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Abstract  

 

Pavlovian biases influence the interaction between action and valence by coupling 

reward seeking to action invigoration and punishment avoidance to action suppression. 

In this study we used an orthogonalised go/no-go task to investigate learning in 247 

individuals across the human lifespan (7-80 years) to demonstrate that all participants, 

independently of age, demonstrated an influence of Pavlovian control. Computational 

modeling revealed peak performance in young adults was attributable to greater 

sensitivity to both rewards and punishment. However in children and adolescents an 

increased bias towards action but not reward sensitivity was observed. In contrast, 

reduced learning in midlife and older adults was accompanied with decreased reward 

sensitivity and especially punishment sensitivity. These findings reveal distinct learning 

capabilities across the human lifespan that cannot be probed using conventional 

go/reward no-go/punishment style paradigms that have important implications in life-

long education. 
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Introduction 

 

Adaptive behavioral choices maximize reward and minimize punishment. In order to 

achieve this optimization, humans are equipped with two broad classes of mechanisms. 

Firstly, a Pavlovian controller directly ties affectively important outcomes together with 

learned predictions of these outcomes, to valence-dependent stereotyped behavioral 

responses via a conceived hard-wired mechanism. Secondly, a more flexible, 

instrumental controller learns choices on the basis of contingent consequences (Dayan 

and Balleine, 2002). Generally these controllers favor the same choices rendering 

learning fast and efficient. However in some circumstances, Pavlovian influences may 

impair instrumental learning by prescribing the opposite of the instrumental controller 

leading to sub-optimal behavioral choices (Dayan et al., 2006; Guitart-Masip et al., 

2010). 

 

A number of studies have shown that the success of instrumental learning critically 

depends on whether reward or avoidance of punishment is paired with action or 

inhibition. Using a go/no-go task that independently dissociates, i.e. orthogonalizes, 

action and valence, young adults demonstrate striking asymmetry in instrumental 

learning by being better at learning to emit a behavioral response in anticipation of 

reward and better at withholding a response in anticipation of punishment (Guitart-

Masip et al., 2012b; Cavanagh et al., 2013, Chowdhury et al., 2013b; Guitart-Masip et al., 

2014; Richter et al., 2014). Computational modeling approaches in young adults have 

shown this asymmetry in instrumental action learning is due to a Pavlovian coupling 

between action and valence expectation where the strength of this bias relates to failure 

in learning the conflicting conditions: withholding a response in anticipation of reward 

and emitting a response in anticipation of punishment (Guitart-Masip et al., 2012b; 

Cavanagh et al., 2013; Guitart-Masip et al., 2013). However a recent study has shown 

that this coupling may also be due to instrumental mechanisms (Swart et al., 2017).  

Learning success in this go/no-go task requires flexibility, inhibition and the ability to 

use feedback and to detect reward contingencies. All of these abilities may critically rely 

on prefrontal cortex (PFC) dependent executive functions, which develop during 

adolescence but also decline in older age (Kray et al., 2004; Zelazo et al., 2004). Whilst 

most of the previous studies using the aforementioned task have investigated young 

adults, little attention has focused on how the processes underlying instrumental 
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learning and potential conflict with Pavlovian control may change during differential 

periods across the lifespan— namely during childhood and adolescence, young, midlife 

and older age.  

 

It has been widely stated that adolescents are highly sensitive to reward, which may 

contribute to increased risky behavior during this developmental period (Casey et al., 

2008). However it has also been suggested that this reward sensitivity may be adaptive 

by promoting learning and exploration — critical for transition into adulthood (Spear, 

2000; Casey, 2015). A recent study demonstrated that adolescents learn to 

preferentially seek rewards rather than to avoid punishments, whereas young adults 

learn both behaviors equally well (Davidow et al., 2016). However, previous studies 

have not dissociated reward sensitivity from action learning, and it remains thus unclear 

if this interpretation may be confounded by action requirements or to what extent 

changes in reward sensitivity may influence the strength of coupling between action and 

valence. This is particularly relevant in light of differential functional and anatomical 

development of limbic regions, such as the striatum and cognitive control regions during 

adolescence (Blakemore and Robbins, 2012; Shulman et al., 2016). Such, asymmetrical 

development may translate into differential Pavlovian and instrumental strategies used 

by children and adolescents compared to those employed in adulthood.  

 

The human brain also undergoes substantial change during normal aging, which has 

been associated with numerous cognitive changes (Bäckman et al., 2006; Lindenberger, 

2014). However it is not known how age-related differences in Pavlovian and 

instrumental control may impact behavioral inflexibility in older adults or whether such 

age-related changes are already evident in midlife adulthood. Previous work has shown 

that administration of the dopamine precursor L-DOPA enhances the Pavlovian 

influence of potential reward (Rutledge et al., 2015) and may restore reward prediction 

errors in old age (Chowdhury et al., 2013a). Coupled with the known age-related decline 

in the integrity of the dopaminergic system (Karrer et al., 2017), a loss of functional 

dopamine may lead to a decrease in Pavlovian control in older age. Alternatively, 

previous studies have shown that the PFC is involved in overcoming the Pavlovian bias 

in young adults (Guitart-Masip et al., 2012b; Cavanagh et al., 2013). Thus, decreased 

functionality of the PFC as a result of normal aging could also lead to increased 

Pavlovian biases in older adults.   
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The objective of this study was to explore how acquisition of optimal/adaptive 

behavioral choices is differentially altered across the lifespan using an established 

go/no-go task that orthogonalizes action and valence. In addition we used 

computational modeling to investigate whether Pavlovian congruency is already evident 

in healthy children and adolescents in support of a hard-wired bias and compared 

behavior to young, midlife and older adults. Finally we assessed the extent to which 

action and valence are coupled across the lifespan and whether flexible learning to 

orthogonalize these two axes of behavioral control may vary with age.  
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Results 

 

247 healthy individuals from four age groups, namely children and adolescents (age: 7 

to 16, n = 68), young adults (age: 18 to 30, n = 77), midlife adults (age: 31 to 60, n = 58), 

and older adults (age 61 to 80, n = 44) performed a previously established valenced 

go/no-go probabilistic learning task (Guitart-Masip et al., 2012b). Participants had to 

learn through trial and error which of four fractal cues, preceding an easy visual target 

detection task, indicated the need (1) to respond to obtain a monetary reward (go to 

win), (2) to respond to avoid a monetary loss (go to avoid losing), (3) to withhold a 

response to obtain a monetary reward (no-go to win) and (4) to withhold a response to 

avoid a monetary loss (no-go to avoid losing) (see Figure 1). The outcome was 

probabilistic whereby correct feedback was given in 80% of win/loss conditions. To 

characterize the interaction of action and valence across the lifespan we investigated 

acquisition of and overall accuracy in each of the four conditions and analyzed 

differential influences of Pavlovian and instrumental learning using computational 

modeling. 

 

 

 

Figure 1: Probabilistic monetary go/no-go task. Participants had to learn over the course 

of 60 trials per condition, which fractal image was associated with responding or 

withholding a response to achieve a successful outcome (win or avoid losing). 

Responses indicated whether the circle presented after the fractal was located on the 

right or left side. Correct feedback was only provided in 80% of the trials. Abbreviations: 

ITI – inter-trial interval.  
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Pavlovian bias across the lifespan 

 

Performance as defined by percentage of correct (optimal) choices was assessed using a 

4-way analysis of covariance (ANCOVA) with action (go/no-go), valence (win/lose) and 

time (1st/2nd half) as within-subject factors, age group (children and adolescents/young 

adults/midlife/older adults) as a between-subject factor and gender as a covariate. As in 

previous studies (Guitart-Masip et al., 2012b, 2014; Richter et al., 2014) we observed 

main effects of time (F1,243 = 17.18, p < 0.0001) and action (F1,243 = 38.67, p < 0.0001) as 

well as an action x time interaction (F1,243 = 8.27, p =0.004), and an action x valence 

interaction (F1,243 = 14.21, p < 0.0005). Subjects demonstrated an increase in 

performance from the first to the second half of the experiment (t246 = -14.90, p < 

0.0001) and performed better in conditions requiring a go choice than in trials requiring 

a no-go choice (t246 = 15.22, p < 0.0001). Participants demonstrated an initial bias 

toward go responses (1st(go-nogo)>2nd(go-nogo): t246 = 7.23, p < 0.0001), and showed 

greater accuracy for go choices when the outcome was a reward (go to win > go to avoid 

losing: t246 = 10.45, p < 0.0001) and for no-go choices when the outcome was avoidance 

of losses (no-go to avoid losing > no-go to win: t246 = 7.82, p < 0.0001).  

Of particular interest in this study, were age-related differences in performance across 

groups (see Figure 2 and SI Table 1 for statistics). We observed a main effect of group 

(p < 0.0001), and interactions of group with action (p < 0.0001), valence (p =  0.033) and 

time (p = 0.001). Moreover a threefold interaction of action x time x group (p = 0.040) 

was found demonstrating a differential ability to learn action responses across the 

lifespan. However, no action x valence x group interaction was observed (F3,243 = 2.08, p 

= 0.10) suggesting human learning and decision making is influenced by Pavlovian 

control irrespective of age (Figure 2). No significant interactions with gender were 

observed (all p ≥ 0.2). 
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Figure 2: Overall behavioral performance across age groups. On the left, mean 

performance accuracy (%) ± standard error (SEM) across conditions in children and 

adolescents (7 to 16 years, n=69), young adults (18 to 30 years, n=77), midlife adults (31 

to 60 years, n=58) and older adults (61 to 80 years, n=44) for all trials. In the middle 

panel, line graphs show mean performance for responses in the first (30 trials) and 

second half of trials (last 30 trials) across groups and on the right, bar plots demonstrate 

learning gain between first and second 30 trials across groups. ***(p<0.001), 

**(p<0.001), *(p<0.008; Holm-Bonferroni-corrected for 6 tests), indicate significant 

differences compared to young adults (independent samples t-tests). 

 

 

To compare differences in performance across age groups, we performed independent 

samples t-tests and applied Holm-Bonferroni correction for six tests. We focused on 

overall accuracy, initial performance (first half) and ability to learn across trials 

(learning gain (2nd - 1st half) as shown in SI Table 1.  

Young adults showed superior overall performance across all conditions compared to 

any other age group (all p<0.0001) and higher learning gain compared to older adults 

(p<0.0001). In go trials, children and adolescents demonstrated comparable 

performance to young adults whilst midlife and older adults demonstrated a significant 

age-related decline in go accuracy (all p<0.001). However, children and adolescents 

demonstrated significantly reduced learning gain for go trials compared to young adults 

(p=0.001). In no-go trials, young adults demonstrated superior overall performance 

compared to all other age groups irrespective of valence (all p<0.001). Taken together, 

children and adolescents demonstrated high performance in go trials comparable to 

young adults but not in no-go trials, indicating a predominant preference for action over 

withdrawal responses. In comparison, midlife and older adults demonstrated a 

significant age-related decline in both go and no-go trials compared to younger adults. 

 

Interestingly assessment of learning gain revealed that children and adolescents were 

able to overcome this initial action bias through learning, demonstrating comparable 
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learning gain to young adults for no-go trials (Figure 2). Midlife adults also showed poor 

initial no-go accuracy compared to younger adults (all p<0.001), but could increase 

performance in the second half of the experiment, significantly more so than older 

adults (p=0.001). In comparison, older adults demonstrated poor initial no-go accuracy 

(all p≤0.007) compared to young and midlife adults and considerable inflexibility in 

learning no-go responses across trials compared to all other groups (all p<0.004). Lastly 

older adults demonstrated the worst performance in punishment trials compared to all 

other age groups (all p≤0.001).  

For completeness, reaction times for go responses are reported in the supplementary 

information (SI Figure 1). Their interpretation warrants caution as participants were 

explicitly instructed to respond accurately, while speed was not emphasized. Generally 

young and older adults demonstrated the fastest and slowest responses respectively (all 

p<0.0001) while children/adolescents and midlife adults did not differ (p=1.0). 

 

Parameterizing learning and biases using computational modeling  

 

To identify instrumental and Pavlovian components of the observed asymmetry during 

learning, six nested reinforcement learning (RL) models were fitted to the behavioral 

data (see SI Materials and Methods) using the expectation maximization approach as 

previously described (Huys et al., 2011, Guitart-Masip et al., 2012b). All six 

computational models were fit to the data using a single distribution for all participants. 

This fitting procedure was, therefore, blind to the existence of different groups with 

putatively different parameter values. Our computational modeling approach 

demonstrated that the marked asymmetry in learning (i.e. superior performance in go to 

win and no-go to avoid losing compared to go to avoid losing and no-go to win) could be 

attributed to an interaction between instrumental and Pavlovian control mechanisms 

(Guitart-Masip et al., 2012b). The best account of the data was provided by the model 

including a static action bias, Pavlovian bias, reward and punishment sensitivity, learning 

rate and an irreducible noise parameter consistent with previous studies using this task 

(see Table 1) (Guitart-Masip et al., 2012b; Cavanagh et al., 2013; Guitart-Masip et al., 

2014). 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/738211doi: bioRxiv preprint 

https://doi.org/10.1101/738211
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Table 1: Integrated Bayesian Information Criterion (iBIC) for all tested models 

Model no. Model parameters No. of 

parameters 

Likelihood Pseudo-R2 iBIC 

1 ε, ρ 2 -28166 0.32 56,376 

2 ε, ρ, ξ 3 -27977 0.32 56,019 

3 ε, ρ, ξ, b 4 -25653 0.38 51,394 

4 ε, ρwin, ρlose, ξ, b 5 -25064 0.39 50,239 

5 ε, ρwin, ρlose,  ξ, b, πfluct 6 -24680 0.40 49,493 

6 ε, ρwin, ρlose,  ξ, b, πconstant 6 -24519 0.41 49,170 

The winning model statistics are highlighted in bold font: ε, learning rate; ρwin, 

weighting of reward on win trials; ρlose, weighting of punishments on lose trials; b, go 

bias; π, Pavlovian bias; ξ, irreducible noise. iBIC, integrated Bayesian information 

criterion. Smaller values indicate a better model fit. 

 

We found associative learning in children and adolescents was inherently driven by an 

action bias that was significantly greater than that observed in all adult age groups 

(Kruskal-Wallis with Wilcoxon rank-sum post-hoc tests; χ2 (3) = 15.42, all p ≤ 0.01, 

children and adolescents > young adults, midlife adults, older adults). Effect sizes 

determined using Cohen’s d between children/adolescents and all adult age groups 

were d ≥ 0.5. Parameters indicative of instrumental learning such as sensitivity to reward 

(χ2 (3) = 41.37; p < .0001), sensitivity to punishment (χ2 (3) = 39.33; p < 0.0001) and 

learning rate (χ2 (3) = 18.37, p < 0.001) followed an inverted U-shaped distribution, 

peaking during young adulthood (Figure 3). Children and adolescents demonstrated 

comparable sensitivity to reward, punishment and learning rate compared midlife adults 

(all p≥ 0.2) but increased sensitivity to reward and punishment (Wilcoxon rank-sum post-

hoc tests; both Z ≤ -3.35, p ≤ 0.001; effect size d ≥ 0.5) but not learning rate (p=0.67) 

compared to older adults. 

 

Both midlife and older adults showed a comparable age-related decline in reward 

sensitivity (both Z ≤ -4.02, p < 0.0001; effect size d ≥ 0.6) and learning rate (both Z ≤ -2.9, 

p ≤ 0.003; effect size d ≥ 0.5) compared to young adults, however older adults showed 

the lowest estimates for sensitivity to punishment (Z = -5.69, p < 0.0001; effect size d = 

1.0, compared to young adults) as summarized in Figure 3. The modeling approach 

revealed no significant difference in the Pavlovian bias across groups (p = 0.14). For the 

irreducible noise parameter values ranged between 0 and 1 where 1 indicates no 

distortion to the softmax rule and 0 indicates a flat softmax i.e. random choices 

regardless of value differences. We observed an age-related difference in the irreducible 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/738211doi: bioRxiv preprint 

https://doi.org/10.1101/738211
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

noise parameter (χ2 (3) = 28.82; p < 0.0001) whereby values were highest in young 

adults and lowest in older adults demonstrating younger adults’ performance was more 

tightly captured by the winning model. 

 

 

Figure 3: Modeled behavioural performance across the lifespan. Modeling parameters 

(median (5-95th percentile)) derived from the winning model plotted across age groups. 

***(p<0.001), **(p<0.001), *(p<0.008; Holm-Bonferroni-corrected for 6 tests), indicate 

significant differences between age groups (Wilcoxon ranked-sum tests). 
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Discussion 

 

In this study we reveal, that individual performance in a valanced go/no-go task across 

the lifespan (7-80 years) is influenced by Pavlovian control independent of age. 

Furthermore, the ability to successfully orthogonalize action and valence was 

characterized by an inverted U-shape distribution with peak performance observed in 

young adults. Computational modeling revealed that superior performance in younger 

adults compared to all other age groups, was attributable to greater sensitivity to 

outcomes (both to reward and punishment) coupled with a low action bias. In contrast 

reduced performance in children and adolescents was attributable to an increased bias 

towards action but not increased reward sensitivity. In midlife and older adults, an age-

related decline in performance was attributable to a decrease in learning rate, reward 

sensitivity and especially punishment sensitivity. Taken together this study reveals novel 

age-related discrepancies that cannot be probed using typical go/reward no-

go/punishment style paradigms.  

 

This study set out to investigate the influence of Pavlovian control on instrumental 

learning responses coupled to action and valence using a go/no-go task. Our results 

revealed that the participants, independently of age, exhibited an influence of Pavlovian 

control whereby they were better at initiating an action to gain a reward (go to win) 

compared to punishment (go to avoid losing) but also withdrawing an action to avoid 

punishment (no-go to avoid losing) compared to gaining a reward (no-go to win). The 

striking asymmetry in performance across conditions observed here is consistent with 

previous studies using the same task (Guitart-Masip et al., 2012b; Cavanagh et al., 2013, 

Chowdhury et al., 2013b; Guitart-Masip et al., 2014; Richter et al., 2014; de Boer et al., 

2019). Furthermore, computational modeling in young adults has previously shown this 

pattern of behavior can be captured by a model incorporating a Pavlovian bias, where 

the strength of this bias is related to impaired learning of the conflicting conditions: no-

go to win and go to avoid losing (Guitart-Masip et al., 2012b). Here we extend this work 

to demonstrate the same model can effectively capture learning behavior across the 

human lifespan. Interestingly we observed no significant difference in the Pavlovian bias 

across the lifespan and instead found performance to be influenced by age-related 

differences in the ability of the instrumental system to learn the appropriate choice (go 
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or no-go) for each fractal image as quantified by differences in learning rate and 

sensitivity to both reward and punishment.  

  

While children and adolescents demonstrated Pavlovian responding consistent with all 

other age groups, we observed an underlying preference for action responses regardless 

of valence which goes against the interpretation that there is an overall increase in 

reward sensitivity during adolescence and rather demonstrates this is only true for 

rewards coupled to action. In fact, our computational modelling show that children and 

adolescents show decreased reward sensitivity when compared to younger adults. As 

this is the first study to our knowledge to dissociate or orthogonalize action and valence 

learning in children and adolescents, our results suggest that increased reward 

sensitivity reported in previous studies (Galvan et al., 2006; Van Leijenhorst et al., 2010; 

Somerville et al., 2011; Cohen et al., 2016; Palminteri et al., 2016) may be confounded by 

preference towards action responses. Furthermore these findings highlight the 

importance of controlling for action tendencies when investigating reward learning in 

children and adolescents. Previous work in young adults using the same go/no-go task 

has shown that activity in inferior frontal gyrus (IFG), a region known to be involved in 

action inhibition (Aron et al., 2014), is associated with no-go learning and successful 

instrumental control (Guitart-Masip et al., 2012b). Thus protracted development of 

prefrontal projections to subcortical regions as previously described (Ziegler et al., 

2017) may lead to less top-down regulation and increased action bias in children and 

adolescents.  

 

Reports on changes in instrumental learning across the lifespan have so far focused 

nearly exclusively on the comparison of young and older adults. Thus, the investigation 

of midlife adults signifying the transition phase between young and late adulthood has 

been comparatively neglected. In our study, midlife adults showed significantly 

compromised performance in go conditions compared to younger adults but not to the 

extent of older adults demonstrating middle age is a pivotal period across the lifespan. 

The significant age-related decrease in reward but also punishment sensitivity in midlife 

adults may reflect the developmental tasks required at this stage of life. In young adults, 

self-focused goals such as obtaining autonomy or starting a professional career require 

increased approach motivation and reward responsiveness. However in midlife the 
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focus shifts to taking care or maximizing the benefit of others (e.g. partner, children, 

ageing parents) and disengaging from unattainable goals allowing for lower approach 

motivation (Windsor et al., 2012). 

 

In older adults, we found poorer overall performance in all task conditions, but also 

considerable inability to learn across trials compared to young adults. A study by Schott 

et al., (2007) suggested that, compared to young adults, older adults exhibited 

profoundly reduced mesolimbic activation during reward anticipation, although did 

activate the ventral striatum during reward feedback. Similarly, Chowdhury et al., 

(2013a) demonstrated that older adults do not show a representation of expected value 

in the ventral striatum when performing a probabilistic reward learning under basal 

conditions and that an expected value representation was only observed after boosting 

the dopaminergic system with L-DOPA. Furthermore, older adults performing a 

probabilistic reward learning task show an attenuation of value anticipation in the 

ventromedial prefrontal cortex (vmPFC) that predicts performance in the probabilistic 

learning task (de Boer et al., 2017). These findings suggest that whilst general reward 

processing may be intact in older adults, they are impaired in learning the predictive 

value of probabilistic reward cues. In fact, previous studies have shown that reduced 

learning in older adults is associated with deficits in the integration and updating of 

reward information when rewards are uncertain and delivered from probabilistic 

outcomes (Eppinger et al., 2008; Hämmerer et al., 2011). Additionally, Samanez-Larkin 

et al., (2007) showed a particularly strong age-related impairment of ventral striatal loss 

anticipation in older adults. Taken together, these findings are compatible with our 

current observation of decreased instrumental learning in older adults, which was 

attributable to an age-related decrease in reward but particularly punishment sensitivity 

in the learning model.  

 

A striking finding in our data is that the impairment of the instrumental learning in older 

adults was especially manifest as decreased performance in the go conditions. The 

dopamine system is involved in generating active motivated behaviour (Niv et al., 2007; 

Salamone and Correa, 2012) and instrumental learning through reward-prediction 

errors (Schultz, 2010). Dopamine depletion leads to decreased motor activity and/or 

reduced motivation to gain rewards (Palmiter, 2008; Salamone and Correa, 2012). 

Similarly, previous findings using a variant of the same go/no-go task have shown that L-
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DOPA administration invigorated instrumental responding regardless of valence 

(Guitart-Masip et al., 2012a). Therefore, an age-related decline in dopaminergic function 

as previously described (Bäckman et al., 2006; Karrer et al., 2017), could modulate 

motivation or vigor of actions independently of valence and may explain the overall 

decrease in go performance observed in older compared to younger adults.  

 

Determining the impact of an aging dopaminergic system on performance in the 

valanced go/no-go task, however, is not straightforward. Most previous studies support 

the notion that dopamine facilitates the action by valence interaction during learning 

(see however Guitart-Masip 2014). A study investigating a genetic variant linked to 

dopamine D2 receptor expression also highlights a modulatory role for genetic 

variability within the dopaminergic system in individual learning differences of action-

valence interactions (Richter et al., 2014). Another study has shown that boosting 

dopamine with methylphenidate increases the action by valence interaction in 

participants with high working memory capacity, a proxy for higher dopamine synthesis 

capacity (Swart et al., 2017). Finally, a recent PET imaging study has shown that the 

strength of the action by valence interaction scales with the availability of dopamine D1 

receptors in the dorsal striatum independent of age (de Boer et al., 2019). Based on this 

evidence, one would have predicted a decreased Pavlovian bias in older adults. 

However, learning the correct contingencies of the orthogonalized go/no-go task may 

critically rely on high-level cognitive functions, thus lifespan differences reported here 

may also relate to interindividual differences in working memory and long-term 

memory. These cognitive functions may also be compromised as a result of age-related 

decline in grey and white matter integrity (Draganski et al., 2011; Samanez-Larkin et al., 

2012, Chowdhury et al., 2013b; Callaghan et al., 2014; Acosta-Cabronero et al., 2016; 

Steiger et al., 2016; van de Vijver et al., 2016) which may influence the ability of the 

instrumental system to learn the task contingencies as indexed by learning rate, reward 

and punishment sensitivity. Therefore, the effect of decreased dopamine function on the 

strength of the Pavlovian system may be shadowed by the effects of an age-related 

decrease in executive functions or instrumental abilities related to structural decline.  

 

No significant age-related differences in the Pavlovian bias was observed across age 

groups, although a marked increase in the Pavlovian bias was observed in older adults. 

The substantial heterogeneity observed across all age groups also indicates that the 
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strength of the Pavlovian bias across the lifespan cannot be entirely accounted for by 

age. It has been recently argued that an instrumental bias may also influence learning 

responses coupled to action and valence (Swart et al., 2017) implying a facilitated 

learning of go responses leading to reward, as well as an impaired unlearning of no-go 

responses leading to punishment. Thus, it will be interesting in future work to 

determine how age-related differences in instrumental biases also influence action-

valence learning across the human lifespan.  

 

Finally, a general limitation of the study is that we can only infer developmental and age-

related differences from a cross-sectional study. These effects should not be assumed to 

represent underlying causal relationships, nor can we comment on lifespan trajectories.  

Future longitudinal studies will be needed to address these questions. 

 

Our results demonstrate a dichotomy between prepotent biases that influence learning 

at either end of the lifespan with a predominant preference for action responses in 

children/adolescents compared to reduced instrumental learning from both reward and 

punishment in older age. Collectively, our results emphasize the importance of 

orthogonally manipulating action requirements and outcome valence to further 

understand instrumental learning capabilities across different stages of the human 

lifespan. Such characteristics may underline important evolutionary conserved 

mechanisms i.e. heightened action learning in adolescents necessary to facilitate active 

exploration and independence into adulthood or alternatively adaptation to maintain 

decision-making abilities despite declining learning ability in old age.  
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Materials and Methods 

 

Participants 

Overall, 247 individuals between the age of 7 to 80 participated in the current study and 

were assigned to one of four age groups: children and adolescents (age: 7 to 16, n = 69, 

48 (69.6%) males), young adults (age: 18 to 30, n = 77, 45 (58.4%) males), midlife adults 

(age: 31 to 60, n = 58, 24 (41.4%) males), and older adults (age 61 to 80, n = 44, 20 

(45.5%) males) using age ranges in line with previously reported lifespan studies 

(Tymula et al., 2013; Yang et al., 2016). It was ensured either by a standardized 

telephone interview or personal clinical interview that none of the participants were 

affected by a present or past neurological or psychiatric illness, alcohol, or drug abuse or 

were using centrally acting medication. Cognitive abilities were explicitly assessed in 

children, adolescents and older adults to ascertain they had intact global cognitive 

performance (for details see SI Materials and Methods). Adult participants were only 

included if they had finished compulsory education (minimum 12 years). All participants 

received detailed oral and written information about the study and gave written 

consent. For minors, informed consent from children and adolescents as well as their 

parents was required for participation. The study was approved by the local ethics 

committee of the University of Magdeburg, Faculty of Medicine, and followed the ethical 

standards of the Declaration of Helsinki. 

 

Task and Procedure 

All participants had to learn which of four fractal cues, preceding an easy visual target 

detection task, indicated the need (1) to respond to gain a reward (go to win), (2) to 

respond to avoid losing (go to avoid losing), (3) to withhold a response to gain a reward 

(no-go to win), and (4) to withhold a response to avoid losing (no-go to avoid losing). 

After display of the fractal cue (1000 ms), participants were presented with the target 

detection task (1500 ms). During the visual target detection task, participants were 

presented with a circle either on the right or left side of the screen and had to decide 

whether they should indicate (go) the target side or refrain from pressing a button (no-

go). For the go conditions, they had to emit a button press indicating the side of the 

target within 1000 ms. Following the circle, participants obtained one of the following 

feedbacks (1000 ms): a green up-pointing arrow indicating a win of 30 cent in children 

and adolescents or 50 cent in the adult groups, a red down-pointing arrow indicating a 
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loss of 30/50 cents, or a yellow horizontal bar representing neither win nor loss. 

Feedback was probabilistic, thus, in the win conditions 80% of correct choices and 20% 

of incorrect choices were rewarded. In the lose conditions, 80% of correct choices and 

20% of incorrect choices successfully avoided loss. Participants were informed and 

instructed about the probabilistic nature of the task beforehand. 

 

The task consisted of 240 trials (60 trials for each of the four conditions, presented in a 

randomized fashion in four runs) and lasted approximately 35 minutes. Before the task, 

participants were asked to complete 10 practice trials in which only the target detection 

circles were presented to familiarize themselves with the appropriate buttons on the 

computer keyboard and to obtain an overall feel for the speed of the task without 

exposure to any of the fractal cues used in the main task. The possible win/loss per trial 

was 0,50 €. Children and adolescents received reimbursement and reward in the form of 

gift vouchers (5 euros) for a local shopping center on completion of the task. Adults 

received the exact amount they won on completion of the task whereas for children and 

adolescents, earnings were rounded to 5 or 10 euros gain. Stimuli were presented and 

responses recorded using the Cogent 2000 toolbox  

(http://www.vislab.ucl.ac.uk/cogent.php) running on MATLAB (Version 2009b; 

Mathworks). 

 

Behavioral data analysis   

For Behavioral data analysis SPSS Advanced Statistics v21 (IBM Corporation, Armonk, 

NY, USA) was used. To test whether a Pavlovian bias was evident in all age groups, mean 

accuracy rates (%) were used in a four-factorial ANCOVA for repeated measures with 

action (go vs. no-go), valence (win vs. avoid losing) and time (1st vs. 2nd half) as within-

subject factors and age group (children and adolescents vs. young adults vs. midlife 

adults vs. old adults) as between-subject factor, setting gender as covariate of no 

interest. Independent samples t-tests were performed to compare performance across 

age groups using the Holm-Bonferroni correction for six tests. 

 

Reinforcement learning models 

We fitted choice behavior to a set of 6 nested reinforcement learning (RL) models 

incorporating different RL hypothesis. The base model was a Q-learning algorithm 

(Sutton and Barto, 1998) that used a Rescorla-Wagner update rule to independently 
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track the action value of each choice given each fractal image (Qt(go) and Qt(nogo)), with 

a learning rate (�) as a free parameter. In the model, the probability of choosing one 

action on trial t was a sigmoid function of the difference between the action values 

scaled by a slope parameter that was parameterized as sensitivity to reward. This basic 

model was initially augmented with an irreducible action noise parameter also known as 

a lapse rate (�� (Talmi et al., 2008) and then further expanded by adding a static bias 

parameter to the value of the go action (b). The model was then augmented by adding a 

fixed Pavlovian value of 1 to the value of the go action as soon as the first reward was 

encountered for win cues, and a fixed Pavlovian value of -1 to the value of the go action 

as soon as the first punishment was encountered for loss cues. This fixed Pavlovian 

value was weighted by a further free parameter (Pavlovian parameter) into the value of 

the go action ���. Note that this definition of the Pavlovian value is different from the 

definition in previous studies that have used this task (Guitart-Masip et al., 2012b; 

Cavanagh et al., 2013; de Boer et al., 2019), as model comparison demonstrated it a 

better fit than a variable Pavlovian value updated on a trial-by-trial basis (see Table 1). 

The state (action independent) values for each fractal image were updated on every trial 

using a Rescorla-Wagner update rule with the same learning rate as the update of the 

action values. Finally, the model including the static action bias and the Pavlovian bias 

were augmented by including different sensitivities for reward and punishment. Full 

equations and a description of all considered models are provided in the Supplemental 

Information. 

 

Model fitting procedure and comparison 

As in previous reports (Huys et al., 2011, Guitart-Masip et al., 2012b) we used a 

hierarchical Type II Bayesian (or random effects) procedure using maximum likelihood 

to fit simple parameterized distributions for higher-level statistics of the parameters. 

Since the values of parameters for each subject are ‘hidden’, this employs the 

Expectation-Maximization (EM) procedure. For each iteration, the posterior distribution 

over the group for each parameter is used to specify the prior over the individual 

parameter fits on the next iteration. All six computational models were fit to the data 

using a single distribution for all participants. This fitting procedure was, therefore, 

blind to the existence of different groups with putatively different parameter values. 

Before inference, all parameters except the action bias were suitably transformed to 

enforce constraints (log for sensitivity to reward and punishment and Pavlovian 
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parameter and inverse sigmoid transforms for learning rate and irreducible noise. Six 

modeling parameters were extracted for each individual, namely sensitivity to reward, 

sensitivity to punishment, Pavlovian bias, action bias, learning rate and irreducible noise.  

Models were compared using the integrated Bayesian Information Criterion (iBIC) as 

previously described (Huys et al., 2011, Guitart-Masip et al., 2012b). Small iBIC values 

indicate a model that fits the data better after penalizing for the number of data points 

associated with each parameter. Comparing iBIC values is akin to a likelihood ratio test 

(Kass and Raftery, 1995). Note that the iBIC penalizes those versions of the model fit 

that use four distributions for each parameter. Finally, for each modeling parameter, 

Kruskal-Wallis tests were conducted to identify age-related differences between groups. 

Significant interactions were followed up by subsequent group comparisons using 

Wilcoxon rank-sum tests. Holm Bonferroni-correction (p< 0.05 for 6 tests) was used to 

correct for the effect of multiple comparisons. All tests were performed two-tailed. 
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Supporting Information 

 

SI Table 1: Go/no-go performance across age groups 
 

 7 - 16 vs  

18 – 30 

7 - 16 vs  

31 – 60 

7 - 16 vs  

61 – 80 

18 - 30 vs  

31 – 60 

18 - 30 vs  

61 – 80 

31 - 60 vs  

61 - 80 

main effect of age group F3,243 = 19.85, p < 0.0001 

overall accuracy t143 = -5.96, 

p< 0.0001 

n.s. n.s. t133 = 4.13, 

p<0.0001 

t119 = 7.36 

p<0.0001  

t100 = 2.86 

p=0.008 

age group x action F3,243 = 13.07; p < 0.0001 

go accuracy n.s. n.s. t110 = 4.54, 

p<0.0001 

t133 = 3.60, 

p<0.001 

t119 = 6.11, 

p<0.0001 

n.s. 

nogo accuracy t143 = -

6.66, 

p<0.0001 

n.s. n.s. t133 = 4.02, 

p<0.001 

t119 = 6.64, 

p<0.0001 

t100 = 2.75, 

p=0.007 

age group x valence F3,243 = 2.96, p = 0.033 

Reward t143 = -

5.46, 

p<0.0001 

n.s. n.s. t133 = 3.41, 

p=0.001 

t119 = 5.04, 

p<0.0001 

n.s. 

Punishment t143 = -

4.78, 

p<0.0001 

n.s. t110 = 3.30, 

p=0.001 

t133 = 4.36, 

p<0.0001 

t119 = 7.97, 

p<0.0001 

t100 = 3.81, 

p<0.001 

age group x time F3,243 = 6.01, p = 0.001 

overall learning 

gain 

n.s. n.s. n.s. n.s. t119 = 4.69, 

p<0.0001 

n.s. 

age group x action x time F3,243 = 2.69; p = 0.047 

go learning gain t143 = -

3.29, 

p=0.001 

n.s. n.s. n.s. t119 = 3.07, 

p=0.003 

n.s. 

nogo learning 

gain 

n.s. n.s. t110 = 3.0, 

p=0.003 

n.s. t119 = 3.59, 

p<0.001 

t100 = 2.94, 

p=0.004 

go 1st half n.s. n.s. t110 = 4.17, 

p<0.0001 

n.s. t119 = 4.24, 

p<0.0001 

n.s. 

go 2nd half t143 = -

3.57, 

p<0.001 

n.s. t110 = 3.93, 

p<0.001 

t133 = 3.92, 

p=0.0001 

t119 = 6.69, 

p<0.0001 

n.s. 

nogo 1st half t143 = -

6.95, 

p<0.0001 

t124 = -

2.90, 

p=0.004 

n.s. t133 = 3.56, 

p=0.001 

t119 = 5.33, 

p<0.0001 

n.s. 

nogo 2nd half t143 = -

5.68, 

p<0.0001 

n.s. n.s. t133 = 3.33, 

p=0.001 

t119 = 6.83, 

p<0.0001 

t100 = 3.27, 

p=0.001 

Results from independent samples t-tests. Only values from significant results are 

displayed. Holm-Bonferroni correction was applied for six tests per variable. 
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SI Figure 1: Reaction times for Go responses across the lifespan 

 

 

 
Mean (± S.E.M) reaction times (ms) plotted for go to win and go to avoid losing responses 

for all age groups. Whilst participants were instructed that the accuracy of their 

response was more important than speed, a significant difference in go response times 

was observed between groups, whereby young and older adults demonstrated the 

fastest and slowest responses respectively. ***(p<0.0001) indicates significant 

differences between groups (1-way ANOVA with Bonferroni post-hoc tests ). 
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SI Figure 2: Observed and modeled learning across the lifespan.  

 

 

 

Modeling parameters from the winning model were used to generate simulated choice 

data. The simulated group mean probability of performing a go response on each trial is 

plotted in colored lines (green for go conditions, where go is the correct response; red 

for no-go conditions, where no-go is the correct response). The mean for all participants’ 

actual performance is plotted in black lines, reflecting the proportion of actual go 

responses on each trial. In the plot area, each row represents choice behavior for each 

participant (n=247) corresponding to a total of 247 pixels per trial. A white pixel 

illustrates that a participant chose a go response on that trial whilst a gray pixel 

represents a no-go response.  
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SI Materials and Methods 

 

Assessment of cognitive function and medical history 

Participants from the age of 7 to 16 were recruited from a pool of typically developing 

children and adolescents at the Department of Child and Adolescent Psychiatry and 

Psychotherapy, University of Magdeburg, or through advertisements in a local 

newspaper. Participants and their parents were interviewed with the German 

adaptation (Delmo et al., 2000) of the Revised Schedule for Affective Disorders and 

Schizophrenia for School-Age Children: Present and Lifetime Version (K-SADS-PL – 

DSM-IV; Kaufman et al., 1997). Diagnostic tests were selected according to age: 

Intelligence was assessed using the German adaptation of the Culture Fair Intelligence 

Test − Scale 20 (age ≥ 9 years; CFT-20-R; Weiss, 1997) or Scale 1 (age < 9 years; CFT 1-R, 

Weiss & Osterland, 2013). The d2 – Attention Endurance Test (age ≥ 9 years; 

Brickenkamp, 2002) or the bp-Test (subtest from a developmental test battery for 

elementary school children; Basisdiagnostik umschriebener Entwicklungsstörungen im 

Grundschulalter; age < 9 years; Esser et al., 2008) were used to measure attentional 

performance. The Youth-Self-Report (YSR, age > 10 years) and the Child-Behavior-

Checklist (CBCL; Achenbach, 1991a,b) were included as further clinical measures. None 

of the participants received a clinical diagnosis on participation or reported any history 

of neurological disorders.  

 

All young, midlife and older adults were recruited at the Leibniz Institute for 

Neurobiology and Institute of Cognitive Neurology and Dementia Research in the 

University of Magdeburg. All older adults were screened to ensure intact global 

cognitive performance using a brief neuropsychological battery comprising mini-mental 

state examination, Stroop test in German language and Logical memory test parts I, and 

II, from the Wechsler memory scale. Individuals with depression were excluded using 

the Becks Depression Inventory II. Older adults’ alertness and divided attention was 

assessed using the Test of Attentional Performance (TAP). Any individuals known to have 

had neurological or major psychiatric illness, myocardial infarction, significant 

cardiovascular history or diabetes mellitus were not eligible for participation.  
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Computational modeling of the behavioral data 

As in previous experiments where this task has been used (Cavanagh et al., 2013; 

Guitart-Masip et al., 2012, 2014), we fit six nested models to the observed behavioral 

data in order to test different instrumental and Pavlovian reinforcement-learning 

hypothesis. In all models, expected values ���, 	� on each trial t where calculated for 

each action � � �0,1� on each state 	 � �1,2,3,4�, where the actions can be go and no go 

and states are the four experimental conditions of our task. ���, 	� was based on a 

simple Rescorla-Wagner or delta rule update equation that was implemented each time 

and outcome was observed:  

 

��
��� , 	�� �  ����

��� , 	�� � ����� �  ����
���, 	���        �1� 

 

where � is the learning rate. Reinforcements entered the equation through �� �
 ��1, 0, 1� and � is a free parameter that determined the effective size of reinforcements. 

In four models (RW, RW+noise, RW+noise+bias and RW+noise+bias+Pav) there was 

only one value of � per subject, meaning that loss of a reward was equally as aversive as 

obtaining a punishment. The two remaining models (RW(rew/pun)+noise+bias, 

RW(rew/pun)+noise+bias+Pav) included different values of the parameter � for reward 

and punishment trials.  

A squashed softmax function (Sutton and Barto, 1998) was used to calculate the 

probability of selection each action on a given state: 

 

����|	�� � � ������
��� , 	���

∑ ������
���, 	�����

! �1 � �� � �
2       �2� 

 

where ���� , 	�� reflects the propensity of selecting action � in state 	, and � is the 

irreducible noise, which was kept at 0 for one of the models (RW), but was free to vary 

between 0 and 1 for all other models. Different models varied in the way ���� , 	�� was 

constructed. In the simplest models (RW and RW+noise), ��
��� , 	�� � ��

��� , 	��. 

 

Further models added extra factors to the action propensities. For models that 

contained a bias parameter, the action weight was modified to include a static bias 

parameter b:  
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                                            ��
��� , 	��  � " ��

��� , 	��  � #         if � � go
��

��� , 	��                            else+       (3) 

       

For the model including a Pavlovian factor (RW+noise+bias+Pav and 

RW(rew/pun)+noise+bias+Pav), the action weight consisted of three components:  

 

��
��� , 	�� �  "��

��� , 	�� �  # �  �,��	��   if � � go
��

��� , 	��                                          else+ �4� 

 

where � was again a free parameter. The Pavlovian value Vt was determined by the first 

experienced reinforcing feedback on state s. For “win” states, this Pavlovian value was 

set to 1 after the first trial on which a win outcome was experienced, and for “loss” 

states, this Pavlovian values was set to -1 after the first trial on which a loss outcome 

was experienced. Thus, for the `avoid loss’ conditions, in which the V(s) would be non-

positive, the Pavlovian parameter inhibited the go tendency in proportion to the 

negative value V(s) of the stimulus, while it similarly promoted the tendency to go in 

conditions in the ‘win’ conditions.  
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