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Abstract

Pavlovian biases influence the interaction between action and valence by coupling
reward seeking to action invigoration and punishment avoidance to action suppression.
In this study we used an orthogonalised go/no-go task to investigate learning in 247
individuals across the human lifespan (7-80 years) to demonstrate that all participants,
independently of age, demonstrated an influence of Pavlovian control. Computational
modeling revealed peak performance in young adults was attributable to greater
sensitivity to both rewards and punishment. However in children and adolescents an
increased bias towards action but not reward sensitivity was observed. In contrast,
reduced learning in midlife and older adults was accompanied with decreased reward
sensitivity and especially punishment sensitivity. These findings reveal distinct learning
capabilities across the human lifespan that cannot be probed using conventional
go/reward no-go/punishment style paradigms that have important implications in life-

long education.
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Introduction

Adaptive behavioral choices maximize reward and minimize punishment. In order to
achieve this optimization, humans are equipped with two broad classes of mechanisms.
Firstly, a Pavlovian controller directly ties affectively important outcomes together with
learned predictions of these outcomes, to valence-dependent stereotyped behavioral
responses via a conceived hard-wired mechanism. Secondly, a more flexible,
instrumental controller learns choices on the basis of contingent consequences (Dayan
and Balleine, 2002). Generally these controllers favor the same choices rendering
learning fast and efficient. However in some circumstances, Pavlovian influences may
impair instrumental learning by prescribing the opposite of the instrumental controller
leading to sub-optimal behavioral choices (Dayan et al, 2006; Guitart-Masip et al,
2010).

A number of studies have shown that the success of instrumental learning critically
depends on whether reward or avoidance of punishment is paired with action or
inhibition. Using a go/no-go task that independently dissociates, i.e. orthogonalizes,
action and valence, young adults demonstrate striking asymmetry in instrumental
learning by being better at learning to emit a behavioral response in anticipation of
reward and better at withholding a response in anticipation of punishment (Guitart-
Masip et al.,, 2012b; Cavanagh et al, 2013, Chowdhury et al, 2013b; Guitart-Masip et al,
2014; Richter et al,, 2014). Computational modeling approaches in young adults have
shown this asymmetry in instrumental action learning is due to a Pavlovian coupling
between action and valence expectation where the strength of this bias relates to failure
in learning the conflicting conditions: withholding a response in anticipation of reward
and emitting a response in anticipation of punishment (Guitart-Masip et al, 2012b;
Cavanagh et al, 2013; Guitart-Masip et al, 2013). However a recent study has shown
that this coupling may also be due to instrumental mechanisms (Swart et al, 2017).
Learning success in this go/no-go task requires flexibility, inhibition and the ability to
use feedback and to detect reward contingencies. All of these abilities may critically rely
on prefrontal cortex (PFC) dependent executive functions, which develop during
adolescence but also decline in older age (Kray et al, 2004; Zelazo et al., 2004). Whilst
most of the previous studies using the aforementioned task have investigated young

adults, little attention has focused on how the processes underlying instrumental
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learning and potential conflict with Pavlovian control may change during differential
periods across the lifespan— namely during childhood and adolescence, young, midlife

and older age.

It has been widely stated that adolescents are highly sensitive to reward, which may
contribute to increased risky behavior during this developmental period (Casey et al,
2008). However it has also been suggested that this reward sensitivity may be adaptive
by promoting learning and exploration — critical for transition into adulthood (Spear,
2000; Casey, 2015). A recent study demonstrated that adolescents learn to
preferentially seek rewards rather than to avoid punishments, whereas young adults
learn both behaviors equally well (Davidow et al, 2016). However, previous studies
have not dissociated reward sensitivity from action learning, and it remains thus unclear
if this interpretation may be confounded by action requirements or to what extent
changes in reward sensitivity may influence the strength of coupling between action and
valence. This is particularly relevant in light of differential functional and anatomical
development of limbic regions, such as the striatum and cognitive control regions during
adolescence (Blakemore and Robbins, 2012; Shulman et al, 2016). Such, asymmetrical
development may translate into differential Pavlovian and instrumental strategies used

by children and adolescents compared to those employed in adulthood.

The human brain also undergoes substantial change during normal aging, which has
been associated with numerous cognitive changes (Bickman et al, 2006; Lindenberger,
2014). However it is not known how age-related differences in Pavlovian and
instrumental control may impact behavioral inflexibility in older adults or whether such
age-related changes are already evident in midlife adulthood. Previous work has shown
that administration of the dopamine precursor L-DOPA enhances the Pavlovian
influence of potential reward (Rutledge et al, 2015) and may restore reward prediction
errors in old age (Chowdhury et al, 2013a). Coupled with the known age-related decline
in the integrity of the dopaminergic system (Karrer et al, 2017), a loss of functional
dopamine may lead to a decrease in Pavlovian control in older age. Alternatively,
previous studies have shown that the PFC is involved in overcoming the Pavlovian bias
in young adults (Guitart-Masip et al, 2012b; Cavanagh et al, 2013). Thus, decreased
functionality of the PFC as a result of normal aging could also lead to increased

Pavlovian biases in older adults.
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The objective of this study was to explore how acquisition of optimal/adaptive
behavioral choices is differentially altered across the lifespan using an established
go/no-go task that orthogonalizes action and valence. In addition we used
computational modeling to investigate whether Pavlovian congruency is already evident
in healthy children and adolescents in support of a hard-wired bias and compared
behavior to young, midlife and older adults. Finally we assessed the extent to which
action and valence are coupled across the lifespan and whether flexible learning to

orthogonalize these two axes of behavioral control may vary with age.
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Results

247 healthy individuals from four age groups, namely children and adolescents (age: 7
to 16, n = 68), young adults (age: 18 to 30, n = 77), midlife adults (age: 31 to 60, n = 58),
and older adults (age 61 to 80, n = 44) performed a previously established valenced

go/no-go probabilistic learning task (Guitart-Masip et al, 2012b). Participants had to

learn through trial and error which of four fractal cues, preceding an easy visual target
detection task, indicated the need (1) to respond to obtain a monetary reward (go to
win), (2) to respond to avoid a monetary loss (go to avoid losing), (3) to withhold a
response to obtain a monetary reward (no-go to win) and (4) to withhold a response to
avoid a monetary loss (no-go to avoid losing) (see Figure 1). The outcome was
probabilistic whereby correct feedback was given in 80% of win/loss conditions. To
characterize the interaction of action and valence across the lifespan we investigated
acquisition of and overall accuracy in each of the four conditions and analyzed
differential influences of Pavlovian and instrumental learning using computational

modeling.

go to win go to avoid losing no-go to win no-go to avoid losing

1000 ms

250 - 3500ms

1500ms

1000ms

1000ms

ITI 750 -1500ms

Figure 1: Probabilistic monetary go/no-go task. Participants had to learn over the course
of 60 trials per condition, which fractal image was associated with responding or
withholding a response to achieve a successful outcome (win or avoid losing).
Responses indicated whether the circle presented after the fractal was located on the
right or left side. Correct feedback was only provided in 80% of the trials. Abbreviations:
ITI - inter-trial interval.
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Pavlovian bias across the lifespan

Performance as defined by percentage of correct (optimal) choices was assessed using a
4-way analysis of covariance (ANCOVA) with action (go/no-go), valence (win/lose) and
time (1st/2nd half) as within-subject factors, age group (children and adolescents/young
adults/midlife/older adults) as a between-subject factor and gender as a covariate. As in
previous studies (Guitart-Masip et al, 2012b, 2014; Richter et al, 2014) we observed
main effects of time (F1243 = 17.18, p < 0.0001) and action (F1,243 = 38.67, p < 0.0001) as
well as an action x time interaction (Fi243 = 8.27, p =0.004), and an action x valence
interaction (Fi243 = 14.21, p < 0.0005). Subjects demonstrated an increase in
performance from the first to the second half of the experiment (tz6=-14.90, p <
0.0001) and performed better in conditions requiring a go choice than in trials requiring
a no-go choice (tue=15.22, p<0.0001). Participants demonstrated an initial bias
toward go responses (15t(go-nogo)>2n4(go-nogo): tzae = 7.23, p <0.0001), and showed
greater accuracy for go choices when the outcome was a reward (go to win > go to avoid
losing: tza6 = 10.45, p < 0.0001) and for no-go choices when the outcome was avoidance
of losses (no-go to avoid losing > no-go to win: tae = 7.82, p < 0.0001).

Of particular interest in this study, were age-related differences in performance across
groups (see Figure 2 and SI Table 1 for statistics). We observed a main effect of group
(p < 0.0001), and interactions of group with action (p < 0.0001), valence (p = 0.033) and
time (p = 0.001). Moreover a threefold interaction of action x time x group (p = 0.040)
was found demonstrating a differential ability to learn action responses across the
lifespan. However, no action x valence x group interaction was observed (F3243 = 2.08, p
= 0.10) suggesting human learning and decision making is influenced by Pavlovian
control irrespective of age (Figure 2). No significant interactions with gender were

observed (all p 2 0.2).
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Figure 2: Overall behavioral performance across age groups. On the left, mean
performance accuracy (%) * standard error (SEM) across conditions in children and
adolescents (7 to 16 years, n=69), young adults (18 to 30 years, n=77), midlife adults (31
to 60 years, n=58) and older adults (61 to 80 years, n=44) for all trials. In the middle
panel, line graphs show mean performance for responses in the first (30 trials) and
second half of trials (last 30 trials) across groups and on the right, bar plots demonstrate
learning gain between first and second 30 trials across groups. ***(p<0.001),
**(p<0.001), *(p<0.008; Holm-Bonferroni-corrected for 6 tests), indicate significant
differences compared to young adults (independent samples t-tests).

To compare differences in performance across age groups, we performed independent
samples t-tests and applied Holm-Bonferroni correction for six tests. We focused on
overall accuracy, initial performance (first half) and ability to learn across trials
(learning gain (2 - 1sthalf) as shown in SI Table 1.

Young adults showed superior overall performance across all conditions compared to
any other age group (all p<0.0001) and higher learning gain compared to older adults
(p<0.0001). In go trials, children and adolescents demonstrated comparable
performance to young adults whilst midlife and older adults demonstrated a significant
age-related decline in go accuracy (all p<0.001). However, children and adolescents
demonstrated significantly reduced learning gain for go trials compared to young adults
(p=0.001). In no-go trials, young adults demonstrated superior overall performance
compared to all other age groups irrespective of valence (all p<0.001). Taken together,
children and adolescents demonstrated high performance in go trials comparable to
young adults but not in no-go trials, indicating a predominant preference for action over
withdrawal responses. In comparison, midlife and older adults demonstrated a

significant age-related decline in both go and no-go trials compared to younger adults.

Interestingly assessment of learning gain revealed that children and adolescents were

able to overcome this initial action bias through learning, demonstrating comparable
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learning gain to young adults for no-go trials (Figure 2). Midlife adults also showed poor
initial no-go accuracy compared to younger adults (all p<0.001), but could increase
performance in the second half of the experiment, significantly more so than older
adults (p=0.001). In comparison, older adults demonstrated poor initial no-go accuracy
(all p<0.007) compared to young and midlife adults and considerable inflexibility in
learning no-go responses across trials compared to all other groups (all p<0.004). Lastly
older adults demonstrated the worst performance in punishment trials compared to all
other age groups (all p<0.001).

For completeness, reaction times for go responses are reported in the supplementary
information (SI Figure 1). Their interpretation warrants caution as participants were
explicitly instructed to respond accurately, while speed was not emphasized. Generally
young and older adults demonstrated the fastest and slowest responses respectively (all

p<0.0001) while children/adolescents and midlife adults did not differ (p=1.0).

Parameterizing learning and biases using computational modeling

To identify instrumental and Pavlovian components of the observed asymmetry during
learning, six nested reinforcement learning (RL) models were fitted to the behavioral
data (see SI Materials and Methods) using the expectation maximization approach as
previously described (Huys et al, 2011, Guitart-Masip et al, 2012b). All six
computational models were fit to the data using a single distribution for all participants.
This fitting procedure was, therefore, blind to the existence of different groups with
putatively different parameter values. Our computational modeling approach
demonstrated that the marked asymmetry in learning (i.e. superior performance in go to
win and no-go to avoid losing compared to go to avoid losing and no-go to win) could be
attributed to an interaction between instrumental and Pavlovian control mechanisms
(Guitart-Masip et al,, 2012b). The best account of the data was provided by the model
including a static action bias, Pavlovian bias, reward and punishment sensitivity, learning
rate and an irreducible noise parameter consistent with previous studies using this task
(see Table 1) (Guitart-Masip et al, 2012b; Cavanagh et al, 2013; Guitart-Masip et al,
2014).
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Table 1: Integrated Bayesian Information Criterion (iBIC) for all tested models

Model no. Model parameters No. of Likelihood Pseudo-R? iBIC

parameters

1 g P 2 -28166 0.32 56,376

2 P& 3 -27977 0.32 56,019

3 £p &b 4 -25653 0.38 51,394
4 €, Pwins Ploses & b 5 -25064 0.39 50,239

5 €, Pwin, Ploses & D, TAuct 6 -24680 0.40 49,493
6 €, Pwin, Plose, &, D, Teonstant 6 -24519 0.41 49,170

The winning model statistics are highlighted in bold font: €, learning rate; pwin,
weighting of reward on win trials; plose, weighting of punishments on lose trials; b, go
bias; m, Pavlovian bias; &, irreducible noise. iBIC, integrated Bayesian information
criterion. Smaller values indicate a better model fit.

We found associative learning in children and adolescents was inherently driven by an
action bias that was significantly greater than that observed in all adult age groups
(Kruskal-Wallis with Wilcoxon rank-sum post-hoc tests; 2 (3) = 15.42, all p < 0.01,
children and adolescents > young adults, midlife adults, older adults). Effect sizes
determined using Cohen’s d between children/adolescents and all adult age groups
were d = 0.5. Parameters indicative of instrumental learning such as sensitivity to reward
(x? (3) = 41.37; p < .0001), sensitivity to punishment (x? (3) = 39.33; p < 0.0001) and
learning rate (}2 (3) = 18.37, p < 0.001) followed an inverted U-shaped distribution,
peaking during young adulthood (Figure 3). Children and adolescents demonstrated
comparable sensitivity to reward, punishment and learning rate compared midlife adults
(all p2 0.2) but increased sensitivity to reward and punishment (Wilcoxon rank-sum post-
hoc tests; both Z < -3.35, p < 0.001; effect size d = 0.5) but not learning rate (p=0.67)

compared to older adults.

Both midlife and older adults showed a comparable age-related decline in reward
sensitivity (both Z < -4.02, p < 0.0001; effect size d =2 0.6) and learning rate (both Z < -2.9,
p £ 0.003; effect size d = 0.5) compared to young adults, however older adults showed
the lowest estimates for sensitivity to punishment (Z = -5.69, p < 0.0001; effect size d =
1.0, compared to young adults) as summarized in Figure 3. The modeling approach
revealed no significant difference in the Paviovian bias across groups (p = 0.14). For the
irreducible noise parameter values ranged between 0 and 1 where 1 indicates no
distortion to the softmax rule and 0 indicates a flat softmax i.e. random choices

regardless of value differences. We observed an age-related difference in the irreducible
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noise parameter (x2 (3) = 28.82; p < 0.0001) whereby values were highest in young
adults and lowest in older adults demonstrating younger adults’ performance was more

tightly captured by the winning model.
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Figure 3: Modeled behavioural performance across the lifespan. Modeling parameters
(median (5-95% percentile)) derived from the winning model plotted across age groups.
***(p<0.001), **(p<0.001), *(p<0.008; Holm-Bonferroni-corrected for 6 tests), indicate
significant differences between age groups (Wilcoxon ranked-sum tests).
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Discussion

In this study we reveal, that individual performance in a valanced go/no-go task across
the lifespan (7-80 years) is influenced by Pavlovian control independent of age.
Furthermore, the ability to successfully orthogonalize action and valence was
characterized by an inverted U-shape distribution with peak performance observed in
young adults. Computational modeling revealed that superior performance in younger
adults compared to all other age groups, was attributable to greater sensitivity to
outcomes (both to reward and punishment) coupled with a low action bias. In contrast
reduced performance in children and adolescents was attributable to an increased bias
towards action but not increased reward sensitivity. In midlife and older adults, an age-
related decline in performance was attributable to a decrease in learning rate, reward
sensitivity and especially punishment sensitivity. Taken together this study reveals novel
age-related discrepancies that cannot be probed using typical go/reward no-

go/punishment style paradigms.

This study set out to investigate the influence of Pavlovian control on instrumental
learning responses coupled to action and valence using a go/no-go task. Our results
revealed that the participants, independently of age, exhibited an influence of Pavlovian
control whereby they were better at initiating an action to gain a reward (go to win)
compared to punishment (go to avoid losing) but also withdrawing an action to avoid
punishment (no-go to avoid losing) compared to gaining a reward (no-go to win). The
striking asymmetry in performance across conditions observed here is consistent with
previous studies using the same task (Guitart-Masip et al., 2012b; Cavanagh et al.,, 2013,
Chowdhury et al, 2013b; Guitart-Masip et al., 2014; Richter et al,, 2014; de Boer et al,
2019). Furthermore, computational modeling in young adults has previously shown this
pattern of behavior can be captured by a model incorporating a Pavlovian bias, where
the strength of this bias is related to impaired learning of the conflicting conditions: no-
go to win and go to avoid losing (Guitart-Masip et al., 2012b). Here we extend this work
to demonstrate the same model can effectively capture learning behavior across the
human lifespan. Interestingly we observed no significant difference in the Paviovian bias
across the lifespan and instead found performance to be influenced by age-related

differences in the ability of the instrumental system to learn the appropriate choice (go
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or no-go) for each fractal image as quantified by differences in learning rate and

sensitivity to both reward and punishment.

While children and adolescents demonstrated Pavlovian responding consistent with all
other age groups, we observed an underlying preference for action responses regardless
of valence which goes against the interpretation that there is an overall increase in
reward sensitivity during adolescence and rather demonstrates this is only true for
rewards coupled to action. In fact, our computational modelling show that children and
adolescents show decreased reward sensitivity when compared to younger adults. As
this is the first study to our knowledge to dissociate or orthogonalize action and valence
learning in children and adolescents, our results suggest that increased reward
sensitivity reported in previous studies (Galvan et al, 2006; Van Leijenhorst et al., 2010;
Somerville et al., 2011; Cohen et al., 2016; Palminteri et al., 2016) may be confounded by
preference towards action responses. Furthermore these findings highlight the
importance of controlling for action tendencies when investigating reward learning in
children and adolescents. Previous work in young adults using the same go/no-go task
has shown that activity in inferior frontal gyrus (IFG), a region known to be involved in
action inhibition (Aron et al, 2014), is associated with no-go learning and successful
instrumental control (Guitart-Masip et al, 2012b). Thus protracted development of
prefrontal projections to subcortical regions as previously described (Ziegler et al,
2017) may lead to less top-down regulation and increased action bias in children and

adolescents.

Reports on changes in instrumental learning across the lifespan have so far focused
nearly exclusively on the comparison of young and older adults. Thus, the investigation
of midlife adults signifying the transition phase between young and late adulthood has
been comparatively neglected. In our study, midlife adults showed significantly
compromised performance in go conditions compared to younger adults but not to the
extent of older adults demonstrating middle age is a pivotal period across the lifespan.
The significant age-related decrease in reward but also punishment sensitivity in midlife
adults may reflect the developmental tasks required at this stage of life. In young adults,
self-focused goals such as obtaining autonomy or starting a professional career require

increased approach motivation and reward responsiveness. However in midlife the
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focus shifts to taking care or maximizing the benefit of others (e.g. partner, children,
ageing parents) and disengaging from unattainable goals allowing for lower approach

motivation (Windsor et al,, 2012).

In older adults, we found poorer overall performance in all task conditions, but also
considerable inability to learn across trials compared to young adults. A study by Schott
et al, (2007) suggested that, compared to young adults, older adults exhibited
profoundly reduced mesolimbic activation during reward anticipation, although did
activate the ventral striatum during reward feedback. Similarly, Chowdhury et al,
(2013a) demonstrated that older adults do not show a representation of expected value
in the ventral striatum when performing a probabilistic reward learning under basal
conditions and that an expected value representation was only observed after boosting
the dopaminergic system with L-DOPA. Furthermore, older adults performing a
probabilistic reward learning task show an attenuation of value anticipation in the
ventromedial prefrontal cortex (vmPFC) that predicts performance in the probabilistic
learning task (de Boer et al, 2017). These findings suggest that whilst general reward
processing may be intact in older adults, they are impaired in learning the predictive
value of probabilistic reward cues. In fact, previous studies have shown that reduced
learning in older adults is associated with deficits in the integration and updating of
reward information when rewards are uncertain and delivered from probabilistic
outcomes (Eppinger et al, 2008; Himmerer et al., 2011). Additionally, Samanez-Larkin
etal, (2007) showed a particularly strong age-related impairment of ventral striatal loss
anticipation in older adults. Taken together, these findings are compatible with our
current observation of decreased instrumental learning in older adults, which was
attributable to an age-related decrease in reward but particularly punishment sensitivity

in the learning model.

A striking finding in our data is that the impairment of the instrumental learning in older
adults was especially manifest as decreased performance in the go conditions. The
dopamine system is involved in generating active motivated behaviour (Niv et al., 2007;
Salamone and Correa, 2012) and instrumental learning through reward-prediction
errors (Schultz, 2010). Dopamine depletion leads to decreased motor activity and/or
reduced motivation to gain rewards (Palmiter, 2008; Salamone and Correa, 2012).

Similarly, previous findings using a variant of the same go/no-go task have shown that L-
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DOPA administration invigorated instrumental responding regardless of wvalence
(Guitart-Masip et al., 2012a). Therefore, an age-related decline in dopaminergic function
as previously described (Backman et al, 2006; Karrer et al, 2017), could modulate
motivation or vigor of actions independently of valence and may explain the overall

decrease in go performance observed in older compared to younger adults.

Determining the impact of an aging dopaminergic system on performance in the
valanced go/no-go task, however, is not straightforward. Most previous studies support
the notion that dopamine facilitates the action by valence interaction during learning
(see however Guitart-Masip 2014). A study investigating a genetic variant linked to
dopamine D2 receptor expression also highlights a modulatory role for genetic
variability within the dopaminergic system in individual learning differences of action-
valence interactions (Richter et al, 2014). Another study has shown that boosting
dopamine with methylphenidate increases the action by valence interaction in
participants with high working memory capacity, a proxy for higher dopamine synthesis
capacity (Swart et al, 2017). Finally, a recent PET imaging study has shown that the
strength of the action by valence interaction scales with the availability of dopamine D1
receptors in the dorsal striatum independent of age (de Boer et al, 2019). Based on this
evidence, one would have predicted a decreased Pavlovian bias in older adults.
However, learning the correct contingencies of the orthogonalized go/no-go task may
critically rely on high-level cognitive functions, thus lifespan differences reported here
may also relate to interindividual differences in working memory and long-term
memory. These cognitive functions may also be compromised as a result of age-related
decline in grey and white matter integrity (Draganski et al., 2011; Samanez-Larkin et al,
2012, Chowdhury et al, 2013b; Callaghan et al, 2014; Acosta-Cabronero et al, 2016;
Steiger et al, 2016; van de Vijver et al, 2016) which may influence the ability of the
instrumental system to learn the task contingencies as indexed by learning rate, reward
and punishment sensitivity. Therefore, the effect of decreased dopamine function on the
strength of the Pavlovian system may be shadowed by the effects of an age-related

decrease in executive functions or instrumental abilities related to structural decline.

No significant age-related differences in the Pavlovian bias was observed across age
groups, although a marked increase in the Paviovian bias was observed in older adults.

The substantial heterogeneity observed across all age groups also indicates that the
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strength of the Pavilovian bias across the lifespan cannot be entirely accounted for by
age. It has been recently argued that an instrumental bias may also influence learning
responses coupled to action and valence (Swart et al, 2017) implying a facilitated
learning of go responses leading to reward, as well as an impaired unlearning of no-go
responses leading to punishment. Thus, it will be interesting in future work to
determine how age-related differences in instrumental biases also influence action-

valence learning across the human lifespan.

Finally, a general limitation of the study is that we can only infer developmental and age-
related differences from a cross-sectional study. These effects should not be assumed to
represent underlying causal relationships, nor can we comment on lifespan trajectories.

Future longitudinal studies will be needed to address these questions.

Our results demonstrate a dichotomy between prepotent biases that influence learning
at either end of the lifespan with a predominant preference for action responses in
children/adolescents compared to reduced instrumental learning from both reward and
punishment in older age. Collectively, our results emphasize the importance of
orthogonally manipulating action requirements and outcome valence to further
understand instrumental learning capabilities across different stages of the human
lifespan. Such characteristics may underline important evolutionary conserved
mechanisms i.e. heightened action learning in adolescents necessary to facilitate active
exploration and independence into adulthood or alternatively adaptation to maintain

decision-making abilities despite declining learning ability in old age.
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Materials and Methods

Participants

Overall, 247 individuals between the age of 7 to 80 participated in the current study and
were assigned to one of four age groups: children and adolescents (age: 7 to 16, n = 69,
48 (69.6%) males), young adults (age: 18 to 30, n = 77, 45 (58.4%) males), midlife adults
(age: 31 to 60, n = 58, 24 (41.4%) males), and older adults (age 61 to 80, n = 44, 20
(45.5%) males) using age ranges in line with previously reported lifespan studies
(Tymula et al, 2013; Yang et al, 2016). It was ensured either by a standardized
telephone interview or personal clinical interview that none of the participants were
affected by a present or past neurological or psychiatric illness, alcohol, or drug abuse or
were using centrally acting medication. Cognitive abilities were explicitly assessed in
children, adolescents and older adults to ascertain they had intact global cognitive
performance (for details see SI Materials and Methods). Adult participants were only
included if they had finished compulsory education (minimum 12 years). All participants
received detailed oral and written information about the study and gave written
consent. For minors, informed consent from children and adolescents as well as their
parents was required for participation. The study was approved by the local ethics
committee of the University of Magdeburg, Faculty of Medicine, and followed the ethical

standards of the Declaration of Helsinki.

Task and Procedure

All participants had to learn which of four fractal cues, preceding an easy visual target
detection task, indicated the need (1) to respond to gain a reward (go to win), (2) to
respond to avoid losing (go to avoid losing), (3) to withhold a response to gain a reward
(no-go to win), and (4) to withhold a response to avoid losing (no-go to avoid losing).
After display of the fractal cue (1000 ms), participants were presented with the target
detection task (1500 ms). During the visual target detection task, participants were
presented with a circle either on the right or left side of the screen and had to decide
whether they should indicate (go) the target side or refrain from pressing a button (no-
go). For the go conditions, they had to emit a button press indicating the side of the
target within 1000 ms. Following the circle, participants obtained one of the following
feedbacks (1000 ms): a green up-pointing arrow indicating a win of 30 cent in children

and adolescents or 50 cent in the adult groups, a red down-pointing arrow indicating a
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loss of 30/50 cents, or a yellow horizontal bar representing neither win nor loss.
Feedback was probabilistic, thus, in the win conditions 80% of correct choices and 20%
of incorrect choices were rewarded. In the lose conditions, 80% of correct choices and
20% of incorrect choices successfully avoided loss. Participants were informed and

instructed about the probabilistic nature of the task beforehand.

The task consisted of 240 trials (60 trials for each of the four conditions, presented in a
randomized fashion in four runs) and lasted approximately 35 minutes. Before the task,
participants were asked to complete 10 practice trials in which only the target detection
circles were presented to familiarize themselves with the appropriate buttons on the
computer keyboard and to obtain an overall feel for the speed of the task without
exposure to any of the fractal cues used in the main task. The possible win/loss per trial
was 0,50 €. Children and adolescents received reimbursement and reward in the form of
gift vouchers (5 euros) for a local shopping center on completion of the task. Adults
received the exact amount they won on completion of the task whereas for children and
adolescents, earnings were rounded to 5 or 10 euros gain. Stimuli were presented and
responses recorded using the Cogent 2000 toolbox
(http://www.vislab.ucl.ac.uk/cogent.php) running on MATLAB (Version 2009b;
Mathworks).

Behavioral data analysis

For Behavioral data analysis SPSS Advanced Statistics v21 (IBM Corporation, Armonk,
NY, USA) was used. To test whether a Pavlovian bias was evident in all age groups, mean
accuracy rates (%) were used in a four-factorial ANCOVA for repeated measures with
action (go vs. no-go), valence (win vs. avoid losing) and time (1st vs. 2nd half) as within-
subject factors and age group (children and adolescents vs. young adults vs. midlife
adults vs. old adults) as between-subject factor, setting gender as covariate of no
interest. Independent samples t-tests were performed to compare performance across

age groups using the Holm-Bonferroni correction for six tests.

Reinforcement learning models
We fitted choice behavior to a set of 6 nested reinforcement learning (RL) models
incorporating different RL hypothesis. The base model was a Q-learning algorithm

(Sutton and Barto, 1998) that used a Rescorla-Wagner update rule to independently
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track the action value of each choice given each fractal image (Q:{g0) and Q«(nogo)), with
a learning rate (&) as a free parameter. In the model, the probability of choosing one
action on trial t was a sigmoid function of the difference between the action values
scaled by a slope parameter that was parameterized as sensitivity to reward. This basic
model was initially augmented with an irreducible action noise parameter also known as
a lapse rate (§) (Talmi et al, 2008) and then further expanded by adding a static bias
parameter to the value of the go action (b). The model was then augmented by adding a
fixed Pavlovian value of 1 to the value of the go action as soon as the first reward was
encountered for win cues, and a fixed Pavlovian value of -1 to the value of the go action
as soon as the first punishment was encountered for loss cues. This fixed Pavlovian
value was weighted by a further free parameter (Pavlovian parameter) into the value of
the go action (7). Note that this definition of the Pavlovian value is different from the
definition in previous studies that have used this task (Guitart-Masip et al, 2012b;
Cavanagh et al., 2013; de Boer et al, 2019), as model comparison demonstrated it a
better fit than a variable Pavlovian value updated on a trial-by-trial basis (see Table 1).
The state (action independent) values for each fractal image were updated on every trial
using a Rescorla-Wagner update rule with the same learning rate as the update of the
action values. Finally, the model including the static action bias and the Pavlovian bias
were augmented by including different sensitivities for reward and punishment. Full
equations and a description of all considered models are provided in the Supplemental

Information.

Model fitting procedure and comparison

As in previous reports (Huys et al, 2011, Guitart-Masip et al, 2012b) we used a
hierarchical Type II Bayesian (or random effects) procedure using maximum likelihood
to fit simple parameterized distributions for higher-level statistics of the parameters.
Since the values of parameters for each subject are ‘hidden’, this employs the
Expectation-Maximization (EM) procedure. For each iteration, the posterior distribution
over the group for each parameter is used to specify the prior over the individual
parameter fits on the next iteration. All six computational models were fit to the data
using a single distribution for all participants. This fitting procedure was, therefore,
blind to the existence of different groups with putatively different parameter values.
Before inference, all parameters except the action bias were suitably transformed to

enforce constraints (log for sensitivity to reward and punishment and Pavlovian
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parameter and inverse sigmoid transforms for learning rate and irreducible noise. Six
modeling parameters were extracted for each individual, namely sensitivity to reward,
sensitivity to punishment, Paviovian bias, action bias, learning rate and irreducible noise.

Models were compared using the integrated Bayesian Information Criterion (iBIC) as
previously described (Huys et al, 2011, Guitart-Masip et al, 2012b). Small iBIC values
indicate a model that fits the data better after penalizing for the number of data points
associated with each parameter. Comparing iBIC values is akin to a likelihood ratio test
(Kass and Raftery, 1995). Note that the iBIC penalizes those versions of the model fit
that use four distributions for each parameter. Finally, for each modeling parameter,
Kruskal-Wallis tests were conducted to identify age-related differences between groups.
Significant interactions were followed up by subsequent group comparisons using
Wilcoxon rank-sum tests. Holm Bonferroni-correction (p< 0.05 for 6 tests) was used to

correct for the effect of multiple comparisons. All tests were performed two-tailed.

Acknowledgements

The study was supported by the German Research Foundation SFB 779 (TP A03, TP A07,
TP A08) and the European Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 720270 (HBP SGA1). Research in the authors’ labs was also
supported by the EU/EFRE-funded “Autonomy In Old Age” Initiative of the State of
Saxony-Anhalt. MG-M and LdB were supported by a research grant from the Swedish
Research Council (VT521-2013-2589) awarded to MG-M. The authors thank Lena Pietro,
Carolin Breitling, Anne Hochkeppler, Iris Mann, Catherine Liebeau, Timo Lemme and
Maria Watermann for their help during data acquisition. Moreover, we thank Fabian

Senner and Marius Keute for their help during preparation of the manuscript.


https://doi.org/10.1101/738211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738211; this version posted August 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

21

REFERENCES

Acosta-Cabronero ], Betts MJ, Cardenas-Blanco A, Yang S, Nestor PJ. In Vivo MRI Mapping
of Brain Iron Deposition across the Adult Lifespan. ] Neurosci 2016; 36: 364-374.

Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one
decade on. Trends Cogn Sci 2014; 18: 177-185.

Bickman L, Nyberg L, Lindenberger U, Li S-C, Farde L. The correlative triad among aging,
dopamine, and cognition: Current status and future prospects. Neurosci Biobehav Rev
2006; 30: 791-807.

Blakemore S-], Robbins TW. Decision-making in the adolescent brain. Nat Neurosci
2012;15:1184-1191.

de Boer L, Axelsson ], Chowdhury R, Riklund K, Dolan R], Nyberg L, et al. Dorsal striatal

dopamine D1 receptor availability predicts an instrumental bias in action learning. Proc
Natl Acad Sci 2019; 116: 261-270.

de Boer L, Axelsson ], Riklund K, Nyberg L, Dayan P, Bickman L, et al. Attenuation of
dopamine-modulated prefrontal value signals underlies probabilistic reward learning
deficits in old age. eLife 2017; 6: e26424.

Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R, et al.
Widespread age-related differences in the human brain microstructure revealed by
quantitative magnetic resonance imaging. Neurobiol Aging 2014; 8: 1862-1872

Casey B]. Beyond Simple Models of Self-Control to Circuit-Based Accounts of Adolescent
Behavior. Annu Rev Psychol 2015; 66: 295-319.

Casey B]J, Getz S, Galvan A. The adolescent brain. Dev Rev 2008; 28: 62-77.

Cavanagh JF, Eisenberg I, Guitart-Masip M, Huys Q, Frank M]. Frontal Theta Overrides
Pavlovian Learning Biases. ] Neurosci 2013; 33: 8541-8548.

Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys Q, Diizel E, et al. Dopamine
restores reward prediction errors in old age. Nat Neurosci 2013; 16: 648-653.

Chowdhury R, Guitart-Masip M, Lambert C, Dolan R], Diizel E. Structural integrity of the
substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in
older-age individuals. Neurobiol Aging 2013; 34: 2261-2270.

Cohen AQ, Breiner K, Steinberg L, Bonnie R], Scott ES, Taylor-Thompson KA, et al. When
Is an Adolescent an Adult? Assessing Cognitive Control in Emotional and Nonemotional
Contexts. Psychol Sci 2016; 27: 549-562

Davidow ]Y, Foerde K, Galvan A, Shohamy D. An Upside to Reward Sensitivity: The

Hippocampus Supports Enhanced Reinforcement Learning in Adolescence. Neuron
2016; 92: 93-99.

Dayan P, Balleine BW. Reward, motivation, and reinforcement learning. Neuron 2002;
36: 285-298.


https://doi.org/10.1101/738211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738211; this version posted August 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

22

Dayan P, Niv Y, Seymour B, D. Daw N. The misbehavior of value and the discipline of the
will. Neural Netw 2006; 19: 1153-1160.

Draganski B, Ashburner ], Hutton C, Kherif F, Frackowiak RS]J, Helms G, et al. Regional

specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based
quantification (VBQ). Neurolmage 2011; 55: 1423-1434.

Eppinger B, Kray J, Mock B, Mecklinger A. Better or worse than expected? Aging,
learning, and the ERN. Neuropsychologia 2008; 46: 521-539.

Galvan A, Hare TA, Parra CE, Penn ], Voss H, Glover G, et al. Earlier Development of the
Accumbens Relative to Orbitofrontal Cortex Might Underlie Risk-Taking Behavior in
Adolescents. ] Neurosci 2006; 26: 6885-6892.

Guitart-Masip M, Barnes GR, Horner A, Bauer M, Dolan R], Duzel E. Synchronization of
Medial Temporal Lobe and Prefrontal Rhythms in Human Decision Making. ] Neurosci
2013; 33: 442-451.

Guitart-Masip M, Bunzeck N, Stephan KE, Dolan R], Duzel E. Contextual Novelty Changes
Reward Representations in the Striatum. ] Neurosci 2010; 30: 1721-1726.

Guitart-Masip M, Chowdhury R, Sharot T, Dayan P, Duzel E, Dolan R]. Action controls

dopaminergic enhancement of reward representations. Proc Natl Acad Sci 2012; 109:
7511-7516.

Guitart-Masip M, Economides M, Huys QJM, Frank M], Chowdhury R, Duzel E, et al.
Differential, but not opponent, effects of -DOPA and citalopram on action learning with
reward and punishment. Psychopharmacology (Berl) 2014; 231: 955-966.

Guitart-Masip M, Huys QJM, Fuentemilla L, Dayan P, Duzel E, Dolan R]. Go and no-go
learning in reward and punishment: Interactions between affect and effect. Neurolmage
2012; 62: 154-166.

Hammerer D, Li S-C, Miiller V, Lindenberger U. Life Span Differences in
Electrophysiological Correlates of Monitoring Gains and Losses during Probabilistic
Reinforcement Learning. ] Cogn Neurosci 2011; 23: 579-592.

Huys QJM, Cools R, Gélzer M, Friedel E, Heinz A, Dolan R], et al. Disentangling the Roles
of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS
Comput Biol 2011; 7: €1002028.

Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine
receptors and transporters but not synthesis capacity in normal aging adults: a meta-
analysis. Neurobiol Aging 2017; 57: 36-46.

Kass RE, Raftery AE. Bayes Factors. ] Am Stat Assoc 1995; 90: 773.
Kray ], Eber ], Lindenberger U. Age differences in executive functioning across the

lifespan: The role of verbalization in task preparation. Acta Psychol (Amst) 2004; 115:
143-165.


https://doi.org/10.1101/738211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738211; this version posted August 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

23

Lindenberger U. Human cognitive aging: Corriger la fortune? Science 2014; 346: 572-
578.

Niv Y, Daw ND, Joel D, Dayan P. Tonic dopamine: opportunity costs and the control of
response vigor. Psychopharmacology (Berl) 2007; 191: 507-520.

Palminteri S, Kilford E]J, Coricelli G, Blakemore S-]. The Computational Development of
Reinforcement Learning during Adolescence. PLOS Comput Biol 2016; 12: e1004953.

Palmiter RD. Dopamine Signaling in the Dorsal Striatum Is Essential for Motivated
Behaviors. Ann N Y Acad Sci 2008; 1129: 35-46.

Richter A, Guitart-Masip M, Barman A, Libeau C, Behnisch G, Czerney S, et al. Valenced
action/inhibition learning in humans is modulated by a genetic variant linked to
dopamine D2 receptor expression. Front Syst Neurosci 2014; 8: 140

Rutledge RB, Skandali N, Dayan P, Dolan R]. Dopaminergic Modulation of Decision
Making and Subjective Well-Being. ] Neurosci 2015; 35: 9811-9822.

Salamone ]JD, Correa M. The Mysterious Motivational Functions of Mesolimbic
Dopamine. Neuron 2012; 76: 470-485.

Samanez-Larkin GR, Gibbs SEB, Khanna K, Nielsen L, Carstensen LL, Knutson B.
Anticipation of monetary gain but not loss in healthy older adults. Nat Neurosci 2007;
10: 787-791.

Samanez-Larkin GR, Levens SM, Perry LM, Dougherty RF, Knutson B. Frontostriatal
White Matter Integrity Mediates Adult Age Differences in Probabilistic Reward Learning.
] Neurosci 2012; 32: 5333-5337.

Schott BH, Niehaus L, Wittmann BC, Schutze H, Seidenbecher CI, Heinze H-], et al. Ageing
and early-stage Parkinson’s disease affect separable neural mechanisms of mesolimbic
reward processing. Brain 2007; 130: 2412-2424.

Schultz W. Dopamine signals for reward value and risk: basic and recent data. Behav
Brain Funct 2010; 6: 24.

Shulman EP, Smith AR, Silva K, Icenogle G, Duell N, Chein J, et al. The dual systems
model: Review, reappraisal, and reaffirmation. Dev Cogn Neurosci 2016; 17: 103-117.

Somerville LH, Hare T, Casey BJ. Frontostriatal Maturation Predicts Cognitive Control
Failure to Appetitive Cues in Adolescents. ] Cogn Neurosci 2011; 23: 2123-2134.

Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci
Biobehav Rev 2000; 24: 417-463.

Steiger TK, Weiskopf N, Bunzeck N. Iron Level and Myelin Content in the Ventral
Striatum Predict Memory Performance in the Aging Brain. ] Neurosci 2016; 36: 3552-
3558.

Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, Mass: MIT
Press; 1998


https://doi.org/10.1101/738211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738211; this version posted August 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

24

Swart JC, Frobose MI, Cook JL, Geurts DE, Frank M], Cools R, et al. Catecholaminergic
challenge uncovers distinct Pavlovian and instrumental mechanisms of motivated
(in)action. eLife 2017; 6: 1-36.

Talmi D, Seymour B, Dayan P, Dolan R]. Human Pavlovian Instrumental Transfer. |
Neurosci 2008; 28: 360-368.

Tymula A, Rosenberg Belmaker LA, Ruderman L, Glimcher PW, Levy 1. Like cognitive
function, decision making across the life span shows profound age-related changes. Proc
Natl Acad Sci 2013; 110: 17143-17148.

Van Leijenhorst L, Moor BG, Op de Macks ZA, Rombouts SARB, Westenberg PM, Crone
EA. Adolescent risky decision-making: Neurocognitive development of reward and
control regions. Neurolmage 2010; 51: 345-355.

van de Vijver I, Ridderinkhof KR, Harsay H, Reneman L, Cavanagh JF, Buitenweg JIV, et al.
Frontostriatal anatomical connections predict age- and difficulty-related differences in
reinforcement learning. Neurobiol Aging 2016; 46: 1-12.

Windsor TD, Pearson EL, Butterworth P. Age group differences and longitudinal changes
in approach-avoidance sensitivity: Findings from an 8-year longitudinal study. ] Res
Personal 2012; 46: 646-654.

Yang YC, Boen C, Gerken K, Li T, Schorpp K, Harris KM. Social relationships and
physiological determinants of longevity across the human life span. Proc Natl Acad Sci
2016; 113: 578-583.

Zelazo PD, Craik FIM, Booth L. Executive function across the life span. Acta Psychol
(Amst) 2004; 115: 167-183.

Ziegler G, Ridgway GR, Blakemore S-J, Ashburner J, Penny W. Multivariate dynamical
modelling of structural change during development. Neurolmage 2017; 147: 746-762.


https://doi.org/10.1101/738211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738211; this version posted August 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

25
Supporting Information
SI Table 1: Go/no-go performance across age groups
7-16vs 7-16vs 7-16vs 18-30vs 18-30vs 31-60vs
18 -30 31-60 61 -80 31-60 61 -80 61 -80
main effect of age group F3243 = 19.85, p < 0.0001
overall accuracy ti43=-5.96, ns. n.s. t133=4.13, t1190=7.36 ti00=2.86
p<0.0001 p<0.0001 p<0.0001 p=0.008
age group X action F3243=13.07; p < 0.0001
go accuracy n.s. n.s. ti10=4.54, ti33=3.60, t119=6.11, ns.
p<0.0001 p<0.001 p<0.0001
nogo accuracy ti43 = - n.s. n.s. tis3=4.02, t119=6.64, tioo=2.75,
6.66, p<0.001 p<0.0001  p=0.007
p<0.0001
age group x valence F3243=2.96,p = 0.033
Reward tiaz3 = - n.s. n.s. t133=3.41, t1190=5.04, n.s.
5.46, p=0.001 p<0.0001
p<0.0001
Punishment t143 = - n.s. ti10=3.30, t133=4.36, t119=7.97, tip0=3.81,
4.78, p=0.001 p<0.0001  p<0.0001 p<0.001
p<0.0001
age group X time F3 343 = 6.01, p = 0.001
overall learning n.s. n.s. n.s. n.s. ti10=4.69, n.s
gain p<0.0001
age group X action x time F3 743 = 2.69; p = 0.047
go learning gain 143 =- n.s. n.s. n.s. ti19=3.07, ns
3.29, p=0.003
p=0.001
nogo learning n.s. n.s. t110 = 3.0, n.s. ti19 =3.59, tio0 = 2.94,
gain p=0.003 p<0.001 p=0.004
go 1sthalf n.s. n.s. tiio=4.17, ns. ti19 =4.24, n.s.
p<0.0001 p<0.0001
go 2nd half t143 = - n.s. t110=3.93, t133=3.92, t119=6.69, ns
3.57, p<0.001 p=0.0001 p<0.0001
p<0.001
nogo 1st half tig3 = - ti24 = - n.s. t133=3.56, t1190=5.33, ns
6.95, 2.90, p=0.001 p<0.0001
p<0.0001 p=0.004
nogo 2nd half t143 = - n.s. n.s. t133=3.33, t119=6.83, t100=3.27,
5.68, p=0.001 p<0.0001  p=0.001
p<0.0001

Results from independent samples t-tests. Only values from
displayed. Holm-Bonferroni correction was applied for six tests per variable.

significant results are
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SI Figure 1: Reaction times for Go responses across the lifespan
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Mean (+ S.E.M) reaction times (ms) plotted for go to win and go to avoid losing responses
for all age groups. Whilst participants were instructed that the accuracy of their
response was more important than speed, a significant difference in go response times
was observed between groups, whereby young and older adults demonstrated the
fastest and slowest responses respectively. ***(p<0.0001) indicates significant
differences between groups (1-way ANOVA with Bonferroni post-hoc tests ).
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SI Figure 2: Observed and modeled learning across the lifespan.
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Modeling parameters from the winning model were used to generate simulated choice
data. The simulated group mean probability of performing a go response on each trial is
plotted in colored lines (green for go conditions, where go is the correct response; red

for no-go conditions, where no-go is the correct response). The mean for all participants

’

actual performance is plotted in black lines, reflecting the proportion of actual go
responses on each trial. In the plot area, each row represents choice behavior for each
participant (n=247) corresponding to a total of 247 pixels per trial. A white pixel
illustrates that a participant chose a go response on that trial whilst a gray pixel
represents a no-go response.
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SI Materials and Methods

Assessment of cognitive function and medical history

Participants from the age of 7 to 16 were recruited from a pool of typically developing
children and adolescents at the Department of Child and Adolescent Psychiatry and
Psychotherapy, University of Magdeburg, or through advertisements in a local
newspaper. Participants and their parents were interviewed with the German
adaptation (Delmo et al., 2000) of the Revised Schedule for Affective Disorders and
Schizophrenia for School-Age Children: Present and Lifetime Version (K-SADS-PL -
DSM-1V; Kaufman et al, 1997). Diagnostic tests were selected according to age:
Intelligence was assessed using the German adaptation of the Culture Fair Intelligence
Test - Scale 20 (age 2 9 years; CFT-20-R; Weiss, 1997) or Scale 1 (age < 9 years; CFT 1-R,
Weiss & Osterland, 2013). The dZ - Attention Endurance Test (age = 9 years;
Brickenkamp, 2002) or the bp-Test (subtest from a developmental test battery for
elementary school children; Basisdiagnostik umschriebener Entwicklungsstérungen im
Grundschulalter; age < 9 years; Esser et al., 2008) were used to measure attentional
performance. The Youth-Self-Report (YSR, age > 10 years) and the Child-Behavior-
Checklist (CBCL; Achenbach, 1991a,b) were included as further clinical measures. None
of the participants received a clinical diagnosis on participation or reported any history

of neurological disorders.

All young, midlife and older adults were recruited at the Leibniz Institute for
Neurobiology and Institute of Cognitive Neurology and Dementia Research in the
University of Magdeburg. All older adults were screened to ensure intact global
cognitive performance using a brief neuropsychological battery comprising mini-mental
state examination, Stroop test in German language and Logical memory test parts I, and
I1, from the Wechsler memory scale. Individuals with depression were excluded using
the Becks Depression Inventory II. Older adults’ alertness and divided attention was
assessed using the Test of Attentional Performance (TAP). Any individuals known to have
had neurological or major psychiatric illness, myocardial infarction, significant

cardiovascular history or diabetes mellitus were not eligible for participation.
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Computational modeling of the behavioral data

As in previous experiments where this task has been used (Cavanagh et al, 2013;
Guitart-Masip et al,, 2012, 2014), we fit six nested models to the observed behavioral
data in order to test different instrumental and Pavlovian reinforcement-learning
hypothesis. In all models, expected values Q(a, s) on each trial t where calculated for
each action a € {0,1} on each state s € {1,2,3,4}, where the actions can be go and no go
and states are the four experimental conditions of our task. Q(a,s) was based on a
simple Rescorla-Wagner or delta rule update equation that was implemented each time

and outcome was observed:

Qc(a, se) = Qeq(ay, sy + S(Prt — Q¢-1(ay, St)) €Y

where ¢is the learning rate. Reinforcements entered the equation through r, €
{—1,0,1} and p is a free parameter that determined the effective size of reinforcements.
In four models (RW, RW+noise, RW+noise+bias and RW+noise+bias+Pav) there was
only one value of p per subject, meaning that loss of a reward was equally as aversive as
obtaining a punishment. The two remaining models (RW(rew/pun)+noise+bias,
RW(rew/pun)+noise+bias+Pav) included different values of the parameter p for reward
and punishment trials.

A squashed softmax function (Sutton and Barto, 1998) was used to calculate the

probability of selection each action on a given state:

exp(wt(at' St)) _ i
Xa’ exp(wt(atr St)) (1-8+ 2 @)

p(acls,) =

where w(a,, s,) reflects the propensity of selecting action a in state s, and ¢ is the
irreducible noise, which was kept at 0 for one of the models (RW), but was free to vary
between 0 and 1 for all other models. Different models varied in the way w(a,, s;) was

constructed. In the simplest models (RW and RW+noise), w,(a,, s;) = Q.(a., s;).

Further models added extra factors to the action propensities. For models that
contained a bias parameter, the action weight was modified to include a static bias

parameter b:
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Q.(a,s) +b ifa=go
Q.(a. s;) else

welaso) = 3

For the model including a Pavlovian factor (RW+noiset+bias+Pav and

RW(rew/pun)+noise+bias+Pav), the action weight consisted of three components:

Q.(a;,s)) + b+ nV.(s,) ifa=go
Q¢(as se) else

4)

we(ag, s¢) = {

where m was again a free parameter. The Pavlovian value Vi was determined by the first
experienced reinforcing feedback on state s. For “win” states, this Pavlovian value was
set to 1 after the first trial on which a win outcome was experienced, and for “loss”
states, this Pavlovian values was set to -1 after the first trial on which a loss outcome
was experienced. Thus, for the “avoid loss’ conditions, in which the V(s) would be non-
positive, the Pavlovian parameter inhibited the go tendency in proportion to the
negative value V(s) of the stimulus, while it similarly promoted the tendency to go in

conditions in the ‘win’ conditions.
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