2003; Mocsai et al., 1997; Reistad, Mariussen, & Fonnum, 2005) and chemotactic
262 responses (Yasui, Yamazaki, Miyabayashi, Tsuno, & Komiyama, 1994). Other kinase
263 families have been found to play a role in neutrophil survival and neutrophilic inflammation,

264 most notably the cyclin-dependent kinases (CDKs) (Rossi et al., 2006). In accordance with
265 this, compounds targeting CDKs were identified as drivers of neutrophil apoptosis in both
266 our primary and secondary screens. Moreover, p38 MAPK inhibitor compounds were also
267 identified in both zebrafish and human screens, and since this kinase is known to mediate
268 survival signals, these findings give confidence to the robustness of the screen design and
269 execution.

270 The engagement of apoptosis by the ErbB inhibitors erbstatin and tyrphostin AG825 was
271 confirmed both biochemically by phosphatidylserine exposure, and mechanistically by the
272 caspase inhibitor Q-VD-OPh and loss of Mcl-1. This suggests that inhibiting ErbBs as a
273 therapeutic strategy may achieve an overall anti-inflammatory effect in *in vivo* systems,
274 facilitating clearance by macrophages. In support of this, we provide evidence of increased
275 efferocytosis *in vivo* following tyrphostin AG825 treatment, with no evidence of secondary
276 neutrophil necrosis due to overwhelming macrophage clearance capacity, evidenced both
277 morphologically and by TO-PRO-3 staining.

278 The ability of ErbB inhibitors to promote neutrophil apoptosis even in the presence of
279 multiple pro-survival stimuli emphasises the potential of ErbB inhibitors in the lung, at sites
280 where inflammatory mediators are in abundance and where neutrophils are exposed to
281 microorganisms. This is supported by the ability of tyrphostin AG825 to prevent early pro-
282 survival signalling in response to GMCSF, including the phosphorylation of AKT. This
283 precedes the onset of apoptosis, occurring at a time point (15 min) where apoptosis is
284 typically less than 1%. Others have shown the ability of erbstatin to prevent GMCSF-
285 mediated activation of PI3K in human neutrophils, although the impact on cell survival was
286 not studied (al-Shami, Bourgoin, & Naccache, 1997). Therefore, ErbBs may function as an
287 early and upstream component of the survival pathway in neutrophils. Subsequent impact on
288 Mcl-1 destabilisation by tyrphostin AG825 at 8h suggests a cellular mechanism by which
289 these pro-apoptotic effects are mediated.

290 The effects of ErbB inhibitors in driving spontaneous apoptosis suggest that, under certain
291 circumstances, ErbB activity might be required for constitutive neutrophil survival. It is not
292 clear what, if anything, engages ErbB signalling in culture. The rapid phosphorylation of
293 ErbB2 following N⁶-MB-cAMP treatment (30 min) suggests that perhaps a ligand is not
294 required, or that the neutrophils can rapidly release ErbB agonists in an autocrine manner.
295 Unlike all other ErbBs, ErbB2 monomers exist in a constitutively active conformation and can
296 form homodimers that do not require a ligand for activation (Fan et al., 2008). ErbBs achieve
297 great signalling diversity: in part because of the individual biochemical properties of ligands
298 and multiple homo-heterodimer combinations, and in part because they activate multiple
299 components including those known to be critical in neutrophil cell survival such as PI3K,
300 MAPK and GSK-3, as well as phosphorylating the Bcl-2 protein Bad which inhibits its death-
301 promoting activity (Yarden & Sliwkowski, 2001).

302 A limitation of our study is the genetically intractability of human neutrophils, meaning we
303 cannot exclude the possibility that the inhibitors are having off target effects in this system.
304 Mammalian models of ErbB deletion are limited by profound abnormalities in utero and
305 during development (Britsch et al., 1998; Dackor, Strunk, Wehmeyer, & Threadgill, 2007;
306 Gassmann et al., 1995; Miettinen et al., 1995; Riethmacher et al., 1997). For this reason,
307 CRISPR/Cas9 was used to knockdown *egfra* and *erbb2* in zebrafish, which confirmed a role
308 for ErbBs in resolving inflammation. Targeting ErbBs genetically and pharmacologically
309 reduces the number of neutrophils at the site of injury in zebrafish, which may reflect
310 inhibition of a number of pathways that regulate neutrophil number in the tissue, including
311 migration pathways (Ellett, Elks, Robertson, Ogryzko, & Renshaw, 2015). However, the
312 increase in apoptotic neutrophil count at the site of injury with ErbB inhibitor treatment
313 suggests ErbBs may be inducing anti-apoptotic signalling pathways within this inflammatory
314 environment, which could at least in part be causing the phenotype. The reduced neutrophil
315 count at the injury site may also be due to the increase in apoptotic neutrophils in the CHT,
316 which may be preventing neutrophil migration to sites of injury. The unchanged whole body

317 neutrophil number is potentially due to compensatory upregulation of neutrophil production
318 within the CHT. Genetic deletion, but not pharmacological inhibition, of *egfra* and *erbb2*
319 significantly reduced whole body neutrophil number, which may reflect crisprants being
320 without *egfra* and *erbb2* genes from a one-cell stage. Reduced neutrophils at the injury site
321 of crisprants may be explained by their reduced whole body neutrophil number, but
322 potentially also defects in the migratory response of these neutrophils to a site of
323 inflammation. Murine models of inflammatory disease, where tyrphostin AG825 was
324 administered either at the time of inflammatory stimulus or once inflammation was
325 established, show an impact on cell number, proinflammatory cytokine production and
326 neutrophil apoptosis, further validating the use of ErbB inhibitors to reduce inflammation.
327 In conclusion, we have identified a previously undefined role for ErbB RTKs in neutrophil
328 survival pathways and a potential new use for ErbB inhibitors in accelerating inflammation
329 resolution. These findings suggest the ErbB family of kinases may be novel targets for
330 treatments of chronic inflammatory disease, and the potential for repurposing ErbB inhibitors
331 currently in use for cancer may have significant clinical potential in a broader range of
332 indications.

333 **Materials and Methods**

334 **Experimental design**

335 Our objectives for this study are to identify compounds that are able to resolve neutrophilic
336 inflammation. To do this we performed unbiased chemical screens in both human
337 neutrophils *in vitro* and zebrafish models of inflammation *in vivo*. Results were validated in
338 murine models of peritoneal and airway inflammation and zebrafish tail injury models.
339 Genetic evidence was obtained by CRISPR/Cas9 genetic editing in zebrafish.

340 **Isolation and culture of human neutrophils**

341 Neutrophils were isolated from peripheral blood of healthy subjects and COPD patients by
342 dextran sedimentation and discontinuous plasma-Percoll gradient centrifugation, as

343 previously described (Haslett, Guthrie, Kopaniak, Johnston, & Henson, 1985; I. Ward,
344 Dransfield, Chilvers, Haslett, & Rossi, 1999) in compliance with the guidelines of the South
345 Sheffield Research Ethics Committee (for young healthy subjects; reference number:
346 STH13927) and the National Research Ethics Service (NRES) Committee Yorkshire and the
347 Humber (for COPD and age-matched healthy subjects; reference number: 10/H1016/25).
348 Informed consent was obtained after the nature and possible consequences of the study
349 were explained. Mean age in years was 61.7 ± 2.3 (n=10) and 66.0 ± 3.6 (n=7) for COPD and
350 age-matched healthy subjects respectively. Ultrapure neutrophils, for Kinexus antibody array
351 experiments, were obtained by immunomagnetic negative selection as previously described
352 (Sabroe, Jones, Usher, Whyte, & Dower, 2002). Neutrophils were cultured (2.5×10^6 /ml) in
353 RPMI 1640 (Gibco, Invitrogen Ltd) supplemented with 10% FCS 1% penicillin-streptomycin,
354 in the presence or absence of the following reagents: GMCSF (PeproTech, Inc), N⁶-MB-
355 cAMP (Biolog), anti-ErbB3 blocking antibody, Tyrphostin AG825 (both Sigma-Aldrich), CP-
356 724714 (AdooQ Bioscience), Erbstatin analog (Cayman Chemicals), Pyocyanin (Usher et
357 al., 2002) or compounds from PKIS (Published Kinase Inhibitor Set 1, GlaxoSmithKline) at
358 concentrations as indicated.

359 *In vitro screening of PKIS in neutrophil apoptosis assays.* PKIS consists of 367 small
360 molecule protein kinase inhibitors and is profiled with respect to target specificity (Elkins et
361 al., 2016). In primary screen experiments, neutrophils (from 5 independent donors over 5
362 days) were incubated with each compound at 62 μ M for 6h. Apoptosis was measured by flow
363 cytometry (Attune, Invitrogen). Secondary screening was performed with selected
364 compounds that accelerated neutrophil apoptosis greater than twofold in the primary screen.
365 Compounds were incubated with neutrophils at 10 μ M for 6h and apoptosis assessed by
366 Attune flow cytometry.

367 **Human neutrophil apoptosis assays**

368 Neutrophil apoptosis was assessed by light microscopy and by flow cytometry. Briefly, for
369 the assessment of apoptosis by light microscopy based on well-characterised morphological

370 changes, neutrophils were cytocentrifuged, fixed with methanol, stained with Reastain
371 Quick-Diff (Gentaur), and then apoptotic and non-apoptotic neutrophils were counted with an
372 inverted, oil immersion microscope (Nikon Eclipse TE300, Japan) at 100X magnification
373 (Savill et al., 1989). To assess apoptosis by flow cytometry, neutrophils were stained with
374 PE conjugated Annexin-V (BD Pharminogen) and TO-PRO-3 (Thermofisher Scientific)
375 (Savill et al., 1989; Vermes, Haanen, Steffens-Nakken, & Reutelingsperger, 1995; C. Ward
376 et al., 1999) and sample acquisition was performed by an Attune flow cytometer (Life
377 Technologies) and data analysed by FlowJo (FlowJo LLC).

378 **Kinexus antibody array**

379 Neutrophils were incubated with N⁶-MB-cAMP [100µM] for 30 and 60 min or lysed
380 immediately following isolation (t0). Cells were lysed in PBS containing Triton-X, 1µM PMSF
381 and protease inhibitor cocktail and following 2 min on ice were centrifuged at 10,000 RPM to
382 remove insoluble material. Lysates (containing protein at 6mg/mL) from four donors were
383 pooled prior to Kinex antibody microarray analysis (Kinexus Bioinformatics) (H. Zhang &
384 Pelech, 2012). Lysates are subjected to 812 antibodies including phospho-site specific
385 antibodies to specifically measure phosphorylation of the target protein. Fluorescent signals
386 from the array were corrected to background and log2 transformed and a Z score calculated
387 by subtracting the overall average intensity of all spots within a sample, from the raw
388 intensity for each spot, and dividing it by the standard deviations (SD) of all the measured
389 intensities within each sample (Cheadle, Vawter, Freed, & Becker, 2003). Z ratio values are
390 further calculated by taking the difference between the averages of the Z scores and dividing
391 by the SD of all differences of the comparison (e.g, 30 min treated samples versus 0 min
392 control). A Z ratio of ± 1.5 is considered to be a significant change from control.

393 **Western blotting**

394 Whole cell lysates were prepared by resuspending human neutrophils (5×10^6) in 50µl
395 hypotonic lysis buffer (1mM PMSF, 50mM NaF, 10mM Sodium orthovanadate, protease

396 inhibitors cocktail in water), and by boiling with 50µl 2X SDS buffer (0.1M 1,4-Dithio-DL-
397 threitol, 4% SDS, 20% Glycerol, 0.0625M Tris-HCl pH6.8 and 0.004% Bromophenol blue).
398 Protein samples were separated by SDS-polyacrylamide gel electrophoresis, and
399 electrotransfer onto PVDF (polyvenylidene difluoride) membranes was performed by semi-
400 dry blotting method. Membranes were then blocked with 5% skimmed milk in TBS-tween
401 and probed against antibodies to p-AKT (Cell Signalling Technology), AKT (Cell signalling
402 Technology), Mcl-1 (Santa Cruz Biotechnology) or p38 (loading control, StressMarq
403 Biosciences Inc.), followed by HRP-conjugated secondary antibodies and detection with
404 chemiluminescent substrate solution ECL2 (GE Healthcare).

405

406 **Fish husbandry**

407 The neutrophil-specific, GFP-expressing transgenic zebrafish line, *Tg(mpx:GFP)i114*,
408 (referred to as *mpx:GFP*) (Renshaw et al., 2006) was raised and maintained according to
409 standard protocols (Nüsslein-Volhard & Dahm, 2002) in UK Home Office approved aquaria
410 in the Bateson Centre at the University of Sheffield, according to institutional guidelines.
411 Adult fish are maintained in 14h light and 10h dark cycle at 28°C.

412 **Zebrafish tail injury model of inflammation**

413 *PKIS screening*: Tail fin transection was performed on *mpx:GFP* zebrafish larvae at 3 days
414 post-fertilisation (dpf) (Elks, Loynes, & Renshaw, 2011; Renshaw et al., 2006). At 6h post-
415 injury (hpi), larvae that had mounted a good inflammatory response, as defined by
416 recruitment of >15 neutrophils to the injury site, were arrayed at a density of 3 larvae per well
417 and incubated with PKIS compounds at a final concentration of 25µM or vehicle control for a
418 further 6h. At 12 hpi, the plate was scanned using prototype PhenoSight equipment (Ash
419 Biotech). Images were scored manually as described previously (Robertson et al., 2014). In
420 brief, each well of three larvae was assigned a score between 0-3, corresponding to the
421 number of larvae within the well with a reduced number of neutrophils at the site of injury.

422 Kinase inhibitors which reduced green fluorescence at the injury site to an extent that their
423 mean score was ≥ 1.5 were regarded as hit compounds.

424 *ErbB inhibition studies:* Briefly, 2 dpf *mpx*:GFP larvae were treated with Tyrphostin AG825
425 [10 μ M] for 16h before undergoing tailfin transection (Elks et al., 2011; Renshaw et al., 2006).
426 The number of neutrophils at the site of injury was determined at 4 and 8 hpi by counting
427 GFP-positive neutrophils by fluorescent microscopy. To enumerate neutrophils across the
428 whole body, uninjured larvae were treated with Tyrphostin AG825 [10 μ M] for 24h and then
429 mounted in 0.8% low-melting point agarose (Sigma-Aldrich) followed by imaging by
430 fluorescence microscopy (Nikon Eclipse TE2000-U) at 4X magnification, followed by manual
431 counting.

432 **Zebrafish Apoptosis Assays.**

433 Larvae from each experimental group were pooled into 1.5mL eppendorf tubes. TSA signal
434 amplification of GFP-labelled neutrophils (driven by endogenous peroxidase activity) was
435 carried out using TSA® Plus Fluorescein System (Perkin Elmer). Larvae were fixed
436 overnight in 4% paraformaldehyde at 4°C after which they were subjected to proteinase K
437 digestion. Larvae were post-fixed in 4% paraformaldehyde, before subsequent TUNEL
438 staining for apoptosis using ApopTag® Red In Situ Apoptosis Detection Kit (Millipore).
439 Larvae were then mounted in low-melting point agarose and images acquired and analysed
440 using UltraVIEWVoX spinning disc confocal laser imaging system with Volocity® 6.3
441 software (Perkin Elmer). Apoptotic neutrophil count was determined firstly by identifying cells
442 with co-localisation of the TSA and TUNEL stains, then confirmed by accounting for
443 apoptotic neutrophil morphology.

444 **Generation of transient CRISPR/Cas9 zebrafish mutants**

445 Transient dual knockdown of *egfra* and *erbb2* was induced using a Cas9 nuclease (New
446 England Biolabs) in combination with transactivating RNA (tracr) and synthetic guide RNAs
447 specific to zebrafish *egfra* and *erbb2* genes (Merck). Tyrosinase guide RNA was used as a

448 control as described previously (Isles et al., 2019). Guide RNAs were designed using the
449 online tool CHOPCHOP (<https://chopchop.cbu.uib.no/>) with the following sequences: *egfra*:
450 TGAATCTCGGAGCGCGCAGGAGG; *erbb2*: AACGCTTGGACCTACACGTGGG;
451 *tyrosinase*: GGACUGGAGGACUUCUGGGG. Each guide RNA was resuspended to 20 μ M in
452 nuclease-free water with 10mM Tris-HCl (pH8). Guide RNA [20 μ M], tracr [20 μ M] and Cas9
453 protein [20 μ M] were combined (in a 1:1:1 ratio). 0.5 μ L phenol red was added to each
454 injection solution for visualisation. A graticule was used to calibrate glass capillary needles to
455 dispense 0.5nL of injection solution, and 1nL was injected into the yolk sac of single-cell
456 stage *mpx*:GFP embryos. Tail injury assays were carried out at 2 dpf as described above.

457 **Genotyping of crispant larvae**

458 High-resolution melt curve analysis was used to determine the rate of *egfr* and *erbb2*
459 mutation in larvae at 2 dpf. Genomic DNA was collected from individual larvae in both the
460 control and experimental groups, by adding 90 μ L 50 mM NaOH to each larvae in a 96-well
461 qPCR plate and incubating at 95°C for 20 minutes. 10 μ L Tris-HCl (pH 8) was then added as
462 a buffer. Master mixes containing either *egfra* or *erbb2* primers (Integrated DNA
463 Technologies) (sequences in table below) were made up, with each well containing: 0.5 μ L
464 10 μ M forward primer, 0.5 μ L 10 μ M reverse primer, 5 μ L 2X DyNAmo Flash SYBR Green
465 (Thermo Scientific), 3 μ L milliQ water. 1 μ L genomic DNA was added to each master mix in
466 a 96-well qPCR plate. Melt curve analysis was performed and analysed with Bio-Rad
467 Precision Melt Analysis software. Mutation rate was calculated by determining the
468 percentage of *egfra* *erbb2* larvae that showed a different melt-curve profile to the genomic
469 DNA collected from *tyrosinase* fish (based on 95% confidence intervals).
470 Primer sequences used for high-resolution melt curve analysis.

Gene	Forward primer sequence	Reverse primer sequence	Product size
<i>egfra</i>	CCAGCGGTTCGGTTATTCA	CGTCTTCGCGTATTCTGAGG	100
<i>erbb2</i>	ACAAAGAGCCAAAAACAGGTTA	TCCTTCAGTGCATACCCAGA	93

471

472 **Murine model of LPS induced acute lung inflammation**

473 C57BL/6 mice (female, 9-10 weeks old) were nebulised with LPS (3 mg per group of 8 mice)

474 (*Pseudomonas aeruginosa*, Sigma-Aldrich) and immediately injected intraperitoneally (i.p.)

475 with either Tyrphostin AG825 (Tocris Bioscience) at 20mg/Kg in 10% DMSO v/v in vegetable

476 oil (8 mice, treatment group) or an equivalent volume of 10% DMSO v/v in vegetable oil (8

477 mice, control group) (Kedrin et al., 2009; Roos, Berg, Ahlgren, Grunewald, & Nord, 2014).

478 After 48h the mice were sacrificed by terminal anaesthesia by i.p. pentobarbitone and

479 subjected to bronchoalveolar lavage (BAL, 4 x 1mL of saline). BAL samples were

480 microcentrifuged and the cellular fraction counted by a hemocytometer and cytocentrifuged.

481 Neutrophil apoptosis and macrophage efferocytosis of apoptotic neutrophils was quantified

482 by oil immersion light microscopy (Nikon Eclipse TE300, Japan).

483 **Murine model of zymosan-induced peritonitis**

484 C57BL/6 mice were i.p. injected with 1mg zymosan (Sigma-Aldrich) and 4h later injected i.p

485 with 20mg/Kg Tyrphostin AG825 in 10% DMSO v/v in vegetable oil (5 mice, treatment

486 group) or an equivalent volume of 10% DMSO v/v in vegetable oil (5 mice, control group). At

487 20h the mice were subjected to terminal gaseous anaesthesia (isoflurane) followed by a

488 cardiac puncture and peritoneal lavage (4 x 1mL of saline). WBC, neutrophils and

489 macrophages were enumerated in blood by an automated haematology analyser (KX-21N,

490 Sysmex, Milton Keynes, UK). Lavage samples were microcentrifuged and the cellular

491 fraction subjected to flow cytometry and cytocentrifuged for light microscopy. IL-6, KC

492 (Duoset ELISA kits, R&D systems) and IgM (Thermofisher Scientific) in cell free lavage were

493 measured by ELISA as per manufacturer's instructions.

494 **Statistical analysis.** Data were analysed using GraphPad Prism 8 (GraphPad Software,

495 San Diego, CA) using one-way or two-way ANOVA (with appropriate post-test) for all *in vitro*

496 data and appropriate *in vivo* experiments. Non-parametric tests (Mann-Whitney U-test or

497 Kruskal-Wallis test) were used for selected *in vivo* experiments with non-Gaussian
498 distribution. Data are expressed as mean \pm SEM (standard error of mean), and significance
499 was accepted at $p < 0.05$.

500 **References**

501 al-Shami, A., Bourgoin, S. G., & Naccache, P. H. (1997). Granulocyte-macrophage colony-
502 stimulating factor-activated signaling pathways in human neutrophils. I. Tyrosine
503 phosphorylation-dependent stimulation of phosphatidylinositol 3-kinase and
504 inhibition by phorbol esters. *Blood*, 89(3), 1035-1044.

505 Almeida, S. R., Aroeira, L. S., Frymuller, E., Dias, M. A., Bogsan, C. S., Lopes, J. D., & Mariano,
506 M. (2001). Mouse B-1 cell-derived mononuclear phagocyte, a novel cellular
507 component of acute non-specific inflammatory exudate. *Int Immunol*, 13(9), 1193-
508 1201.

509 Bierman, A., Yerrapureddy, A., Reddy, N. M., Hassoun, P. M., & Reddy, S. P. (2008).
510 Epidermal growth factor receptor (EGFR) regulates mechanical ventilation-induced
511 lung injury in mice. *Transl Res*, 152(6), 265-272. doi:10.1016/j.trsl.2008.10.004

512 Britsch, S., Li, L., Kirchhoff, S., Theuring, F., Brinkmann, V., Birchmeier, C., & Riethmacher, D.
513 (1998). The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential
514 for development of the sympathetic nervous system. *Genes Dev*, 12(12), 1825-1836.
515 doi:10.1101/gad.12.12.1825

516 Brown, V., Elborn, J. S., Bradley, J., & Ennis, M. (2009). Dysregulated apoptosis and
517 NFκB expression in COPD subjects. *Respiratory research*, 10, 24.
518 doi:10.1186/1465-9921-10-24

519 Burgon, J., Robertson, A. L., Sadiku, P., Wang, X., Hooper-Greenhill, E., Prince, L. R., . . .
520 Renshaw, S. A. (2014). Serum and glucocorticoid-regulated kinase 1 regulates
521 neutrophil clearance during inflammation resolution. *J Immunol*, 192(4), 1796-1805.
522 doi:10.4049/jimmunol.1300087

523 Buta, C., Benabou, E., Lequoy, M., Regnault, H., Wendum, D., Meratbene, F., . . . Desbois-
524 Mouston, C. (2016). Heregulin-1ss and HER3 in hepatocellular carcinoma: status and
525 regulation by insulin. *J Exp Clin Cancer Res*, 35(1), 126. doi:10.1186/s13046-016-
526 0402-3

527 Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of microarray data
528 using Z score transformation. *The Journal of molecular diagnostics : JMD*, 5(2), 73-81.
529 doi:10.1016/S1525-1578(10)60455-2

530 Chello, M., Anselmi, A., Spadaccio, C., Patti, G., Goffredo, C., Di Sciascio, G., & Covino, E.
531 (2007). Simvastatin increases neutrophil apoptosis and reduces inflammatory
532 reaction after coronary surgery. *The Annals of thoracic surgery*, 83(4), 1374-1380.
533 doi:10.1016/j.athoracsur.2006.10.065

534 Dackor, J., Strunk, K. E., Wehmeyer, M. M., & Threadgill, D. W. (2007). Altered trophoblast
535 proliferation is insufficient to account for placental dysfunction in Egfr null embryos.
536 *Placenta*, 28(11-12), 1211-1218. doi:10.1016/j.placenta.2007.07.005

537 Davies, D. E., Polosa, R., Puddicombe, S. M., Richter, A., & Holgate, S. T. (1999). The
538 epidermal growth factor receptor and its ligand family: their potential role in repair
539 and remodelling in asthma. *Allergy*, 54(8), 771-783.

540 Derouet, M., Thomas, L., Cross, A., Moots, R. J., & Edwards, S. W. (2004). Granulocyte
541 macrophage colony-stimulating factor signaling and proteasome inhibition delay
542 neutrophil apoptosis by increasing the stability of Mcl-1. *The Journal of biological
543 chemistry*, 279(26), 26915-26921. doi:10.1074/jbc.M313875200

544 Dreiem, A., Myhre, O., & Fonnum, F. (2003). Involvement of the extracellular signal
545 regulated kinase pathway in hydrocarbon-induced reactive oxygen species formation
546 in human neutrophil granulocytes. *Toxicol Appl Pharmacol*, 190(2), 102-110.

547 Elkins, J. M., Fedele, V., Szklarz, M., Abdul Azeez, K. R., Salah, E., Mikolajczyk, J., . . .
548 Zuercher, W. J. (2016). Comprehensive characterization of the Published Kinase
549 Inhibitor Set. *Nature biotechnology*, 34(1), 95-103. doi:10.1038/nbt.3374

550 Elks, P. M., Loynes, C. A., & Renshaw, S. A. (2011). Measuring inflammatory cell migration in
551 the zebrafish. *Methods in molecular biology*, 769, 261-275. doi:10.1007/978-1-
552 61779-207-6_18

553 Ellett, F., Elks, P. M., Robertson, A. L., Ogryzko, N. V., & Renshaw, S. A. (2015). Defining the
554 phenotype of neutrophils following reverse migration in zebrafish. *Journal of
555 leukocyte biology*, 98(6), 975-981. doi:10.1189/jlb.3MA0315-105R

556 Fan, Y. X., Wong, L., Ding, J., Spiridonov, N. A., Johnson, R. C., & Johnson, G. R. (2008).
557 Mutational activation of ErbB2 reveals a new protein kinase autoinhibition
558 mechanism. *The Journal of biological chemistry*, 283(3), 1588-1596.
559 doi:10.1074/jbc.M708116200

560 Finigan, J. H., Faress, J. A., Wilkinson, E., Mishra, R. S., Nethery, D. E., Wyler, D., . . . Kern, J.
561 A. (2011). Neuregulin-1-human epidermal receptor-2 signaling is a central regulator
562 of pulmonary epithelial permeability and acute lung injury. *The Journal of biological
563 chemistry*, 286(12), 10660-10670. doi:10.1074/jbc.M110.208041

564 Frey, M. R., & Brent Polk, D. (2014). ErbB receptors and their growth factor ligands in
565 pediatric intestinal inflammation. *Pediatric research*, 75(1-2), 127-132.
566 doi:10.1038/pr.2013.210

567 Gassmann, M., Casagranda, F., Orioli, D., Simon, H., Lai, C., Klein, R., & Lemke, G. (1995).
568 Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin
569 receptor. *Nature*, 378(6555), 390-394. doi:10.1038/378390a0

570 Guillaudeau, A., Durand, K., Bessette, B., Chaunavel, A., Pommepuy, I., Projetti, F., . . .
571 Labrousse, F. (2012). EGFR soluble isoforms and their transcripts are expressed in
572 meningiomas. *PLoS One*, 7(5), e37204. doi:10.1371/journal.pone.0037204

573 Hamilton, L. M., Torres-Lozano, C., Puddicombe, S. M., Richter, A., Kimber, I., Dearman, R. J.,
574 . . . Davies, D. E. (2003). The role of the epidermal growth factor receptor in
575 sustaining neutrophil inflammation in severe asthma. *Clinical and experimental
576 allergy : journal of the British Society for Allergy and Clinical Immunology*, 33(2), 233-
577 240.

578 Haslett, C. (1999). Granulocyte apoptosis and its role in the resolution and control of lung
579 inflammation. *Am J Respir Crit Care Med*, 160(5 Pt 2), S5-11.

580 Haslett, C., Guthrie, L. A., Kopaniak, M. M., Johnston, R. B., Jr., & Henson, P. M. (1985).
581 Modulation of multiple neutrophil functions by preparative methods or trace
582 concentrations of bacterial lipopolysaccharide. *The American journal of pathology*,
583 119(1), 101-110.

584 Henry, K. M., Loynes, C. A., Whyte, M. K., & Renshaw, S. A. (2013). Zebrafish as a model for
585 the study of neutrophil biology. *J Leukoc Biol*, 94(4), 633-642.
586 doi:10.1189/jlb.1112594

587 Isles, H. M., Herman, K. D., Robertson, A. L., Loynes, C. A., Prince, L. R., Elks, P. M., &
588 Renshaw, S. A. (2019). The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at
589 Inflammatory Sites in Zebrafish. *Frontiers in immunology*, 10(1784).
590 doi:10.3389/fimmu.2019.01784

591 Jackson, C., Browell, D., Gautrey, H., & Tyson-Capper, A. (2013). Clinical Significance of HER-
592 2 Splice Variants in Breast Cancer Progression and Drug Resistance. *Int J Cell Biol*,
593 2013, 973584. doi:10.1155/2013/973584

594 Jani, J. P., Finn, R. S., Campbell, M., Coleman, K. G., Connell, R. D., Currier, N., . . .
595 Bhattacharya, S. K. (2007). Discovery and pharmacologic characterization of CP-
596 724,714, a selective ErbB2 tyrosine kinase inhibitor. *Cancer Res*, 67(20), 9887-9893.
597 doi:10.1158/0008-5472.CAN-06-3559

598 Jones, L. H., & Bunnage, M. E. (2017). Applications of chemogenomic library screening in
599 drug discovery. *Nat Rev Drug Discov*. doi:10.1038/nrd.2016.244

600 Kedrin, D., Wyckoff, J., Boimel, P. J., Coniglio, S. J., Hynes, N. E., Arteaga, C. L., & Segall, J. E.
601 (2009). ERBB1 and ERBB2 have distinct functions in tumor cell invasion and
602 intravasation. *Clinical cancer research : an official journal of the American
603 Association for Cancer Research*, 15(11), 3733-3739. doi:10.1158/1078-0432.CCR-08-
604 2163

605 Klein, J. B., Rane, M. J., Scherzer, J. A., Coxon, P. Y., Kettritz, R., Mathiesen, J. M., . . .
606 McLeish, K. R. (2000). Granulocyte-macrophage colony-stimulating factor delays
607 neutrophil constitutive apoptosis through phosphoinositide 3-kinase and
608 extracellular signal-regulated kinase pathways. *J Immunol*, 164(8), 4286-4291.

609 Krakstad, C., Christensen, A. E., & Doskeland, S. O. (2004). cAMP protects neutrophils
610 against TNF-alpha-induced apoptosis by activation of cAMP-dependent protein
611 kinase, independently of exchange protein directly activated by cAMP (Epac). *Journal
612 of leukocyte biology*, 76(3), 641-647. doi:10.1189/jlb.0104005

613 Lewkowicz, P., Tchorzewski, H., Dytnerkska, K., Banasik, M., & Lewkowicz, N. (2005).
614 Epidermal growth factor enhances TNF-alpha-induced priming of human neutrophils.
615 *Immunology letters*, 96(2), 203-210. doi:10.1016/j.imlet.2004.08.012

616 Martinez, F. J., Rabe, K. F., Calverley, P. M. A., Fabbri, L. M., Sethi, S., Pizzichini, E., . . .
617 Rennard, S. I. (2018). Determinants of Response to Roflumilast in Severe Chronic
618 Obstructive Pulmonary Disease. Pooled Analysis of Two Randomized Trials. *Am J
619 Respir Crit Care Med*, 198(10), 1268-1278. doi:10.1164/rccm.201712-2493OC

620 Miettinen, P. J., Berger, J. E., Meneses, J., Phung, Y., Pedersen, R. A., Werb, Z., & Derynck, R.
621 (1995). Epithelial immaturity and multiorgan failure in mice lacking epidermal
622 growth factor receptor. *Nature*, 376(6538), 337-341. doi:10.1038/376337a0

623 Mocsai, A., Banfi, B., Kapus, A., Farkas, G., Geiszt, M., Buday, L., . . . Ligeti, E. (1997).
624 Differential effects of tyrosine kinase inhibitors and an inhibitor of the mitogen-
625 activated protein kinase cascade on degranulation and superoxide production of
626 human neutrophil granulocytes. *Biochem Pharmacol*, 54(7), 781-789.
627 doi:10.1016/s0006-2952(97)00245-1

628 Navarro-Xavier, R. A., Newson, J., Silveira, V. L., Farrow, S. N., Gilroy, D. W., & Bystrom, J.
629 (2010). A new strategy for the identification of novel molecules with targeted
630 proresolution of inflammation properties. *J Immunol*, 184(3), 1516-1525.
631 doi:10.4049/jimmunol.0902866

632 Nüsslein-Volhard, C., & Dahm, R. (2002). *Zebrafish - A Practical Approach*: Oxford University
633 Press.

634 Osherov, N., Gazit, A., Gilon, C., & Levitzki, A. (1993). Selective inhibition of the epidermal
635 growth factor and HER2/neu receptors by tyrphostins. *The Journal of biological
636 chemistry*, 268(15), 11134-11142.

637 Pastore, S., Mascia, F., Mariani, V., & Girolomoni, G. (2008). The epidermal growth factor
638 receptor system in skin repair and inflammation. *The Journal of investigative
639 dermatology*, 128(6), 1365-1374. doi:10.1038/sj.jid.5701184

640 Petryszak, R., Keays, M., Tang, Y. A., Fonseca, N. A., Barrera, E., Burdett, T., . . . Brazma, A.
641 (2016). Expression Atlas update--an integrated database of gene and protein
642 expression in humans, animals and plants. *Nucleic Acids Res*, 44(D1), D746-752.
643 doi:10.1093/nar/gkv1045

644 Pletz, M. W., Ioanas, M., de Roux, A., Burkhardt, O., & Lode, H. (2004). Reduced
645 spontaneous apoptosis in peripheral blood neutrophils during exacerbation of COPD.
646 *The European respiratory journal*, 23(4), 532-537.

647 Rabe, K. F., Watz, H., Baraldo, S., Pedersen, F., Biondini, D., Bagul, N., . . . Saetta, M. (2018).
648 Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease
649 (ROBERT): a 16-week, randomised, placebo-controlled trial. *Lancet Respir Med*,
650 6(11), 827-836. doi:10.1016/S2213-2600(18)30331-X

651 Reistad, T., Mariussen, E., & Fonnum, F. (2005). The effect of a brominated flame retardant,
652 tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes:
653 the involvement of the MAP kinase pathway and protein kinase C. *Toxicol Sci*, 83(1),
654 89-100. doi:10.1093/toxsci/kfh298

655 Ren, Y., Xie, Y., Jiang, G., Fan, J., Yeung, J., Li, W., . . . Savill, J. (2008). Apoptotic cells protect
656 mice against lipopolysaccharide-induced shock. *Journal of immunology*, 180(7),
657 4978-4985.

658 Renshaw, S. A., Loynes, C. A., Trushell, D. M., Elworthy, S., Ingham, P. W., & Whyte, M. K.
659 (2006). A transgenic zebrafish model of neutrophilic inflammation. *Blood*, 108(13),
660 3976-3978. doi:blood-2006-05-024075 [pii]
661 10.1182/blood-2006-05-024075

662 Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V., Yamaai, T., Lewin, G. R., &
663 Birchmeier, C. (1997). Severe neuropathies in mice with targeted mutations in the
664 ErbB3 receptor. *Nature*, 389(6652), 725-730. doi:10.1038/39593

665 Robertson, A. L., Holmes, G. R., Bojarczuk, A. N., Burgon, J., Loynes, C. A., Chimen, M., . . .
666 Renshaw, S. A. (2014). A zebrafish compound screen reveals modulation of
667 neutrophil reverse migration as an anti-inflammatory mechanism. *Science
668 translational medicine*, 6(225), 225ra229. doi:10.1126/scitranslmed.3007672

669 Roos, A. B., Berg, T., Ahlgren, K. M., Grunewald, J., & Nord, M. (2014). A method for
670 generating pulmonary neutrophilia using aerosolized lipopolysaccharide. *Journal of
671 visualized experiments : JoVE*(94). doi:10.3791/51470

672 Roskoski, R., Jr. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer.
673 *Pharmacological research*, 79, 34-74. doi:10.1016/j.phrs.2013.11.002

674 Rossi, A. G., Sawatzky, D. A., Walker, A., Ward, C., Sheldrake, T. A., Riley, N. A., . . . Haslett, C.
675 (2006). Cyclin-dependent kinase inhibitors enhance the resolution of inflammation
676 by promoting inflammatory cell apoptosis. *Nature medicine*, 12(9), 1056-1064.
677 doi:10.1038/nm1468

678 Sabroe, I., Jones, E. C., Usher, L. R., Whyte, M. K., & Dower, S. K. (2002). Toll-like receptor
679 (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for
680 monocytes in leukocyte lipopolysaccharide responses. *J Immunol*, 168(9), 4701-4710.

681 Sapey, E., Stockley, J. A., Greenwood, H., Ahmad, A., Bayley, D., Lord, J. M., . . . Stockley, R.
682 A. (2011). Behavioral and structural differences in migrating peripheral neutrophils
683 from patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care
684 Med*, 183(9), 1176-1186. doi:10.1164/rccm.201008-1285OC

685 Savill, J. S., Wyllie, A. H., Henson, J. E., Walport, M. J., Henson, P. M., & Haslett, C. (1989).
686 Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell
687 death in the neutrophil leads to its recognition by macrophages. *J Clin Invest*, 83(3),
688 865-875.

689 Shimizu, S., Takezawa-Yasuoka, K., Ogawa, T., Tojima, I., Kouzaki, H., & Shimizu, T. (2018).
690 The epidermal growth factor receptor inhibitor AG1478 inhibits eosinophilic
691 inflammation in upper airways. *Clin Immunol*, 188, 1-6.
692 doi:10.1016/j.clim.2017.11.010

693 Siegel, P. M., Ryan, E. D., Cardiff, R. D., & Muller, W. J. (1999). Elevated expression of
694 activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary
695 tumors in transgenic mice: implications for human breast cancer. *The EMBO journal*,
696 18(8), 2149-2164. doi:10.1093/emboj/18.8.2149

697 Singh, D., Attri, B. K., Gill, R. K., & Bariwal, J. (2016). Review on EGFR Inhibitors: Critical
698 Updates. *Mini reviews in medicinal chemistry*, 16(14), 1134-1166.

699 Summers, C., Rankin, S. M., Condliffe, A. M., Singh, N., Peters, A. M., & Chilvers, E. R. (2010).
700 Neutrophil kinetics in health and disease. *Trends Immunol*, 31(8), 318-324.
701 doi:10.1016/j.it.2010.05.006

702 Takezawa, K., Ogawa, T., Shimizu, S., & Shimizu, T. (2016). Epidermal growth factor receptor
703 inhibitor AG1478 inhibits mucus hypersecretion in airway epithelium. *Am J Rhinol
704 Allergy*, 30(1), 1-6. doi:10.2500/ajra.2016.30.4263

705 Thompson, A. A., Elks, P. M., Marriott, H. M., Eamsamarn, S., Higgins, K. R., Lewis, A., . . .
706 Walmsley, S. R. (2014). Hypoxia-inducible factor 2alpha regulates key neutrophil
707 functions in humans, mice, and zebrafish. *Blood*, 123(3), 366-376.
708 doi:10.1182/blood-2013-05-500207

709 Umezawa, K., & Imoto, M. (1991). Use of erbstatin as protein-tyrosine kinase inhibitor.
710 *Methods in enzymology*, 201, 379-385.

711 Usher, L. R., Lawson, R. A., Geary, I., Taylor, C. J., Bingle, C. D., Taylor, G. W., & Whyte, M. K.
712 (2002). Induction of neutrophil apoptosis by the *Pseudomonas aeruginosa* exotoxin
713 pyocyanin: a potential mechanism of persistent infection. *J Immunol*, 168(4), 1861-
714 1868.

715 Vaughan, K. R., Stokes, L., Prince, L. R., Marriott, H. M., Meis, S., Kassack, M. U., . . . Whyte,
716 M. K. (2007). Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11
717 receptor. *Journal of immunology*, 179(12), 8544-8553.

718 Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutelingsperger, C. (1995). A novel assay for
719 apoptosis. Flow cytometric detection of phosphatidylserine expression on early
720 apoptotic cells using fluorescein labelled Annexin V. *Journal of immunological
721 methods*, 184(1), 39-51.

722 Ward, C., Chilvers, E. R., Lawson, M. F., Pryde, J. G., Fujihara, S., Farrow, S. N., . . . Rossi, A. G.
723 (1999). NF-kappaB activation is a critical regulator of human granulocyte apoptosis in
724 vitro. *J Biol Chem*, 274(7), 4309-4318.

725 Ward, I., Dransfield, I., Chilvers, E. R., Haslett, I., & Rossi, A. G. (1999). Pharmacological
726 manipulation of granulocyte apoptosis: potential therapeutic targets. *Trends in
727 pharmacological sciences*, 20(12), 503-509.

728 Ward, T. M., Iorns, E., Liu, X., Hoe, N., Kim, P., Singh, S., . . . Pegram, M. D. (2013). Truncated
729 p110 ERBB2 induces mammary epithelial cell migration, invasion and orthotopic
730 xenograft formation, and is associated with loss of phosphorylated STAT5.
731 *Oncogene*, 32(19), 2463-2474. doi:10.1038/onc.2012.256

732 Wardle, D. J., Burgon, J., Sabroe, I., Bingle, C. D., Whyte, M. K., & Renshaw, S. A. (2011).
733 Effective caspase inhibition blocks neutrophil apoptosis and reveals Mcl-1 as both a
734 regulator and a target of neutrophil caspase activation. *PLoS One*, 6(1), e15768.
735 doi:10.1371/journal.pone.0015768

736 Webb, P. R., Wang, K. Q., Scheel-Toellner, D., Pongracz, J., Salmon, M., & Lord, J. M. (2000).
737 Regulation of neutrophil apoptosis: a role for protein kinase C and
738 phosphatidylinositol-3-kinase. *Apoptosis*, 5(5), 451-458.

739 Whyte, M., Renshaw, S., Lawson, R., & Bingle, C. (1999). Apoptosis and the regulation of
740 neutrophil lifespan. *Biochemical Society transactions*, 27(6), 802-807.

741 Wicks, I. P., & Roberts, A. W. (2016). Targeting GM-CSF in inflammatory diseases. *Nature*
742 *reviews. Rheumatology*, 12(1), 37-48. doi:10.1038/nrrheum.2015.161

743 Wu, P., Nielsen, T. E., & Clausen, M. H. (2015). FDA-approved small-molecule kinase
744 inhibitors. *Trends in pharmacological sciences*, 36(7), 422-439.
745 doi:10.1016/j.tips.2015.04.005

746 Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. *Nature*
747 *reviews. Molecular cell biology*, 2(2), 127-137. doi:10.1038/35052073

748 Yasui, K., Yamazaki, M., Miyabayashi, M., Tsuno, T., & Komiyama, A. (1994). Signal
749 transduction pathway in human polymorphonuclear leukocytes for chemotaxis
750 induced by a chemotactic factor. Distinct from the pathway for superoxide anion
751 production. *J Immunol*, 152(12), 5922-5929.

752 Zhang, H., & Pelech, S. (2012). Using protein microarrays to study phosphorylation-mediated
753 signal transduction. *Seminars in cell & developmental biology*, 23(8), 872-882.
754 doi:10.1016/j.semcd.2012.05.009

755 Zhang, J., He, J., Xia, J., Chen, Z., & Chen, X. (2012). Delayed apoptosis by neutrophils from
756 COPD patients is associated with altered Bak, Bcl-xL, and Mcl-1 mRNA expression.
757 *Diagnostic pathology*, 7, 65. doi:10.1186/1746-1596-7-65

758

759 **Acknowledgements. General:** We thank Lynne Williams, Carl Wright, Jessica Willis,
760 Elizabeth Marsh and Catherine Loynes for help with animal experiments as well as
761 volunteers and patients who donated blood to this study. We thank the Bateson Centre
762 aquaria staff for their assistance with zebrafish husbandry. **Funding:** This work was
763 supported by a Commonwealth Scholarship (A Rahman) and an MRC Programme Grant to
764 S.A.R. (MR/M004864/1) and an MRC centre grant (G0700091). JJYR and AHM were
765 supported by the European Commission FP7 Initial Training Network FishForPharma (PITG-
766 GA-2011-289209). The SGC (WJZ) is a registered charity (number 1097737) that receives
767 funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for

768 Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines
769 Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA Darmstadt
770 Germany, MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and
771 Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome
772 [106169/ZZ14/Z]. **Author contributions:** AR, KMH, IS, DHD, MKBW, SAR and LRP
773 designed experiments and analysed data. AR, KMH, KDH, HMI, AER, NK, DS, C Tabor, C
774 Tulotta, AART and KH performed experiments. AR, SAR, KMH and LRP wrote the
775 manuscript. All authors contributed intellectual input to the concept of the study and to the
776 writing and editing of this manuscript. **Competing interests:** The authors declare no
777 competing interests.

778 **Supplementary Materials**

779 Fig. S1. Schematics showing PKIS screen design
780 Fig. S2. Erbstatin and tyrphostin AG825 induces caspase-dependent neutrophil
781 apoptosis.
782 Fig. S3. ErbB2 and ErbB3 expression and regulation in human neutrophils.
783 Table S1. PKIS compounds that accelerated neutrophil apoptosis >2 fold over control.

784

785 **Figure legends**

786 **Figure 1: A protein kinase inhibitor compound library screen identifies compounds**
787 **that promote the resolution of inflammation *in vivo* and neutrophil apoptosis *in vitro*.**
788 (A) *mpx:GFP* zebrafish larvae (3 dpf) that had undergone tail fin transection resulting in an
789 inflammatory response at 6 hpi were incubated with individual PKIS compounds [25μM] 3
790 larvae/well for a further 6h. Wells were imaged and manually scored between 0-3 on the
791 basis of GFP at the injury site in the larvae. 'Hit' compounds scored ≥ 1.5 (n=2, 3 larvae per
792 compound per experiment). Publicly available kinase profiling information was generated
793 previously by Elkins *et al.* (2016) and kinase inhibition of each compound [1μM] is shown as
794 a gradient of blue to yellow. Hit compounds were ranked horizontally (left to right) from the

795 most to least selective. Kinases (listed on the right) were vertically ranked from top to bottom
796 from the most to least commonly targeted by inhibitors in PKIS. (B) PKIS compounds were
797 incubated with primary human neutrophils for 6h. The entire library, at [62 μ M], was screened
798 on 5 separate days using 5 individual donors. Apoptosis was assessed by Annexin-V/TO-
799 PRO-3 staining by flow cytometry and the percentage apoptosis calculated as Annexin-V
800 single plus Annexin-V/TO-PRO-3 dual positive events. Data are expressed as fold change
801 over DMSO control and each circle represents a single compound. Sixty two compounds
802 accelerated apoptosis \geq 2 fold as identified by red dotted line (n=1). Grey dotted line
803 represents level of apoptosis in DMSO control (i.e. no change). (C) Of the 62 compounds
804 identified above, 38 of the most specific inhibitors were incubated with neutrophils at [10 μ M]
805 for 6h and apoptosis measured as above. Controls included media, DMSO, GMCSF [50
806 u/mL] and pyocyanin [50 μ M]. Eleven compounds (white bars) accelerated apoptosis \geq 2 fold
807 over DMSO control (as identified by dotted line). Kinases targeted by the 11 compounds are
808 shown in the inset table. Hatched bars represent data points in which ErbB inhibitors were
809 used. Data are expressed as percentage apoptosis \pm SEM, n=3 neutrophil donors.

810 **Figure 2: Inhibition of EGFR and ErbB2 drives apoptosis of neutrophils isolated from**
811 **COPD patients and healthy subjects.** Neutrophils were incubated with media or a
812 concentration range of gefitinib (A), lapatinib (A), sapatinib (A), CP-724714 (B),
813 erbstatin (Erb, C) or tyrphostin AG825 (Tyr, D) for 6h. Stars represent significant difference
814 compared to DMSO control (indicated by “0” in B-D). Neutrophils from COPD patients (open
815 bars) and age-matched healthy control subjects (black bars) were incubated with DMSO or a
816 concentration range of erbstatin (E) or tyrphostin AG825 (F) for 6h. Apoptosis was assessed
817 by light microscopy. The data are expressed as mean percentage apoptosis \pm SEM from 3
818 (B, D), 4 (A,C), 10 (E,F COPD), or 7 (E,F HC) independent experiments using different
819 neutrophil donors. Statistical significances between control and inhibitor was calculated by
820 two-way ANOVA (A) or one-way ANOVA (B-F) with appropriate post-test, indicated as
821 *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

822

823 **Figure 3: Erbstatin and tyrphostin AG825 overcome pro-survival effects of N⁶-MB-
824 cAMP and GMCSF.** Neutrophils were incubated with DMSO, Erbstatin [Erb, 40 μ M] (A) or
825 tyrphostin AG825 [Tyr, 50 μ M] (B) in the presence of DMSO or N⁶-MB-cAMP [500 μ M and
826 1mM] for 20h. Neutrophils isolated from COPD patients were incubated with DMSO or
827 tyrphostin AG825 [50 μ M] in the presence of DMSO or N⁶-MB-cAMP [500 μ M] for 20h (C).
828 Neutrophils isolated from COPD patients and age-matched healthy control subjects (HC)
829 were incubated with DMSO, erbstatin (D) [20, 40 μ M] or tyrphostin AG825 (E) [25, 50 μ M] in
830 the presence or absence of GMCSF [50u/mL] for 20h. Apoptosis was assessed by light
831 microscopy. The data are expressed as mean percentage apoptosis \pm SEM from 4-6
832 independent experiments. Statistical significances were calculated by one-way ANOVA with
833 appropriate post-test and indicated as *p<0.05, **p<0.01, ***p<0.001. (F) Neutrophils were
834 incubated with DMSO or tyrphostin AG825 [Tyr, 50 μ M] for 60 min before the addition of
835 GMCSF [50u/mL] for 15 or 30 mins. (G) Neutrophils were incubated with DMSO, tyrphostin
836 AG825 [50 μ M] for 60 min before the addition of GMCSF [50u/mL] for a further 7h. Cells were
837 lysed, subjected to SDS-PAGE electrophoresis and membranes probed for p-AKT, Mcl-1 or
838 loading controls, AKT and P38. Images are representative of 3 independent experiments.
839 Charts show densitometric values of 3 individual immunoblots and are expressed as a ratio
840 of target (p-AKT or Mcl-1) over loading control (AKT or P38, respectively).

841

842 **Figure 4: Tyrphostin AG825 increases neutrophil apoptosis and reduces inflammation
843 in murine models of inflammation.** C57BL/6 mice were nebulized with LPS and
844 immediately injected intraperitoneally with either 10% DMSO (control, n=8) or 20mg/Kg
845 tyrphostin AG825 (Tyr, n=8). After 48h the mice were sacrificed and subjected to
846 bronchoalveolar lavage. Percentage neutrophils (A, closed icons) and macrophages (A,
847 open icons) and absolute numbers of neutrophils (B, closed icons) and macrophages (B,
848 open icons) in BAL were calculated by haemocytometer and light microscopy. (C)
849 Percentage neutrophil apoptosis (circles) and percentage neutrophil apoptosis calculated by

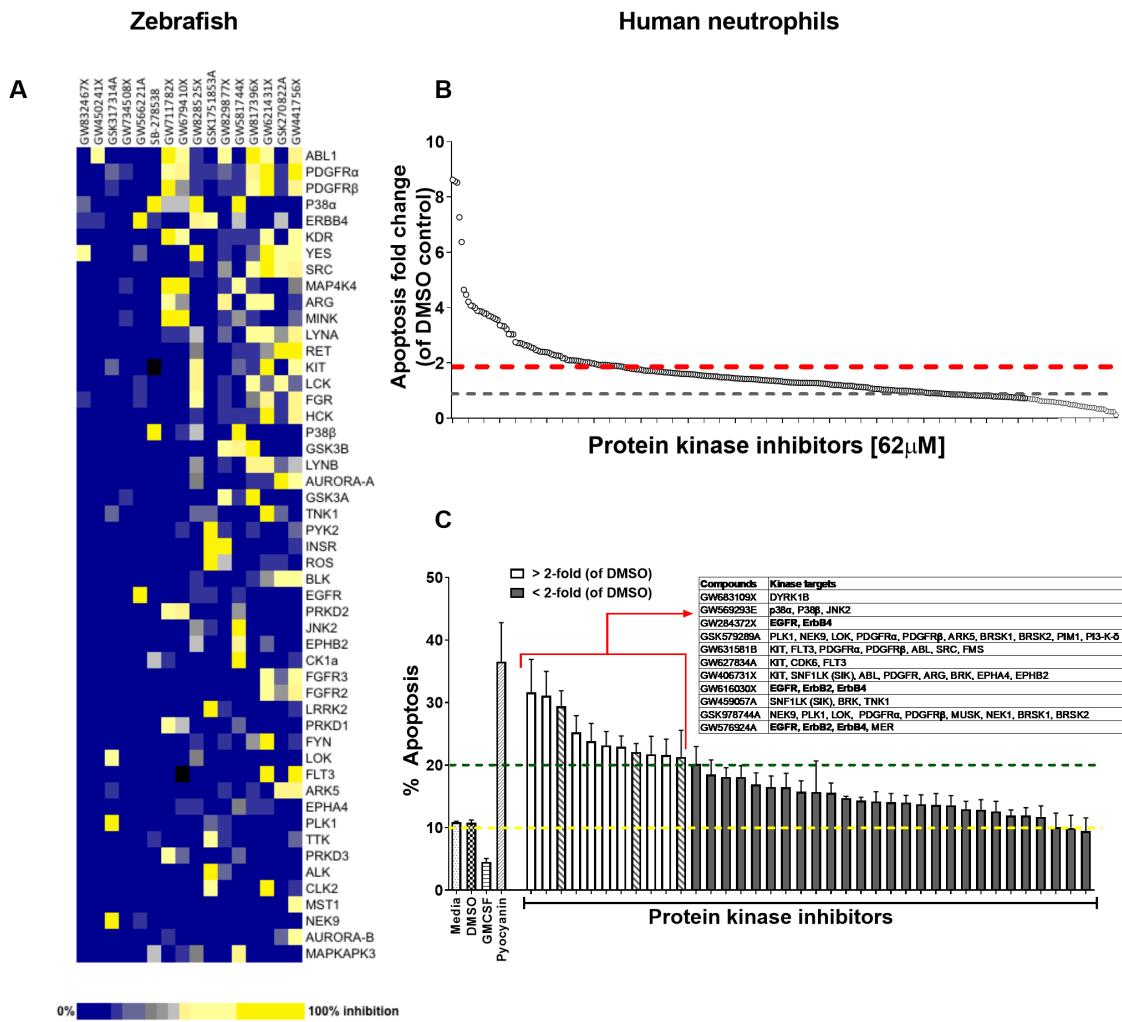
850 also including numbers of apoptotic inclusions visualised within macrophages (triangles) was
851 assessed by light microscopy. (D) Macrophages containing 1 or more apoptotic inclusions
852 expressed as a percentage of all macrophages. Light microscopy image showing apoptotic
853 inclusions within macrophages as indicated by black arrows (E). C57BL/6 mice were
854 injected i.p. with 1 mg zymosan and 4 h later injected i.p. with 20mg/Kg tyrphostin AG825
855 (Tyr, n=5) or 10% DMSO (Control, n=5). At 20h mice were sacrificed and subjected to
856 peritoneal lavage. (F) WBC, neutrophils and macrophages in blood were measured by a
857 Sysmex cell counter. Total cells in peritoneal lavage were counted by flow cytometry (G) and
858 KC, IL-6 (H) and IgM (I) measured in lavage by ELISA. At least 2 independent experimental
859 replicates each processing 1-3 mice/group were performed. Statistical significance was
860 calculated by non-parametric t-test (Mann–Whitney U test), *p<0.05, **p<0.01, ***p<0.001.
861

862 **Figure 5: Pharmacological inhibition and genetic knockdown of egfra and erbb2 by**
863 **CRISPR/Cas9 reduces neutrophil number at the site of injury in a zebrafish model of**
864 **inflammation.** Tail fin transection was performed as indicated by the red line (A, upper
865 image). Zebrafish larvae (*mpx*:GFP) were pre-treated at 2 dpf with DMSO, tyrphostin AG825
866 [Tyr, 10 μ M] (B, minimum n=28 larvae per condition), or CP-724714 [10 μ M] (C, minimum
867 n=42 larvae per condition) for 16h followed by injury. *egfra* and *erbb2* crisprants were
868 generated and injured at 2 dpf (D, minimum n=36 larvae per condition). The number of
869 neutrophils at the site of injury was determined at 4 and 8 hpi by counting GFP-positive
870 neutrophils. To enumerate neutrophils across the whole body, uninjured inhibitor treated
871 larvae (3 dpf) (E, minimum n=23 larvae per condition) or crisprants (2 dpf) (F, minimum n=28
872 larvae per condition) were imaged by fluorescent microscopy (A, lower image). Apoptosis
873 was measured at the site of injury after 8 hours by TSA and TUNEL double staining (G)
874 (white arrow indicates TUNEL positive neutrophil, scale bar 10 μ M) of *mpx*:GFP tyrphostin
875 AG825 [Tyr, 10 μ M] or CP-724714 [10 μ M] treated larvae at 3 dpf (H, minimum n=35 larvae
876 per condition). Uninjured inhibitor treated larvae were assessed for neutrophil apoptosis in

877 the CHT at 3 dpf (I, minimum n=27 larvae per group). Apoptosis at the tail fin injury site of
878 *egfra erbb2* crispants at 2 dpf was also measured at 8 hpi (J, minimum n=26 larvae per
879 group). All data collated from at least 3 independent experiments, displayed as mean ±
880 SEM. Each icon shows one data point from one individual larvae. Statistical significances
881 were calculated by two-way ANOVA (B-D) or one-way ANOVA (E, H, I) with appropriate
882 post-test, unpaired-t test (F), Kruskal-Wallis test (I) with appropriate post-test or Mann-
883 Whitney U test (J), and indicated as *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

884

885 **Table 1: Kinexus antibody microarray analysis.** Ultrapurified neutrophils were incubated
886 with N⁶-MB-cAMP [100μM] for 30 and 60 min or lysed immediately following isolation (0').
887 Lysates from four donors were pooled prior to Kinex antibody microarray analysis. Table
888 shows all targets for which phospho-antibodies had Z ratios of >1.5 compared to t=0
889 baseline control, at each timepoint. ErbB related antibodies are in bold.


890

891

892

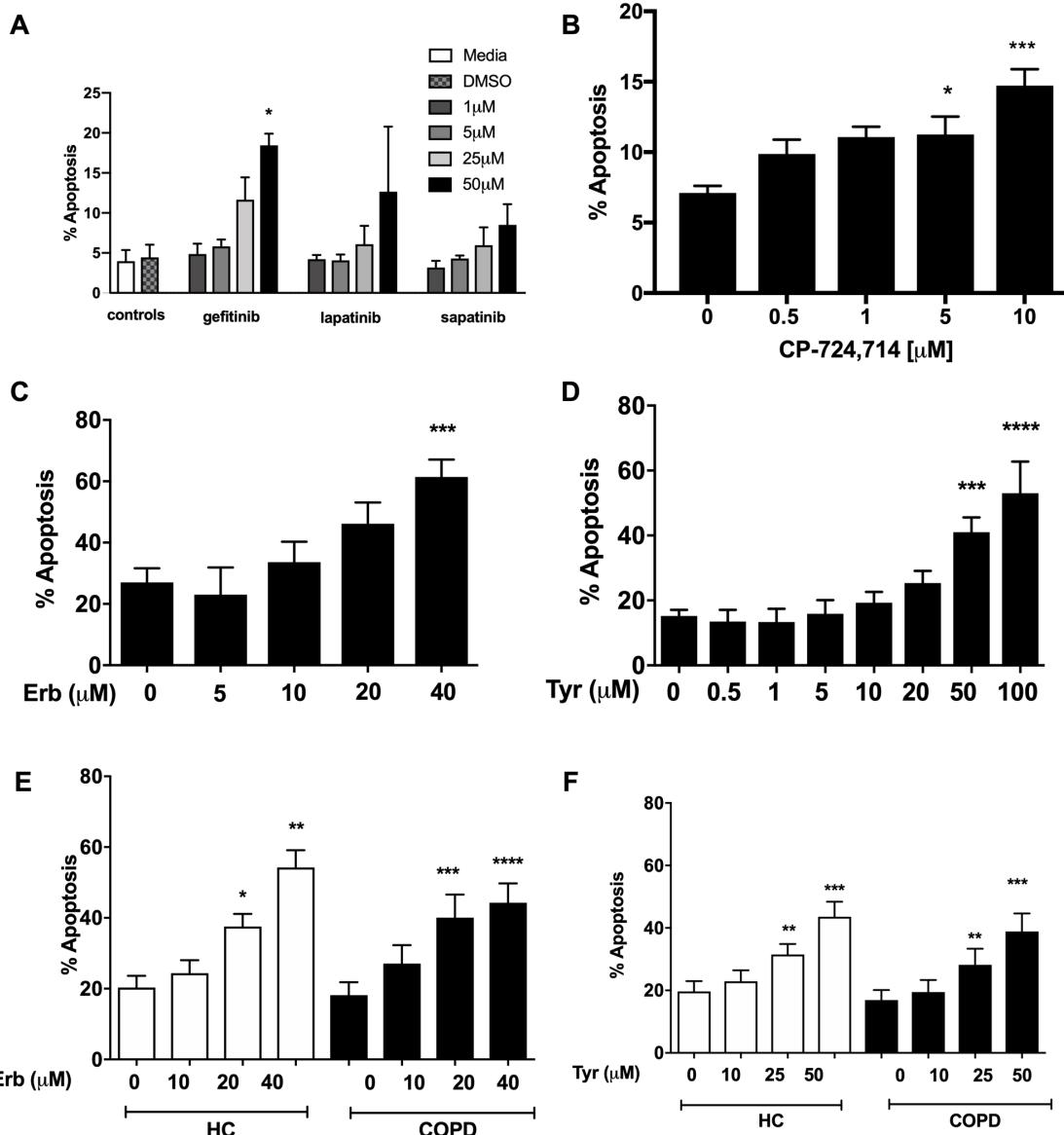
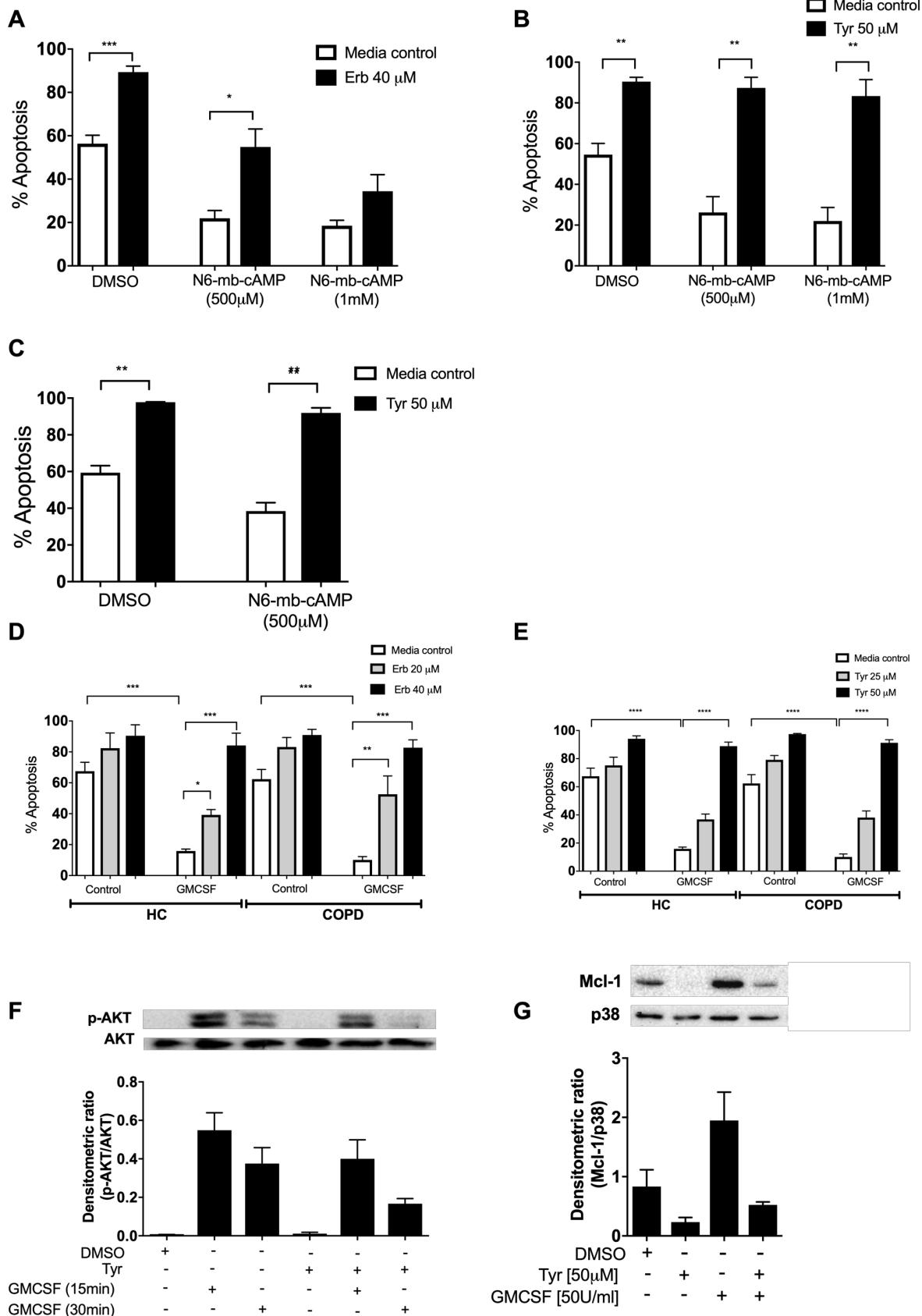

893 **Figures and Tables**

Figure 1

894

Figure 2



895

896

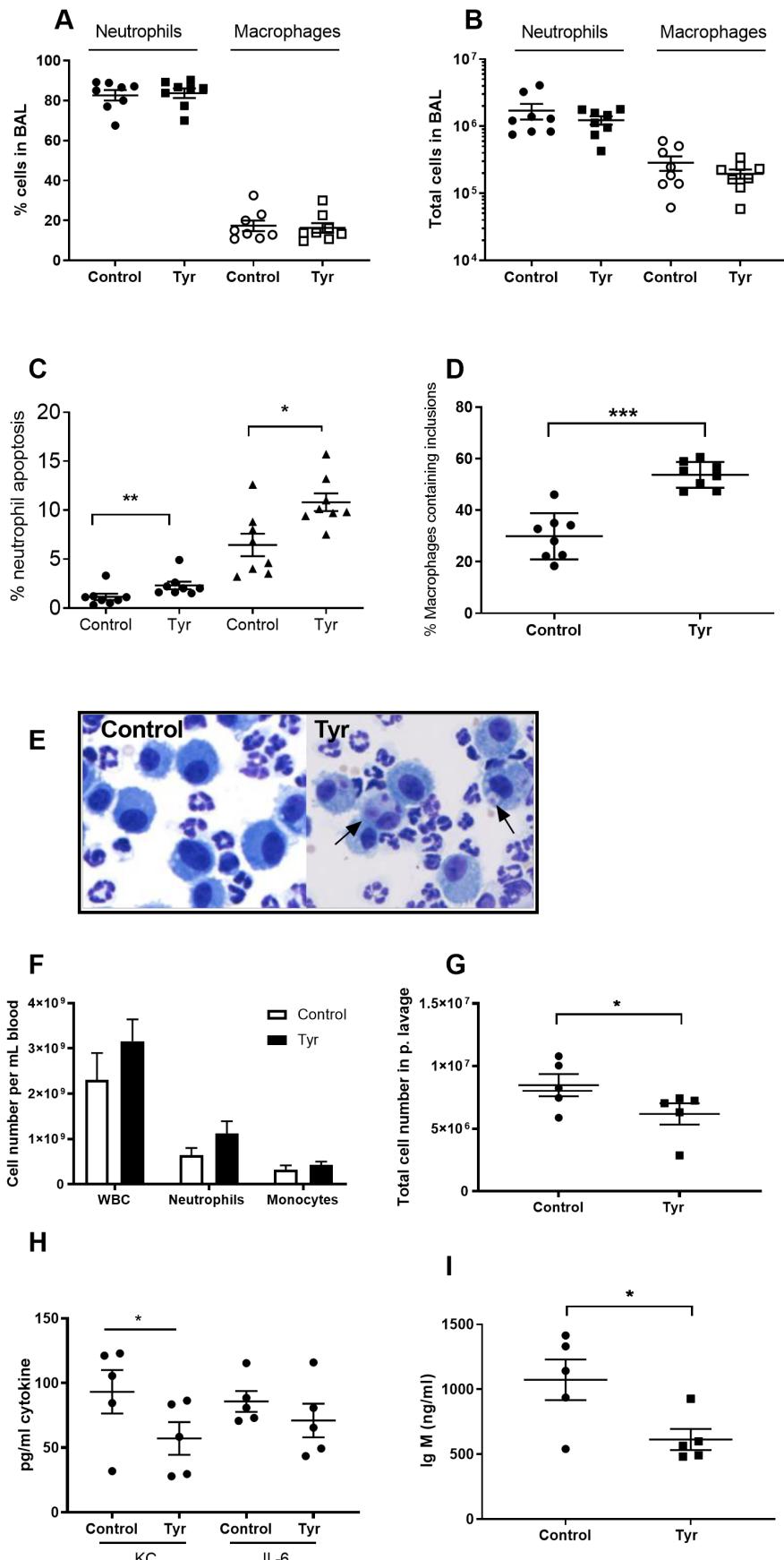
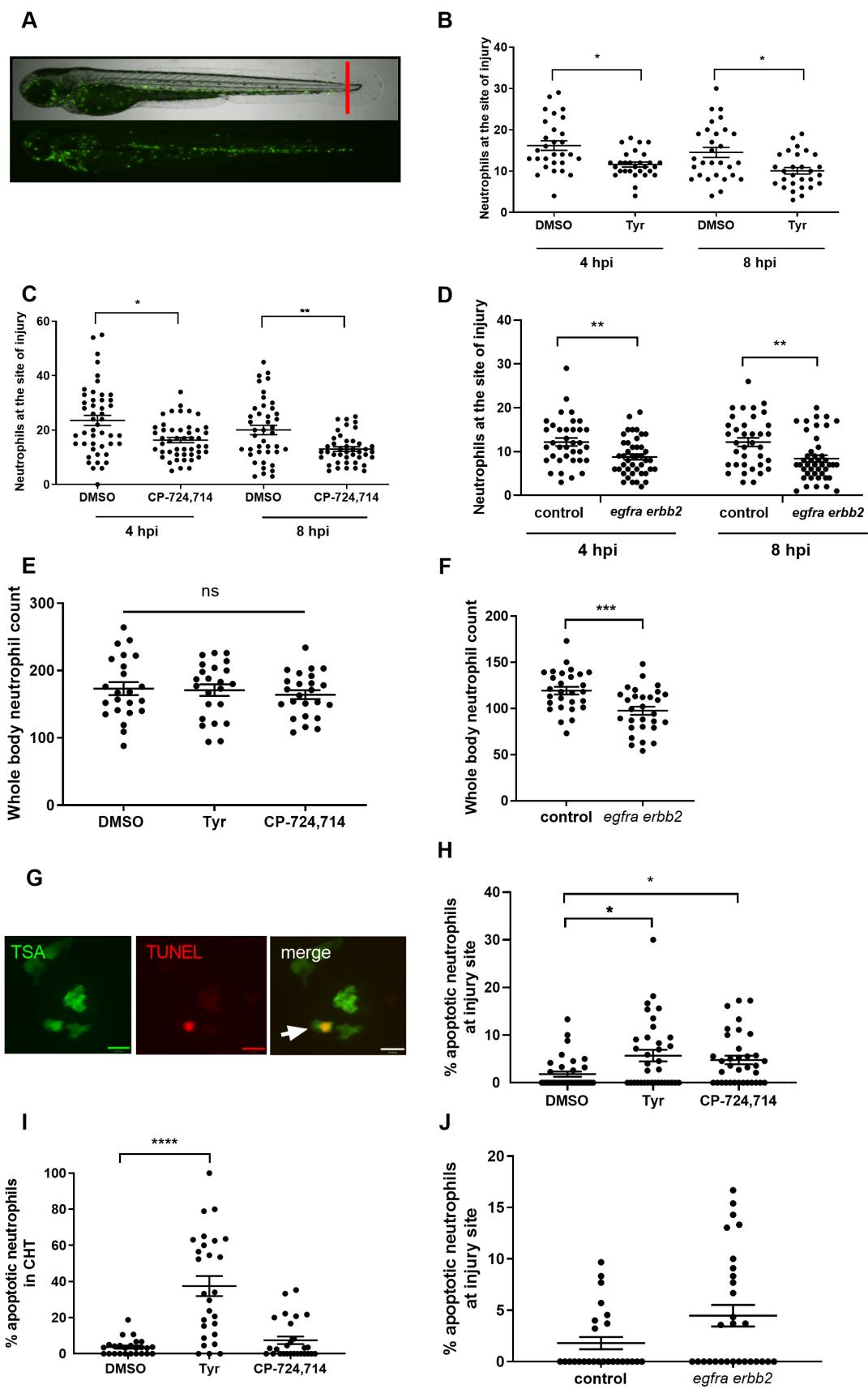

897

Figure 3



898
899

900 **Figure 4**

902 **Figure 5**

905 **Table 1**

Target Protein	Z-ratio (30' v 0')	Target Protein	Z-ratio (60' v 0')
PDK1	5.69	PDK1	4.79
ZAP70/Syk	4.85	PKCa/b2	2.73
p38a	3.21	Zap70/Syk	2.72
PLCg1	3.16	p38a	2.32
MAP2K1	2.70	S6Ka	2.05
FKHRL1	2.58	Rb	1.96
GSK3a/b	2.54	PKCg	1.79
Huntingtin	2.29	ErbB2	1.53
BLNK	2.25		
Jun	1.99		
Rb	1.99		
ErbB2	1.94		
Btk	1.92		
Bad	1.81		
AMPKa1/2	1.70		
Synapsin 1	1.69		
PKBa	1.64		

906
907
908
909
910
911
912
913
914
915
916

917 **Supplementary Materials**

918

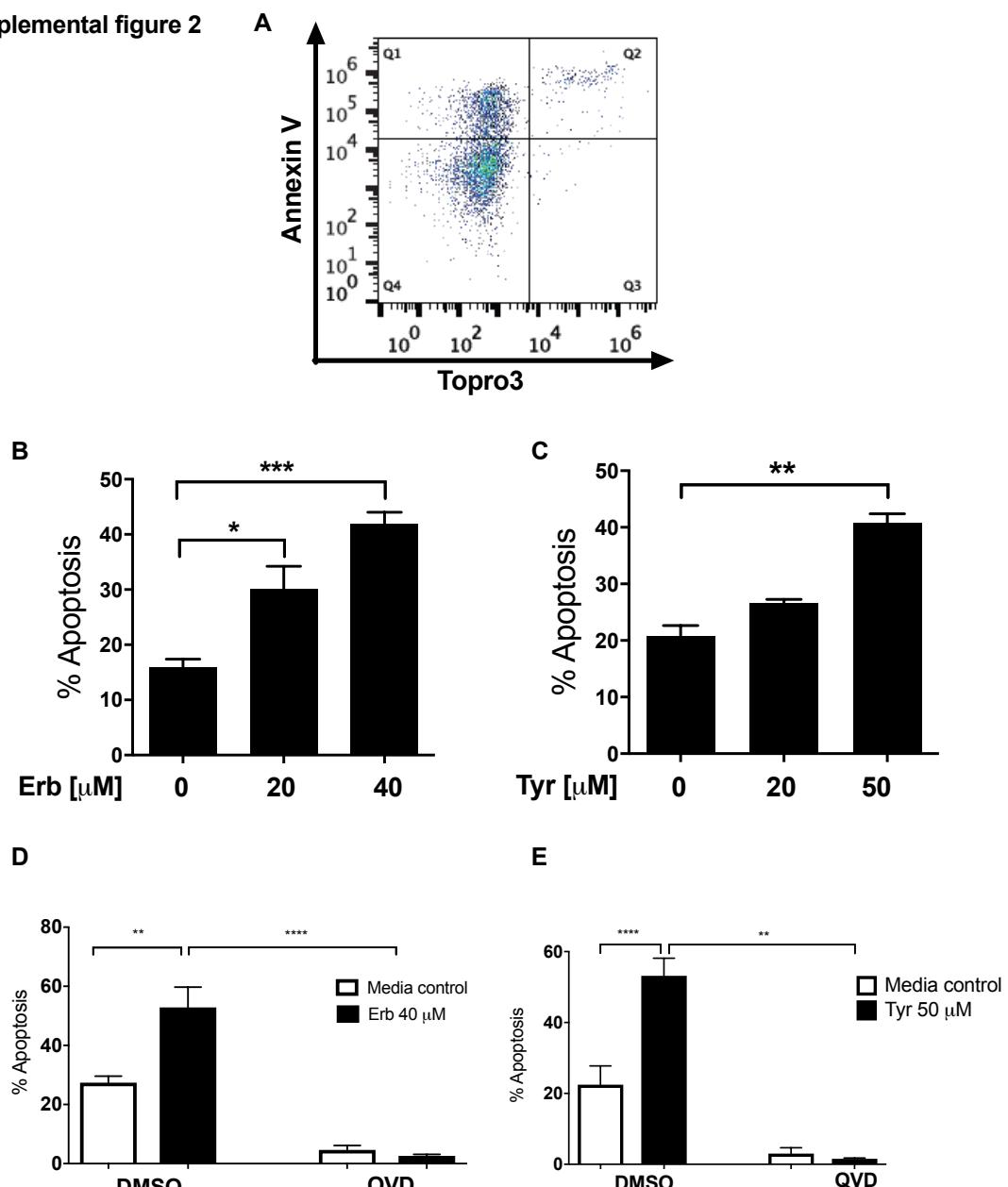
919 Fig. S1. Schematics showing PKIS screen design. (A) Tail fin transected 3 dpf
920 Tg(mp^x:GFP)i114 zebrafish larvae that had generated an inflammatory response at 6 hpi
921 were incubated with individual PKIS compounds [25 μ M] for a further 6h. Larvae were
922 imaged and manually scored between 0-3 on the basis of green fluorescence at the injury
923 site. (B) PKIS compounds were incubated with primary human neutrophils for 6h. Apoptosis
924 was assessed by Annexin V/TO-PRO-3 staining by flow cytometry and the percentage
925 apoptosis calculated as Annexin V single plus Annexin V/TO-PRO-3 dual positive events (as
926 indicated by red box).

927

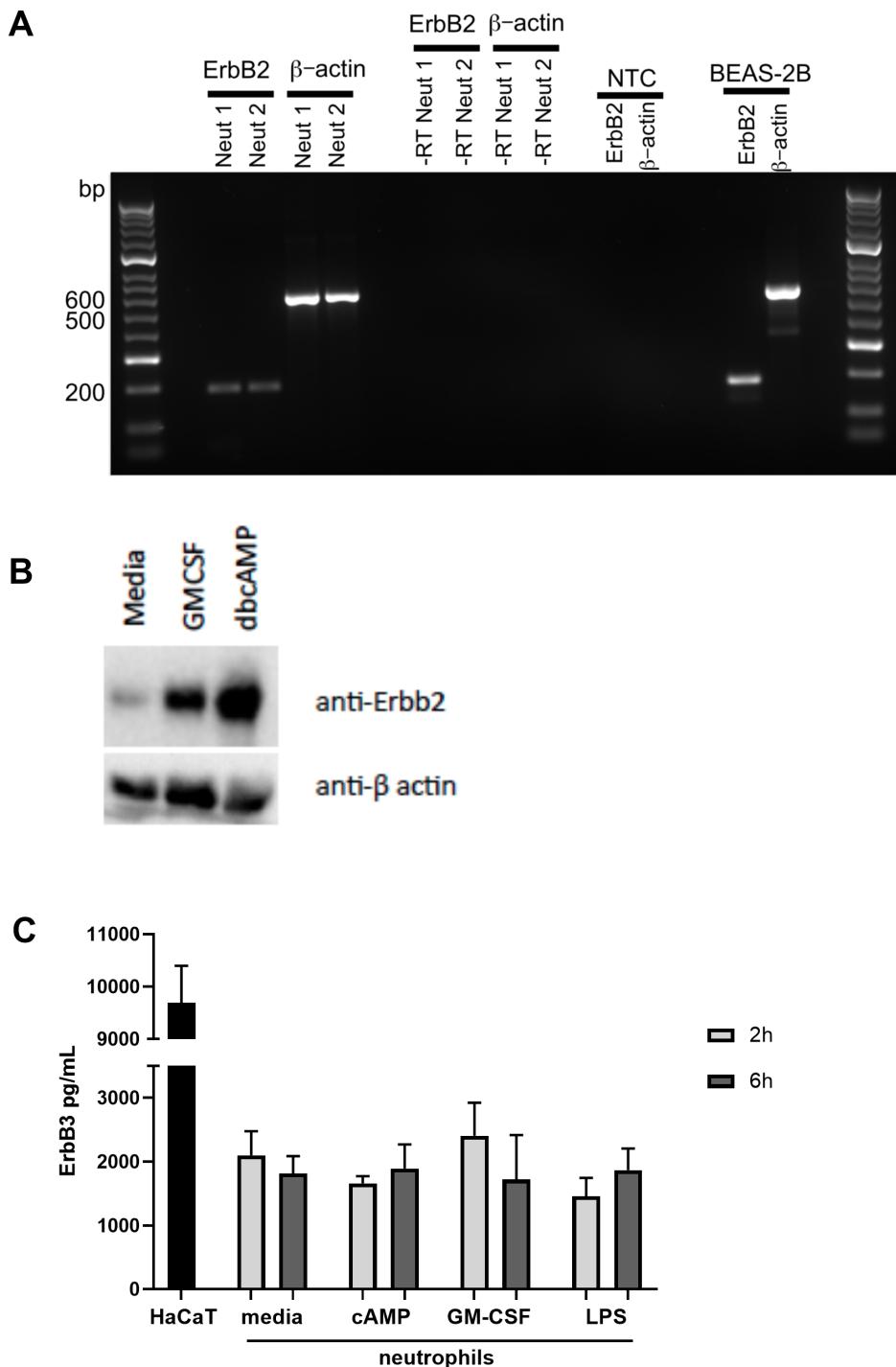
928 Fig. S2. Erbstatin and tyrphostin AG825 induces caspase-dependent neutrophil apoptosis.
929 Neutrophils were incubated with DMSO or 20 μ M or 40 μ M erbstatin (Erb, A&B) or tyrphostin
930 AG825 (Tyr, C) for 6h. Apoptosis was assessed by Annexin V/TO-PRO-3 staining by flow
931 cytometry and the percentage apoptosis calculated as Annexin V single plus Annexin V/TO-
932 PRO-3 dual positive events. (A) Representative quadrant plot of Erbstatin-treated
933 neutrophils showing distribution of Annexin V and TO-PRO-3 positive events. (D-E)
934 Neutrophils were incubated with DMSO or Erbstatin [40 μ M] in the presence or absence of
935 the pan caspase inhibitor, Q-VD-OPh [1 μ M] for 6h (D) or 20h (E). Apoptosis was assessed
936 by light microscopy. The data are expressed as mean percentage apoptosis \pm SEM from 3
937 (B), 4 (C&E), or 5 (D) independent experiments. Statistical differences were calculated by
938 ANOVA (with Dunnett's (B-C) Bonferroni's (D-E) post-tests) and indicated as *p \leq 0.05,
939 **p \leq 0.01, ***p \leq 0.001, ****p \leq 0.0001.

940

941 Fig. S3. ErbB2 and ErbB3 expression and regulation in human neutrophils. ErbB2 was
942 detected in neutrophils and the positive control cell line, BEAS-2B, by RT-PCR (A).
943 Neutrophils were treated with GMCSF [50u/mL] and dbcAMP [10 μ M] for 5 hours and lysates
944 subjected to SDS PAGE. Membranes were immunoblotted with antibodies to ErbB2
945 antibody or β -actin as a loading control. A 60kD band was detected (lower molecular weight
946 ErbB family products are well-documented (Jackson, Browell, Gautrey, & Tyson-Capper,
947 2013), which was upregulated by GMCSF and dbcAMP. NTC – no template control. The
948 image is representative of three independent experiments (B). ErbB3 was detected by
949 ELISA in human neutrophils and the positive control cell line, HaCaT. Neutrophils were
950 treated with media, dbcAMP [500 μ M], GM-CSF [50u/mL] or LPS [1 μ g/mL] for 2h or 6h, after
951 which lysates were collected and ELISA detecting total human ErbB3 was carried out. N=4
952 healthy human neutrophil donors. Bars indicate mean + SEM. (C).


953

954 Table S1. PKIS compounds that accelerated neutrophil apoptosis >2 fold over control. PKIS
955 compounds were incubated with neutrophils for 6h and apoptosis was assessed by Annexin
956 V/TO-PRO-3 staining by flow cytometry. Sixty-two compounds accelerated apoptosis \geq 2
957 fold and compound names are presented here, along with fold change over control.


Supplemental figure 1

Supplemental figure 2

Supplemental figure 3

Supplemental table 1

Compounds	Apoptosis Fold change (of DMSO control)	Compounds	Apoptosis Fold change (of DMSO control)
GW589933X	8.63	GW576924A	2.69
GW305074X	8.57	GW297361X	2.64
GW441756X	8.52	GSK317354A	2.64
GW305178X	7.26	GW445017X	2.60
GSK579289A	6.37	GW567808A	2.56
GSK943949A	4.65	GW831091X	2.53
GSK1751853A	4.46	SB-686709-A	2.47
SB-278538	4.21	GW832467X	2.44
GW631581B	4.08	SB-376719	2.41
GW513184X	4.06	GSK237700A	2.40
SB-245392	3.99	GW440139A	2.39
GW830365A	3.89	GW820759X	2.39
GW795493X	3.87	GW406108X	2.37
SB-751148	3.85	GSK204925A	2.31
GSK1000163A	3.79	GSK994854A	2.29
GSK978744A	3.78	GW827106X	2.27
GW442130X	3.71	GW683109X	2.27
GW627834A	3.68	SB-736290	2.25
GSK1326255A	3.64	GW814408X	2.17
SB-242719	3.59	GW829055X	2.16
GW831090X	3.56	GW580496A	2.11
GW569293E	3.36	GSK614526A	2.10
GW680908A	3.34	GW781673X	2.09
GSK237701A	3.33	GW616030X	2.09
GSK1173862A	3.23	GW770249A	2.08
GW296115X	3.04	GW301784X	2.07
GW574782A	3.04	GW694590A	2.05
GW784307A	3.04	GW607049C	2.04
GW796920X	2.75	GW407323A	2.02
GW284372X	2.72	SB-278539	2.02
GW406731X	2.72	GW459057A	2.01

961

962