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Meta-analysis of problematic alcohol use in 435,563 individuals identifies 29 risk variants 1 

and yields insights into biology, pleiotropy and causality 2 
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Abstract 54 

Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. Although 55 

genome-wide association studies (GWASs) have identified PAU risk genes, the genetic 56 

architecture of this trait is not fully understood. We conducted a proxy-phenotype meta-analysis 57 

of PAU combining alcohol use disorder and problematic drinking in 435,563 European-ancestry 58 

individuals. We identified 29 independent risk variants, 19 of them novel. PAU was genetically 59 

correlated with 138 phenotypes, including substance use and psychiatric traits. Phenome-wide 60 

polygenic risk score analysis in an independent biobank sample (BioVU, n=67,589) confirmed 61 

the genetic correlations between PAU and substance use and psychiatric disorders. Genetic 62 

heritability of PAU was enriched in brain and in genomic conserved and regulatory regions. 63 

Mendelian randomization suggested causal effects on liability to PAU of substance use, 64 

psychiatric status, risk-taking behavior, and cognitive performance. In summary, this large PAU 65 

meta-analysis identified novel risk loci and revealed genetic relationships with numerous other 66 

outcomes.  67 
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Introduction 68 

 Alcohol use and alcohol use disorder (AUD) are leading causes of death and disability 69 

worldwide [1]. Genome-wide association studies (GWAS) of AUD and problematic drinking 70 

measured by different assessments have identified potential risk genes primarily in European 71 

populations [2-5]. Quantity-frequency measures of drinking, for example the Alcohol Use 72 

Disorders Identification Test–Consumption (AUDIT-C), which sometimes reflect alcohol 73 

consumption in the normal range, differ genetically from AUD and measures of problematic 74 

drinking (e.g., the Alcohol Use Disorders Identification Test–Problems [AUDIT-P]), and show a 75 

divergent set of genetic correlations [3, 4]. The estimated SNP-based heritability (h2) of AUD 76 

ranges from 5.6% to 10.0% [2-5]. To date, more than ten risk variants have been significantly 77 

associated with AUD and AUDIT-P (p < 5 × 10-8). Variants mapped to several risk genes have 78 

been detected in multiple studies, including ADH1B (Alcohol Dehydrogenase 1B), ADH1C 79 

(Alcohol Dehydrogenase 1C), ALDH2 (Aldehyde Dehydrogenase 2, only in some Asian 80 

samples), SLC39A8 (Solute Carrier Family 39 Member 8), GCKR (Glucokinase Regulator), and 81 

CRHR1 (Corticotropin Releasing Hormone Receptor 1). In the context of the known extensive 82 

polygenicity underlying AUD and AUDIT-P, we anticipate that additional significant risk loci can 83 

be identified by increasing sample size; this is the pattern for GWAS of heterogenous complex 84 

traits in general also. We can characterize both AUD itself and AUDIT-P, as “problematic 85 

alcohol use” (PAU). To identify additional risk variants and enhance our understanding of the 86 

genetic architecture of PAU, we conducted genome-wide meta-analysis of AUD and AUDIT-P in 87 

435,563 individuals of European ancestry. The understanding of the genetic architecture of PAU 88 

in African populations is far behind than Europeans; the largest sample published so far is 89 

56,648 in MVP [3] and results have not moved beyond a single genomic region that includes 90 

ADH1B. This study only focused on European samples because we cannot achieve a 91 

substantial increment in African-ancestry subjects over previous studies. 92 
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Results 93 

Figure 1 provides an overview of the meta-analysis of the 4 major datasets. The first is 94 

the GWAS of AUD in European Americans (EA) from the Million Veteran Program (MVP) [6] 95 

(herein designated “MVP phase1”), comprised 202,004 individuals phenotyped for AUD (ncase = 96 

34,658, ncontrol = 167,346, neffective = 114,847) using International Classification of Diseases (ICD) 97 

codes [3]. The second, MVP Phase2, included an additional 65,387 EA individuals from MVP 98 

(ncase = 11,337, ncontrol = 54,050, neffective = 37,485) not previously analyzed. The third dataset is a 99 

GWAS of DSM-IV alcohol dependence (AD) from the Psychiatric Genomics Consortium (PGC), 100 

which included 46,568 European participants (ncase = 11,569, ncontrol = 34,999, neffective = 26,853) 101 

[2]. The fourth dataset is a GWAS of Alcohol Use Disorders Identification Test–Problems 102 

(AUDIT-P; a measure of problematic drinking) scores from a UK Biobank sample (UKB) [7] that 103 

included 121,604 European participants [4]. 104 

The genetic correlation (rg) between MVP phase1 AUD and PGC AD was 0.965 (se = 105 

0.15, p = 1.21 × 10-10) [3]. Rg between the entire MVP (meta-analysis of phase1 and phase2) 106 

and PGC increased to 0.98 (se = 0.11, p = 1.99 × 10-19), justifying the meta-analysis of AUD 107 

across the three datasets (neffective = 179,185). 24 risk variants in 23 loci were detected in this 108 

intermediary meta-analysis (Supplementary Figure 1, Supplementary Table 1). The rg between 109 

UKB AUDIT-P and AUD (MVP+PGC) was 0.71 (se = 0.05, p = 8.15 × 10-52), and the polygenic 110 

risk score (PRS) of AUD was associated with AUDIT-P in UKB (best p-value threshold PTbest = 111 

0.001, R2 = 0.25%, p = 3.28 × 10-41, Supplementary Table 2, Supplementary Figure 2), justifying 112 

the proxy-phenotype meta-analysis of problematic alcohol use (PAU) across all four datasets. 113 

The total sample size was 435,563 in the discovery analysis (neffective = 300,789). 114 
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 115 

Figure 1. Overview of the analysis. Four datasets were meta-analyzed as the discovery 116 

sample for problematic alcohol use (PAU) including MVP phase1, MVP phase2, PGC, and UK 117 

Biobank (UKB). MVP phase1 and phase2 were meta-analyzed, and the result was used for 118 

testing the genetic correlation with PGC alcohol dependence. An intermediary meta-analysis 119 

(AUD meta) combining MVP phase1, phase2, and PGC was then conducted to measure the 120 

genetic correlation with UKB AUDIT-P. Due to the sample overlap between UKB and GSCAN, 121 

we used the AUD meta-analysis for Mendelian Randomization (MR) analysis rather than the 122 

PAU (i.e., the second) meta-analysis. MTAG, which used the summary data from PAU and 123 

DrnkWk (drinks per week) in GSCAN (without 23andMe samples as those data were not made 124 

available) as input to increase the power for each trait without introducing bias from sample 125 

overlap, returned summary results for PAU and DrnkWk separately. 126 

 127 

Association results for PAU 128 
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 Of 42 lead variants (mapping to 27 loci, Supplementary Figure 3, and Supplementary 129 

Table 3) that were genome-wide significant (GWS) for PAU, 29 were independently associated 130 

after conditioning on lead SNPs in the regions (see below and Table 1). Ten variants were 131 

previously identified through the same index SNPs or tagged SNPs, located in or near the 132 

following genes: GCKR, SIX3, KLB, ADH1B, ADH1C, SLC39A8, DRD2, and FTO [2-5]. Thus, 133 

19 variants reported here were novel, of which 11 were located in gene regions, including 134 

PDE4B (Phosphodiesterase 4B), THSD7B (Thrombospondin Type 1 Domain Containing 7B), 135 

CADM2 (Cell Adhesion Molecule 2), ADH1B (different from the locus identified previously), 136 

DPP6 (Dipeptidyl Peptidase Like 6), SLC39A13 (Solute Carrier Family 39 Member 13), TMX2 137 

(Thioredoxin Related Transmembrane Protein 2), ARID4A (AT-Rich Interaction Domain 4A), 138 

C14orf2 (Chromosome 14 open reading frame 2), TNRC6A (Trinucleotide Repeat Containing 139 

Adaptor 6A), and FUT2 (Fucosyltransferase 2). A novel rare ADH1B variant, rs75967634 (p = 140 

1.07 × 10-9, with a minor allele frequency of 0.003), which causes a substitution of histidine for 141 

arginine, is in the same codon as rs2066702 (a well-known variant associated with AUD in 142 

African populations[3, 8], but not polymorphic in European populations).This latter association is 143 

independent from rs1229984 in ADH1B and rs13125415 (a tag SNP of rs1612735 in MVP 144 

phase1 [3]) in ADH1C. The identification of rs75967634 demonstrates the present study’s 145 

greater power to detect risk variants in this region, beyond the frequently reported 146 

ADH1B*rs1229984. 147 

 Moderate genetic correlation between AUD and alcohol consumption, and also 148 

pervasive pleiotropic effects of SNPs, were demonstrated previously [2-4]. Some of the novel 149 

variants (10 out of 19) identified in this study were also associated with other alcohol-related 150 

traits, including AUDIT-C score [3], total AUDIT score [4], and drinks per week (DrnkWk) from 151 

the GSCAN study [9] (described below and Supplementary Table 3). Rs1402398, close to 152 

VRK2, was associated with AUDIT-C score (tagged by rs2683616) [3]; rs492602 in FUT2 was 153 
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associated with DrnkWk [9] and total AUDIT score [4]; and rs6421482, rs62250713, rs2533200, 154 

rs10717830, rs1783835, rs12296477, rs61974485, and rs72768626 were associated with 155 

DrnkWk directly or through tag SNPs in high linkage disequilibrium (LD) [9]. Analysis 156 

conditioned on DrnkWk shows that 11 of the 29 independent variants were independently 157 

associated with PAU (i.e., not mediated by DrnkWk) (Supplementary Table 3). 158 

 159 

Table 1. Genome-wide significant associations for PAU. 160 

Chr Pos (hg19) rsID Gene A1 A2 EAF Z P Direction 
1 66419905 rs6421482 PDE4Ba A G 0.4363 -6.315 2.7×10-10 ---- 
1 73848610 rs61767420 [] A G 0.3999 5.714 1.11×10-8 ++++ 
2 27730940 rs1260326 GCKRa T C 0.4033 -9.296 1.45×10-20 --+- 
2 45141180 rs494904 SIX3b T C 0.5961 -7.926 2.26×10-15 ---- 
2 58042241 rs1402398 VRK2b A G 0.6274 7.098 1.27×10-12 ++++ 
2 104134432 rs9679319 [] T G 0.4797 -6.01 1.86×10-9 ---- 
2 138264231 rs13382553 THSD7Ba A G 0.766 -6.001 1.97×10-9 ---- 
2 227164653 rs2673136 IRS1b A G 0.6387 -5.872 4.31×10-9 ---- 
3 85513793 rs62250713 CADM2a A G 0.368 6.049 1.46×10-9 ++++ 
4 39404872 rs13129401 KLBb A G 0.4532 -8.906 5.29×10-19 ---- 
4 100229016 rs75967634 ADH1Ba T C 0.003 -6.098 1.07×10-9 --?- 
4 100239319 rs1229984 ADH1Ba T C 0.0302 -22 2.9×10-107 ---? 
4 100270452 rs13125415 ADH1Ca A G 0.5849 -9.073 1.16×10-19 ---- 
4 103198082 rs13135092 SLC39A8a A G 0.9192 11.673 1.75×10-31 ++++ 
7 153489074 rs2533200 DPP6a C G 0.5163 -5.631 1.79×10-8 ---- 
8 57424874 rs2582405 PENKb T C 0.237 5.751 8.86×10-9 ++++ 
10 72907951 rs7900002 UNC5Bb T G 0.6012 -5.503 3.74×10-8 --+- 
10 110537834 rs56722963 [] T C 0.2551 -6.374 1.85×10-10 ---- 
11 47423920 rs10717830 SLC39A13a G GT 0.674 6.422 1.34×10-10 ++++ 
11 57480623 rs576859 TMX2a A C 0.3272 5.67 1.43×10-8 +++? 
11 113357710 rs138084129 DRD2b A AATAT 0.6274 7.824 5.13×10-15 ++++ 
11 113443753 rs6589386 DRD2b T C 0.4323 -7.511 5.88×10-14 ---- 
11 121542923 rs1783835 SORL1b A G 0.4569 -5.979 2.24×10-9 ---- 
12 51903860 rs12296477 SLC4A8b C G 0.5469 5.484 4.15×10-8 ++++ 
14 58765903 rs61974485 ARID4Aa T C 0.2646 5.506 3.67×10-8 ++++ 
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14 104355883 rs8008020 C14orf2a T C 0.4175 6.062 1.35×10-9 ++++ 
16 24693048 rs72768626 TNRC6Aa A G 0.9448 5.591 2.26×10-8 ++++ 
16 53820813 rs9937709 FTOa A G 0.585 6.602 4.06×10-11 ++++ 
19 49206417 rs492602 FUT2a A G 0.5076 -6.143 8.08×10-10 ---- 
 161 

Listed are the 29 independent variants that were genome-wide significant. Variants labeled in 162 
bold are novel associations with PAU. A1, effect allele; A2, other allele; EAF, effective allele 163 
frequency; Directions are for the A1 allele in MVP phase1, MVP phase2, PGC, and UKB 164 
datasets.  165 
aProtein-coding gene contains the lead SNP,  166 
bProtein-coding gene nearest to the lead SNP. 167 

 168 

 Gene-based association analysis identified 66 genes that were associated with PAU 169 

at GWS (p < 2.64 × 10-6, Supplementary Table 4). DRD2, which has been extensively studied in 170 

many fields of neuroscience, was among these 66 genes and had been reported in both UKB [4] 171 

and MVP phase1 [3]. Among the 66 genes, 46 are novel, including ADH4 (Alcohol 172 

Dehydrogenase 4), ADH5 (Alcohol Dehydrogenase 5), and ADH7 (Alcohol Dehydrogenase 7), 173 

extending alcohol metabolizing gene associations beyond the well-known ADH1B and ADH1C; 174 

SYNGAP1 (Synaptic Ras GTPase Activating Protein 1), BDNF (Brain-Derived Neurotrophic 175 

Factor), and others. Certain genes show associations with multiple traits including previous 176 

associations with AUDIT-C (4 genes in MVP phase1, 12 genes in UKB), total AUDIT score (19 177 

genes in UKB), and DrnkWk (46 genes in GSCAN, which includes results for DrnkWk after 178 

MTAG [10] analysis). 179 

 Examination of the 66 associated genes for known drug-gene interactions through the 180 

Drug Gene Interaction Database v3.0.2 [11] showed 327 interactions between 16 genes and 181 

325 drugs (Supplementary Table 5). Of these 16 genes with interactions, DRD2 had the most 182 

drug interactions (n = 177), followed by BDNF (n = 68) and PDE4B (n = 36).  183 

 184 
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SNP-based h2 and partitioning heritability enrichment 185 

We used LD Score Regression (LDSC) [12] to estimate SNP-based h2 in the different datasests 186 

and the meta-analyses (Figure 2). Because of the unbalanced case/control ratio, we used 187 

effective sample size instead of actual sample size in MVP (following the PGC AD GWAS [2]). 188 

The h2 of PAU (the meta result) was 0.068 (se = 0.004). The h2 of AUD in the MVP meta-189 

analysis (phases 1 and 2) was 0.095 (se = 0.006), and was 0.094 (se = 0.005) in the meta-190 

analysis combining MVP and PGC.  191 

 192 

 193 

Figure 2. Estimated SNP-based h2. Blue bars show h2 results for single datasets or meta-194 

analysis between datasets, from published studies or analyzed here. Red bar shows h2 for the 195 

PAU discovery meta-analysis. Orange bars show h2 results of MTAG analysis for PAU in the 196 

discovery sample and DrnkWk from GSCAN. Effective sample sizes (nE) were used in LDSC. 197 

nEq is the GWAS-equivalent sample size reported by MTAG. 198 

 199 
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Partitioning heritability enrichment analyses using LDSC [13, 14] showed the most 200 

significantly enriched cell type group to be central nervous system (CNS, p = 3.53 × 10-9), 201 

followed by adrenal and pancreas (p = 1.89 × 10-3), and immune and hematopoietic (p = 3.82 × 202 

10-3, Supplementary Figure 4). Significant enrichments were also observed in six baseline 203 

annotations, including conserved regions, conserved regions with 500bp extended (ext), fetal 204 

DHS (DNase I hypersensitive sites) ext, weak enhancers ext, histone mark H3K4me1 ext, and 205 

TSS (transcription start site) ext (Supplementary Figure 5). We also investigated heritability 206 

enrichments using Roadmap data, which contains six annotations (DHS, H3K27ac, H3K4me3, 207 

H3K4me1, H3K9ac, and H3K36me3) in a subset of 88 primary cell types and tissues [14, 15]. 208 

Significant enrichments were observed for H3K4me1 and DHS in fetal brain, and H3K4me3 in 209 

fetal brain and in brain germinal matrix (Supplementary Table 6). Although no heritability 210 

enrichment was observed in tissues using gene expression data from GTEx [16], the top 211 

nominally enriched tissues were all in brain (Supplementary Figure 6). 212 

 213 

Functional enrichments  214 

MAGMA tissue expression analysis [17, 18] using GTEx showed significant enrichments in 215 

several brain tissues including cerebellum and cortex (Supplementary Figure 7). Although no 216 

enrichment was observed via MAGMA gene-set analysis using gene-based p-values of all 217 

protein-coding genes, the 152 genes prioritized by positional, expression quantitative trait loci 218 

(eQTL), and chromatin interaction mapping were enriched in several gene sets, including 219 

ethanol metabolic processes (Supplementary Table 7). 220 

 221 

Genetic correlations with other traits 222 

We estimated the genetic correlations between PAU and 715 publicly available sets of GWAS 223 
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summary statistics which included 228 published sets and 487 unpublished sets from the UK 224 

Biobank. After Bonferroni correction (p < 6.99 × 10-5), 138 traits were significantly correlated 225 

with PAU (Supplementary Table 8). Among the 26 published traits, drinks per week showed the 226 

highest rg with PAU (rg = 0.77, se = 0.02, p = 3.25 × 10-265), consistent with the overall quantity 227 

of alcohol consumed being a key domain of PAU [5, 19]. Several smoking traits and lifetime 228 

cannabis use were positively genetically correlated with PAU, consistent with the high 229 

comorbidity between alcohol and other substance use disorders in the general population [20]. 230 

Among psychiatric disorders, major depressive disorder (MDD, rg = 0.39, se = 0.03, p = 1.43 × 231 

10-40) showed the highest genetic correlation with PAU, extending the evidence for the shared 232 

genetic contribution to MDD and alcohol-related traits [21, 22]. PAU was positively genetically 233 

correlated with risk-taking behavior, insomnia, lung cancer, and other traits, and negatively 234 

correlated with cognitive traits and parents’ age at death. These finding are in line with the 235 

known adverse medical, psychiatric, and social consequences of problem drinking (Figure 3). 236 

 237 
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Figure 3. Genetic correlations with published traits. Of 228 published traits, 26 were 238 

genetically correlated with PAU after Bonferroni correction (p < 0.05/715). MDD, major 239 

depressive disorder; ADHD, attention deficit hyperactivity disorder. 240 

 241 

Transcriptomic analyses 242 

We used S-PrediXcan [23] to predict gene expression and the mediating effects of variation on 243 

gene expression on PAU. Forty-eight tissues from GTEx [16] release v7 and whole blood 244 

samples from the Depression Genes and Networks study (DGN) [24] were analyzed as 245 

reference transcriptomes (Supplementary Table 9). After Bonferroni correction, 103 gene-tissue 246 

associations were significant, representing 39 different genes, some of which were identified in 247 

multiple tissues (Supplementary Table 10). For example, C1QTNF4 (C1q and tumor necrosis 248 

factor related protein 4) was detected in 18 tissues, including brain, gastrointestinal, adipose, 249 

and liver. None of the four significant alcohol dehydrogenase genes (ADH1A, ADH1B, ADH4, 250 

and ADH5) was associated with expression in brain tissue, but they were associated with 251 

expression in other tissues -- adipose, thyroid, gastrointestinal and heart. This might be due to 252 

the generally low expression level of these genes in brain [25]. These cross-tissue associations 253 

indicate that there are widespread functional consequences of PAU-risk-associated genetic 254 

variation at the expression level. 255 

 Although the sample size for tissues used for eQTL analysis limits our ability to detect 256 

associations, there are substantial common eQTLs across tissues [16]. Integrating evidence 257 

from multiple tissues can increase power to detect genes relative to the tissues tested 258 

individually, at least for shared eQTLs. We applied S-MultiXcan [26] to the summary data for 259 

PAU using all 48 GTEx tissues as reference transcriptomic data. The expression of 34 genes 260 

was significantly associated with PAU, including ADH1B, ADH4, ADH5, C1QTNF4, GCKR, and 261 
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DRD2 (Supplementary Table 11). Among the 34 genes, 27 overlapped with genes detected by 262 

S-PrediXcan. 263 

 264 

PAU PRS for phenome-wide associations 265 

We calculated PRS for PAU in 67,589 individuals of European descent from the Vanderbilt 266 

University Medical Center’s biobank, BioVU. We conducted a phenome-wide association study 267 

(PheWAS) of PRS for PAU adjusting for sex, age (calculated as the median age across an 268 

individual’s medical record), and top 10 principal components of ancestry. We standardized the 269 

PRS so that the odds ratios correspond to a standard deviation increase in the PRS. After 270 

Bonferroni correction, 31 of the 1,372 phenotypes tested were significantly associated with PAU 271 

PRS, including alcohol-related disorders (OR = 1.46, se = 0.03, p = 3.34 × 10-40), alcoholism 272 

(OR = 1.33, se = 0.03, p = 3.85 × 10-28), tobacco use disorder (OR = 1.21, se = 0.01, p = 2.71 × 273 

10-38), 6 respiratory conditions, and 17 additional psychiatric conditions (Supplementary Figure 8, 274 

Supplementary Table 12). 275 

 276 

PAU PRS with AD in independent samples 277 

We tested the association between PAU PRS and alcohol dependence in three independent 278 

samples: the iPSYCH group (ncase = 944, ncontrol = 11,408, neffective = 3,487); University College 279 

London (UCL) Psych Array (ncase = 1,698, ncontrol = 1,228, neffective = 2,851); and UCL Core 280 

Exome Array (ncase = 637, ncontrol = 9,189, neffective = 2,383). The PAU PRSs were significantly 281 

associated with AD in all three samples, with the most variance explained in the UCL Psych 282 

Array sample, which includes the most cases (PTbest = 0.001, R2 = 2.12%, p = 8.64 × 10-14). In 283 

the iPSYCH group and UCL Core Exome Array samples, the maximal variance explained was 284 

1.61% (PTbest = 0.3, p = 1.87 × 10-22), and 0.77% (PTbest = 5 × 10-8, p = 1.65 × 10-7), respectively 285 
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(Supplementary Table 13). 286 

 287 

Mendelian Randomization 288 

We tested the causal effects of liability to exposures on liability to AUD (MVP+PGC), rather than 289 

PAU: the UKB AUDIT-P GWAS was excluded to minimize sample overlap with other GWAS for 290 

putative exposures. We limited the exposures to those genetically correlated with PAU, and 291 

have more than 30 available instruments. There were only 24 independent variants for AUD; 292 

therefore the causal effects of liability to AUD on other traits (i.e., bidirectional) were not tested. 293 

Among the 13 tested exposures, 12 showed evidence of a causal effect on liability to AUD, the 294 

exception being cigarettes per day (Table 2). DrnkWk and ever smoked regularly have a 295 

positive causal effect on AUD risk by all 3 methods, without violating MR assumptions through 296 

horizontal pleiotropy (MR-Egger intercept p > 0.05). General risk tolerance was shown to be 297 

causally related to AUD risk, though the estimate could be biased due to horizontal pleiotropy 298 

(intercept p = 9.62 × 10-3). MDD, depressed affect neuroticism subcluster, worry neuroticism 299 

subcluster, number of sexual partners, and insomnia show evidence of positive causal effects 300 

on liability to AUD from at least one method, while cognitive performance and educational 301 

attainment show evidence of negative causal effects.302 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/738088doi: bioRxiv preprint 

https://doi.org/10.1101/738088
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Table 2. Causal effects on liability to AUD (MVP+PGC) by MR. 303 

Exposure (#instruments) Ref IVW [27] Weighted median [28] MR-Egger [29] MR-Egger 

intercept p β (se) p β (se) p β (se) p 

DrnkWk (58) [9] 0.89 (0.06) 1.80×10-46 0.89 (0.08) 2.89×10-26 0.91 (0.20) 3.80×10-6 0.898 

Ever smoked regularly (199) [9] 0.32 (0.02) 8.72×10-51 0.33 (0.02) 4.20×10-43 0.26 (0.08) 1.21×10-3 0.471 

Cigarettes per day (33) [9] 0.04 (0.06) 0.475 -0.10 (0.04) 0.010 -0.18 (0.09) 0.034 1.27×10-3 

MDD (78) [30] 0.14 (0.03) 8.42×10-6 0.14 (0.03) 2.79×10-6 -0.17 (0.20) 0.390 0.113 

Schizophrenia (110) [31] 0.04 (0.01) 2.47×10-6 0.04 (0.01) 4.96×10-6 -0.05 (0.04) 0.202 0.016 

Depressed affect subcluster (56) [32] 0.19 (0.06) 1.75×10-3 0.24 (0.05) 5.44×10-6 -0.20 (0.28) 0.462 0.147 

Neuroticism (131) [32] 0.20 (0.04) 1.10×10-7 0.20 (0.04) 1.10×10-7 -0.26 (0.16) 0.097 2.64×10-3 

Worry subcluster (61) [32] 0.13 (0.06) 0.020 0.17 (0.05) 8.06×10-4 0.04 (0.26) 0.890 0.702 

Number of sexual partners (64) [33] 0.31 (0.04) 3.27×10-12 0.36 (0.05) 9.00×10-16 0.51 (0.20) 0.011 0.309 

General risk tolerance (64) [33] 0.26 (0.06) 7.37×10-6 0.28 (0.07) 5.93×10-5 0.88 (0.25) 3.69×10-4 9.62×10-3 

Insomnia (159) [34] 0.05 (0.01) 1.90×10-5 0.03 (0.01) 5.31×10-3 0.00 (0.05) 0.993 0.288 

Cognitive performance (134) [35] -0.08 (0.02) 1.03×10-3 -0.05 (0.03) 0.044 -0.21 (0.12) 0.086 0.282 

Educational attainment (570) [35] -0.22 (0.02) 1.32×10-25 -0.21 (0.02) 1.45×10-17 -0.24 (0.08) 2.21×10-3 0.781 

 304 
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P-values labeled in bold are significant after multiple testing correction. Traits labeled in bold are those having a causal effect on 305 

AUD risk by at least one method without evidencing horizontal pleiotropy (MR-Egger intercept p > 0.05). IVW: inverse-variance 306 

weighted (IVW) linear regression. DrnkWk: drinks per week. MDD: major depressive disorder. Depressed affect subcluster: 307 

depressed affect subcluster of neuroticism. Worry subcluster: worry subcluster of neuroticism.308 
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Joint Analysis of PAU and DrnkWk Using MTAG 309 

We conducted a joint analysis of PAU and DrnkWk using MTAG, which can increase the power 310 

for each trait without introducing bias from sample overlap [10]. MTAG analysis increased the 311 

GWAS-equivalent sample size (nEq) for PAU to 514,790, i.e., a 71.1% increase from the original 312 

effective sample size (nE = 300,789, n = 435,563). In this analysis, we observed an increase in 313 

the number of independent variants for PAU to 119, 76 of which were conditionally independent 314 

(Supplementary Figure 9, Supplementary Table 14). For DrnkWk, the MTAG analysis increased 315 

the nEq to 612,968 from 537,352, which yielded 141 independent variants, 86 of which were 316 

conditionally independent (Supplementary Figure 10, Supplementary Table 15). MTAG analysis 317 

increased the observed h2 of PAU to 0.113 (se = 0.005) from 0.068 (se = 0.004) and of DrnkWk 318 

to 0.063 (se = 0.003) from the reported value of 0.042 (se = 0.002, Figure 2) [9]. 319 

 The MTAG analysis also increased the power for the functional enrichment analysis. 320 

MAGMA gene set analysis for PAU after MTAG analysis detected 10 enriched Gene Ontology 321 

terms, including ‘regulation of nervous system development’ (pBonferroni = 8.80 × 10-4), 322 

‘neurogenesis’ (pBonferroni = 0.010), and ‘synapse’ (pBonferroni = 0.046) (Supplementary Table 16). 323 

 324 

 325 

 326 

Discussion 327 

We report here a genome-wide meta-analysis of PAU in 435,563 individuals of European 328 

ancestry from the MVP, PGC, and UKB datasets. MVP is a mega-biobank that has 329 

enrolled >750,000 subjects (for whom genotype data on 313,977 subjects was used in this 330 

study), with rich phenotype data assessed by questionnaires and from the EHR. Currently, MVP 331 
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is the largest single cohort available with diagnostic information on AUD [3, 6]. PGC is a 332 

collaborative consortium that has led the effort to collect smaller cohorts with DSM-IV AD [2]. 333 

UKB is a population-level cohort with the largest available sample with AUDIT-P data [4].  334 

Our discovery meta-analysis of PAU yielded 29 independent variants, of which 19 were 335 

novel, with 0.059 to 0.113 of the phenotypic variance explained in different cohorts or meta-336 

analyses. The h2 in the Phase1-Phase2 MVP meta-analysis was 0.095 (se = 0.006), which was 337 

higher than MVP phase1: 0.056 (se = 0.004, in MVP phase1 where only the actual (as opposed 338 

to effective) sample size was used) [3] . The h2 of AD in PGC was 0.098 (se = 0.018), 339 

comparable to the reported liability-scale h2 (0.090, se = 0.019) [2]. Functional and heritability 340 

analyses consistently showed enrichments in brain regions and gene expression regulatory 341 

regions, providing biological insights into the etiology of PAU. Variation associated with gene 342 

expression in the brain is central to PAU risk, a conclusion that is also consistent with our 343 

previous GWASs in MVP of both alcohol consumption and AUD diagnosis [3]. The enrichments 344 

in regulatory regions point to specific brain tissues relevant to the causative genes; the specific 345 

interactions between 16 genes and 325 drugs may provide targets for the development of 346 

medications to manage PAU. Potential targets identified include the D2 dopamine receptor 347 

(encoded by DRD2) and phosphodiesterase 4B (encoded by PDE4B). The presence of risk 348 

variation at these loci also suggests the possibility that they may be “personalized medicine” 349 

targets as well. 350 

 We also found that PAU was significantly genetically correlated with 138 other traits. The 351 

top correlations were with substance use and substance-related disorders, MDD, schizophrenia, 352 

and several other neuropsychiatric traits. In a conceptually similar analysis, we performed a 353 

PheWAS of PAU PRS in BioVU, which confirmed the genetic correlations between PAU and 354 

multiple substance use disorders, mood disorders, and other psychiatric traits in an independent 355 

sample. We also used MR to infer causal effects of the above traits on liability to AUD (we 356 
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tested AUD excluding UKB samples to avoid sample overlap) using selected genetic 357 

instruments. We found evidence of causal relationships from DrnkWk, ever smoked regularly, 358 

MDD, depressed affect subcluster, worry subcluster, number of sexual partners, insomnia, 359 

cognitive performance, and educational attainment to AUD risk, while cognitive performance 360 

and educational attainment showed protective effects on liability to AUD. For some of these 361 

observed effects, such as with schizophrenia, neuroticism, and general risk tolerance, we 362 

cannot exclude horizontal pleiotropy among our instrument variables. We could not test the 363 

reverse causality of AUD liability on other traits in the absence of large samples for those 364 

targeted traits, which are required to draw causal inferences. Thus we cannot rule out the 365 

possibility of bidirectional effects, which are plausible for several of these traits (e.g., MDD). 366 

The study has other limitations. First, only European populations were included; 367 

therefore, the genetic architecture of PAU in other populations remains largely unknown. To 368 

date, the largest non-European sample to undergo GWAS for alcohol-related traits is African 369 

American (AA), which was reported in the MVP phase1 sample (17,267 cases; 39,381 controls, 370 

effective samples size 48,015), with the only associations detected being on chromosome 4 in 371 

the ADH gene locus (where several ADH genes map) [3]. Collection of substantial numbers of 372 

non-European subjects requires a concerted effort from our research field. Second, despite the 373 

high genetic correlation between AUD and AUDIT-P, they are not identical traits. We conducted 374 

a meta-analysis of the two traits to increase the power for the association study of PAU, 375 

consequently, associations specific to AUD or AUDIT-P could have been attenuated. Third, 376 

there was no opportunity for replication of the individual novel variants. Because the variants 377 

were detected in more than 430,000 subjects and have small effect sizes, a replication sample 378 

with adequate power would also have to be very large, and no such sample is currently 379 

available. To validate the findings, we conducted PRS analyses in three independent cohorts, 380 

which showed strong association with AUD. Although this indicates that our study had adequate 381 
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power for variant detection, it does not address the validity of the individual variants discovered.  382 

This is the largest GWAS study of PAU so far. Previous work has shown that the genetic 383 

architecture of AUD (and PAU) differs substantially from that of alcohol consumption [2-4]. 384 

There have been larger studies of alcohol quantity-frequency measures [9, 36]; alcohol 385 

consumption data are available in many EHRs, thus they were included in many studies of other 386 

primary traits, like cardiac disease. AUD diagnoses are collected much less commonly. The 3-387 

item AUDIT-C is a widely-used measure of alcohol consumption often available in EHRs, but 388 

the full 10-item AUDIT, which allows the assessment of AUDIT-P, is not as widely available. 389 

Despite the high genetic correlation between, for example, PAU and DrnkWk (rg=0.77), very 390 

different patterns of genetic correlation and pleiotropy have been observed via LDSC and other 391 

methods for these different kinds of indices of alcohol use [2-5]. PAU captures pathological 392 

alcohol use: physiological dependence and/or significant medical consequences. 393 

Quantity/frequency measures may capture alcohol use that is in the normal, or anyway 394 

nonpathological, range. As such, we argue that although quantity/frequency measures are 395 

important for understanding the biology of habitual alcohol use, PAU is the more important, and 396 

more clearly pathological, trait. These circumstances underscore the importance of assembling 397 

a large GWAS sample of PAU to inform the biology of PAU, and our study moves towards this 398 

goal via the identification of numerous previously-unidentified risk loci: we increased known 399 

PAU loci from 10 to 29, nearly tripling our knowledge of specific risk regions. Similarly, we 400 

identified 66 gene-based associations, of which 46 were novel – again roughly tripling current 401 

knowledge. MTAG analysis increased locus discovery to 119, representing 76 independent loci, 402 

by levering information from DrnkWk [9]. By the same token, we provide a major increment in 403 

information about the biology of PAU, providing considerable fodder for future in-vitro and 404 

animal studies, which will be required to delineate the biology and function associated with each 405 

risk variant. We anticipate that this knowledge may lead to improvements in treatment and 406 
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treatment personalization, a major ultimate goal of the work. 407 

 408 

 409 

 410 

Methods 411 

MVP datasets. The MVP is a mega-biobank supported by the U.S. Department of Veterans 412 

Affairs (VA), enrollment for which began in 2011 and is ongoing. Phenotypic data were collected 413 

using questionnaires and the VA electronic health records (EHR), and a blood sample was 414 

obtained from each participant for genetic studies. Two phases of genotypic data have been 415 

released and were included in this study. MVP phase1 contains 353,948 subjects, of whom 416 

202,004 European Americans (EA) with AUD diagnoses were included in a previous GWAS and 417 

the summary statistics were used in this study [3]. MVP phase2 released data on another 418 

108,416 subjects, of whom 65,387 EAs with AUD diagnosis information were included in this 419 

study. Following the same procedures as for MVP phase1, participants with at least one 420 

inpatient or two outpatient alcohol-related ICD-9/10 codes from 2000 to 2018 were assigned a 421 

diagnosis of AUD.  422 

Ethics statement: The Central VA Institutional Review Board (IRB) and site-specific IRBs 423 

approved the MVP study. All relevant ethical regulations for work with human subjects were 424 

followed in the conduct of the study and informed consent was obtained from all participants. 425 

Genotyping for both phases of MVP was performed using a customized Affymetrix 426 

Biobank Array. Imputation and quality control methods for MVP phase1 were described in detail 427 

in Kranzler et al. [3]. Similar methods were used for MVP phase2. Before imputation, phase2 428 

subjects or SNPs with genotype call rate < 0.9 or high heterozygosity were removed, leaving 429 
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108,416 subjects and 668,324 SNPs. Imputation for MVP phase2 was done separately from 430 

phase1; both were performed with EAGLE2 [37] and Minimac3 [38] using 1000 Genomes 431 

Project phase 3 data [39] as the reference panel. Imputed genotypes with posterior probability ≥ 432 

0.9 were transferred to best guess genotypes (the rest were treated as missing genotype calls). 433 

A total of 6,635,093 SNPs with INFO scores > 0.7, genotype call rates or best guess rates > 434 

0.95, Hardy Weinberg equilibrium p value < 1 × 10−6, minor allele frequency (MAF) > 0.001 were 435 

remained for GWAS. 436 

We removed subjects with mismatched genotypic and phenotypic sex and one subject 437 

randomly from each pair of related individuals (kinship coefficient threshold = 0.0884), leaving 438 

107,438 phase2 subjects for subsequent analyses. We used the same processes as MVP 439 

phase1 to define EAs. First, we ran principal components analysis (PCA) on 74,827 common 440 

SNPs (MAF > 0.05) shared by MVP and the 1000 Genomes phase 3 reference panels using 441 

FastPCA [40]. Then we clustered each participant into the nearest reference population 442 

according to the Euclidean distances between the participant and the centers of the 5 reference 443 

populations using the first 10 PCs. A second PCA was performed for participants who were 444 

clustered to the reference European population (EUR), and outliers were removed if any of the 445 

first 10 PCs were > 3 standard deviations from the mean, leaving 67,268 EA subjects.  446 

Individuals < 22 or > 90 years of age and those with a missing AUD diagnosis were 447 

removed from the analyses, leaving 65,387 phase2 EAs (11,337 cases; 54,050 controls). 448 

GWAS was then performed on the MVP phase2 dataset. We used logistic regression 449 

implemented in PLINK v1.90b4.4 [41] for the AUD GWAS correcting for age, sex, and the first 450 

10 PCs. 451 

 452 

PGC summary statistics. We used the 46,568 European ancestry subjects (11,569 cases and 453 
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34,999 controls) from 27 cohorts that were analyzed by the Psychiatric Genomics Consortium 454 

(PGC). The phenotype was lifetime DSM-IV diagnosis of alcohol dependence (AD). The 455 

summary data were downloaded from the PGC website (https://www.med.unc.edu/pgc/) with full 456 

agreement to the PGC conditions. Allele frequencies were not reported in the summary data. 457 

We used allele frequencies from the 1000 Genome European sample as proxy measures in 458 

PGC for some downstream analyses. 459 

 460 

UK Biobank summary statistics. The UK Biobank (UKB) included 121,604 White-British 461 

unrelated subjects with available AUDIT-P scores. Past-year AUDIT-P was assessed by 7 462 

questions: 1). Frequency of inability to cease drinking; 2). Frequency of failure to fulfil normal 463 

expectations due to drinking alcohol; 3). Frequency of needing morning drink of alcohol after 464 

heavy drinking session; 4). Frequency of feeling guilt or remorse after drinking alcohol; 5). 465 

Frequency of memory loss due to drinking alcohol; 6). Ever been injured or injured someone 466 

else through drinking alcohol; 7). Ever had known person concerned about, or recommend 467 

reduction of, alcohol consumption. The AUDIT-P was log10-transformed for GWAS (see ref [4] 468 

for details). We removed SNPs with INFO < 0.7 or call rate < 0.95. 469 

 470 

Meta-analyses. Meta-analyses were performed using METAL [42]. The meta-analysis within 471 

MVP (for the purpose of genetic correlation analysis with PGC AD) was conducted using an 472 

inverse variance weighted method because the two subsets were from the same cohort. The 473 

meta-analyses for AUD (MVP+PGC) and PAU (MVP+PGC+UKB) were performed using the 474 

sample size weighted method. Given the unbalanced ratios of cases to controls in MVP 475 

samples, we calculated effective sample sizes for meta-analysis following the approach used by 476 

the PGC: 477 
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The calculated effective sample sizes in MVP and reported effective sample sizes in PGC were 479 

used in meta-analyses and all downstream analyses. AUDIT-P in UKB is a continuous trait, so 480 

we used actual sample sizes for that trait. For the AUD meta-analysis, variants present in only 481 

one sample (except MVP phase1 which is much larger than the others) or with heterogeneity 482 

test p-value < 5 × 10-8 were removed, leaving 7,003,540 variants. For the PAU meta-analysis, 483 

variants present in only one sample (except MVP phase1 or UKB) or with heterogeneity test p-484 

value < 5 × 10-8 and variants with effective sample size < 45,118 (15% of the total effective 485 

sample size) were removed, leaving 14,069,427 variants. 486 

 487 

AUD polygenic risk score in UKB. We calculated AUD polygenic risk scores (PRS) for each of 488 

the 82,930 unrelated subjects in UKB who had AUDIT-P information [7]. A PRS was calculated 489 

as the sum of the number of effective alleles with p-values less than a given threshold, weighted 490 

by the effect sizes from AUD meta-analysis (MVP+PGC). We analyzed 10 p-value thresholds: 5 491 

× 10-8, 1 × 10-7, 1 × 10-6, 1 × 10-5, 1 × 10-4, 0.001, 0.05, 0.3, 0.5, and 1, and clumped the AUD 492 

summary data by LD with r2 < 0.3 in a 500 kb window. Then we tested the association between 493 

AUD PRS and AUDIT-P, corrected for age, sex, and 10 PCs. The analysis was performed using 494 

PRSice-2 [43]. 495 

 496 

Independent variants and conditional analyses. We identified the independent variant (p < 5 497 

× 10−8) in each locus (1 Mb genomic window) based on the smallest p value and r2 < 0.1 with 498 

other independent variants. Variants with p < 1 × 10−8 and r2 > 0.1 with respect to the 499 

independent variants were assigned to the independent variant’s clump. Any two independent 500 
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variants less than 1 Mb apart whose clumped regions overlapped were merged into one locus. 501 

Given the known long-range LD for the ADH gene cluster on chromosome 4, we defined 502 

chr4q23–q24 (~97.2 Mb – 102.6 Mb) as one locus. When multiple independent variants were 503 

present in a locus, we ran conditional analyses using GCTA-COJO [44] to define conditionally 504 

independent variants. For each variant other than the most significant one (index), we tested the 505 

marginal associations conditioning on the index variant using Europeans (n = 503) from the 506 

1000 Genomes as the LD reference sample. Variants with significant marginal associations (p < 507 

5 × 10−8) were defined as conditionally independent variants (i.e., independent when 508 

conditioned on other variants in the region) and subject to another round of conditional analyses 509 

for each significant association. 510 

 For the conditionally independent variants for AUD or PAU, we also conducted a multi-511 

trait analysis conditioning on GSCAN drinks per week [9] using GCTA-mtCOJO [45] to identify 512 

variants associated with AUD or PAU, but not drinks per week, i.e., not alcohol consumption 513 

alone. Europeans from the 1000 Genomes were used as the LD reference. For variants missing 514 

in GSCAN, we used proxy variants (p < 5 × 10−8) in high LD with the locus for analyses. 515 

Whereas conditional analyses require the beta (effect size) and standard error, we calculated 516 

these using Z-scores (z), allele frequency (p) and sample size (n) from the meta-analyses [46]: 517 

2

2

2 (1 )( )
1

2 (1 )( )

zbeta
p p n z

SE
p p n z

=
− +

=
− +

 518 

 519 

Gene-based association analysis. Gene-based association analysis for PAU was performed 520 

using MAGMA implemented in FUMA [17, 18], which uses a multiple regression approach to 521 

detect multi-marker effects that account for SNP p-values and LD between markers. We used 522 
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default settings to analyze 18,952 autosomal genes, with p < 2.64 × 10−6 (0.05/18,952) 523 

considered GWS.  524 

 525 

Drug-gene interaction. For the genes identified as significant by MAGMA, we examined drug-526 

gene interaction through Drug Gene Interaction Database (DGIdb) v3.0.2 [11] 527 

(http://www.dgidb.org/), a database integrated drug–gene interaction information resource 528 

based on 30 sources. 529 

 530 

SNP-based h2 and partitioning heritability enrichment. LDSC [12] was used to estimate the 531 

SNP-based h2 for common SNPs mapped to HapMap3 [47], using Europeans from the 1000 532 

Genomes Project [39] as the LD reference panel. We excluded the major histocompatibility 533 

complex (MHC) region (chr6: 26–34Mb).  534 

We conducted portioning h2 enrichment analyses for PAU using LDSC in different 535 

models [13, 14]. First, a baseline model consisting of 52 functional categories was analyzed, 536 

which included genomic features (coding, intron, UTR etc), regulatory annotations (promoter, 537 

enhancer etc), epigenomic annotations (H3K27ac, H3K4me1, H3K3me3 etc) and others (see 538 

ref [13] for details, Supplementary Figure 5). We then analyzed cell type group h2 enrichments 539 

with 10 cell types: central nervous system (CNS), adrenal and pancreas, immune and 540 

hematopoietic, skeletal muscle, gastrointestinal, liver, cardiovascular, connective tissue and 541 

bone, kidney, and other (see ref [13] for details, Supplementary Figure 4). Third, we used LDSC 542 

to test for enriched heritability in regions surrounding genes with the highest tissue-specific 543 

expression using 53 human tissue or cell type RNA-seq data from the Genotype-Tissue 544 

Expression Project (GTEx) [16], or enriched heritability in epigenetic markers from 396 human 545 

epigenetic annotations (six features in a subset of 88 primary cell types or tissues) from the 546 
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Roadmap Epigenomics Consortium [15] (see ref [14] for details, Supplementary Figure 6, 547 

Supplementary Table 6). For each model, the number of tested annotations was used to 548 

calculate a Bonferroni corrected p-value < 0.05 as a significance threshold. 549 

 550 

Gene-set and functional enrichment. We performed gene-set analysis for PAU for curated 551 

gene sets and Gene Ontology (GO) terms using MAGMA [17, 18]. We then used MAGMA for 552 

gene-property analyses to test the relationships between tissue-specific gene expression 553 

profiles and PAU-gene associations. We analyzed gene expression data from 53 GTEx (v7) 554 

tissues. We also performed gene-set analysis on the 152 prioritized genes using MAGMA. Gene 555 

sets with adjusted p-value < 0.05 were considered as significant. 556 

 557 

Genetic correlation. We estimated the genetic correlation (rg) between traits using LDSC [48]. 558 

For PAU, we estimated the rg with 218 published traits in LD Hub [49], 487 unpublished traits 559 

from the UK Biobank (integrated in LD Hub), and recently published psychiatric and behavioral 560 

traits [9, 30, 32-35, 50-54], bringing the total number of tested traits to 715 (Supplementary 561 

Table 8). For traits reported in multiple studies or in UKB, we selected the published version of 562 

the phenotype or used the largest sample size. Bonferroni correction was applied and 563 

correlation was considered significant at a p-value threshold of 6.99 × 10-5. 564 

 565 

S-PrediXcan and S-MultiXcan. To perform transcriptome-wide association analysis, we used 566 

S-PrediXcan [23] (a version of PrediXcan that uses GWAS summary statistics [55]) to integrate 567 

transcriptomic data from GTEx [16] and the Depression Genes and Networks study (DGN) [24] 568 

to analyze the summary data from the PAU meta-analysis. Forty-eight tissues with sample size > 569 

70 from GTEx release v7 were analyzed, totaling 10,294 samples. DGN contains RNA 570 
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sequencing data from whole blood of 992 genotyped individuals. The transcriptome prediction 571 

model database and the covariance matrices of the SNPs within each gene model were 572 

downloaded from the PredictDB repository (http://predictdb.org/, 2018-01-08 release). Only 573 

individuals of European ancestry in GTEx were analyzed. S-PrediXcan was performed for each 574 

of the 49 tissues (48 from GTEx and 1 from DGN), for a total of 254,345 gene-tissue pairs. 575 

Significant association was determined by Bonferroni correction (p < 1.97 × 10-7).  576 

 Considering the limited eQTL sample size for any single tissue and the substantial 577 

sharing of eQTLs across tissues, we applied S-MultiXcan [26], which integrates evidence across 578 

multiple tissues using multivariate regression to improve association detection. Forty-eight 579 

tissues from GTEx were analyzed jointly. The threshold for condition number of eigenvalues 580 

was set to 30 when truncating singular value decomposition (SVD) components. In total, 25,626 581 

genes were tested in S-MultiXcan, leading to a significant p-value threshold of 1.95 × 10-6 582 

(0.05/25,626). 583 

 584 

PAU PRS for phenome-wide associations. Polygenic scores were generated using PRS-CS 585 

[56] on all genotyped individuals of European descent (n = 67,588) in Vanderbilt University 586 

Medical Center’s EHR-linked biobank, BioVU. PRS-CS uses a Bayesian framework to model 587 

linkage disequilibrium from an external reference set and a continuous shrinkage prior on SNP 588 

effect sizes. We used 1000 Genomes Project Phase 3 European sample [39] as the LD 589 

reference. Additionally, we used the PRS-CS-auto option, which allows the software to learn the 590 

continuous shrinkage prior from the data. Polygenic scores were constructed from PRS-CS-auto 591 

adjusted summary statistics containing 811,292 SNPs. All individuals used for polygenic scoring 592 

were genotyped on the Illumina Multi-Ethnic Global Array (MEGA). Genotypes were filtered for 593 

SNP (95%) and individual (98%) call rates, sex discrepancies, and excessive heterozygosity. 594 

For related individuals, one of each pair was randomly removed (pi_hat > 0.2). SNPs showing 595 
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significant associations with genotyping batch were removed. Genetic ancestry was determined 596 

by principal component analysis performed using EIGENSTRAT [57]. Imputation was completed 597 

using the Michigan Imputation Server [38] and the Haplotype Reference Consortium [58] as the 598 

reference panel. Genotypes were then converted to hard calls, and filtered for SNP imputation 599 

quality (R2 > 0.3), individual missingness (>2%), SNP missingness (>2%), minor allele frequency 600 

(<1%) and Hardy-Weinberg Equilibrium (p > 1 × 10-10). The resulting dataset contained 601 

9,330,483 SNPs on 67,588 individuals of European ancestry. 602 

We conducted a phenome-wide association study (PheWAS) [59] of the PAU PRS, by 603 

fitting a logistic regression model to 1,372 case/control phenotypes to estimate the odds of each 604 

diagnosis given the PAU polygenic score, controlling for sex, median age across the medical 605 

record, top 10 principal components of ancestry, and genotyping batch. We required the 606 

presence of at least two International Classification of Disease (ICD) codes that mapped to a 607 

PheWAS disease category (Phecode Map 1.2) to assign “case” status. A phenotype was 608 

required to have at least 100 cases to be included in the analysis. PheWAS analyses were run 609 

using the PheWAS R package [60]. Bonferroni correction was applied to test for significance (p 610 

< 0.05/1,372). 611 

 612 

PAU PRS in independent samples. We calculated PAU PRS in three independent samples, 613 

where we tested the association between PAU PRS and AD, corrected for age, sex, and 10 614 

PCs. Ten p-value thresholds were applied in all samples. 615 

iPSYCH Group. DNA samples for cases and controls were obtained from newborn bloodspots 616 

linked to population registry data [61]. Cases were identified with the ICD-10 code F10.2 (AD; n 617 

= 944); controls were from the iPSYCH group (n = 11,408; neffective = 3,487)). The iPSYCH 618 

sample was genotyped on the Psych Array (Illumina, San Diego, CA, US). GWAS QC, 619 
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imputation against the 1,000 Genomes Project panel [39] and association analysis using the 620 

Ricopili pipeline [62] were performed. 621 

UCL Psych Array. Cases were identified with ICD-10 code F10.2 (n = 1,698) and comprised 492 622 

individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH (Steroids 623 

or Pentoxifylline for Alcoholic Hepatitis) trial (ISRCTN88782125; EudraCT Number: 2009-624 

013897-42) and 1,206 subjects recruited from the AD arm of the DNA Polymorphisms in Mental 625 

Health (DPIM) study; controls were UK subjects who had either been screened for an absence 626 

of mental illness and harmful substance use (n = 776), or were random blood donors (n-452; 627 

total n = 1,228; neffective = 2,851). The sample was genotyped on the Psych Array (Illumina, San 628 

Diego, CA, US). GWAS QC was performed using standard methods and imputation was done 629 

using the haplotype reference consortium (HRC) panel [63] on the Sanger Imputation server 630 

(https://imputation.sanger.ac.uk/). Association testing was performed using Plink1.9 [41]. 631 

UCL Core Exome Array. Cases had an ICD-10 diagnosis of F10.2 (n = 637), including 324 632 

individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH trial and 633 

313 subjects recruited from the AD arm of the DPIM study; controls were unrelated UK subjects 634 

from the UK Household Longitudinal Study (UKHLS; n = 9,189; neffective = 2,383). The sample 635 

was genotyped on the Illumina Human Core Exome Array (Illumina, San Diego, CA, US). 636 

GWAS QC was performed using standard methods and imputation was done using the HRC 637 

panel [63] on the Sanger Imputation server (https://imputation.sanger.ac.uk/). Association 638 

testing was performed with Plink1.9 [41]. 639 

 640 

Mendelian Randomization. We used Mendelian Randomization (MR) to investigate the causal 641 

relationships with PAU liability of the many traits that were significantly genetically correlated (p 642 

< 6.99 × 10-5). However, all or most of the published traits in recent large GWAS include UKB 643 
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data. To avoid biases caused by overlapping samples in MR analysis, we only tested the 644 

relationship between published traits and AUD (MVP+PGC). For robust causal effect inference, 645 

we limited the traits studied to those with more than 30 available instruments (association p < 5 646 

× 10-8). Only the causal effects of liability to other exposures on AUD risk were tested given that 647 

there are only 24 independent variants for AUD. In total, 13 exposures were analyzed (Table 2). 648 

Three methods, weighted median [28], inverse-variance weighted (IVW, random-effects 649 

model) [27], and MR-Egger [29], implemented in the R package “MendelianRandomization 650 

v0.3.0” [64] were used for MR inference. Evidence of pleiotropic effects was examined by the 651 

MR-Egger intercept test, where a non-zero intercept indicates directional pleiotropy [29]. 652 

Instrumental variants that are associated with PAU (p < 5 × 10-8) were removed. For 653 

instrumental variants missing in the PAU summary data, we used the results of the best-proxy 654 

variant with the highest LD (r2 > 0.8) with the missing variant. If the MAF of the missing variant 655 

was < 0.01, or none of the variants within 200 kb had LD r2 > 0.8, we removed the instrumental 656 

variant from the analysis. 657 

 658 

MTAG between PAU and drinks per week. Multiple trait analysis between PAU and drinks per 659 

week (DrnkWk) from GSCAN was performed on summary statistics with multi-trait analysis of 660 

GWAS (MTAG) v1.0.7 [10]. The summary data of DrnkWk were generated from 537,352 661 

subjects, excluding the 23andMe samples that were not available to us for inclusion. We 662 

analyzed variants with a minimum effective sample size of 80,603 (15%) in DrnkWk and a 663 

minimum effective sample size of 45,118 (15%) in PAU, which left 10,613,246 overlapping 664 

variants. 665 

 666 

 667 
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