

1 **The Gut Microbiota composition of Feral and Tamworth Pigs determined using High-Throughput**
2 **Culturomics and Metagenomics Reveals Compositional Variations When Compared to the**
3 **Commercial Breeds.**

4

5

6 Gavin J. Fenske^{1,2}, Sudeep Ghimire^{1,2}, Linto Antony^{1,2}, Jane Christopher-Hennings^{1,2}, and Joy
7 Scaria^{1,2*}

8

9 ¹ Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings
10 SD 57007, USA

11 ²South Dakota Center for Biologics Research and Commercialization, SD, USA.

12

13 *Corresponding Author: JoyScaria@gmail.com

14

15

16

17

18

19

20

21 **Abstract**

22 Bacterial communities in the hindguts of pigs have a profound impact on health and disease. Yet
23 very limited studies have been performed outside intensive swine farms to determine pig gut
24 microbiome composition in natural populations. Feral pigs represent a unique situation where the
25 microbiome structure can be observed outside the realm of modern agriculture. Additionally,
26 Tamworth pigs that freely forage were included to characterize the microbiome structure of this
27 rare breed. In this study, gut microbiome of feral and Tamworth pigs were determined using
28 metagenomics and culturomics. Tamworth pigs are highly dominated by Bacteroidetes primarily
29 composed of the genus *Prevotella* whereas feral samples were more diverse with almost equal
30 proportions of Firmicutes and Bacteroidetes. In total, 46 distinct species were successfully
31 isolated from 1000 colonies selected. The combination of metagenomics and culture techniques
32 facilitated a greater retrieval of annotated genes than either method alone. Furthermore, the
33 naturally raised Tamworth pig microbiome contained more number of antibiotic resistance genes
34 when compared to feral pig microbiome. The single medium based pig microbiota library we
35 report is a resource to better understand pig gut microbial ecology and function by assembling
36 simple to complex microbiota communities in bioreactors or germfree animal models.

37

38

39

40

41

42 **Introduction**

43 The microbiome in the hindgut of mammals has been associated with feed conversion
44 efficiency (Singh, et al. 2014: 145-54), pathogen exclusion (Piewngam, et al. 2018: 532-7), and
45 the production of metabolites that directly influence host signaling pathways (Byndloss, et al.
46 2017: 570-5). It has become clear in recent years, that the microbiome has a drastic impact on
47 host health. Many current methods to study the swine microbiome, are based upon dietary
48 intervention (Hedegaard, et al. 2016: e0147373, Metzler-Zebeli, et al. 2015: 8489). That is, a
49 dietary substrate is introduced to the animal and an effect on microbiome composition, typically
50 16s rRNA analysis, is measured. Within the swine industry, there is an upswell of work devoted
51 to increasing feed conversion rate ; feed alone accounts for nearly 60% of production costs
52 (Jing, et al. 2015: 11953). While focusing on feed conversion efficiency makes economic sense,
53 the process disregards the biological factors that shaped hindgut evolution, and thus the evolution
54 of the microbiome in pigs. Much in the same way that sampling of traditional hunter-gatherers
55 has provided insight into the microbiome of humans outside the realms of modern dietary
56 practices (Smits, et al. 2017: 802). Feral pigs in the American South may provide a model of the
57 pig microbiome outside the realm of modern agricultural processes.

58 Currently there are an estimated 6 million feral pigs in the United States (USDA 2018).
59 Feral pigs were first introduced in the early 1500s by Spanish settlers and cause significant
60 ecological damage. It has been shown that feral pigs decrease the amount of plant litter and cover

61 in areas they feed (Siemann, et al. 2009: 546-53). Yet, with the ecological and economic toll
62 feral pigs exert, little study has been conducted to elucidate the structure of their microbiome.
63 Here, we used feral pigs as a case study to compare against Tamworth breed pigs. The Tamworth
64 breed is thought to be descended from the Old English Forest pig and has not been crossed or
65 improved with other breeds since the late 18th Century (British Pig Association n.d.). The breed
66 is not a traditional animal used in high production agriculture, bred instead for its tolerance to
67 cold weather and ability to forage. Given Tamworth's unique heritage, close relation to an
68 indigenous pig species in the British Isles, and dietary habits closely matching wild pigs, we
69 chose to include them as another model of the pig microbiome outside of the influence of
70 modern agriculture. Additionally, the Tamworth breed is under watch by the Livestock
71 Conservancy, after previously being designated as threatened, and the microbiome composition
72 has yet to be characterized.

73 Here we attempt to characterize the microbiomes of Tamworth and feral pigs using
74 metagenomic sequencing and high throughput culturomics on direct colon and cecum contents.
75 To date, modern culturomic efforts have been reserved almost exclusively to human fecal
76 samples and we look to extend such methodology to pigs. The culture strategy employs a single
77 medium with various selection screens to shift the taxa retrieved. A single medium isolation
78 strategy will facilitate downstream defined community studies. For example, simple to complex
79 bacterial communities can be assembled in bioreactors to study the mechanistics of pig gut

80 microbiome succession(Auchtung, et al. 2015: 42). Similiarly, colonization of such defined
81 communities constituted from a well characterized gut microbiome library could reveal how gut
82 bacterial species or combinations impact gut development and immunity(Goodman, et al. 2011:
83 6252-7). We further characterized the representative species genomes from our library by whole
84 genome sequencing. Availability of a well characterized strain library with genome information
85 will facilitate future studies to better understand the role of pig gut microbiome in health and
86 disease.

87 **Materials and Methods**

88 **Sample Collection and Preparation**

89 Permission was granted from purchasers of three Tamworth pigs to obtain colon and cecum
90 samples immediately following slaughter. Small incisions were made into either the colon or
91 cecum with a sterile disposable scalpel. Lumen contents were gently squeezed into sterile 50 mL
92 tubes, mixed with an equal proportion of 40% anaerobic glycerol (final concentration 20%
93 anaerobic glycerol), and immediately snap frozen in liquid nitrogen. For culture preparation,
94 samples were pooled under anaerobic conditions in a vinyl chamber (Coy Labs, USA). Feral
95 samples were kindly provided by boar hunters in Texas, US. A similar procedure was followed
96 where colon and cecum samples were taken immediately following evisceration, mixed with
97 anaerobic glycerol and frozen.

98 **Metagenomics**

99 DNA was extracted from gut samples using the DNeasy PowerSoil kit (Qiagen, Germany)
100 following the provided kit protocol. After extraction, Microbial DNA was enriched with the

101 NEBNext® Microbiome DNA Enrichment Kit (New England Biolabs, US) to remove host DNA
102 present after DNA extraction. Metagenomic sequencing was conducted on the Illumina MiSeq
103 platform utilizing V2 (250 bp) paired-end sequencing chemistry. Raw sequencing reads were
104 quality controlled using the read-qc module in the software pipeline metaWRAP (Uritskiy, et al.
105 2018: 158). Briefly, reads are trimmed to PHRED score of > 20 and host reads not removed by
106 enrichment were removed by read-mapping against a reference pig genome
107 (GCF_000003025.6). Resultant reads from read-qc are hereby referred to as high-quality reads.
108 High-quality reads were passed to Kaiju (Menzel, et al. 2016: 11257) for taxonomy annotation
109 against the proGenomes database (<http://progenomes.embl.de/>, downloaded March 1, 2019).
110 Kaiju was run in default greedy mode and resultant annotation files were parsed in R (R Core
111 Team 2019). Mash (Ondov, et al. 2016: 132) was run to estimate the Jaccard distance between
112 samples. 10,000 sketches were generated for each sample and the sketches were compared using
113 the *dist* function provided in the Mash software.

114 Antimicrobial resistance (AMR) genes were predicted from metagenomics assemblies.
115 High-quality sequencing reads were assembled into contigs using the assembly module in
116 metaWRAP ; metaSPAdes (Nurk, et al. 2017: 824-34) was the chosen to assemble the reads:
117 contigs greater than 1,000 bp were retained. Prodigal (Hyatt, et al. 2010: 119-) was run to predict
118 open reading frames (ORF) using the metagenomic training set. Abricate (Seemann 2018) was
119 then run to annotate the ORF against the NCBI Bacterial Antimicrobial Resistance Reference
120 Gene Database (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047>, downloaded April 22,
121 2019).

122 Contigs were gathered into bins using three methods: MetaBAT2 (Kang, et al. 2019:
123 e27522v1), MaxBin2 (Wu, et al. 2016: 605-7), and CONCOCT (Alneberg, et al. 2014: 1144).

124 Contig bins were kept if the contamination was less than 5% and bin completeness was greater
125 than 85% as determined by CheckM (Parks, et al. 2015: 1043-55). Bins from the three methods
126 used were refined into a coherent bin set using the bin_refinement module in metaWRAP.
127 Refined bins were reassembled with a minimum contig length of 200 bp and the same
128 contamination and completeness parameters as initial bin construction. Metagenomic bin and
129 pure isolate phylogeny was generated using UBCG (Na, et al. 2018: 280-5) to identify and align
130 92 marker genes. Tree construction was conducted using RAxML (Stamatakis 2014: 1312-3) :
131 GTR+G4 nucleotide model. To identify KEGG homologues, ORF were identified in
132 metagenomic assemblies, bins, and culture genomes using Prodigal. The resultant ORF were
133 annotated against the KEGG database using KofamKOALA (Aramaki, et al. 2019: 602110) run
134 locally.

135 **Culturomics**

136 Colon and cecum samples were pooled respective to feral and Tamworth samples before culture
137 experiments. All culture experiments, including pooling, were conducted under anaerobic
138 conditions inside an anaerobic chamber (Coy Labs, USA). Samples were serially diluted in
139 sterile anaerobic PBS and spread plated onto the media conditions listed in supplemental table 1.
140 Plates were inoculated at 37°C for 48 hours before initial colony selection. 25 colonies were non-
141 selectively sub-cultured from the initial plate to yBHI plates. The procedure was repeated after
142 72 hours for a total of 50 colonies per media condition. Colonies were primarily identified using
143 MALDI-TOF (Bruker, Germany). MALDI-TOF scores greater than 2.0 were considered a
144 positive species identification. Scores between 1.7 - 2.0 were taken as positive genus
145 identification. Colonies without a positive MALDI-TOF identification were identified by
146 sequencing the 16s rRNA gene. Briefly, DNA was extracted from colonies using the DNeasy

147 Blood and Tissue Kit (Qiagen, Germany) following the manufacturer's protocol. 16s rRNA
148 sequence was amplified using 27F and 805R primers. The primer sequence is listed in
149 supplemental table 1. Genomes of the selected strains were sequenced on the MiSeq platform
150 utilizing paired-end v3 chemistry (300 bp). Sequencing reads from individual strains were
151 assembled with Unicycler (Wick, et al. 2017: e1005595) : minimum contig length of 200 bp. The
152 raw sequencing reads from the culture isolates and metagenomic samples are hosted at NCBI
153 under the BioProject ID PRJNA555322.

154 **Results**

155 **Tamworth and feral pigs harbor distinct microbiotas**

156 We chose to examine Tamworth breed and feral pigs as their lifestyles differ from traditionally
157 raised agricultural breeds. The Tamworth pigs sampled here were not given any antibiotics or
158 growth promoters and could freely graze. We hypothesized that such raising would cultivate a
159 microbiota that would be different to that of swine raised in intensive hog farms. To begin the
160 investigation, colon and cecum samples were metagenomically sequenced from both breeds.

161 Figure one shows the taxonomic annotation of the metagenomic reads respective to the source of
162 isolation. Contradicting our hypothesis, Feral and Tamworth pigs have inverse Bacteroidetes to
163 Firmicutes compositions. The phylum Bacteroidetes represents nearly 53% of all classified reads
164 in Tamworth pigs compared to 29% in feral pigs. The abundance of Firmicutes in Tamworth
165 samples is lower than feral samples at 15% and 28% respectively. Additionally, nearly 10%
166 more of the feral reads were unclassified compared to Tamworth (37%, 28%) indicating more of
167 the diversity in feral is not yet known in the proGenomes database. Turning to the genus level,
168 the large increase of Bacteroidetes in Tamworth pigs is primarily composed of the genus
169 *Prevotella*, Figure 1 (B) (38%, feral 11%). Remarkably, the genus *Bacteroides* showed almost

170 identical distribution between the feral and Tamworth pigs (7.6% and 7.6% respectively). The
171 increase of Firmicutes in feral samples is due to an increase in several genera such as
172 *Ruminococcus*, *Clostridium*, and *Eubacterium* corresponding with significantly higher Shannon
173 diversity index values compared to Tamworth ($p = 0.0024$, Wilcoxon rank-sum test). Full
174 phylum and genus annotation tables are provided in supplemental table 2.

175 To better understand the distance within a sample source, Tamworth vs. Tamworth, and
176 the difference between sources, Tamworth vs. feral, two clustering methods were employed.
177 First, Mash (Ondov, et al. 2016: 132) was used to sketch the reads sets and compile a distance
178 matrix (Figure 1C). Within the matrix, both Kmeans clustering and hierarchical clustering
179 (average-linkage) separate the samples into Tamworth and feral clades. Mash provides a method
180 to compare metagenomes that is not subject to annotation bias. Principal component analysis
181 (PCA) of the OTU tables was the second method employed. Again, two distinct groups of
182 Tamworth and feral samples are seen in the plot (figure 1D). Interestingly, the Tamworth
183 samples are more homogenous in both the Mash and PCA methods. All pigs were taken from the
184 same farm and this may account for the lower inter-animal microbiome divergence. Thus, the
185 Tamworth and feral pigs examined here harbor distinct microbiotas. Tamworth samples are
186 dominated by the phylum Bacteroidetes, which in turn is largely comprised of *Prevotella*. Feral
187 samples show a much more even distribution of Firmicutes and Bacteroidetes and are more
188 diverse in general.

189 Stated earlier, Tamworth pigs sampled were not given antibiotics in feed nor given any
190 growth promoters. We hypothesized that the lack of antimicrobial agents would correspond to a
191 relatively low number of AMR homologues in the Tamworth microbiota. Additionally, as feral
192 animals (we presume) do not uptake antimicrobials, their AMR number would be low as well.

193 Confoundingly, Tamworth pigs' microbiomes contain at least eight AMR homologues.

194 Additionally, all Tamworth samples yield more AMR homologues than feral samples (figure 2).

195 All Tamworth samples contain four putative AMR genes: *cfxA*, *Inu(AN2)*, *mef(En2)*, and *tet(40)*.

196 No common pattern is apparent for Feral samples; *tet(Q)* is found in 5 of 9 feral samples. Thus,

197 in microbiome composition and AMR presence Tamworth pigs do not mirror feral pigs in

198 microbiome composition nor structure. The full result of the antibiotic query is listed in

199 supplemental table 3.

200 **Selective screens shift plating diversity**

201 High throughput culturomics was the second method employed to sample the two

202 microbiomes. We chose culture sampling, in addition to sequencing methods, as we believed that

203 many low abundance taxa could be retrieved through culture methods that would be lost in

204 metagenomics. Also, the generation of a culture library enables defined community experiments

205 in the future. The culture sampling strategy utilized is as follows: a base medium (yBHI, or close

206 derivatives) had various selective screens (antibiotics, heat, bile, etc.,) applied to it. A finite

207 growing surface is available for colonization and some species will grow more rapidly and

208 subsequently outcompete others. If appropriate selective pressure is applied, we hypothesized

209 that interspecies selection would decrease allowing for taxa not retrieved in plain medium

210 conditions to grow. The approach is similar to one previously used to culture strains from human

211 fecal samples (Rettedal, et al. 2014: 4714). One major difference is said work used multiple

212 media compositions, rather than one as in our study. Ten media conditions were used for both

213 Tamworth and feral samples and are listed in supplemental table 1. 25 colonies were picked at

214 48- and 72-hours post inoculation, for a total of 50 colonies per condition. In total, 1000 colonies

215 were selected from plates, of which 884 were successfully identified. Selective screens shifted

216 the taxa retrieved (figures 3). Figure 3 depicts the number of isolates per media condition with a
217 bar plot depicting the total number of isolates retrieved. *Lactobacillus* sp. was the most abundant
218 organism retrieved (166 isolates) followed by *Escherichia coli* (86), *Lactobacillus mucosae* (74)
219 and *Streptococcus hyointestinalis* (64). The top ten isolates cultured are listed in table 1. One
220 case of selection completely changing plate diversity compared to plain media is that of heat
221 shock treatment. As expected, many spore forming genera including *Bacillus* and *Clostridium*
222 were only able to grow when the inoculum was heated to kill vegetative cells. The selective
223 screens placed upon yBHI not only shifted the taxa retrieved from each plating condition as
224 shown in Figure 3, but also shifted species richness and evenness (figure 4). The most diverse
225 plating condition (Shannon Index) for both Tamworth and feral samples was obtained from plain
226 yBHI : showing as a log-normal community distribution. Similar log-normal community
227 structures are observed for BSM (Tamworth only), Erythromycin and heat shock treatments. Bile
228 treatments and chlortetracycline exhibited strong selective pressure shown as geometric series in
229 the species-rank abundance plots (figure 4). Most of the taxa retrieved from the bile condition
230 were identified as Proteobacteria, indicating that the dosage of bile (1 g / L) was too high.

231 The culture strategy did not recapitulate the community in the inoculum as defined by
232 metagenomics. In both Tamworth and feral samples, a high number of Firmicutes and
233 Proteobacteria were isolated, compared to the metagenomic sampling where Bacteroidetes was
234 the most abundant phylum for both sources. If we disregard the bile conditions, which were
235 dominated by Proteobacteria, yBHI clearly selects for common Firmicutes genera including:
236 *Lactobacillus*, *Streptococcus*, and *Bacillus*. While the screens were successful in increasing the
237 total number of species retrieved, no condition matched the inoculum in form. *Prevotella* for
238 example, the most abundant genus in Tamworth pigs, was only retrieved seven times from 500

239 colonies. Taken together, the strategy was successful in gathering many isolates that can grow on
240 a common medium but failed in that the most abundant taxa were not retrieved in proportion to
241 the inoculum.

242 **Culturing captures genomic information not captured in metagenomics**

243 The sampling strategy employed did not recapitulate the inoculum community. However, one of
244 the main reasons we chose to culture was that we believed rare taxa would provide information
245 that would be loss to metagenomics. To examine this, we sequenced selected isolates and
246 generated 81 high quality metagenomic bins (completeness > 85%, contamination < 5%). The
247 phylogeny of the metagenomic bins and culture genomes was estimated (figure 5). Consistent
248 with read taxonomy, many of the bins constructed from both Tamworth and feral samples were
249 annotated to the phylum Bacteroidetes. The phyla Firmicutes, Proteobacteria and Actinobacteria
250 were comprised almost entirely of isolate genomes. Isolate genomes not only populated clades of
251 the tree missed by metagenomic bins, but provided genes not observed in metagenomic
252 assemblies nor bins (figure 6). Open reading frames (ORF) were predicted from metagenomic
253 assemblies, metagenomic bins, and culture isolate and were annotated against the KEGG
254 database. Figure 6 shows the abundance (natural log) of KEGG homologues respective to the
255 source of the ORF. The full KEGG annotations from the bins, isolates, and metagenomes are
256 provided in supplemental table 4. Metagenomic bins contained less information than the
257 metagenomic assemblies. This is expected as the bins are derived from contigs in the assemblies
258 and not all of the contigs will be gathered into bins. The isolates however provided KEGG
259 homologues that were completely missed through culture-independent methods. Thus, culture
260 and culture-independent methods can augment a microbiota analysis providing information that
261 the other method cannot capture.

262

263 **Discussion**

264 Metagenomic and culture analysis revealed that despite the “organic” raising of the Tamworth
265 pigs studied (ability to forage, no antimicrobials), their microbiome does not resemble that of
266 feral pigs. While it is true that the two most abundant genera were the same for both sources,
267 *Prevotella* and *Bacteroides*, the Tamworth pigs examined were rather homogenous in
268 microbiome composition and were dominated by the genus *Prevotella*. An increase of *Prevotella*
269 in human samples has been attributed to increase of dietary fiber (David, et al. 2014: 559-63, De
270 Filippo, et al. 2010: 14691-6, Smith, et al. 2013: 548-54). It was noted that the Tamworth pigs
271 were fed a high forage diet and were bedded on alfalfa straw. The high dietary fiber intake in
272 Tamworth pigs may be responsible for the high levels of *Prevotella* and could account for the
273 lower diversity values compared to feral pigs. The exact diet of the feral pigs is unknown, but it
274 has been observed that a major portion of feral pigs diet in Texas is composed of vegetation
275 (Taylor and Hellgren 1997: 33-9). *Prevotella* has been identified as the most abundant genus in
276 the swine microbiome to date (Holman, et al. 2017: e00004-17) and the sample size is simply too
277 small to discern whether the large dominance of *Prevotella* in Tamworth pigs is breed or diet
278 specific in nature.

279 Despite the high abundance of *Prevotella* in both Tamworth and feral pigs, and being the most
280 abundant genus in pigs, the sampling strategy we employed only isolated seven *Prevotella* isolates from
281 Tamworth samples (7/500, 1.4%) and no *Prevotella* was isolated from the feral inoculum. In contrast,
282 several genera including *Lactobacillus*, *Escherichia*, *Streptococcus*, and *Bifidobacterium* were
283 overrepresented in culture samples compared to metagenomic sequencing. Our culture results
284 align with an early culture examination of the pig microbiome where the two most abundant

285 isolates cultured were gram-positive cocci and *Lactobacillus* (Russell 1978: 187-93). Both our
286 work and the earlier work relied upon complex media derived largely of peptone digests. As
287 *Prevotella* is associated with an increase of dietary fiber, work will be needed to develop a
288 defined media that is not based upon peptides such as yBHI. Culturomic techniques have largely
289 focused on human fecal samples. Such studies have been wildly successful in culturing many
290 bacteria that were previously thought to be “unculturable” (Browne, et al. 2016: 543, Lagier, et
291 al. 2016: 16203). Many of the techniques rely upon anaerobic plating onto multiple media
292 formulations, selection of single colonies, and identification. While the multiple media approach
293 generates a higher number of taxa, one study isolated over 1,300 species (Lagier, et al. 2016:
294 16203), creating multiple media formulations can be expensive and time-consuming.
295 Additionally, bacteria isolated from different media may not grow together on a common media,
296 forfeiting any combined in vitro experimentation. Given the importance of swine in global
297 agricultural, coordinated culture efforts are needed to develop defined community models. Such
298 reduced communities will help to uncover the impact of major ecological principles (drift,
299 selection, speciation, dispersion) at work in the swine hindgut.

300 One of the original motivations for this work was to establish the microbiotas of pigs
301 outside of traditional agricultural processes. Remarkably, it is the Tamworth pigs and not the
302 feral pigs that depart from the pig microbiota previously established (Holman, et al. 2017:
303 e00004-17). The ratio of Firmicutes to Bacteroidetes is roughly equal in feral samples and that
304 result aligns with agricultural animals. Tamworth at the phylum level is dominated by
305 Bacteroidetes. Turning to the genus level, the top genus from both sources, *Prevotella*, aligns
306 with the most abundant genus isolated from agricultural animals (Holman, et al. 2017: e00004-
307 17). The genus *Bacteroides* is the second most abundant genus identified in both Tamworth and

308 feral samples and is found in greater abundance than in agricultural animals. The nearly identical
309 distribution of *Bacteroides* between Tamworth and feral, and the discrepancy between
310 agricultural animals may indicate that traditional agricultural processes are negatively selecting
311 for the genus. It has been shown that after weaning *Bacteroides* levels plummet in growing pigs
312 and are supplanted by *Prevotella* (Frese, et al. 2015: 28-). Yet in our samples a stable population
313 of *Bacteroides* has persisted. It should be noted that the discrepancy may be accounted for by
314 differing identification methods, metagenomics vs amplicon sequencing, or could be an artifact
315 of sampling size.

316 The Tamworth pigs harbored more AMR homologues than the feral pigs despite no
317 antimicrobials being provided. It has been shown previously that organically raised pigs harbor
318 significantly more chlortetracycline resistant isolates than feral pigs (Stanton, et al. 2011: 7167).
319 The previous report and our findings indicate that feral pigs are not a significant reservoir of
320 AMR genes. However, the presence of AMR genes in Tamworth pigs may be contributed to
321 recombination. Previous work has established that AMR genes may cluster together with mobile
322 genetic elements and that pigs typically harbor genes conferring resistance to agents not
323 typically used on a particular farm (Johnson, et al. 2016: e02214-15).

324 Recent studies have proposed metagenomic binning as a culture-independent method to
325 extract genomes from samples (Albertsen, et al. 2013: 533, Pasolli, et al. 2019: 649-62.e20,
326 Tully, et al. 2018: 170203, Wang, et al. 2019: 48). However, one of the main pitfalls of
327 metagenomic binning is that metagenomic assemblers struggle to assemble contigs of closely
328 related taxa, especially if the organisms are found in low abundance (Ayling, et al. 2019). With
329 knowledge now that strain-level variation occurs in species of the microbiome (Lloyd-Price, et

330 al. 2017: 61-6), targeted culture efforts are needed to confirm that strain variation observed in
331 metagenomic data is not simply due to assembler bias. Also, a large portion of genes were not
332 annotated in metagenomic assemblies that were identified in culture isolates. We propose a
333 wholistic approach where metagenomic sequencing coupled with high-throughput culture
334 strategies can effectively cover the shortcomings of either technique, leading to a more complete
335 method of microbiome sampling.

336

337 **Acknowledgements**

338 Computations supporting this project were performed on High-Performance Computing systems
339 managed by Research Computing Group, part of the Division of Technology and Security at
340 South Dakota State University. This work was in part supported by the grants from the South
341 Dakota Governors Office of Economic Development (SD-GOED) and the United States
342 Department of Agriculture (grant numbers SD00H532-14 and SD00R646-18) awarded to JS. We
343 greatly thank Tommy Harrison, Jeff Hopper and Brett Grogan for their help in collecting feral
344 pig gut microbiota samples. We are saddened by the untimely passing away of Tomas Harrison
345 during the course of this study. We dedicate this manuscript to Tom's memory.

346

347 **References**

348

349 Albertsen M, Hugenholtz P, Skarszewski A *et al.* Genome sequences of rare, uncultured bacteria obtained
350 by differential coverage binning of multiple metagenomes. *Nature Biotechnology* 2013;31: 533.
351 Alneberg J, Bjarnason BS, de Bruijn I *et al.* Binning metagenomic contigs by coverage and composition.
352 *Nature Methods* 2014;11: 1144.

353 Aramaki T, Blanc-Mathieu R, Endo H *et al.* KofamKOALA: KEGG ortholog assignment based on profile
354 HMM and adaptive score threshold. *bioRxiv* 2019, DOI 10.1101/602110: 602110.

355 Association BP. The Tamworth, n.d.

356 Auchtung JM, Robinson CD, Britton RA. Cultivation of stable, reproducible microbial communities from
357 different fecal donors using minibioreactor arrays (MBRAs). *Microbiome* 2015;3: 42.

358 Ayling M, Clark MD, Leggett RM. New approaches for metagenome assembly with short reads.
359 *Briefings in Bioinformatics* 2019, DOI 10.1093/bib/bbz020.

360 Browne HP, Forster SC, Anonye BO *et al.* Culturing of 'unculturable' human microbiota reveals novel
361 taxa and extensive sporulation. *Nature* 2016;533: 543.

362 Byndloss MX, Olsan EE, Rivera-Chavez F *et al.* Microbiota-activated PPAR-gamma signaling inhibits
363 dysbiotic Enterobacteriaceae expansion. *Science* 2017;357: 570-5.

364 David LA, Maurice CF, Carmody RN *et al.* Diet rapidly and reproducibly alters the human gut
365 microbiome. *Nature* 2014;505: 559-63.

366 De Filippo C, Cavalieri D, Di Paola M *et al.* Impact of diet in shaping gut microbiota revealed by a
367 comparative study in children from Europe and rural Africa. *Proc Natl Acad Sci U S A* 2010;107:
368 14691-6.

369 Frese SA, Parker K, Calvert CC *et al.* Diet shapes the gut microbiome of pigs during nursing and
370 weaning. *Microbiome* 2015;3: 28-.

371 Goodman AL, Kallstrom G, Faith JJ *et al.* Extensive personal human gut microbiota culture collections
372 characterized and manipulated in gnotobiotic mice. *Proc Natl Acad Sci U S A* 2011;108: 6252-7.

373 Hedegaard CJ, Strube ML, Hansen MB *et al.* Natural Pig Plasma Immunoglobulins Have Anti-Bacterial
374 Effects: Potential for Use as Feed Supplement for Treatment of Intestinal Infections in Pigs.
375 *PLOS ONE* 2016;11: e0147373.

376 Holman DB, Brunelle BW, Trachsel J *et al.* Meta-analysis To Define a Core Microbiota in the Swine Gut.
377 *mSystems* 2017;2: e00004-17.

378 Hyatt D, Chen G-L, Locascio PF *et al.* Prodigal: prokaryotic gene recognition and translation initiation
379 site identification. *BMC bioinformatics* 2010;11: 119-.

380 Jing L, Hou Y, Wu H *et al.* Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an
381 important network for differential Residual Feed Intake in pigs. *Scientific Reports* 2015;5: 11953.

382 Johnson TA, Stedtfeld RD, Wang Q *et al.* Clusters of Antibiotic Resistance Genes Enriched Together
383 Stay Together in Swine Agriculture. *mBio* 2016;7: e02214-15.

384 Kang D, Li F, Kirton ES *et al.* MetaBAT 2: an adaptive binning algorithm for robust and efficient
385 genome reconstruction from metagenome assemblies. *PeerJ Preprints* 2019;7: e27522v1.

386 Lagier J-C, Khelaifia S, Alou MT *et al.* Culture of previously uncultured members of the human gut
387 microbiota by culturomics. *Nature microbiology* 2016;1: 16203.

388 Lloyd-Price J, Mahurkar A, Rahnavard G *et al.* Strains, functions and dynamics in the expanded Human
389 Microbiome Project. *Nature* 2017;550: 61-6.

390 Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju.
391 *Nature Communications* 2016;7: 11257.

392 Metzler-Zebeli BU, Schmitz-Esser S, Mann E *et al.* Adaptation of the Cecal Bacterial Microbiome of
393 Growing Pigs in Response to Resistant Starch Type 4. *Applied and Environmental Microbiology*
394 2015;81: 8489.

395 Na S-I, Kim YO, Yoon S-H *et al.* UBCG: Up-to-date bacterial core gene set and pipeline for
396 phylogenomic tree reconstruction. *Journal of Microbiology* 2018;56: 280-5.

397 Nurk S, Meleshko D, Korobeynikov A *et al.* metaSPAdes: a new versatile metagenomic assembler.
398 *Genome research* 2017;27: 824-34.

399 Ondov BD, Treangen TJ, Melsted P *et al.* Mash: fast genome and metagenome distance estimation using
400 MinHash. *Genome Biology* 2016;17: 132.

401 Parks DH, Imelfort M, Skennerton CT *et al.* CheckM: assessing the quality of microbial genomes
402 recovered from isolates, single cells, and metagenomes. *Genome research* 2015;25: 1043-55.

403 Pasolli E, Asnicar F, Manara S *et al.* Extensive Unexplored Human Microbiome Diversity Revealed by
404 Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. *Cell*
405 2019;176: 649-62.e20.

406 Piewngam P, Zheng Y, Nguyen TH *et al.* Pathogen elimination by probiotic Bacillus via signalling
407 interference. *Nature* 2018;562: 532-7.

408 R Core Team. R: A Language and Environment for Statistical Computing, 2019.

409 Rettedal EA, Gumpert H, Sommer MOA. Cultivation-based multiplex phenotyping of human gut
410 microbiota allows targeted recovery of previously uncultured bacteria. *Nature Communications*
411 2014;5: 4714.

412 Russell EG. Types and Distribution of Anaerobic Bacteria in the Large Intestine of Pigs. *Applied and*
413 *Environmental Microbiology* 1978;37: 187-93.

414 Seemann T. ABRicate: 0.8.0 Edition. GitHub, 2018.

415 Siemann E, Carrillo JA, Gabler CA *et al.* Experimental test of the impacts of feral hogs on forest
416 dynamics and processes in the southeastern US. *Forest Ecology and Management* 2009;258: 546-
417 53.

418 Singh KM, Shah TM, Reddy B *et al.* Taxonomic and gene-centric metagenomics of the fecal microbiome
419 of low and high feed conversion ratio (FCR) broilers. *Journal of Applied Genetics* 2014;55: 145-
420 54.

421 Smith MI, Yatsunenko T, Manary MJ *et al.* Gut microbiomes of Malawian twin pairs discordant for
422 kwashiorkor. *Science* 2013;339: 548-54.

423 Smits SA, Leach J, Sonnenburg ED *et al.* Seasonal cycling in the gut microbiome of the Hadza hunter-
424 gatherers of Tanzania. *Science* 2017;357: 802.

425 Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
426 *Bioinformatics (Oxford, England)* 2014;30: 1312-3.

427 Stanton TB, Humphrey SB, Stoffregen WC. Chlortetracycline-Resistant Intestinal Bacteria in Organically
428 Raised and Feral Swine. *Applied and Environmental Microbiology* 2011;77: 7167.

429 Taylor RB, Hellgren EC. Diet of Feral Hogs in the Western South Texas Plains. *The Southwestern*
430 *Naturalist* 1997;42: 33-9.

431 Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes
432 from the global oceans. *Scientific Data* 2018;5: 170203.

433 Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic
434 data analysis. *Microbiome* 2018;6: 158.

435 USDA. History of Feral Swine in the Americas: USDA, 2018.

436 Wang W, Hu H, Zijlstra RT *et al.* Metagenomic reconstructions of gut microbial metabolism in weanling
437 pigs. *Microbiome* 2019;7: 48.

438 Wick RR, Judd LM, Gorrie CL *et al.* Unicycler: Resolving bacterial genome assemblies from short and
439 long sequencing reads. *PLOS Computational Biology* 2017;13: e1005595.

440 Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes
441 from multiple metagenomic datasets. *Bioinformatics* 2016;32: 605-7.

442

443

444

445

446

447

448

449 **Figures**

450

451 **Fig 1. Metagenomic analysis of feral and Tamworth colon and cecum samples. (A)(B)**
452 Relative abundance of major phyla and genera annotated from sequencing reads respective to
453 isolation source. (C) Triangle matrix depicting the MASH distance between feral and Tamworth
454 samples. Clusters 1 and 2 are defined by kmeans clustering.

455

456 **Fig 2. Antimicrobial resistance (AMR) homologues annotated from metagenomic samples.**
457 Columns depict individual samples and rows correspond to AMR homologues. Blue color
458 depicts the presence and white color corresponds to absence. AMR homologues were considered
459 present if the coverage value was greater than 90% and a percent homology greater than 70%.

460

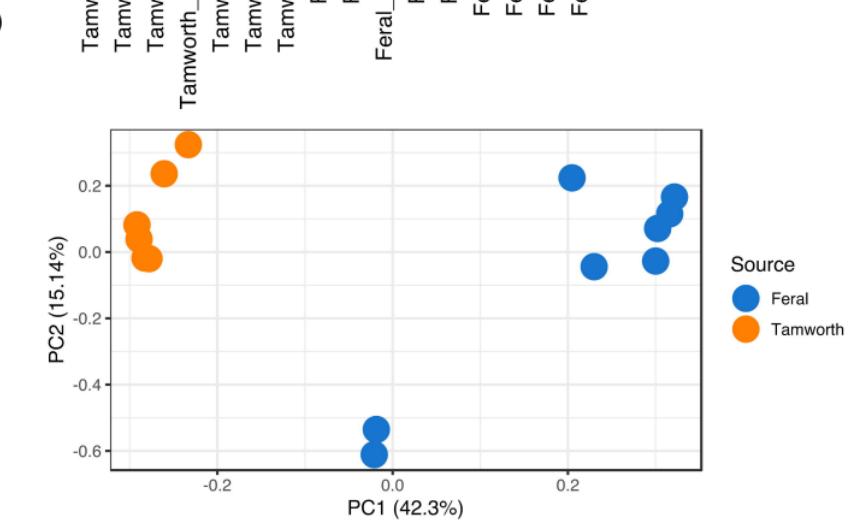
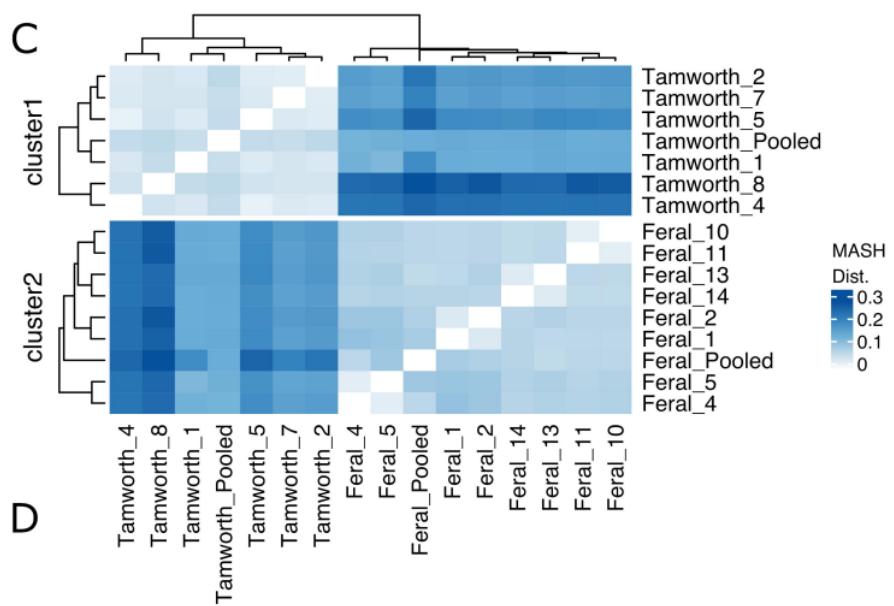
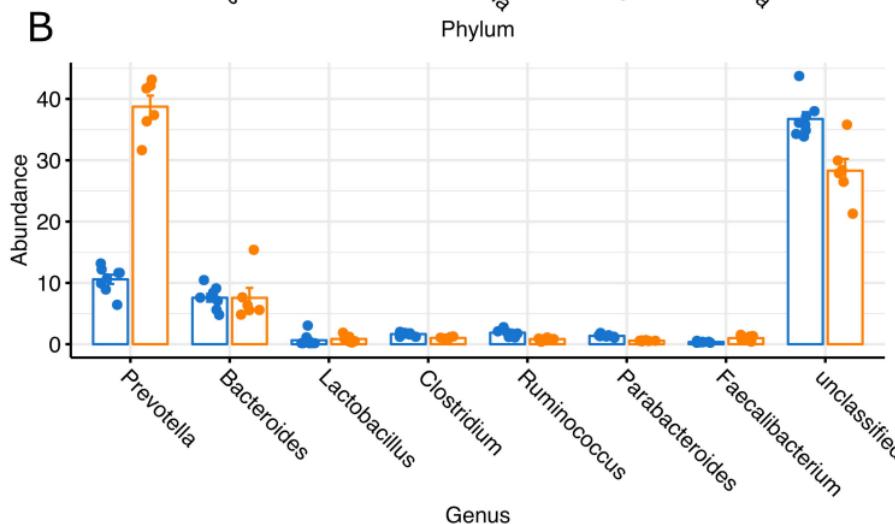
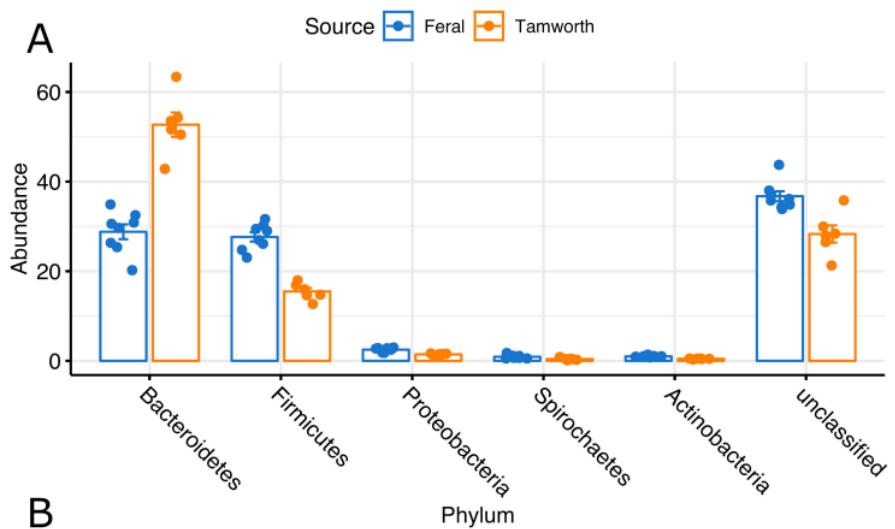
461 **Fig 3. Bacteria isolated from various media conditions.** Columns represent individual media
462 conditions and row correspond to bacterial taxa retrieved, cells are colored respective to the
463 number of isolates cultured per media condition. The corresponding bar plot to the left of the
464 matrices shows the total number of isolates retrieved per isolation source.

465

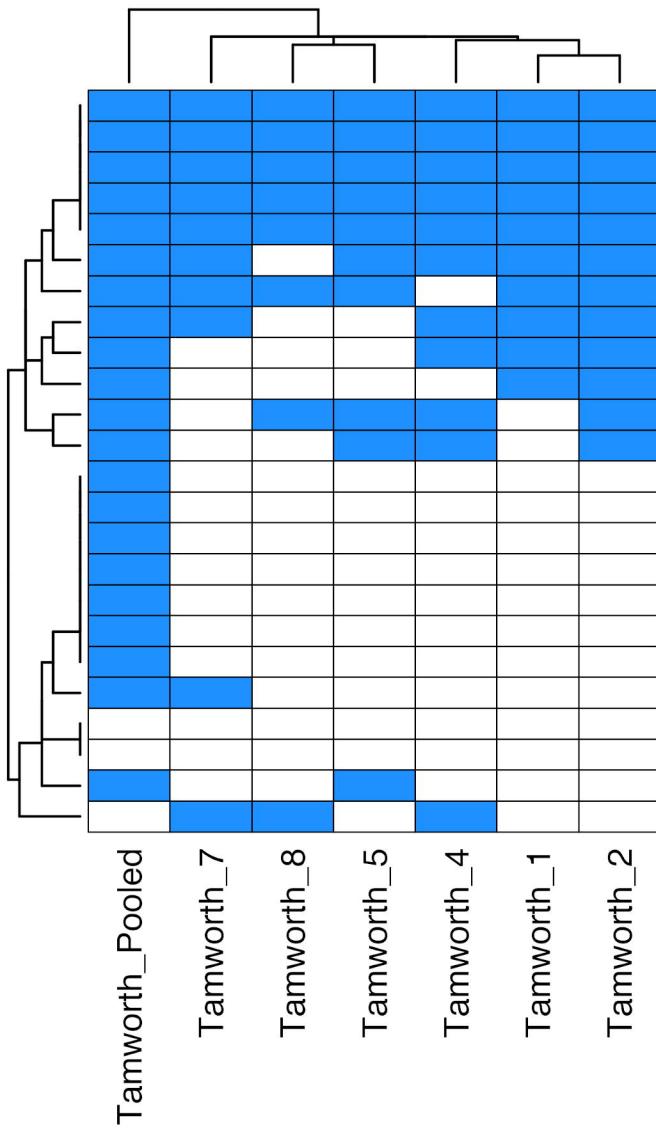
466 **Fig 4. Rank abundance curves of the various media conditions.** The community evenness of
467 the various media conditions is shown respective to the isolation source. The inlay plot depicts
468 the Shannon Index respective to the isolation source.

469

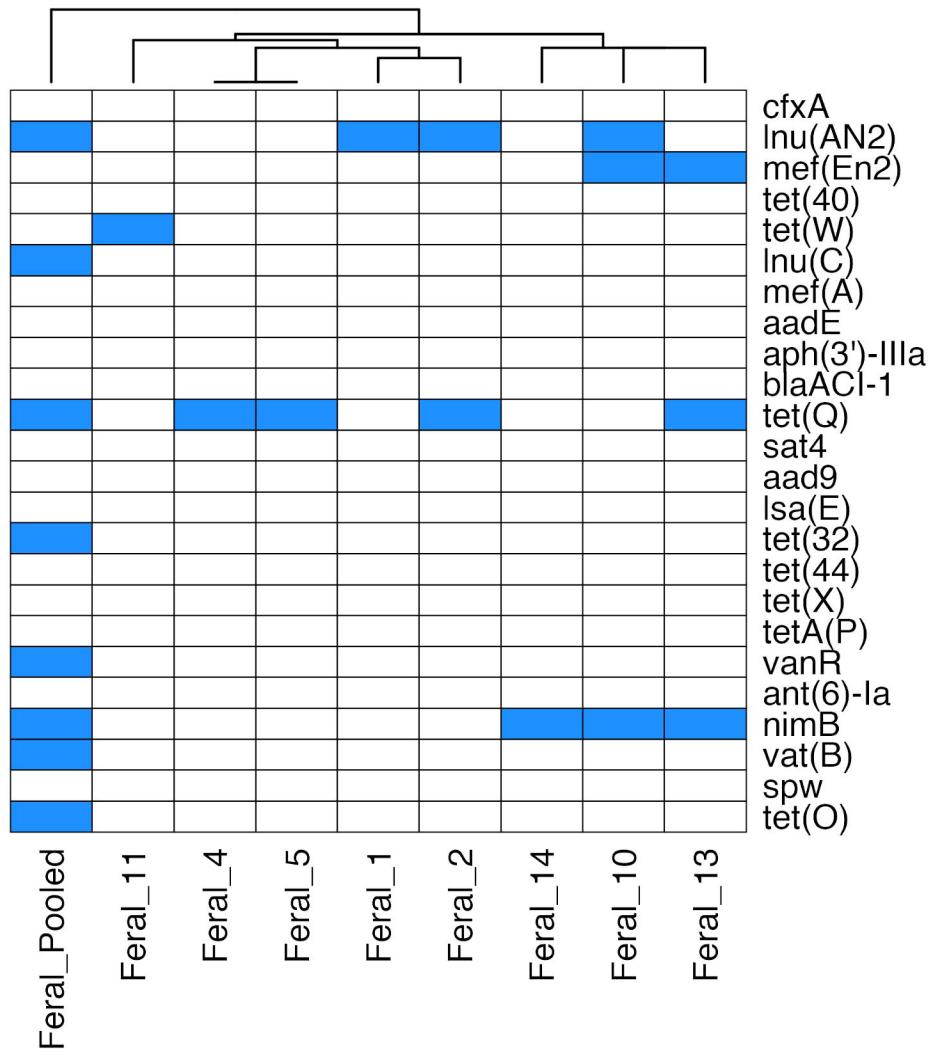
470 **Fig 5. Maximum-likelihood tree of metagenomic bins and culture genomes.** Tree was
471 constructed from a nucleotide alignment of 92 single-marker genes. General time reversible
472 (GTR) was chosen as the substitution model in tree construction.

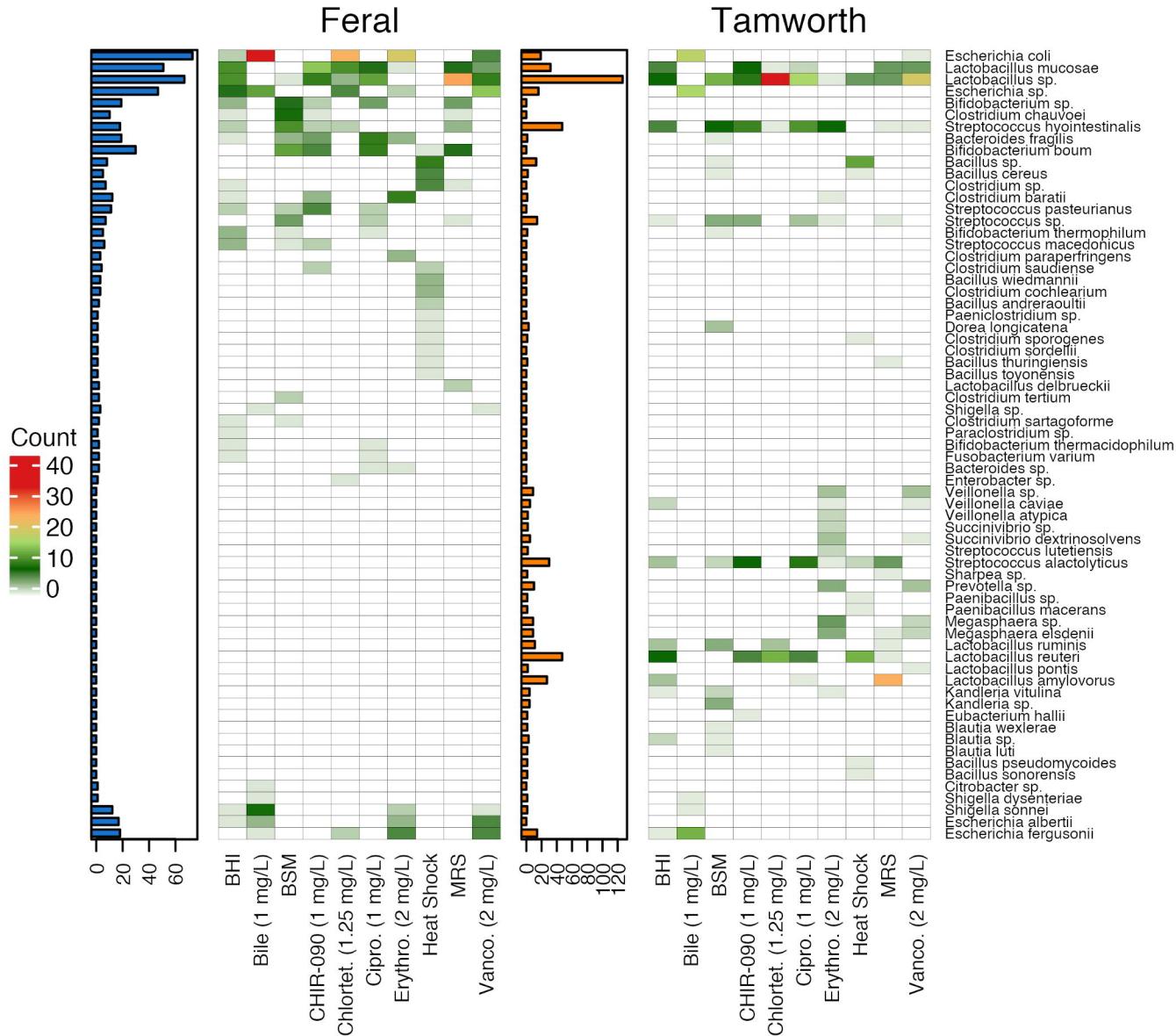




473

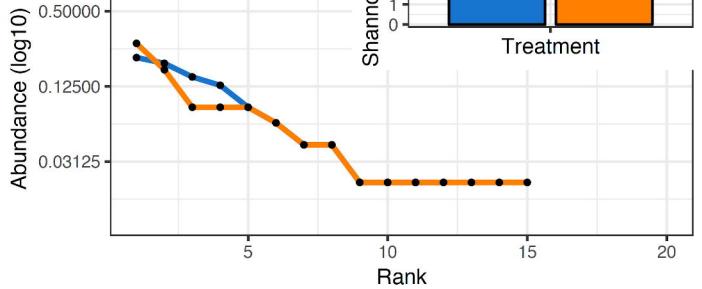
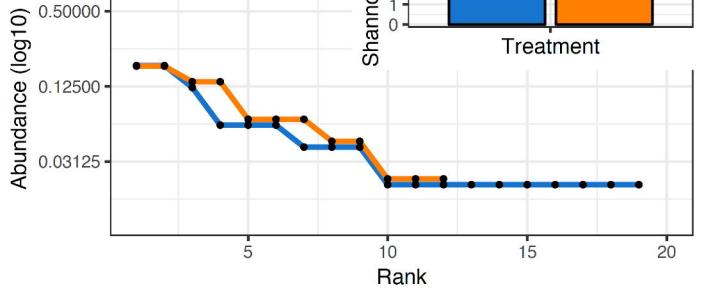
474 **Fig 6. KEGG annotation of open frames from metagenomic assemblies, bins, and culture**
475 **genomes.** Rows and columns are clustered using an average linkage method. KEGG annotations
476 counts are represented as the natural log to increase the clarity of the figure.

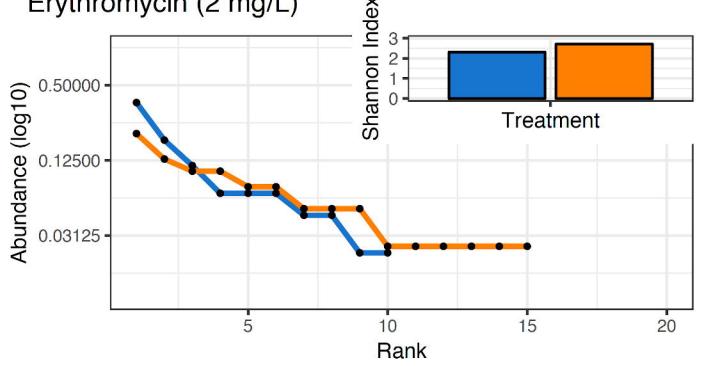

477

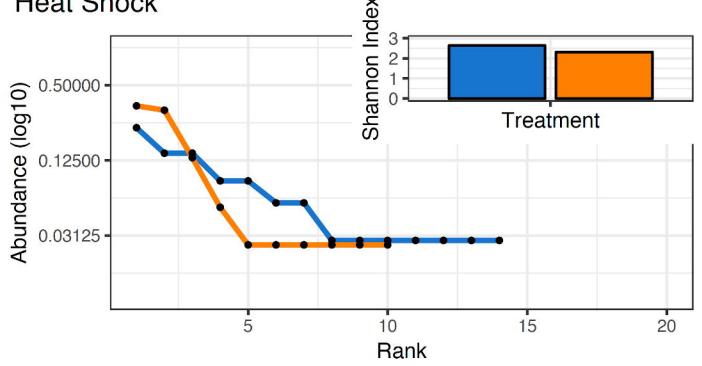
478


479

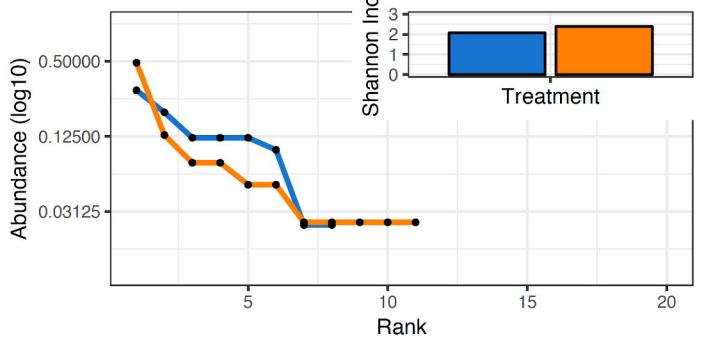


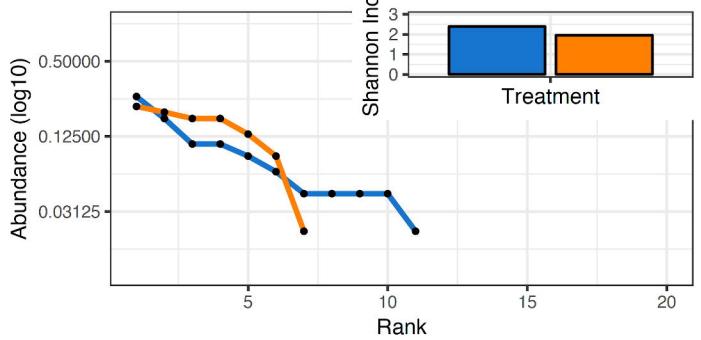


Tamworth

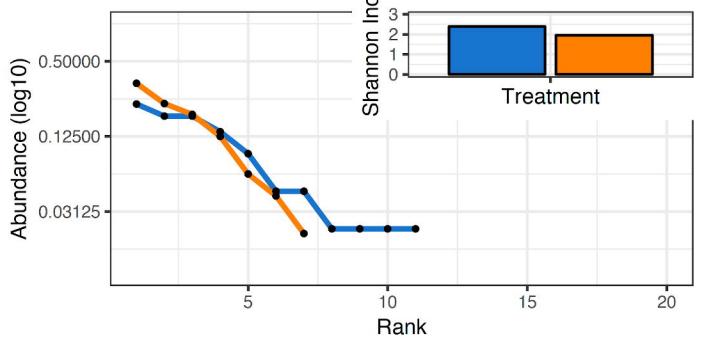

Feral

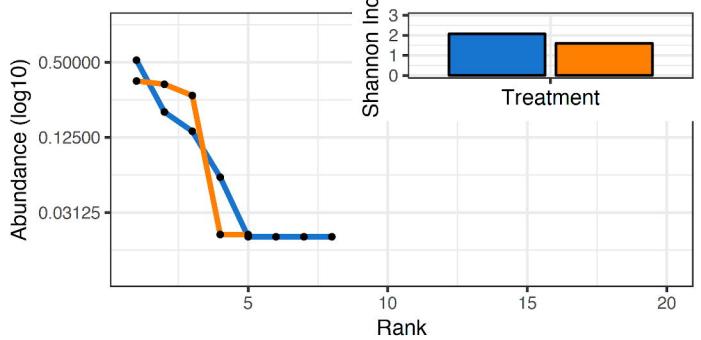


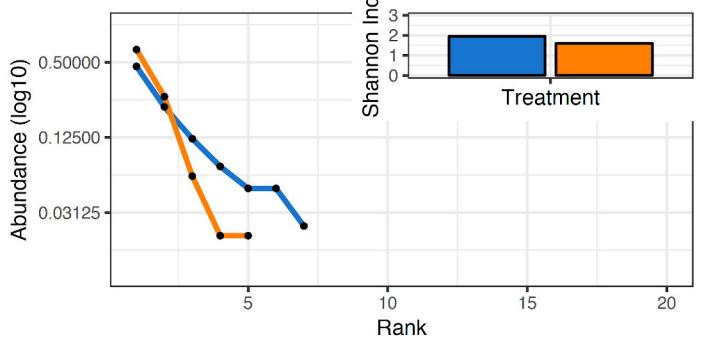

Erythromycin (2 mg/L)


Heat Shock

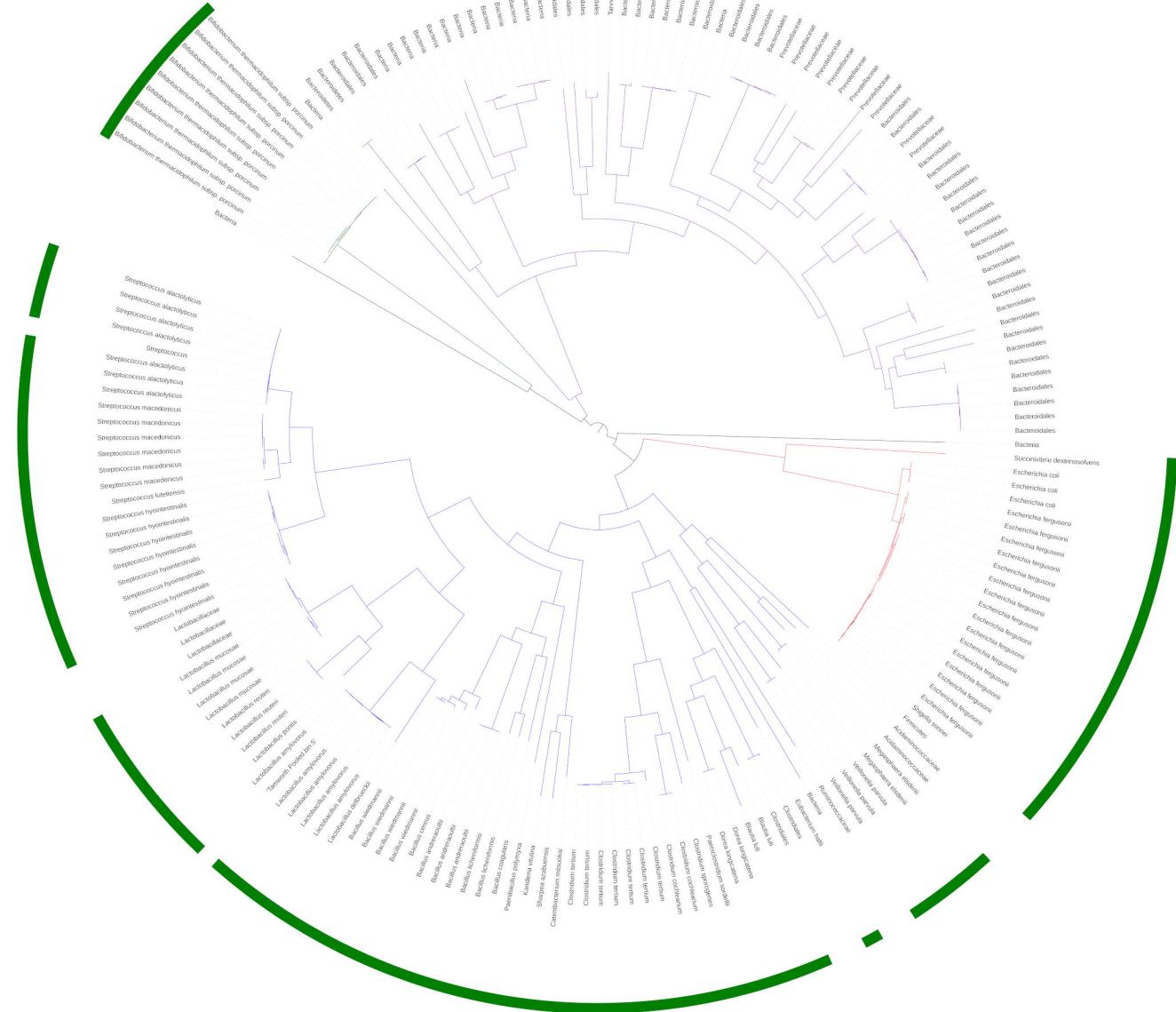

MRS

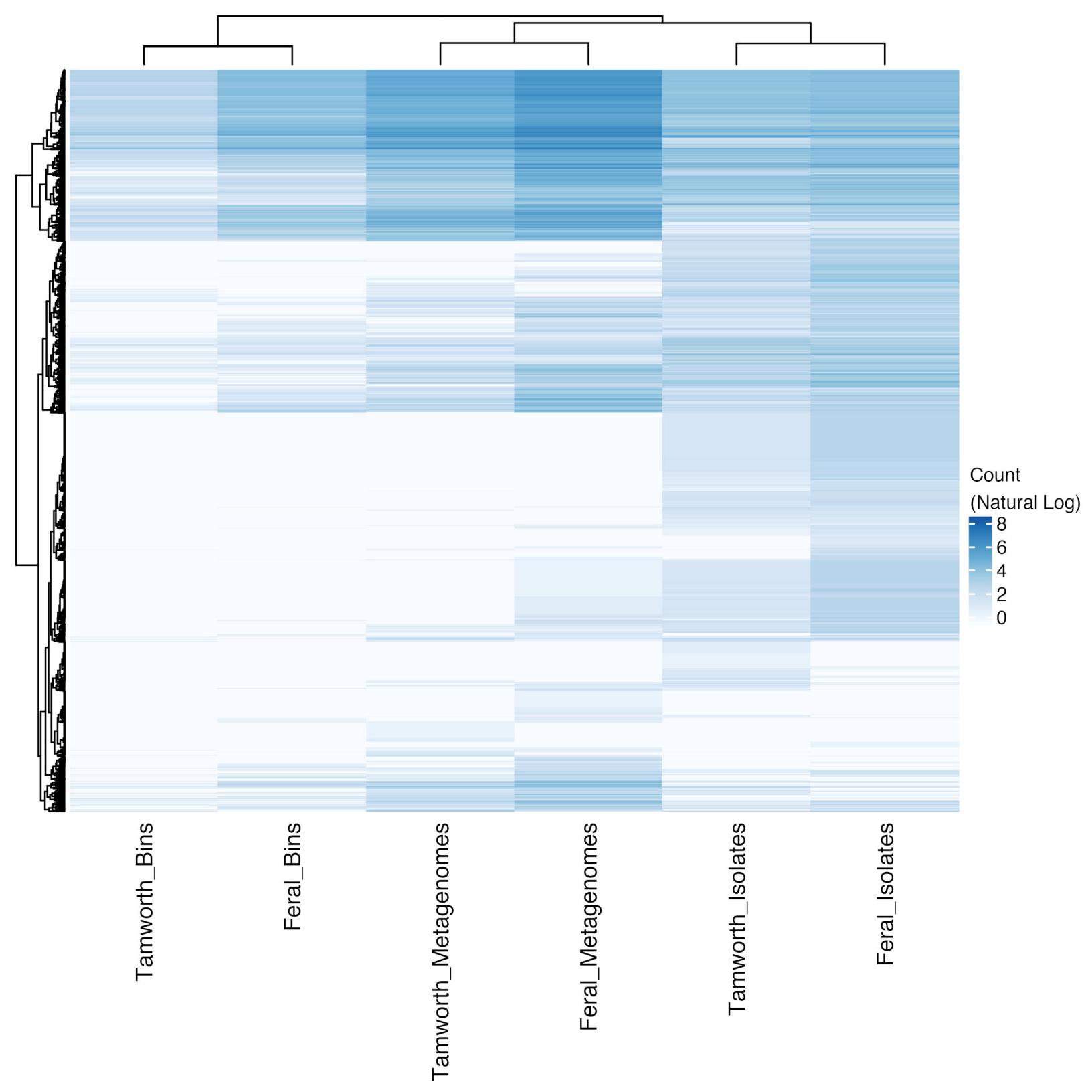

Vancomycin (2 mg/L)


CHIR-090 (1 mg/L)


Ciprofloxacin (1 mg/L)

Bile (1 mg/L)




Chlortet. (1.25 mg/L)

Phylum

- █ Bacteroidetes
- █ Proteobacteria
- █ Firmicutes
- █ Actinobacteria

