bioRxiv preprint doi: https://doi.org/10.1101/738088; this version posted August 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

O 00N O U b~

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

aCC-BY-NC-ND 4.0 International license.

Meta-analysis of problematic alcohol use in 435,563 individuals identifies 29 risk variants

and yields insights into biology, pleiotropy and causality
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Abstract

Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. Although
genome-wide association studies (GWASSs) have identified PAU risk genes, the genetic
architecture of this trait is not fully understood. We conducted a proxy-phenotype meta-analysis
of PAU combining alcohol use disorder and problematic drinking in 435,563 European-ancestry
individuals. We identified 29 independent risk variants, 19 of them novel. PAU was genetically
correlated with 138 phenotypes, including substance use and psychiatric traits. Phenome-wide
polygenic risk score analysis in an independent biobank sample (BioVU, n=67,589) confirmed
the genetic correlations between PAU and substance use and psychiatric disorders. Genetic
heritability of PAU was enriched in brain and in genomic conserved and regulatory regions.
Mendelian randomization suggested causal effects on liability to PAU of substance use,
psychiatric status, risk-taking behavior, and cognitive performance. In summary, this large PAU
meta-analysis identified novel risk loci and revealed genetic relationships with numerous other

outcomes.
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Introduction

Alcohol use and alcohol use disorder (AUD) are leading causes of death and disability
worldwide [1]. Genome-wide association studies (GWAS) of AUD and problematic drinking
measured by different assessments have identified potential risk genes primarily in European
populations [2-5]. Quantity-frequency measures of drinking, for example the Alcohol Use
Disorders Identification Test—Consumption (AUDIT-C), which sometimes reflect alcohol
consumption in the normal range, differ genetically from AUD and measures of problematic
drinking (e.g., the Alcohol Use Disorders Identification Test—Problems [AUDIT-P]), and show a
divergent set of genetic correlations [3, 4]. The estimated SNP-based heritability (h?) of AUD
ranges from 5.6% to 10.0% [2-5]. To date, more than ten risk variants have been significantly
associated with AUD and AUDIT-P (p < 5 x 10®). Variants mapped to several risk genes have
been detected in multiple studies, including ADH1B (Alcohol Dehydrogenase 1B), ADH1C
(Alcohol Dehydrogenase 1C), ALDH?2 (Aldehyde Dehydrogenase 2, only in some Asian
samples), SLC39A8 (Solute Carrier Family 39 Member 8), GCKR (Glucokinase Regulator), and
CRHR1 (Corticotropin Releasing Hormone Receptor 1). In the context of the known extensive
polygenicity underlying AUD and AUDIT-P, we anticipate that additional significant risk loci can
be identified by increasing sample size; this is the pattern for GWAS of heterogenous complex
traits in general also. We can characterize both AUD itself and AUDIT-P, as “problematic
alcohol use” (PAU). To identify additional risk variants and enhance our understanding of the
genetic architecture of PAU, we conducted genome-wide meta-analysis of AUD and AUDIT-P in
435,563 individuals of European ancestry. The understanding of the genetic architecture of PAU
in African populations is far behind than Europeans; the largest sample published so far is
56,648 in MVP [3] and results have not moved beyond a single genomic region that includes
ADH1B. This study only focused on European samples because we cannot achieve a

substantial increment in African-ancestry subjects over previous studies.
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Results

Figure 1 provides an overview of the meta-analysis of the 4 major datasets. The first is
the GWAS of AUD in European Americans (EA) from the Million Veteran Program (MVP) [6]
(herein designated “MVP phase1”), comprised 202,004 individuals phenotyped for AUD (Ncase =
34,658, nNcontrol = 167,346, Nerrective = 114,847) using International Classification of Diseases (ICD)
codes [3]. The second, MVP Phase2, included an additional 65,387 EA individuals from MVP
(Ncase = 11,337, Ncontrol = 54,050, Nesrective = 37,485) not previously analyzed. The third dataset is a
GWAS of DSM-IV alcohol dependence (AD) from the Psychiatric Genomics Consortium (PGC),
which included 46,568 European participants (Ncase = 11,569, Ncontrol = 34,999, Nefrective = 26,853)
[2]. The fourth dataset is a GWAS of Alcohol Use Disorders Identification Test—Problems
(AUDIT-P; a measure of problematic drinking) scores from a UK Biobank sample (UKB) [7] that

included 121,604 European participants [4].

The genetic correlation (ry) between MVP phase1 AUD and PGC AD was 0.965 (se =
0.15, p = 1.21 x 10'%) [3]. Ry between the entire MVP (meta-analysis of phase1 and phase2)
and PGC increased to 0.98 (se = 0.11, p = 1.99 x 10"), justifying the meta-analysis of AUD
across the three datasets (Nefrective = 179,185). 24 risk variants in 23 loci were detected in this
intermediary meta-analysis (Supplementary Figure 1, Supplementary Table 1). The ry between
UKB AUDIT-P and AUD (MVP+PGC) was 0.71 (se = 0.05, p = 8.15 x 10-°2), and the polygenic
risk score (PRS) of AUD was associated with AUDIT-P in UKB (best p-value threshold PTpest =
0.001, R2=0.25%, p = 3.28 x 10*!, Supplementary Table 2, Supplementary Figure 2), justifying
the proxy-phenotype meta-analysis of problematic alcohol use (PAU) across all four datasets.

The total sample size was 435,563 in the discovery analysis (Nefrective = 300,789).
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116  Figure 1. Overview of the analysis. Four datasets were meta-analyzed as the discovery
117  sample for problematic alcohol use (PAU) including MVP phase1, MVP phase2, PGC, and UK
118 Biobank (UKB). MVP phase1 and phase2 were meta-analyzed, and the result was used for
119 testing the genetic correlation with PGC alcohol dependence. An intermediary meta-analysis
120  (AUD meta) combining MVP phase1, phase2, and PGC was then conducted to measure the
121 genetic correlation with UKB AUDIT-P. Due to the sample overlap between UKB and GSCAN,
122 we used the AUD meta-analysis for Mendelian Randomization (MR) analysis rather than the
123 PAU (i.e., the second) meta-analysis. MTAG, which used the summary data from PAU and
124  DrnkWKk (drinks per week) in GSCAN (without 23andMe samples as those data were not made
125 available) as input to increase the power for each trait without introducing bias from sample
126  overlap, returned summary results for PAU and DrnkWk separately.
127

128

Association results for PAU
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Of 42 lead variants (mapping to 27 loci, Supplementary Figure 3, and Supplementary
Table 3) that were genome-wide significant (GWS) for PAU, 29 were independently associated
after conditioning on lead SNPs in the regions (see below and Table 1). Ten variants were
previously identified through the same index SNPs or tagged SNPs, located in or near the
following genes: GCKR, SIX3, KLB, ADH1B, ADH1C, SLC39A8, DRD2, and FTO [2-5]. Thus,
19 variants reported here were novel, of which 11 were located in gene regions, including
PDE4B (Phosphodiesterase 4B), THSD7B (Thrombospondin Type 1 Domain Containing 7B),
CADM?2 (Cell Adhesion Molecule 2), ADH1B (different from the locus identified previously),
DPP6 (Dipeptidyl Peptidase Like 6), SLC39A13 (Solute Carrier Family 39 Member 13), TMX2
(Thioredoxin Related Transmembrane Protein 2), ARID4A (AT-Rich Interaction Domain 4A),
C14orf2 (Chromosome 14 open reading frame 2), TNRC6A (Trinucleotide Repeat Containing
Adaptor 6A), and FUT2 (Fucosyltransferase 2). A novel rare ADH1B variant, rs75967634 (p =
1.07 x 10°, with a minor allele frequency of 0.003), which causes a substitution of histidine for
arginine, is in the same codon as rs2066702 (a well-known variant associated with AUD in
African populations[3, 8], but not polymorphic in European populations).This latter association is
independent from rs1229984 in ADH1B and rs13125415 (a tag SNP of rs1612735 in MVP
phase1 [3]) in ADH1C. The identification of rs75967634 demonstrates the present study’s
greater power to detect risk variants in this region, beyond the frequently reported

ADH1B*rs1229984.

Moderate genetic correlation between AUD and alcohol consumption, and also
pervasive pleiotropic effects of SNPs, were demonstrated previously [2-4]. Some of the novel
variants (10 out of 19) identified in this study were also associated with other alcohol-related
traits, including AUDIT-C score [3], total AUDIT score [4], and drinks per week (DrnkWk) from
the GSCAN study [9] (described below and Supplementary Table 3). Rs1402398, close to

VRK2, was associated with AUDIT-C score (tagged by rs2683616) [3]; rs492602 in FUT2 was
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rs10717830, rs1783835, rs12296477, rs61974485, and rs72768626 were associated with

DrnkWk directly or through tag SNPs in high linkage disequilibrium (LD) [9]. Analysis

conditioned on DrnkWk shows that 11 of the 29 independent variants were independently

associated with PAU (i.e., not mediated by DrnkWk) (Supplementary Table 3).

Table 1. Genome-wide significant associations for PAU.
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14 104355883  rs8008020 Cldorf2 T C 0.4175 6.062 1.35x10°  ++++
16 24693048  rs72768626  TNRC6A* A G 0.9448 5.591 2.26x10% 444+
16 53820813  rs9937709 FTO? A G 0.585  6.602 4.06x1010 44+
19 49206417  rs492602 FUT2? A G 0.5076 -6.143  8.08x100 -

Listed are the 29 independent variants that were genome-wide significant. Variants labeled in
bold are novel associations with PAU. A1, effect allele; A2, other allele; EAF, effective allele
frequency; Directions are for the A1 allele in MVP phase1, MVP phase2, PGC, and UKB
datasets.

@Protein-coding gene contains the lead SNP,

®Protein-coding gene nearest to the lead SNP.

Gene-based association analysis identified 66 genes that were associated with PAU
at GWS (p < 2.64 x 10, Supplementary Table 4). DRD2, which has been extensively studied in
many fields of neuroscience, was among these 66 genes and had been reported in both UKB [4]
and MVP phase1 [3]. Among the 66 genes, 46 are novel, including ADH4 (Alcohol
Dehydrogenase 4), ADH5 (Alcohol Dehydrogenase 5), and ADH7 (Alcohol Dehydrogenase 7),
extending alcohol metabolizing gene associations beyond the well-known ADH1B and ADH1C;
SYNGAP1 (Synaptic Ras GTPase Activating Protein 1), BDNF (Brain-Derived Neurotrophic
Factor), and others. Certain genes show associations with multiple traits including previous
associations with AUDIT-C (4 genes in MVP phase1, 12 genes in UKB), total AUDIT score (19
genes in UKB), and DrnkWk (46 genes in GSCAN, which includes results for DrnkWk after

MTAG [10] analysis).

Examination of the 66 associated genes for known drug-gene interactions through the
Drug Gene Interaction Database v3.0.2 [11] showed 327 interactions between 16 genes and
325 drugs (Supplementary Table 5). Of these 16 genes with interactions, DRD2 had the most

drug interactions (n = 177), followed by BDNF (n = 68) and PDE4B (n = 36).
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185  SNP-based h? and partitioning heritability enrichment

186  We used LD Score Regression (LDSC) [12] to estimate SNP-based h? in the different datasests
187  and the meta-analyses (Figure 2). Because of the unbalanced case/control ratio, we used

188  effective sample size instead of actual sample size in MVP (following the PGC AD GWAS [2]).
189  The h? of PAU (the meta result) was 0.068 (se = 0.004). The h? of AUD in the MVP meta-

190 analysis (phases 1 and 2) was 0.095 (se = 0.006), and was 0.094 (se = 0.005) in the meta-

191  analysis combining MVP and PGC.

192
GWAS/meta . Discovery MTAG
n.,=514.790
0.100 - I I
0.075 - n.=612,968
I
e I
0.050 - I
0.025 -
0.0004 ' , ,
| I | |
MVP PGC UKB  MVP+PGC PAU GSCAN
n=152332 n_=26853 n=121,604 n=179,185 n_=300,789  n_=537,352
193 Studies

194  Figure 2. Estimated SNP-based h?. Blue bars show h? results for single datasets or meta-
195  analysis between datasets, from published studies or analyzed here. Red bar shows h? for the
196  PAU discovery meta-analysis. Orange bars show h? results of MTAG analysis for PAU in the
197  discovery sample and DrnkWk from GSCAN. Effective sample sizes (ne) were used in LDSC.

198  ngq is the GWAS-equivalent sample size reported by MTAG.
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Partitioning heritability enrichment analyses using LDSC [13, 14] showed the most
significantly enriched cell type group to be central nervous system (CNS, p = 3.53 x 109),
followed by adrenal and pancreas (p = 1.89 x 10%), and immune and hematopoietic (p = 3.82 x
1073, Supplementary Figure 4). Significant enrichments were also observed in six baseline
annotations, including conserved regions, conserved regions with 500bp extended (ext), fetal
DHS (DNase | hypersensitive sites) ext, weak enhancers ext, histone mark H3K4me1 ext, and
TSS (transcription start site) ext (Supplementary Figure 5). We also investigated heritability
enrichments using Roadmap data, which contains six annotations (DHS, H3K27ac, H3K4me3,
H3K4me1, H3K9ac, and H3K36me3) in a subset of 88 primary cell types and tissues [14, 15].
Significant enrichments were observed for H3K4me1 and DHS in fetal brain, and H3K4me3 in
fetal brain and in brain germinal matrix (Supplementary Table 6). Although no heritability
enrichment was observed in tissues using gene expression data from GTEXx [16], the top

nominally enriched tissues were all in brain (Supplementary Figure 6).

Functional enrichments

MAGMA tissue expression analysis [17, 18] using GTEx showed significant enrichments in
several brain tissues including cerebellum and cortex (Supplementary Figure 7). Although no
enrichment was observed via MAGMA gene-set analysis using gene-based p-values of all
protein-coding genes, the 152 genes prioritized by positional, expression quantitative trait loci
(eQTL), and chromatin interaction mapping were enriched in several gene sets, including

ethanol metabolic processes (Supplementary Table 7).

Genetic correlations with other traits

We estimated the genetic correlations between PAU and 715 publicly available sets of GWAS

11
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224  summary statistics which included 228 published sets and 487 unpublished sets from the UK
225  Biobank. After Bonferroni correction (p < 6.99 x 10°), 138 traits were significantly correlated
226  with PAU (Supplementary Table 8). Among the 26 published traits, drinks per week showed the
227  highest rg with PAU (r; = 0.77, se = 0.02, p = 3.25 x 10%%%), consistent with the overall quantity
228  of alcohol consumed being a key domain of PAU [5, 19]. Several smoking traits and lifetime
229  cannabis use were positively genetically correlated with PAU, consistent with the high

230 comorbidity between alcohol and other substance use disorders in the general population [20].
231  Among psychiatric disorders, major depressive disorder (MDD, ry = 0.39, se = 0.03, p = 1.43 x
232 10“°) showed the highest genetic correlation with PAU, extending the evidence for the shared
233 genetic contribution to MDD and alcohol-related traits [21, 22]. PAU was positively genetically
234  correlated with risk-taking behavior, insomnia, lung cancer, and other traits, and negatively
235  correlated with cognitive traits and parents’ age at death. These finding are in line with the

236  known adverse medical, psychiatric, and social consequences of problem drinking (Figure 3).

Substance use = Risk behaviour ECognitive WAging
WPsychiatric WSleeping Cancer Reproductive

Tested traits

Drinks per week
Ever smoked regularly
Lifetime cannabis use
Current vs former smoker
Cigarettes per day
Age of initiation of smoking
MDD
Depressive symptoms
PGC cross—disorder
ADHD
Schizophrenia
Bipolar disorder
Depressed affect subcluster
MNeuroticism
Worry subcluster
Subjective well being
Number of sexual partners
General risk tolerance
Insomnia
Cognitive performance
Educational attainment
Lung cancer
Mothers age at death
Fathers age at death
Number of children ever born
Age of first birth = =

1

1

i -
I I

i !
I

—

-04 -02 00 02 04 06 0.8
Ty

237

12


https://doi.org/10.1101/738088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738088; this version posted August 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

aCC-BY-NC-ND 4.0 International license.

Figure 3. Genetic correlations with published traits. Of 228 published traits, 26 were
genetically correlated with PAU after Bonferroni correction (p < 0.05/715). MDD, major

depressive disorder; ADHD, attention deficit hyperactivity disorder.

Transcriptomic analyses

We used S-PrediXcan [23] to predict gene expression and the mediating effects of variation on
gene expression on PAU. Forty-eight tissues from GTEXx [16] release v7 and whole blood
samples from the Depression Genes and Networks study (DGN) [24] were analyzed as
reference transcriptomes (Supplementary Table 9). After Bonferroni correction, 103 gene-tissue
associations were significant, representing 39 different genes, some of which were identified in
multiple tissues (Supplementary Table 10). For example, C1TQTNF4 (C1qg and tumor necrosis
factor related protein 4) was detected in 18 tissues, including brain, gastrointestinal, adipose,
and liver. None of the four significant alcohol dehydrogenase genes (ADH1A, ADH1B, ADH4,
and ADHb5) was associated with expression in brain tissue, but they were associated with
expression in other tissues -- adipose, thyroid, gastrointestinal and heart. This might be due to
the generally low expression level of these genes in brain [25]. These cross-tissue associations
indicate that there are widespread functional consequences of PAU-risk-associated genetic

variation at the expression level.

Although the sample size for tissues used for eQTL analysis limits our ability to detect
associations, there are substantial common eQTLs across tissues [16]. Integrating evidence
from multiple tissues can increase power to detect genes relative to the tissues tested
individually, at least for shared eQTLs. We applied S-MultiXcan [26] to the summary data for
PAU using all 48 GTEXx tissues as reference transcriptomic data. The expression of 34 genes

was significantly associated with PAU, including ADH1B, ADH4, ADH5, C1QTNF4, GCKR, and
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DRD2 (Supplementary Table 11). Among the 34 genes, 27 overlapped with genes detected by

S-PrediXcan.

PAU PRS for phenome-wide associations

We calculated PRS for PAU in 67,589 individuals of European descent from the Vanderbilt
University Medical Center’s biobank, BioVU. We conducted a phenome-wide association study
(PheWAS) of PRS for PAU adjusting for sex, age (calculated as the median age across an
individual’s medical record), and top 10 principal components of ancestry. We standardized the
PRS so that the odds ratios correspond to a standard deviation increase in the PRS. After
Bonferroni correction, 31 of the 1,372 phenotypes tested were significantly associated with PAU
PRS, including alcohol-related disorders (OR = 1.46, se = 0.03, p = 3.34 x 10*°), alcoholism
(OR =1.33, se = 0.03, p = 3.85 x 10%8), tobacco use disorder (OR = 1.21,se = 0.01, p = 2.71 x
10-38), 6 respiratory conditions, and 17 additional psychiatric conditions (Supplementary Figure 8,

Supplementary Table 12).

PAU PRS with AD in independent samples

We tested the association between PAU PRS and alcohol dependence in three independent
samples: the iPSYCH group (Ncase = 944, Ncontrol = 11,408, Nefreciive = 3,487); University College
London (UCL) Psych Array (Ncase = 1,698, Ncontrol = 1,228, Nefrective = 2,851); and UCL Core
Exome Array (Ncase = 637, Neontrol = 9,189, Nefrective = 2,383). The PAU PRSs were significantly
associated with AD in all three samples, with the most variance explained in the UCL Psych
Array sample, which includes the most cases (PToest = 0.001, R2 = 2.12%, p = 8.64 x 107). In
the iPSYCH group and UCL Core Exome Array samples, the maximal variance explained was
1.61% (PToest = 0.3, p = 1.87 x 1022), and 0.77% (PToest = 5 x 10%, p = 1.65 x 107), respectively
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286  (Supplementary Table 13).
287
288 Mendelian Randomization

289  We tested the causal effects of liability to exposures on liability to AUD (MVP+PGC), rather than
290 PAU: the UKB AUDIT-P GWAS was excluded to minimize sample overlap with other GWAS for
291  putative exposures. We limited the exposures to those genetically correlated with PAU, and

292 have more than 30 available instruments. There were only 24 independent variants for AUD;
293  therefore the causal effects of liability to AUD on other traits (i.e., bidirectional) were not tested.
294  Among the 13 tested exposures, 12 showed evidence of a causal effect on liability to AUD, the
295  exception being cigarettes per day (Table 2). DrnkWk and ever smoked regularly have a

296  positive causal effect on AUD risk by all 3 methods, without violating MR assumptions through
297  horizontal pleiotropy (MR-Egger intercept p > 0.05). General risk tolerance was shown to be
298  causally related to AUD risk, though the estimate could be biased due to horizontal pleiotropy
299  (intercept p = 9.62 x 10%). MDD, depressed affect neuroticism subcluster, worry neuroticism
300 subcluster, number of sexual partners, and insomnia show evidence of positive causal effects
301 on liability to AUD from at least one method, while cognitive performance and educational

302  attainment show evidence of negative causal effects.
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Table 2. Causal effects on liability to AUD (MVP+PGC) by MR.

Exposure (#instruments) Ref | IVW [27] Weighted median [28] MR-Egger [29] MR-Egger
B (se) p B (se) p B (se) p intercept p
DrnkWk (58) [9] | 0.89(0.06) |1.80x10“¢ | 0.89 (0.08) | 2.89%x10% | 0.91 (0.20) | 3.80%10° | 0.898
Ever smoked regularly (199) [9] |0.32(0.02) |8.72x10°' | 0.33 (0.02) | 4.20x10“® | 0.26 (0.08) | 1.21x1073 | 0.471
Cigarettes per day (33) [9] | 0.04 (0.06) |0.475 -0.10 (0.04) | 0.010 -0.18 (0.09) | 0.034 1.27x1073
MDD (78) [30] | 0.14 (0.03) | 8.42x10° | 0.14 (0.03) |2.79%x10° | -0.17 (0.20) | 0.390 0.113
Schizophrenia (110) [31] | 0.04 (0.01) | 2.47x10° | 0.04 (0.01) | 4.96x10° | -0.05(0.04) | 0.202 0.016
Depressed affect subcluster (56) | [32] | 0.19 (0.06) | 1.75x10° | 0.24 (0.05) | 5.44x10°¢ | -0.20 (0.28) | 0.462 0.147
Neuroticism (131) [32] | 0.20 (0.04) |1.10x107 | 0.20 (0.04) | 1.10x107 |-0.26 (0.16) | 0.097 2.64x103
Worry subcluster (61) [32] | 0.13 (0.06) | 0.020 0.17 (0.05) | 8.06x10* | 0.04 (0.26) | 0.890 0.702
Number of sexual partners (64) [33] | 0.31(0.04) | 3.27x10"2 | 0.36 (0.05) |9.00%10'® | 0.51 (0.20) | 0.011 0.309
General risk tolerance (64) [33] | 0.26 (0.06) |7.37x10® | 0.28 (0.07) | 5.93x10° | 0.88 (0.25) | 3.69%x10* | 9.62x10®
Insomnia (159) [34] | 0.05(0.01) |1.90x10° | 0.03(0.01) |5.31x10° | 0.00 (0.05) | 0.993 0.288
Cognitive performance (134) [35] | -0.08 (0.02) |1.03x10° | -0.05(0.03) | 0.044 -0.21 (0.12) | 0.086 0.282
Educational attainment (570) [35] | -0.22 (0.02) | 1.32x10% | -0.21 (0.02) | 1.45%x10"7 | -0.24 (0.08) | 2.21x103 | 0.781
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307

308

P-values labeled in bold are significant after multiple testing correction. Traits labeled in bold are those having a causal effect on
AUD risk by at least one method without evidencing horizontal pleiotropy (MR-Egger intercept p > 0.05). IVW: inverse-variance
weighted (IVW) linear regression. DrnkWk: drinks per week. MDD: major depressive disorder. Depressed affect subcluster:

depressed affect subcluster of neuroticism. Worry subcluster: worry subcluster of neuroticism.
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Joint Analysis of PAU and DrnkWk Using MTAG

We conducted a joint analysis of PAU and DrnkWk using MTAG, which can increase the power
for each trait without introducing bias from sample overlap [10]. MTAG analysis increased the
GWAS-equivalent sample size (ngq) for PAU to 514,790, i.e., a 71.1% increase from the original
effective sample size (ne = 300,789, n = 435,563). In this analysis, we observed an increase in
the number of independent variants for PAU to 119, 76 of which were conditionally independent
(Supplementary Figure 9, Supplementary Table 14). For DrnkWk, the MTAG analysis increased
the ngq to 612,968 from 537,352, which yielded 141 independent variants, 86 of which were
conditionally independent (Supplementary Figure 10, Supplementary Table 15). MTAG analysis
increased the observed h? of PAU to 0.113 (se = 0.005) from 0.068 (se = 0.004) and of DrnkWk

to 0.063 (se = 0.003) from the reported value of 0.042 (se = 0.002, Figure 2) [9].

The MTAG analysis also increased the power for the functional enrichment analysis.
MAGMA gene set analysis for PAU after MTAG analysis detected 10 enriched Gene Ontology
terms, including ‘regulation of nervous system development’ (pPgonferroni = 8.80 x 104),

‘neurogenesis’ (Peonferroni = 0.010), and ‘synapse’ (Peonterroni = 0.046) (Supplementary Table 16).

Discussion

We report here a genome-wide meta-analysis of PAU in 435,563 individuals of European
ancestry from the MVP, PGC, and UKB datasets. MVP is a mega-biobank that has
enrolled >750,000 subjects (for whom genotype data on 313,977 subjects was used in this

study), with rich phenotype data assessed by questionnaires and from the EHR. Currently, MVP
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is the largest single cohort available with diagnostic information on AUD [3, 6]. PGC is a
collaborative consortium that has led the effort to collect smaller cohorts with DSM-IV AD [2].

UKB is a population-level cohort with the largest available sample with AUDIT-P data [4].

Our discovery meta-analysis of PAU yielded 29 independent variants, of which 19 were
novel, with 0.059 to 0.113 of the phenotypic variance explained in different cohorts or meta-
analyses. The h? in the Phase1-Phase2 MVP meta-analysis was 0.095 (se = 0.006), which was
higher than MVP phase1: 0.056 (se = 0.004, in MVP phase1 where only the actual (as opposed
to effective) sample size was used) [3] . The h? of AD in PGC was 0.098 (se = 0.018),
comparable to the reported liability-scale h? (0.090, se = 0.019) [2]. Functional and heritability
analyses consistently showed enrichments in brain regions and gene expression regulatory
regions, providing biological insights into the etiology of PAU. Variation associated with gene
expression in the brain is central to PAU risk, a conclusion that is also consistent with our
previous GWASSs in MVP of both alcohol consumption and AUD diagnosis [3]. The enrichments
in regulatory regions point to specific brain tissues relevant to the causative genes; the specific
interactions between 16 genes and 325 drugs may provide targets for the development of
medications to manage PAU. Potential targets identified include the D> dopamine receptor
(encoded by DRD2) and phosphodiesterase 4B (encoded by PDE4B). The presence of risk
variation at these loci also suggests the possibility that they may be “personalized medicine”

targets as well.

We also found that PAU was significantly genetically correlated with 138 other traits. The
top correlations were with substance use and substance-related disorders, MDD, schizophrenia,
and several other neuropsychiatric traits. In a conceptually similar analysis, we performed a
PheWAS of PAU PRS in BioVU, which confirmed the genetic correlations between PAU and
multiple substance use disorders, mood disorders, and other psychiatric traits in an independent

sample. We also used MR to infer causal effects of the above traits on liability to AUD (we
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tested AUD excluding UKB samples to avoid sample overlap) using selected genetic
instruments. We found evidence of causal relationships from DrnkWk, ever smoked regularly,
MDD, depressed affect subcluster, worry subcluster, number of sexual partners, insomnia,
cognitive performance, and educational attainment to AUD risk, while cognitive performance
and educational attainment showed protective effects on liability to AUD. For some of these
observed effects, such as with schizophrenia, neuroticism, and general risk tolerance, we
cannot exclude horizontal pleiotropy among our instrument variables. We could not test the
reverse causality of AUD liability on other traits in the absence of large samples for those
targeted traits, which are required to draw causal inferences. Thus we cannot rule out the

possibility of bidirectional effects, which are plausible for several of these traits (e.g., MDD).

The study has other limitations. First, only European populations were included;
therefore, the genetic architecture of PAU in other populations remains largely unknown. To
date, the largest non-European sample to undergo GWAS for alcohol-related traits is African
American (AA), which was reported in the MVP phase1 sample (17,267 cases; 39,381 controls,
effective samples size 48,015), with the only associations detected being on chromosome 4 in
the ADH gene locus (where several ADH genes map) [3]. Collection of substantial numbers of
non-European subjects requires a concerted effort from our research field. Second, despite the
high genetic correlation between AUD and AUDIT-P, they are not identical traits. We conducted
a meta-analysis of the two traits to increase the power for the association study of PAU,
consequently, associations specific to AUD or AUDIT-P could have been attenuated. Third,
there was no opportunity for replication of the individual novel variants. Because the variants
were detected in more than 430,000 subjects and have small effect sizes, a replication sample
with adequate power would also have to be very large, and no such sample is currently
available. To validate the findings, we conducted PRS analyses in three independent cohorts,

which showed strong association with AUD. Although this indicates that our study had adequate
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power for variant detection, it does not address the validity of the individual variants discovered.

This is the largest GWAS study of PAU so far. Previous work has shown that the genetic
architecture of AUD (and PAU) differs substantially from that of alcohol consumption [2-4].
There have been larger studies of alcohol quantity-frequency measures [9, 36]; alcohol
consumption data are available in many EHRs, thus they were included in many studies of other
primary traits, like cardiac disease. AUD diagnoses are collected much less commonly. The 3-
item AUDIT-C is a widely-used measure of alcohol consumption often available in EHRs, but
the full 10-item AUDIT, which allows the assessment of AUDIT-P, is not as widely available.
Despite the high genetic correlation between, for example, PAU and DrnkWk (ry=0.77), very
different patterns of genetic correlation and pleiotropy have been observed via LDSC and other
methods for these different kinds of indices of alcohol use [2-5]. PAU captures pathological
alcohol use: physiological dependence and/or significant medical consequences.
Quantity/frequency measures may capture alcohol use that is in the normal, or anyway
nonpathological, range. As such, we argue that although quantity/frequency measures are
important for understanding the biology of habitual alcohol use, PAU is the more important, and
more clearly pathological, trait. These circumstances underscore the importance of assembling
a large GWAS sample of PAU to inform the biology of PAU, and our study moves towards this
goal via the identification of numerous previously-unidentified risk loci: we increased known
PAU loci from 10 to 29, nearly tripling our knowledge of specific risk regions. Similarly, we
identified 66 gene-based associations, of which 46 were novel — again roughly tripling current
knowledge. MTAG analysis increased locus discovery to 119, representing 76 independent loci,
by levering information from DrnkWk [9]. By the same token, we provide a major increment in
information about the biology of PAU, providing considerable fodder for future in-vitro and
animal studies, which will be required to delineate the biology and function associated with each

risk variant. We anticipate that this knowledge may lead to improvements in treatment and
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treatment personalization, a major ultimate goal of the work.

Methods

MVP datasets. The MVP is a mega-biobank supported by the U.S. Department of Veterans
Affairs (VA), enrollment for which began in 2011 and is ongoing. Phenotypic data were collected
using questionnaires and the VA electronic health records (EHR), and a blood sample was
obtained from each participant for genetic studies. Two phases of genotypic data have been
released and were included in this study. MVP phase1 contains 353,948 subjects, of whom
202,004 European Americans (EA) with AUD diagnoses were included in a previous GWAS and
the summary statistics were used in this study [3]. MVP phase2 released data on another
108,416 subjects, of whom 65,387 EAs with AUD diagnosis information were included in this
study. Following the same procedures as for MVP phase1, participants with at least one
inpatient or two outpatient alcohol-related ICD-9/10 codes from 2000 to 2018 were assigned a

diagnosis of AUD.

Ethics statement: The Central VA Institutional Review Board (IRB) and site-specific IRBs
approved the MVP study. All relevant ethical regulations for work with human subjects were

followed in the conduct of the study and informed consent was obtained from all participants.

Genotyping for both phases of MVP was performed using a customized Affymetrix
Biobank Array. Imputation and quality control methods for MVP phase1 were described in detail
in Kranzler et al. [3]. Similar methods were used for MVP phase2. Before imputation, phase2

subjects or SNPs with genotype call rate < 0.9 or high heterozygosity were removed, leaving

22


https://doi.org/10.1101/738088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738088; this version posted August 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

aCC-BY-NC-ND 4.0 International license.

108,416 subjects and 668,324 SNPs. Imputation for MVP phase2 was done separately from
phase1; both were performed with EAGLE2 [37] and Minimac3 [38] using 1000 Genomes
Project phase 3 data [39] as the reference panel. Imputed genotypes with posterior probability =
0.9 were transferred to best guess genotypes (the rest were treated as missing genotype calls).
A total of 6,635,093 SNPs with INFO scores > 0.7, genotype call rates or best guess rates >
0.95, Hardy Weinberg equilibrium p value < 1 x 1076, minor allele frequency (MAF) > 0.001 were

remained for GWAS.

We removed subjects with mismatched genotypic and phenotypic sex and one subject
randomly from each pair of related individuals (kinship coefficient threshold = 0.0884), leaving
107,438 phase2 subjects for subsequent analyses. We used the same processes as MVP
phase1 to define EAs. First, we ran principal components analysis (PCA) on 74,827 common
SNPs (MAF > 0.05) shared by MVP and the 1000 Genomes phase 3 reference panels using
FastPCA [40]. Then we clustered each participant into the nearest reference population
according to the Euclidean distances between the participant and the centers of the 5 reference
populations using the first 10 PCs. A second PCA was performed for participants who were
clustered to the reference European population (EUR), and outliers were removed if any of the

first 10 PCs were > 3 standard deviations from the mean, leaving 67,268 EA subjects.

Individuals < 22 or > 90 years of age and those with a missing AUD diagnosis were
removed from the analyses, leaving 65,387 phase2 EAs (11,337 cases; 54,050 controls).
GWAS was then performed on the MVP phase2 dataset. We used logistic regression
implemented in PLINK v1.90b4.4 [41] for the AUD GWAS correcting for age, sex, and the first

10 PCs.

PGC summary statistics. We used the 46,568 European ancestry subjects (11,569 cases and
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34,999 controls) from 27 cohorts that were analyzed by the Psychiatric Genomics Consortium
(PGC). The phenotype was lifetime DSM-IV diagnosis of alcohol dependence (AD). The

summary data were downloaded from the PGC website (https://www.med.unc.edu/pgc/) with full

agreement to the PGC conditions. Allele frequencies were not reported in the summary data.
We used allele frequencies from the 1000 Genome European sample as proxy measures in

PGC for some downstream analyses.

UK Biobank summary statistics. The UK Biobank (UKB) included 121,604 White-British
unrelated subjects with available AUDIT-P scores. Past-year AUDIT-P was assessed by 7
questions: 1). Frequency of inability to cease drinking; 2). Frequency of failure to fulfil normal
expectations due to drinking alcohol; 3). Frequency of needing morning drink of alcohol after
heavy drinking session; 4). Frequency of feeling guilt or remorse after drinking alcohol; 5).
Frequency of memory loss due to drinking alcohol; 6). Ever been injured or injured someone
else through drinking alcohol; 7). Ever had known person concerned about, or recommend
reduction of, alcohol consumption. The AUDIT-P was logio-transformed for GWAS (see ref [4]

for details). We removed SNPs with INFO < 0.7 or call rate < 0.95.

Meta-analyses. Meta-analyses were performed using METAL [42]. The meta-analysis within
MVP (for the purpose of genetic correlation analysis with PGC AD) was conducted using an
inverse variance weighted method because the two subsets were from the same cohort. The
meta-analyses for AUD (MVP+PGC) and PAU (MVP+PGC+UKB) were performed using the
sample size weighted method. Given the unbalanced ratios of cases to controls in MVP
samples, we calculated effective sample sizes for meta-analysis following the approach used by

the PGC:
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The calculated effective sample sizes in MVP and reported effective sample sizes in PGC were
used in meta-analyses and all downstream analyses. AUDIT-P in UKB is a continuous trait, so
we used actual sample sizes for that trait. For the AUD meta-analysis, variants present in only
one sample (except MVP phase1 which is much larger than the others) or with heterogeneity
test p-value < 5 x 10 were removed, leaving 7,003,540 variants. For the PAU meta-analysis,
variants present in only one sample (except MVP phase1 or UKB) or with heterogeneity test p-
value < 5 x 108 and variants with effective sample size < 45,118 (15% of the total effective

sample size) were removed, leaving 14,069,427 variants.

AUD polygenic risk score in UKB. We calculated AUD polygenic risk scores (PRS) for each of
the 82,930 unrelated subjects in UKB who had AUDIT-P information [7]. A PRS was calculated
as the sum of the number of effective alleles with p-values less than a given threshold, weighted
by the effect sizes from AUD meta-analysis (MVP+PGC). We analyzed 10 p-value thresholds: 5
x10% 1x107,1x10% 1 x10° 1 x 104, 0.001, 0.05, 0.3, 0.5, and 1, and clumped the AUD
summary data by LD with > < 0.3 in a 500 kb window. Then we tested the association between
AUD PRS and AUDIT-P, corrected for age, sex, and 10 PCs. The analysis was performed using

PRSice-2 [43].

Independent variants and conditional analyses. We identified the independent variant (p <5
x 1078) in each locus (1 Mb genomic window) based on the smallest p value and r2 < 0.1 with
other independent variants. Variants with p < 1 x 10 and r? > 0.1 with respect to the

independent variants were assigned to the independent variant’s clump. Any two independent
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variants less than 1 Mb apart whose clumped regions overlapped were merged into one locus.
Given the known long-range LD for the ADH gene cluster on chromosome 4, we defined
chr4g23—q24 (~97.2 Mb — 102.6 Mb) as one locus. When multiple independent variants were
present in a locus, we ran conditional analyses using GCTA-COJO [44] to define conditionally
independent variants. For each variant other than the most significant one (index), we tested the
marginal associations conditioning on the index variant using Europeans (n = 503) from the
1000 Genomes as the LD reference sample. Variants with significant marginal associations (p <
5 x 107®) were defined as conditionally independent variants (i.e., independent when
conditioned on other variants in the region) and subject to another round of conditional analyses

for each significant association.

For the conditionally independent variants for AUD or PAU, we also conducted a multi-
trait analysis conditioning on GSCAN drinks per week [9] using GCTA-mtCOJO [45] to identify
variants associated with AUD or PAU, but not drinks per week, i.e., not alcohol consumption
alone. Europeans from the 1000 Genomes were used as the LD reference. For variants missing
in GSCAN, we used proxy variants (p <5 x 1078) in high LD with the locus for analyses.
Whereas conditional analyses require the beta (effect size) and standard error, we calculated

these using Z-scores (z), allele frequency (p) and sample size (n) from the meta-analyses [46]:

eta= /sz(l —p)(n+2)
SE= 1
//219(1 —p)(n+z°)

Gene-based association analysis. Gene-based association analysis for PAU was performed
using MAGMA implemented in FUMA [17, 18], which uses a multiple regression approach to

detect multi-marker effects that account for SNP p-values and LD between markers. We used
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523  default settings to analyze 18,952 autosomal genes, with p < 2.64 x 107 (0.05/18,952)

524  considered GWS.
525

526  Drug-gene interaction. For the genes identified as significant by MAGMA, we examined drug-
527  gene interaction through Drug Gene Interaction Database (DGldb) v3.0.2 [11]

528  (http://www.dgidb.org/), a database integrated drug—gene interaction information resource

529 based on 30 sources.
530

531 SNP-based h? and partitioning heritability enrichment. LDSC [12] was used to estimate the
532  SNP-based h? for common SNPs mapped to HapMap3 [47], using Europeans from the 1000
533  Genomes Project [39] as the LD reference panel. We excluded the major histocompatibility

534  complex (MHC) region (chr6: 26—34Mb).

535 We conducted portioning h? enrichment analyses for PAU using LDSC in different

536 models [13, 14]. First, a baseline model consisting of 52 functional categories was analyzed,
537  which included genomic features (coding, intron, UTR etc), regulatory annotations (promoter,
538 enhancer etc), epigenomic annotations (H3K27ac, H3K4me1, H3K3me3 etc) and others (see
539 ref [13] for details, Supplementary Figure 5). We then analyzed cell type group h? enrichments
540  with 10 cell types: central nervous system (CNS), adrenal and pancreas, immune and

541  hematopoietic, skeletal muscle, gastrointestinal, liver, cardiovascular, connective tissue and
542  bone, kidney, and other (see ref [13] for details, Supplementary Figure 4). Third, we used LDSC
543  to test for enriched heritability in regions surrounding genes with the highest tissue-specific
544  expression using 53 human tissue or cell type RNA-seq data from the Genotype-Tissue

545  Expression Project (GTEX) [16], or enriched heritability in epigenetic markers from 396 human

546  epigenetic annotations (six features in a subset of 88 primary cell types or tissues) from the

27


http://www.dgidb.org/
https://doi.org/10.1101/738088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738088; this version posted August 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

aCC-BY-NC-ND 4.0 International license.

Roadmap Epigenomics Consortium [15] (see ref [14] for details, Supplementary Figure 6,
Supplementary Table 6). For each model, the number of tested annotations was used to

calculate a Bonferroni corrected p-value < 0.05 as a significance threshold.

Gene-set and functional enrichment. We performed gene-set analysis for PAU for curated
gene sets and Gene Ontology (GO) terms using MAGMA [17, 18]. We then used MAGMA for
gene-property analyses to test the relationships between tissue-specific gene expression
profiles and PAU-gene associations. We analyzed gene expression data from 53 GTEXx (v7)
tissues. We also performed gene-set analysis on the 152 prioritized genes using MAGMA. Gene

sets with adjusted p-value < 0.05 were considered as significant.

Genetic correlation. We estimated the genetic correlation (rg) between traits using LDSC [48].
For PAU, we estimated the ry with 218 published traits in LD Hub [49], 487 unpublished traits
from the UK Biobank (integrated in LD Hub), and recently published psychiatric and behavioral
traits [9, 30, 32-35, 50-54], bringing the total number of tested traits to 715 (Supplementary
Table 8). For traits reported in multiple studies or in UKB, we selected the published version of
the phenotype or used the largest sample size. Bonferroni correction was applied and

correlation was considered significant at a p-value threshold of 6.99 x 10,

S-PrediXcan and S-MultiXcan. To perform transcriptome-wide association analysis, we used

S-PrediXcan [23] (a version of PrediXcan that uses GWAS summary statistics [55]) to integrate
transcriptomic data from GTEx [16] and the Depression Genes and Networks study (DGN) [24]
to analyze the summary data from the PAU meta-analysis. Forty-eight tissues with sample size >

70 from GTEx release v7 were analyzed, totaling 10,294 samples. DGN contains RNA
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sequencing data from whole blood of 992 genotyped individuals. The transcriptome prediction
model database and the covariance matrices of the SNPs within each gene model were

downloaded from the PredictDB repository (http://predictdb.org/, 2018-01-08 release). Only

individuals of European ancestry in GTEx were analyzed. S-PrediXcan was performed for each
of the 49 tissues (48 from GTEx and 1 from DGN), for a total of 254,345 gene-tissue pairs.

Significant association was determined by Bonferroni correction (p < 1.97 x 107).

Considering the limited eQTL sample size for any single tissue and the substantial
sharing of eQTLs across tissues, we applied S-MultiXcan [26], which integrates evidence across
multiple tissues using multivariate regression to improve association detection. Forty-eight
tissues from GTEx were analyzed jointly. The threshold for condition number of eigenvalues
was set to 30 when truncating singular value decomposition (SVD) components. In total, 25,626
genes were tested in S-MultiXcan, leading to a significant p-value threshold of 1.95 x 10

(0.05/25,626).

PAU PRS for phenome-wide associations. Polygenic scores were generated using PRS-CS
[56] on all genotyped individuals of European descent (n = 67,588) in Vanderbilt University
Medical Center’s EHR-linked biobank, BioVU. PRS-CS uses a Bayesian framework to model
linkage disequilibrium from an external reference set and a continuous shrinkage prior on SNP
effect sizes. We used 1000 Genomes Project Phase 3 European sample [39] as the LD
reference. Additionally, we used the PRS-CS-auto option, which allows the software to learn the
continuous shrinkage prior from the data. Polygenic scores were constructed from PRS-CS-auto
adjusted summary statistics containing 811,292 SNPs. All individuals used for polygenic scoring
were genotyped on the lllumina Multi-Ethnic Global Array (MEGA). Genotypes were filtered for
SNP (95%) and individual (98%) call rates, sex discrepancies, and excessive heterozygosity.
For related individuals, one of each pair was randomly removed (pi_hat > 0.2). SNPs showing
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significant associations with genotyping batch were removed. Genetic ancestry was determined
by principal component analysis performed using EIGENSTRAT [57]. Imputation was completed
using the Michigan Imputation Server [38] and the Haplotype Reference Consortium [58] as the
reference panel. Genotypes were then converted to hard calls, and filtered for SNP imputation
quality (R?> 0.3), individual missingness (>2%), SNP missingness (>2%), minor allele frequency
(<1%) and Hardy-Weinberg Equilibrium (p > 1 x 107'°). The resulting dataset contained

9,330,483 SNPs on 67,588 individuals of European ancestry.

We conducted a phenome-wide association study (PheWAS) [59] of the PAU PRS, by
fitting a logistic regression model to 1,372 case/control phenotypes to estimate the odds of each
diagnosis given the PAU polygenic score, controlling for sex, median age across the medical
record, top 10 principal components of ancestry, and genotyping batch. We required the
presence of at least two International Classification of Disease (ICD) codes that mapped to a
PheWAS disease category (Phecode Map 1.2) to assign “case” status. A phenotype was
required to have at least 100 cases to be included in the analysis. PheWAS analyses were run
using the PheWAS R package [60]. Bonferroni correction was applied to test for significance (p

< 0.05/1,372).

PAU PRS in independent samples. We calculated PAU PRS in three independent samples,
where we tested the association between PAU PRS and AD, corrected for age, sex, and 10

PCs. Ten p-value thresholds were applied in all samples.

iPSYCH Group. DNA samples for cases and controls were obtained from newborn bloodspots
linked to population registry data [61]. Cases were identified with the ICD-10 code F10.2 (AD; n
= 944); controls were from the iPSYCH group (n = 11,408; Nefeciive = 3,487)). The iPSYCH

sample was genotyped on the Psych Array (lllumina, San Diego, CA, US). GWAS QC,
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imputation against the 1,000 Genomes Project panel [39] and association analysis using the

Ricopili pipeline [62] were performed.

UCL Psych Array. Cases were identified with ICD-10 code F10.2 (n = 1,698) and comprised 492
individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH (Steroids
or Pentoxifylline for Alcoholic Hepatitis) trial ISRCTN88782125; EudraCT Number: 2009-
013897-42) and 1,206 subjects recruited from the AD arm of the DNA Polymorphisms in Mental
Health (DPIM) study; controls were UK subjects who had either been screened for an absence
of mental illness and harmful substance use (n = 776), or were random blood donors (n-452;
total n = 1,228; Nefrective = 2,851). The sample was genotyped on the Psych Array (lllumina, San
Diego, CA, US). GWAS QC was performed using standard methods and imputation was done
using the haplotype reference consortium (HRC) panel [63] on the Sanger Imputation server

(https://imputation.sanger.ac.uk/). Association testing was performed using Plink1.9 [41].

UCL Core Exome Array. Cases had an ICD-10 diagnosis of F10.2 (n = 637), including 324
individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH trial and
313 subjects recruited from the AD arm of the DPIM study; controls were unrelated UK subjects
from the UK Household Longitudinal Study (UKHLS; n = 9,189; nefreciive = 2,383). The sample
was genotyped on the lllumina Human Core Exome Array (lllumina, San Diego, CA, US).
GWAS QC was performed using standard methods and imputation was done using the HRC
panel [63] on the Sanger Imputation server (https://imputation.sanger.ac.uk/). Association

testing was performed with Plink1.9 [41].

Mendelian Randomization. We used Mendelian Randomization (MR) to investigate the causal
relationships with PAU liability of the many traits that were significantly genetically correlated (p

< 6.99 x 10%). However, all or most of the published traits in recent large GWAS include UKB
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data. To avoid biases caused by overlapping samples in MR analysis, we only tested the

relationship between published traits and AUD (MVP+PGC). For robust causal effect inference,
we limited the traits studied to those with more than 30 available instruments (association p < 5
x 108). Only the causal effects of liability to other exposures on AUD risk were tested given that

there are only 24 independent variants for AUD. In total, 13 exposures were analyzed (Table 2).

Three methods, weighted median [28], inverse-variance weighted (IVW, random-effects
model) [27], and MR-Egger [29], implemented in the R package “MendelianRandomization
v0.3.0” [64] were used for MR inference. Evidence of pleiotropic effects was examined by the
MR-Egger intercept test, where a non-zero intercept indicates directional pleiotropy [29].
Instrumental variants that are associated with PAU (p < 5 x 10®) were removed. For
instrumental variants missing in the PAU summary data, we used the results of the best-proxy
variant with the highest LD (r? > 0.8) with the missing variant. If the MAF of the missing variant
was < 0.01, or none of the variants within 200 kb had LD r? > 0.8, we removed the instrumental

variant from the analysis.

MTAG between PAU and drinks per week. Multiple trait analysis between PAU and drinks per
week (DrnkWk) from GSCAN was performed on summary statistics with multi-trait analysis of
GWAS (MTAG) v1.0.7 [10]. The summary data of DrnkWk were generated from 537,352
subjects, excluding the 23andMe samples that were not available to us for inclusion. We
analyzed variants with a minimum effective sample size of 80,603 (15%) in DrnkWk and a
minimum effective sample size of 45,118 (15%) in PAU, which left 10,613,246 overlapping

variants.
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