

1 **Meta-analysis of problematic alcohol use in 435,563 individuals identifies 29 risk variants**
2 **and yields insights into biology, pleiotropy and causality**

3
4 Hang Zhou,^{1,2} Julia M. Sealock,^{3,4} Sandra Sanchez-Roige,⁵ Toni-Kim Clarke,⁶ Daniel Levey,^{1,2}
5 Zhongshan Cheng,^{1,2} Boyang Li,⁷ Renato Polimanti,^{1,2} Rachel L. Kember,^{8,9} Rachel Vickers
6 Smith,¹⁰ Johan H. Thygesen,¹¹ Marsha Y. Morgan,¹² Stephen R. Atkinson,¹³ Mark R. Thursz,¹³
7 Mette Nyegaard,^{14,15,16,17} Manuel Mattheisen,^{14,18,19} Anders D. Børglum,^{14,15,16,17} Emma C.
8 Johnson,²⁰ the VA Million Veteran Program, Amy C. Justice,^{2,21,22} Abraham A. Palmer,^{5,23}
9 Andrew McQuillin,¹¹ Lea K. Davis,^{3,4,24} Howard J. Edenberg,^{25,26} Arpana Agrawal,²⁰ Henry R.
10 Kranzler,^{9,27*} and Joel Gelernter^{1,2,28*}

11 ¹Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA

12 ²Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA

13 ³Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA

14 ⁴Division of Medical Genetics, Department of Medicine, Vanderbilt University Medical Center,
15 Nashville, TN, USA

16 ⁵Department of Psychiatry, University of California San Diego, La Jolla, CA, USA

17 ⁶Division of Psychiatry, University of Edinburgh, Edinburgh, UK

18 ⁷Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA

19 ⁸Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia,
20 PA, USA

21 ⁹Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA

22 ¹⁰University of Louisville School of Nursing, Louisville, KY, USA

23 ¹¹Division of Psychiatry, University College London, London, UK

24 ¹²UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus,
25 University College London, London, UK

26 ¹³Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK

27 ¹⁴Department of Biomedicine, Aarhus University, Aarhus, Denmark

28 ¹⁵Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark

29 ¹⁶The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark

30 ¹⁷Center for Genomics and Personalized Medicine, Aarhus, Denmark

31 ¹⁸Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg,
32 Würzburg, Germany

33 ¹⁹Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

34 ²⁰Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA

35 ²¹Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA

36 ²²Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT,
37 USA

38 ²³Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA

39 ²⁴Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center,
40 Nashville, TN, USA

41 ²⁵Department of Biochemistry and Molecular Biology, Indiana University School of Medicine,
42 Indianapolis, IN, USA

43 ²⁶Department of Medical and Molecular Genetics, Indiana University School of Medicine,
44 Indianapolis, IN, USA

45 ²⁷Department of Psychiatry, University of Pennsylvania Perelman School of Medicine,
46 Philadelphia, PA, USA

47 ²⁸Departments of Genetics and Neuroscience, Yale University School of Medicine

48

49 *co-senior authors

50 Corresponding Author: Joel Gelernter, Department of Psychiatry, Yale School of Medicine,
51 Veterans Affairs Connecticut Healthcare System, 116A2, 950 Campbell Ave, West Haven, CT
52 06516, USA. Phone: +1 (203) 494-6326 x3590; Fax: +1 (203) 937-4741; Email:
53 joel.gelernter@yale.edu.

54 **Abstract**

55 Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. Although
56 genome-wide association studies (GWASs) have identified PAU risk genes, the genetic
57 architecture of this trait is not fully understood. We conducted a proxy-phenotype meta-analysis
58 of PAU combining alcohol use disorder and problematic drinking in 435,563 European-ancestry
59 individuals. We identified 29 independent risk variants, 19 of them novel. PAU was genetically
60 correlated with 138 phenotypes, including substance use and psychiatric traits. Phenome-wide
61 polygenic risk score analysis in an independent biobank sample (BioVU, $n=67,589$) confirmed
62 the genetic correlations between PAU and substance use and psychiatric disorders. Genetic
63 heritability of PAU was enriched in brain and in genomic conserved and regulatory regions.
64 Mendelian randomization suggested causal effects on liability to PAU of substance use,
65 psychiatric status, risk-taking behavior, and cognitive performance. In summary, this large PAU
66 meta-analysis identified novel risk loci and revealed genetic relationships with numerous other
67 outcomes.

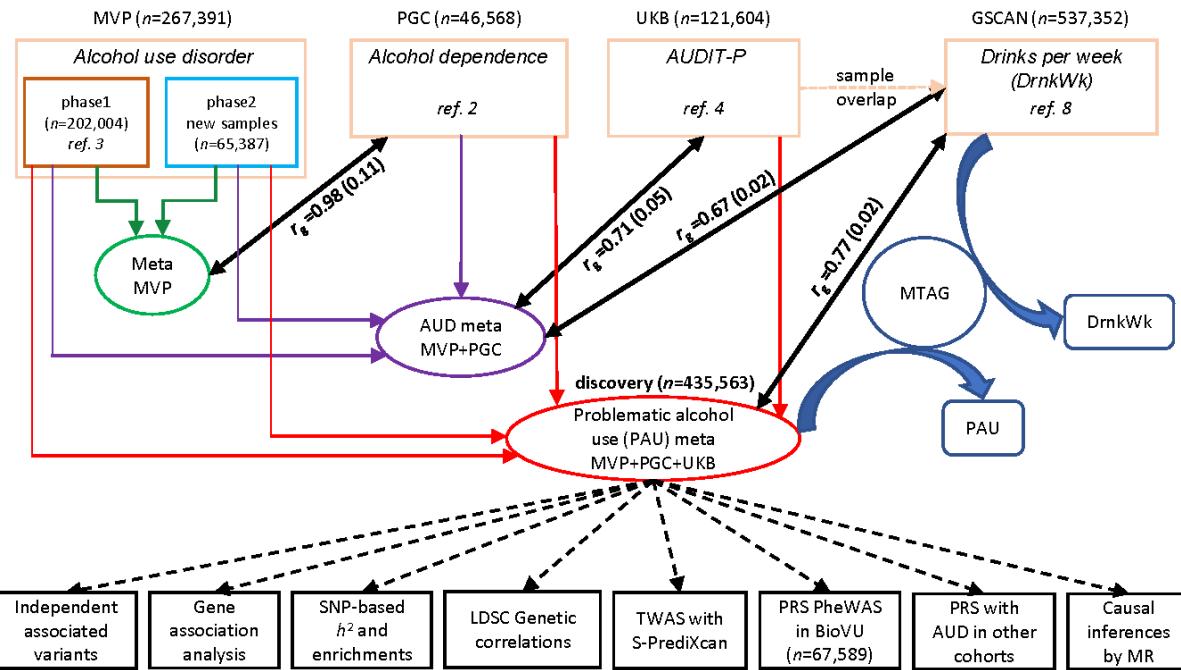
68 **Introduction**

69 Alcohol use and alcohol use disorder (AUD) are leading causes of death and disability
70 worldwide [1]. Genome-wide association studies (GWAS) of AUD and problematic drinking
71 measured by different assessments have identified potential risk genes primarily in European
72 populations [2-5]. Quantity-frequency measures of drinking, for example the Alcohol Use
73 Disorders Identification Test–Consumption (AUDIT-C), which sometimes reflect alcohol
74 consumption in the normal range, differ genetically from AUD and measures of problematic
75 drinking (e.g., the Alcohol Use Disorders Identification Test–Problems [AUDIT-P]), and show a
76 divergent set of genetic correlations [3, 4]. The estimated SNP-based heritability (h^2) of AUD
77 ranges from 5.6% to 10.0% [2-5]. To date, more than ten risk variants have been significantly
78 associated with AUD and AUDIT-P ($p < 5 \times 10^{-8}$). Variants mapped to several risk genes have
79 been detected in multiple studies, including *ADH1B* (Alcohol Dehydrogenase 1B), *ADH1C*
80 (Alcohol Dehydrogenase 1C), *ALDH2* (Aldehyde Dehydrogenase 2, only in some Asian
81 samples), *SLC39A8* (Solute Carrier Family 39 Member 8), *GCKR* (Glucokinase Regulator), and
82 *CRHR1* (Corticotropin Releasing Hormone Receptor 1). In the context of the known extensive
83 polygenicity underlying AUD and AUDIT-P, we anticipate that additional significant risk loci can
84 be identified by increasing sample size; this is the pattern for GWAS of heterogenous complex
85 traits in general also. We can characterize both AUD itself and AUDIT-P, as “problematic
86 alcohol use” (PAU). To identify additional risk variants and enhance our understanding of the
87 genetic architecture of PAU, we conducted genome-wide meta-analysis of AUD and AUDIT-P in
88 435,563 individuals of European ancestry. The understanding of the genetic architecture of PAU
89 in African populations is far behind than Europeans; the largest sample published so far is
90 56,648 in MVP [3] and results have not moved beyond a single genomic region that includes
91 *ADH1B*. This study only focused on European samples because we cannot achieve a
92 substantial increment in African-ancestry subjects over previous studies.

93 **Results**

94 Figure 1 provides an overview of the meta-analysis of the 4 major datasets. The first is
95 the GWAS of AUD in European Americans (EA) from the Million Veteran Program (MVP) [6]
96 (herein designated “MVP phase1”), comprised 202,004 individuals phenotyped for AUD ($n_{\text{case}} =$
97 34,658, $n_{\text{control}} = 167,346$, $n_{\text{effective}} = 114,847$) using International Classification of Diseases (ICD)
98 codes [3]. The second, MVP Phase2, included an additional 65,387 EA individuals from MVP
99 ($n_{\text{case}} = 11,337$, $n_{\text{control}} = 54,050$, $n_{\text{effective}} = 37,485$) not previously analyzed. The third dataset is a
100 GWAS of DSM-IV alcohol dependence (AD) from the Psychiatric Genomics Consortium (PGC),
101 which included 46,568 European participants ($n_{\text{case}} = 11,569$, $n_{\text{control}} = 34,999$, $n_{\text{effective}} = 26,853$)
102 [2]. The fourth dataset is a GWAS of Alcohol Use Disorders Identification Test–Problems
103 (AUDIT-P; a measure of problematic drinking) scores from a UK Biobank sample (UKB) [7] that
104 included 121,604 European participants [4].

105 The genetic correlation (r_g) between MVP phase1 AUD and PGC AD was 0.965 (se =
106 0.15, $p = 1.21 \times 10^{-10}$) [3]. R_g between the entire MVP (meta-analysis of phase1 and phase2)
107 and PGC increased to 0.98 (se = 0.11, $p = 1.99 \times 10^{-19}$), justifying the meta-analysis of AUD
108 across the three datasets ($n_{\text{effective}} = 179,185$). 24 risk variants in 23 loci were detected in this
109 intermediary meta-analysis (Supplementary Figure 1, Supplementary Table 1). The r_g between
110 UKB AUDIT-P and AUD (MVP+PGC) was 0.71 (se = 0.05, $p = 8.15 \times 10^{-52}$), and the polygenic
111 risk score (PRS) of AUD was associated with AUDIT-P in UKB (best p-value threshold $PT_{\text{best}} =$
112 0.001, $R^2 = 0.25\%$, $p = 3.28 \times 10^{-41}$, Supplementary Table 2, Supplementary Figure 2), justifying
113 the proxy-phenotype meta-analysis of problematic alcohol use (PAU) across all four datasets.
114 The total sample size was 435,563 in the discovery analysis ($n_{\text{effective}} = 300,789$).



115

116 **Figure 1. Overview of the analysis.** Four datasets were meta-analyzed as the discovery
117 sample for problematic alcohol use (PAU) including MVP phase1, MVP phase2, PGC, and UK
118 Biobank (UKB). MVP phase1 and phase2 were meta-analyzed, and the result was used for
119 testing the genetic correlation with PGC alcohol dependence. An intermediary meta-analysis
120 (AUD meta) combining MVP phase1, phase2, and PGC was then conducted to measure the
121 genetic correlation with UKB AUDIT-P. Due to the sample overlap between UKB and GSCAN,
122 we used the AUD meta-analysis for Mendelian Randomization (MR) analysis rather than the
123 PAU (i.e., the second) meta-analysis. MTAG, which used the summary data from PAU and
124 DrnkWk (drinks per week) in GSCAN (without 23andMe samples as those data were not made
125 available) as input to increase the power for each trait without introducing bias from sample
126 overlap, returned summary results for PAU and DrnkWk separately.

127

128 **Association results for PAU**

129 Of 42 lead variants (mapping to 27 loci, Supplementary Figure 3, and Supplementary
130 Table 3) that were genome-wide significant (GWS) for PAU, 29 were independently associated
131 after conditioning on lead SNPs in the regions (see below and Table 1). Ten variants were
132 previously identified through the same index SNPs or tagged SNPs, located in or near the
133 following genes: *GCKR*, *SIX3*, *KLB*, *ADH1B*, *ADH1C*, *SLC39A8*, *DRD2*, and *FTO* [2-5]. Thus,
134 19 variants reported here were novel, of which 11 were located in gene regions, including
135 *PDE4B* (Phosphodiesterase 4B), *THSD7B* (Thrombospondin Type 1 Domain Containing 7B),
136 *CADM2* (Cell Adhesion Molecule 2), *ADH1B* (different from the locus identified previously),
137 *DPP6* (Dipeptidyl Peptidase Like 6), *SLC39A13* (Solute Carrier Family 39 Member 13), *TMX2*
138 (Thioredoxin Related Transmembrane Protein 2), *ARID4A* (AT-Rich Interaction Domain 4A),
139 *C14orf2* (Chromosome 14 open reading frame 2), *TNRC6A* (Trinucleotide Repeat Containing
140 Adaptor 6A), and *FUT2* (Fucosyltransferase 2). A novel rare *ADH1B* variant, rs75967634 (p =
141 1.07×10^{-9} , with a minor allele frequency of 0.003), which causes a substitution of histidine for
142 arginine, is in the same codon as rs2066702 (a well-known variant associated with AUD in
143 African populations[3, 8], but not polymorphic in European populations). This latter association is
144 independent from rs1229984 in *ADH1B* and rs13125415 (a tag SNP of rs1612735 in MVP
145 phase1 [3]) in *ADH1C*. The identification of rs75967634 demonstrates the present study's
146 greater power to detect risk variants in this region, beyond the frequently reported
147 *ADH1B**rs1229984.

148 Moderate genetic correlation between AUD and alcohol consumption, and also
149 pervasive pleiotropic effects of SNPs, were demonstrated previously [2-4]. Some of the novel
150 variants (10 out of 19) identified in this study were also associated with other alcohol-related
151 traits, including AUDIT-C score [3], total AUDIT score [4], and drinks per week (DrnkWk) from
152 the GSCAN study [9] (described below and Supplementary Table 3). Rs1402398, close to
153 *VRK2*, was associated with AUDIT-C score (tagged by rs2683616) [3]; rs492602 in *FUT2* was

154 associated with DrnkWk [9] and total AUDIT score [4]; and rs6421482, rs62250713, rs2533200,
155 rs10717830, rs1783835, rs12296477, rs61974485, and rs72768626 were associated with
156 DrnkWk directly or through tag SNPs in high linkage disequilibrium (LD) [9]. Analysis
157 conditioned on DrnkWk shows that 11 of the 29 independent variants were independently
158 associated with PAU (i.e., not mediated by DrnkWk) (Supplementary Table 3).

159

160 **Table 1. Genome-wide significant associations for PAU.**

Chr	Pos (hg19)	rsID	Gene	A1	A2	EAF	Z	P	Direction
1	66419905	rs6421482	<i>PDE4B</i> ^a	A	G	0.4363	-6.315	2.7×10^{-10}	----
1	73848610	rs61767420	[]	A	G	0.3999	5.714	1.11×10^{-8}	++++
2	27730940	rs1260326	<i>GCKR</i> ^a	T	C	0.4033	-9.296	1.45×10^{-20}	---+
2	45141180	rs494904	<i>SIX3</i> ^b	T	C	0.5961	-7.926	2.26×10^{-15}	----
2	58042241	rs1402398	<i>VRK2</i> ^b	A	G	0.6274	7.098	1.27×10^{-12}	++++
2	104134432	rs9679319	[]	T	G	0.4797	-6.01	1.86×10^{-9}	----
2	138264231	rs13382553	<i>THSD7B</i> ^a	A	G	0.766	-6.001	1.97×10^{-9}	----
2	227164653	rs2673136	<i>IRS1</i> ^b	A	G	0.6387	-5.872	4.31×10^{-9}	----
3	85513793	rs62250713	<i>CADM2</i> ^a	A	G	0.368	6.049	1.46×10^{-9}	++++
4	39404872	rs13129401	<i>KLB</i> ^b	A	G	0.4532	-8.906	5.29×10^{-19}	----
4	100229016	rs75967634	<i>ADH1B</i> ^a	T	C	0.003	-6.098	1.07×10^{-9}	--?-
4	100239319	rs1229984	<i>ADH1B</i> ^a	T	C	0.0302	-22	2.9×10^{-107}	--?
4	100270452	rs13125415	<i>ADH1C</i> ^a	A	G	0.5849	-9.073	1.16×10^{-19}	----
4	103198082	rs13135092	<i>SLC39A8</i> ^a	A	G	0.9192	11.673	1.75×10^{-31}	++++
7	153489074	rs2533200	<i>DPP6</i> ^a	C	G	0.5163	-5.631	1.79×10^{-8}	----
8	57424874	rs2582405	<i>PENK</i> ^b	T	C	0.237	5.751	8.86×10^{-9}	++++
10	72907951	rs7900002	<i>UNC5B</i> ^b	T	G	0.6012	-5.503	3.74×10^{-8}	---+
10	110537834	rs56722963	[]	T	C	0.2551	-6.374	1.85×10^{-10}	----
11	47423920	rs10717830	<i>SLC39A13</i> ^a	G	GT	0.674	6.422	1.34×10^{-10}	++++
11	57480623	rs576859	<i>TMX2</i> ^a	A	C	0.3272	5.67	1.43×10^{-8}	++?
11	113357710	rs138084129	<i>DRD2</i> ^b	A	AATAT	0.6274	7.824	5.13×10^{-15}	++++
11	113443753	rs6589386	<i>DRD2</i> ^b	T	C	0.4323	-7.511	5.88×10^{-14}	----
11	121542923	rs1783835	<i>SORL1</i> ^b	A	G	0.4569	-5.979	2.24×10^{-9}	----
12	51903860	rs12296477	<i>SLC4A8</i> ^b	C	G	0.5469	5.484	4.15×10^{-8}	++++
14	58765903	rs61974485	<i>ARID4A</i> ^a	T	C	0.2646	5.506	3.67×10^{-8}	++++

14	104355883	rs8008020	<i>C14orf2</i> ^a	T	C	0.4175	6.062	1.35×10^{-9}	++++
16	24693048	rs72768626	<i>TNRC6A</i> ^a	A	G	0.9448	5.591	2.26×10^{-8}	++++
16	53820813	rs9937709	<i>FTO</i> ^a	A	G	0.585	6.602	4.06×10^{-11}	++++
19	49206417	rs492602	<i>FUT2</i> ^a	A	G	0.5076	-6.143	8.08×10^{-10}	----

161

162 Listed are the 29 independent variants that were genome-wide significant. Variants labeled in
163 bold are novel associations with PAU. A1, effect allele; A2, other allele; EAF, effective allele
164 frequency; Directions are for the A1 allele in MVP phase1, MVP phase2, PGC, and UKB
165 datasets.

166 ^aProtein-coding gene contains the lead SNP,

167 ^bProtein-coding gene nearest to the lead SNP.

168

169 **Gene-based association analysis** identified 66 genes that were associated with PAU
170 at GWS ($p < 2.64 \times 10^{-6}$, Supplementary Table 4). *DRD2*, which has been extensively studied in
171 many fields of neuroscience, was among these 66 genes and had been reported in both UKB [4]
172 and MVP phase1 [3]. Among the 66 genes, 46 are novel, including *ADH4* (Alcohol
173 Dehydrogenase 4), *ADH5* (Alcohol Dehydrogenase 5), and *ADH7* (Alcohol Dehydrogenase 7),
174 extending alcohol metabolizing gene associations beyond the well-known *ADH1B* and *ADH1C*;
175 *SYNGAP1* (Synaptic Ras GTPase Activating Protein 1), *BDNF* (Brain-Derived Neurotrophic
176 Factor), and others. Certain genes show associations with multiple traits including previous
177 associations with AUDIT-C (4 genes in MVP phase1, 12 genes in UKB), total AUDIT score (19
178 genes in UKB), and DrnkWk (46 genes in GSCAN, which includes results for DrnkWk after
179 MTAG [10] analysis).

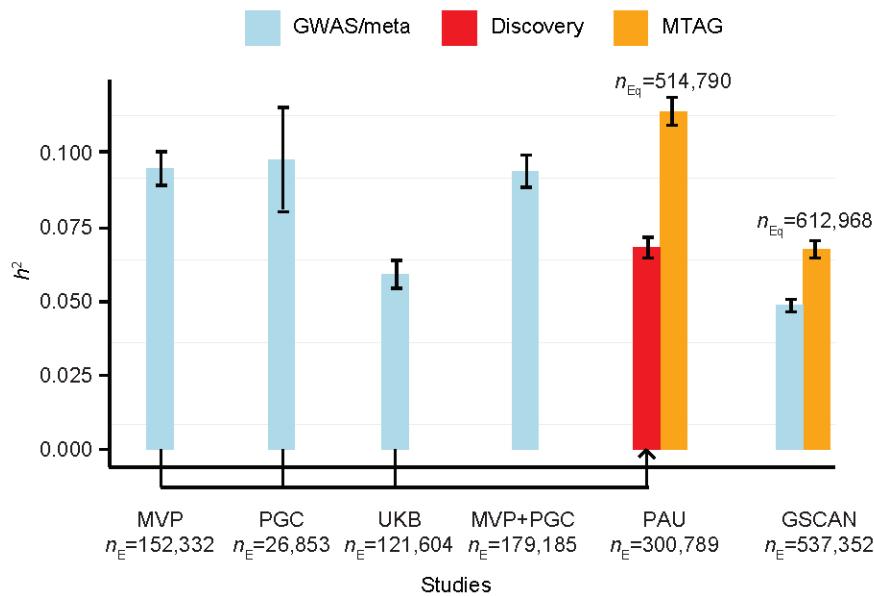
180 Examination of the 66 associated genes for known drug-gene interactions through the
181 Drug Gene Interaction Database v3.0.2 [11] showed 327 interactions between 16 genes and
182 325 drugs (Supplementary Table 5). Of these 16 genes with interactions, *DRD2* had the most
183 drug interactions ($n = 177$), followed by *BDNF* ($n = 68$) and *PDE4B* ($n = 36$).

184

185 **SNP-based h^2 and partitioning heritability enrichment**

186 We used LD Score Regression (LDSC) [12] to estimate SNP-based h^2 in the different datasets
187 and the meta-analyses (Figure 2). Because of the unbalanced case/control ratio, we used
188 effective sample size instead of actual sample size in MVP (following the PGC AD GWAS [2]).
189 The h^2 of PAU (the meta result) was 0.068 (se = 0.004). The h^2 of AUD in the MVP meta-
190 analysis (phases 1 and 2) was 0.095 (se = 0.006), and was 0.094 (se = 0.005) in the meta-
191 analysis combining MVP and PGC.

192



193

194 **Figure 2. Estimated SNP-based h^2 .** Blue bars show h^2 results for single datasets or meta-
195 analysis between datasets, from published studies or analyzed here. Red bar shows h^2 for the
196 PAU discovery meta-analysis. Orange bars show h^2 results of MTAG analysis for PAU in the
197 discovery sample and DrnkWk from GSCAN. Effective sample sizes (n_E) were used in LDSC.
198 n_{Eq} is the GWAS-equivalent sample size reported by MTAG.

199

200 Partitioning heritability enrichment analyses using LDSC [13, 14] showed the most
201 significantly enriched cell type group to be central nervous system (CNS, $p = 3.53 \times 10^{-9}$),
202 followed by adrenal and pancreas ($p = 1.89 \times 10^{-3}$), and immune and hematopoietic ($p = 3.82 \times$
203 10^{-3} , Supplementary Figure 4). Significant enrichments were also observed in six baseline
204 annotations, including conserved regions, conserved regions with 500bp extended (ext), fetal
205 DHS (DNase I hypersensitive sites) ext, weak enhancers ext, histone mark H3K4me1 ext, and
206 TSS (transcription start site) ext (Supplementary Figure 5). We also investigated heritability
207 enrichments using Roadmap data, which contains six annotations (DHS, H3K27ac, H3K4me3,
208 H3K4me1, H3K9ac, and H3K36me3) in a subset of 88 primary cell types and tissues [14, 15].
209 Significant enrichments were observed for H3K4me1 and DHS in fetal brain, and H3K4me3 in
210 fetal brain and in brain germinal matrix (Supplementary Table 6). Although no heritability
211 enrichment was observed in tissues using gene expression data from GTEx [16], the top
212 nominally enriched tissues were all in brain (Supplementary Figure 6).

213

214 **Functional enrichments**

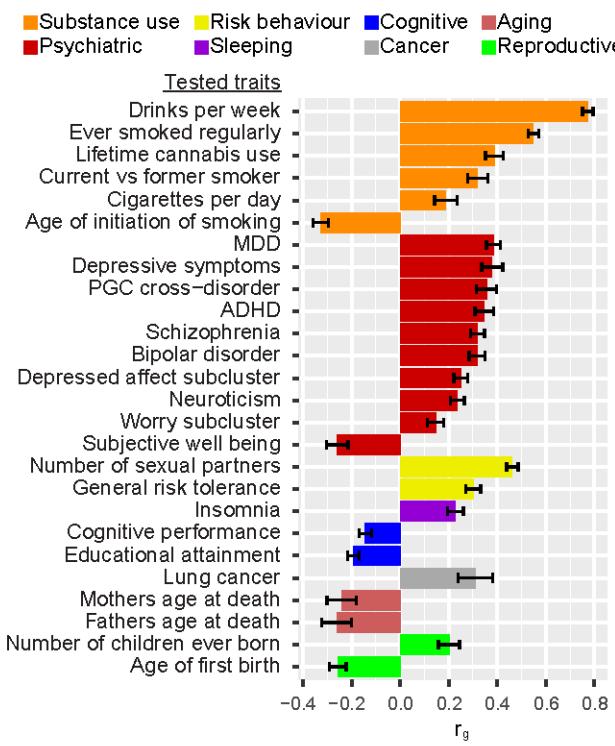
215 MAGMA tissue expression analysis [17, 18] using GTEx showed significant enrichments in
216 several brain tissues including cerebellum and cortex (Supplementary Figure 7). Although no
217 enrichment was observed via MAGMA gene-set analysis using gene-based p-values of all
218 protein-coding genes, the 152 genes prioritized by positional, expression quantitative trait loci
219 (eQTL), and chromatin interaction mapping were enriched in several gene sets, including
220 ethanol metabolic processes (Supplementary Table 7).

221

222 **Genetic correlations with other traits**

223 We estimated the genetic correlations between PAU and 715 publicly available sets of GWAS

224 summary statistics which included 228 published sets and 487 unpublished sets from the UK
225 Biobank. After Bonferroni correction ($p < 6.99 \times 10^{-5}$), 138 traits were significantly correlated
226 with PAU (Supplementary Table 8). Among the 26 published traits, drinks per week showed the
227 highest r_g with PAU ($r_g = 0.77$, $se = 0.02$, $p = 3.25 \times 10^{-265}$), consistent with the overall quantity
228 of alcohol consumed being a key domain of PAU [5, 19]. Several smoking traits and lifetime
229 cannabis use were positively genetically correlated with PAU, consistent with the high
230 comorbidity between alcohol and other substance use disorders in the general population [20].
231 Among psychiatric disorders, major depressive disorder (MDD, $r_g = 0.39$, $se = 0.03$, $p = 1.43 \times$
232 10^{-40}) showed the highest genetic correlation with PAU, extending the evidence for the shared
233 genetic contribution to MDD and alcohol-related traits [21, 22]. PAU was positively genetically
234 correlated with risk-taking behavior, insomnia, lung cancer, and other traits, and negatively
235 correlated with cognitive traits and parents' age at death. These finding are in line with the
236 known adverse medical, psychiatric, and social consequences of problem drinking (Figure 3).



237

238 **Figure 3. Genetic correlations with published traits.** Of 228 published traits, 26 were
239 genetically correlated with PAU after Bonferroni correction ($p < 0.05/715$). MDD, major
240 depressive disorder; ADHD, attention deficit hyperactivity disorder.

241

242 **Transcriptomic analyses**

243 We used S-PrediXcan [23] to predict gene expression and the mediating effects of variation on
244 gene expression on PAU. Forty-eight tissues from GTEx [16] release v7 and whole blood
245 samples from the Depression Genes and Networks study (DGN) [24] were analyzed as
246 reference transcriptomes (Supplementary Table 9). After Bonferroni correction, 103 gene-tissue
247 associations were significant, representing 39 different genes, some of which were identified in
248 multiple tissues (Supplementary Table 10). For example, *C1QTNF4* (C1q and tumor necrosis
249 factor related protein 4) was detected in 18 tissues, including brain, gastrointestinal, adipose,
250 and liver. None of the four significant alcohol dehydrogenase genes (*ADH1A*, *ADH1B*, *ADH4*,
251 and *ADH5*) was associated with expression in brain tissue, but they were associated with
252 expression in other tissues -- adipose, thyroid, gastrointestinal and heart. This might be due to
253 the generally low expression level of these genes in brain [25]. These cross-tissue associations
254 indicate that there are widespread functional consequences of PAU-risk-associated genetic
255 variation at the expression level.

256 Although the sample size for tissues used for eQTL analysis limits our ability to detect
257 associations, there are substantial common eQTLs across tissues [16]. Integrating evidence
258 from multiple tissues can increase power to detect genes relative to the tissues tested
259 individually, at least for shared eQTLs. We applied S-MultiXcan [26] to the summary data for
260 PAU using all 48 GTEx tissues as reference transcriptomic data. The expression of 34 genes
261 was significantly associated with PAU, including *ADH1B*, *ADH4*, *ADH5*, *C1QTNF4*, *GCKR*, and

262 *DRD2* (Supplementary Table 11). Among the 34 genes, 27 overlapped with genes detected by
263 S-PrediXcan.

264

265 **PAU PRS for phenotype-wide associations**

266 We calculated PRS for PAU in 67,589 individuals of European descent from the Vanderbilt
267 University Medical Center's biobank, BioVU. We conducted a phenotype-wide association study
268 (PheWAS) of PRS for PAU adjusting for sex, age (calculated as the median age across an
269 individual's medical record), and top 10 principal components of ancestry. We standardized the
270 PRS so that the odds ratios correspond to a standard deviation increase in the PRS. After
271 Bonferroni correction, 31 of the 1,372 phenotypes tested were significantly associated with PAU
272 PRS, including alcohol-related disorders (OR = 1.46, se = 0.03, $p = 3.34 \times 10^{-40}$), alcoholism
273 (OR = 1.33, se = 0.03, $p = 3.85 \times 10^{-28}$), tobacco use disorder (OR = 1.21, se = 0.01, $p = 2.71 \times$
274 10^{-38}), 6 respiratory conditions, and 17 additional psychiatric conditions (Supplementary Figure 8,
275 Supplementary Table 12).

276

277 **PAU PRS with AD in independent samples**

278 We tested the association between PAU PRS and alcohol dependence in three independent
279 samples: the iPSYCH group ($n_{\text{case}} = 944$, $n_{\text{control}} = 11,408$, $n_{\text{effective}} = 3,487$); University College
280 London (UCL) Psych Array ($n_{\text{case}} = 1,698$, $n_{\text{control}} = 1,228$, $n_{\text{effective}} = 2,851$); and UCL Core
281 Exome Array ($n_{\text{case}} = 637$, $n_{\text{control}} = 9,189$, $n_{\text{effective}} = 2,383$). The PAU PRSs were significantly
282 associated with AD in all three samples, with the most variance explained in the UCL Psych
283 Array sample, which includes the most cases ($\text{PT}_{\text{best}} = 0.001$, $R^2 = 2.12\%$, $p = 8.64 \times 10^{-14}$). In
284 the iPSYCH group and UCL Core Exome Array samples, the maximal variance explained was
285 1.61% ($\text{PT}_{\text{best}} = 0.3$, $p = 1.87 \times 10^{-22}$), and 0.77% ($\text{PT}_{\text{best}} = 5 \times 10^{-8}$, $p = 1.65 \times 10^{-7}$), respectively

286 (Supplementary Table 13).

287

288 **Mendelian Randomization**

289 We tested the causal effects of liability to exposures on liability to AUD (MVP+PGC), rather than
290 PAU: the UKB AUDIT-P GWAS was excluded to minimize sample overlap with other GWAS for
291 putative exposures. We limited the exposures to those genetically correlated with PAU, and
292 have more than 30 available instruments. There were only 24 independent variants for AUD;
293 therefore the causal effects of liability to AUD on other traits (i.e., bidirectional) were not tested.
294 Among the 13 tested exposures, 12 showed evidence of a causal effect on liability to AUD, the
295 exception being cigarettes per day (Table 2). DrnkWk and ever smoked regularly have a
296 positive causal effect on AUD risk by all 3 methods, without violating MR assumptions through
297 horizontal pleiotropy (MR-Egger intercept $p > 0.05$). General risk tolerance was shown to be
298 causally related to AUD risk, though the estimate could be biased due to horizontal pleiotropy
299 (intercept $p = 9.62 \times 10^{-3}$). MDD, depressed affect neuroticism subcluster, worry neuroticism
300 subcluster, number of sexual partners, and insomnia show evidence of positive causal effects
301 on liability to AUD from at least one method, while cognitive performance and educational
302 attainment show evidence of negative causal effects.

303 **Table 2. Causal effects on liability to AUD (MVP+PGC) by MR.**

Exposure (#instruments)	Ref	IVW [27]		Weighted median [28]		MR-Egger [29]		MR-Egger intercept p
		β (se)	p	β (se)	p	β (se)	p	
DrnkWk (58)	[9]	0.89 (0.06)	1.80×10⁻⁴⁶	0.89 (0.08)	2.89×10⁻²⁶	0.91 (0.20)	3.80×10⁻⁶	0.898
Ever smoked regularly (199)	[9]	0.32 (0.02)	8.72×10⁻⁵¹	0.33 (0.02)	4.20×10⁻⁴³	0.26 (0.08)	1.21×10⁻³	0.471
Cigarettes per day (33)	[9]	0.04 (0.06)	0.475	-0.10 (0.04)	0.010	-0.18 (0.09)	0.034	1.27×10 ⁻³
MDD (78)	[30]	0.14 (0.03)	8.42×10⁻⁶	0.14 (0.03)	2.79×10⁻⁶	-0.17 (0.20)	0.390	0.113
Schizophrenia (110)	[31]	0.04 (0.01)	2.47×10⁻⁶	0.04 (0.01)	4.96×10⁻⁶	-0.05 (0.04)	0.202	0.016
Depressed affect subcluster (56)	[32]	0.19 (0.06)	1.75×10 ⁻³	0.24 (0.05)	5.44×10⁻⁶	-0.20 (0.28)	0.462	0.147
Neuroticism (131)	[32]	0.20 (0.04)	1.10×10⁻⁷	0.20 (0.04)	1.10×10⁻⁷	-0.26 (0.16)	0.097	2.64×10 ⁻³
Worry subcluster (61)	[32]	0.13 (0.06)	0.020	0.17 (0.05)	8.06×10⁻⁴	0.04 (0.26)	0.890	0.702
Number of sexual partners (64)	[33]	0.31 (0.04)	3.27×10⁻¹²	0.36 (0.05)	9.00×10⁻¹⁶	0.51 (0.20)	0.011	0.309
General risk tolerance (64)	[33]	0.26 (0.06)	7.37×10⁻⁶	0.28 (0.07)	5.93×10⁻⁵	0.88 (0.25)	3.69×10⁻⁴	9.62×10 ⁻³
Insomnia (159)	[34]	0.05 (0.01)	1.90×10⁻⁵	0.03 (0.01)	5.31×10 ⁻³	0.00 (0.05)	0.993	0.288
Cognitive performance (134)	[35]	-0.08 (0.02)	1.03×10⁻³	-0.05 (0.03)	0.044	-0.21 (0.12)	0.086	0.282
Educational attainment (570)	[35]	-0.22 (0.02)	1.32×10⁻²⁵	-0.21 (0.02)	1.45×10⁻¹⁷	-0.24 (0.08)	2.21×10 ⁻³	0.781

304

305 P-values labeled in bold are significant after multiple testing correction. Traits labeled in bold are those having a causal effect on
306 AUD risk by at least one method without evidencing horizontal pleiotropy (MR-Egger intercept $p > 0.05$). IVW: inverse-variance
307 weighted (IVW) linear regression. DrnkWk: drinks per week. MDD: major depressive disorder. Depressed affect subcluster:
308 depressed affect subcluster of neuroticism. Worry subcluster: worry subcluster of neuroticism.

309 **Joint Analysis of PAU and DrnkWk Using MTAG**

310 We conducted a joint analysis of PAU and DrnkWk using MTAG, which can increase the power
311 for each trait without introducing bias from sample overlap [10]. MTAG analysis increased the
312 GWAS-equivalent sample size (n_{Eq}) for PAU to 514,790, i.e., a 71.1% increase from the original
313 effective sample size ($n_E = 300,789$, $n = 435,563$). In this analysis, we observed an increase in
314 the number of independent variants for PAU to 119, 76 of which were conditionally independent
315 (Supplementary Figure 9, Supplementary Table 14). For DrnkWk, the MTAG analysis increased
316 the n_{Eq} to 612,968 from 537,352, which yielded 141 independent variants, 86 of which were
317 conditionally independent (Supplementary Figure 10, Supplementary Table 15). MTAG analysis
318 increased the observed h^2 of PAU to 0.113 (se = 0.005) from 0.068 (se = 0.004) and of DrnkWk
319 to 0.063 (se = 0.003) from the reported value of 0.042 (se = 0.002, Figure 2) [9].

320 The MTAG analysis also increased the power for the functional enrichment analysis.

321 MAGMA gene set analysis for PAU after MTAG analysis detected 10 enriched Gene Ontology
322 terms, including 'regulation of nervous system development' ($p_{Bonferroni} = 8.80 \times 10^{-4}$),
323 'neurogenesis' ($p_{Bonferroni} = 0.010$), and 'synapse' ($p_{Bonferroni} = 0.046$) (Supplementary Table 16).

324

325

326

327 **Discussion**

328 We report here a genome-wide meta-analysis of PAU in 435,563 individuals of European
329 ancestry from the MVP, PGC, and UKB datasets. MVP is a mega-biobank that has
330 enrolled >750,000 subjects (for whom genotype data on 313,977 subjects was used in this
331 study), with rich phenotype data assessed by questionnaires and from the EHR. Currently, MVP

332 is the largest single cohort available with diagnostic information on AUD [3, 6]. PGC is a
333 collaborative consortium that has led the effort to collect smaller cohorts with DSM-IV AD [2].
334 UKB is a population-level cohort with the largest available sample with AUDIT-P data [4].

335 Our discovery meta-analysis of PAU yielded 29 independent variants, of which 19 were
336 novel, with 0.059 to 0.113 of the phenotypic variance explained in different cohorts or meta-
337 analyses. The h^2 in the Phase1-Phase2 MVP meta-analysis was 0.095 (se = 0.006), which was
338 higher than MVP phase1: 0.056 (se = 0.004, in MVP phase1 where only the actual (as opposed
339 to effective) sample size was used) [3] . The h^2 of AD in PGC was 0.098 (se = 0.018),
340 comparable to the reported liability-scale h^2 (0.090, se = 0.019) [2]. Functional and heritability
341 analyses consistently showed enrichments in brain regions and gene expression regulatory
342 regions, providing biological insights into the etiology of PAU. Variation associated with gene
343 expression in the brain is central to PAU risk, a conclusion that is also consistent with our
344 previous GWASs in MVP of both alcohol consumption and AUD diagnosis [3]. The enrichments
345 in regulatory regions point to specific brain tissues relevant to the causative genes; the specific
346 interactions between 16 genes and 325 drugs may provide targets for the development of
347 medications to manage PAU. Potential targets identified include the D₂ dopamine receptor
348 (encoded by *DRD2*) and phosphodiesterase 4B (encoded by *PDE4B*). The presence of risk
349 variation at these loci also suggests the possibility that they may be “personalized medicine”
350 targets as well.

351 We also found that PAU was significantly genetically correlated with 138 other traits. The
352 top correlations were with substance use and substance-related disorders, MDD, schizophrenia,
353 and several other neuropsychiatric traits. In a conceptually similar analysis, we performed a
354 PheWAS of PAU PRS in BioVU, which confirmed the genetic correlations between PAU and
355 multiple substance use disorders, mood disorders, and other psychiatric traits in an independent
356 sample. We also used MR to infer causal effects of the above traits on liability to AUD (we

357 tested AUD excluding UKB samples to avoid sample overlap) using selected genetic
358 instruments. We found evidence of causal relationships from DrnkWk, ever smoked regularly,
359 MDD, depressed affect subcluster, worry subcluster, number of sexual partners, insomnia,
360 cognitive performance, and educational attainment to AUD risk, while cognitive performance
361 and educational attainment showed protective effects on liability to AUD. For some of these
362 observed effects, such as with schizophrenia, neuroticism, and general risk tolerance, we
363 cannot exclude horizontal pleiotropy among our instrument variables. We could not test the
364 reverse causality of AUD liability on other traits in the absence of large samples for those
365 targeted traits, which are required to draw causal inferences. Thus we cannot rule out the
366 possibility of bidirectional effects, which are plausible for several of these traits (e.g., MDD).

367 The study has other limitations. First, only European populations were included;
368 therefore, the genetic architecture of PAU in other populations remains largely unknown. To
369 date, the largest non-European sample to undergo GWAS for alcohol-related traits is African
370 American (AA), which was reported in the MVP phase1 sample (17,267 cases; 39,381 controls,
371 effective samples size 48,015), with the only associations detected being on chromosome 4 in
372 the ADH gene locus (where several ADH genes map) [3]. Collection of substantial numbers of
373 non-European subjects requires a concerted effort from our research field. Second, despite the
374 high genetic correlation between AUD and AUDIT-P, they are not identical traits. We conducted
375 a meta-analysis of the two traits to increase the power for the association study of PAU,
376 consequently, associations specific to AUD or AUDIT-P could have been attenuated. Third,
377 there was no opportunity for replication of the individual novel variants. Because the variants
378 were detected in more than 430,000 subjects and have small effect sizes, a replication sample
379 with adequate power would also have to be very large, and no such sample is currently
380 available. To validate the findings, we conducted PRS analyses in three independent cohorts,
381 which showed strong association with AUD. Although this indicates that our study had adequate

382 power for variant detection, it does not address the validity of the individual variants discovered.

383 This is the largest GWAS study of PAU so far. Previous work has shown that the genetic

384 architecture of AUD (and PAU) differs substantially from that of alcohol consumption [2-4].

385 There have been larger studies of alcohol quantity-frequency measures [9, 36]; alcohol

386 consumption data are available in many EHRs, thus they were included in many studies of other

387 primary traits, like cardiac disease. AUD diagnoses are collected much less commonly. The 3-

388 item AUDIT-C is a widely-used measure of alcohol consumption often available in EHRs, but

389 the full 10-item AUDIT, which allows the assessment of AUDIT-P, is not as widely available.

390 Despite the high genetic correlation between, for example, PAU and DrnkWk ($r_g=0.77$), very

391 different patterns of genetic correlation and pleiotropy have been observed via LDSC and other

392 methods for these different kinds of indices of alcohol use [2-5]. PAU captures pathological

393 alcohol use: physiological dependence and/or significant medical consequences.

394 Quantity/frequency measures may capture alcohol use that is in the normal, or anyway

395 nonpathological, range. As such, we argue that although quantity/frequency measures are

396 important for understanding the biology of habitual alcohol use, PAU is the more important, and

397 more clearly pathological, trait. These circumstances underscore the importance of assembling

398 a large GWAS sample of PAU to inform the biology of PAU, and our study moves towards this

399 goal via the identification of numerous previously-unidentified risk loci: we increased known

400 PAU loci from 10 to 29, nearly tripling our knowledge of specific risk regions. Similarly, we

401 identified 66 gene-based associations, of which 46 were novel – again roughly tripling current

402 knowledge. MTAG analysis increased locus discovery to 119, representing 76 independent loci,

403 by leveraging information from DrnkWk [9]. By the same token, we provide a major increment in

404 information about the biology of PAU, providing considerable fodder for future in-vitro and

405 animal studies, which will be required to delineate the biology and function associated with each

406 risk variant. We anticipate that this knowledge may lead to improvements in treatment and

407 treatment personalization, a major ultimate goal of the work.

408

409

410

411 **Methods**

412 **MVP datasets.** The MVP is a mega-biobank supported by the U.S. Department of Veterans
413 Affairs (VA), enrollment for which began in 2011 and is ongoing. Phenotypic data were collected
414 using questionnaires and the VA electronic health records (EHR), and a blood sample was
415 obtained from each participant for genetic studies. Two phases of genotypic data have been
416 released and were included in this study. MVP phase1 contains 353,948 subjects, of whom
417 202,004 European Americans (EA) with AUD diagnoses were included in a previous GWAS and
418 the summary statistics were used in this study [3]. MVP phase2 released data on another
419 108,416 subjects, of whom 65,387 EAs with AUD diagnosis information were included in this
420 study. Following the same procedures as for MVP phase1, participants with at least one
421 inpatient or two outpatient alcohol-related ICD-9/10 codes from 2000 to 2018 were assigned a
422 diagnosis of AUD.

423 Ethics statement: The Central VA Institutional Review Board (IRB) and site-specific IRBs
424 approved the MVP study. All relevant ethical regulations for work with human subjects were
425 followed in the conduct of the study and informed consent was obtained from all participants.

426 Genotyping for both phases of MVP was performed using a customized Affymetrix
427 Biobank Array. Imputation and quality control methods for MVP phase1 were described in detail
428 in Kranzler et al. [3]. Similar methods were used for MVP phase2. Before imputation, phase2
429 subjects or SNPs with genotype call rate < 0.9 or high heterozygosity were removed, leaving

430 108,416 subjects and 668,324 SNPs. Imputation for MVP phase2 was done separately from
431 phase1; both were performed with EAGLE2 [37] and Minimac3 [38] using 1000 Genomes
432 Project phase 3 data [39] as the reference panel. Imputed genotypes with posterior probability \geq
433 0.9 were transferred to best guess genotypes (the rest were treated as missing genotype calls).
434 A total of 6,635,093 SNPs with INFO scores > 0.7 , genotype call rates or best guess rates $>$
435 0.95, Hardy Weinberg equilibrium p value $< 1 \times 10^{-6}$, minor allele frequency (MAF) > 0.001 were
436 remained for GWAS.

437 We removed subjects with mismatched genotypic and phenotypic sex and one subject
438 randomly from each pair of related individuals (kinship coefficient threshold = 0.0884), leaving
439 107,438 phase2 subjects for subsequent analyses. We used the same processes as MVP
440 phase1 to define EAs. First, we ran principal components analysis (PCA) on 74,827 common
441 SNPs (MAF > 0.05) shared by MVP and the 1000 Genomes phase 3 reference panels using
442 FastPCA [40]. Then we clustered each participant into the nearest reference population
443 according to the Euclidean distances between the participant and the centers of the 5 reference
444 populations using the first 10 PCs. A second PCA was performed for participants who were
445 clustered to the reference European population (EUR), and outliers were removed if any of the
446 first 10 PCs were > 3 standard deviations from the mean, leaving 67,268 EA subjects.

447 Individuals < 22 or > 90 years of age and those with a missing AUD diagnosis were
448 removed from the analyses, leaving 65,387 phase2 EAs (11,337 cases; 54,050 controls).
449 GWAS was then performed on the MVP phase2 dataset. We used logistic regression
450 implemented in PLINK v1.90b4.4 [41] for the AUD GWAS correcting for age, sex, and the first
451 10 PCs.

452

453 **PGC summary statistics.** We used the 46,568 European ancestry subjects (11,569 cases and

454 34,999 controls) from 27 cohorts that were analyzed by the Psychiatric Genomics Consortium
455 (PGC). The phenotype was lifetime DSM-IV diagnosis of alcohol dependence (AD). The
456 summary data were downloaded from the PGC website (<https://www.med.unc.edu/pgc/>) with full
457 agreement to the PGC conditions. Allele frequencies were not reported in the summary data.
458 We used allele frequencies from the 1000 Genome European sample as proxy measures in
459 PGC for some downstream analyses.

460

461 **UK Biobank summary statistics.** The UK Biobank (UKB) included 121,604 White-British
462 unrelated subjects with available AUDIT-P scores. Past-year AUDIT-P was assessed by 7
463 questions: 1). Frequency of inability to cease drinking; 2). Frequency of failure to fulfil normal
464 expectations due to drinking alcohol; 3). Frequency of needing morning drink of alcohol after
465 heavy drinking session; 4). Frequency of feeling guilt or remorse after drinking alcohol; 5).
466 Frequency of memory loss due to drinking alcohol; 6). Ever been injured or injured someone
467 else through drinking alcohol; 7). Ever had known person concerned about, or recommend
468 reduction of, alcohol consumption. The AUDIT-P was \log_{10} -transformed for GWAS (see ref [4]
469 for details). We removed SNPs with INFO < 0.7 or call rate < 0.95.

470

471 **Meta-analyses.** Meta-analyses were performed using METAL [42]. The meta-analysis within
472 MVP (for the purpose of genetic correlation analysis with PGC AD) was conducted using an
473 inverse variance weighted method because the two subsets were from the same cohort. The
474 meta-analyses for AUD (MVP+PGC) and PAU (MVP+PGC+UKB) were performed using the
475 sample size weighted method. Given the unbalanced ratios of cases to controls in MVP
476 samples, we calculated effective sample sizes for meta-analysis following the approach used by
477 the PGC:

478

$$n_{\text{effective}} = \frac{4}{\frac{1}{n_{\text{case}}} + \frac{1}{n_{\text{control}}}}$$

479 The calculated effective sample sizes in MVP and reported effective sample sizes in PGC were
480 used in meta-analyses and all downstream analyses. AUDIT-P in UKB is a continuous trait, so
481 we used actual sample sizes for that trait. For the AUD meta-analysis, variants present in only
482 one sample (except MVP phase1 which is much larger than the others) or with heterogeneity
483 test p-value $< 5 \times 10^{-8}$ were removed, leaving 7,003,540 variants. For the PAU meta-analysis,
484 variants present in only one sample (except MVP phase1 or UKB) or with heterogeneity test p-
485 value $< 5 \times 10^{-8}$ and variants with effective sample size $< 45,118$ (15% of the total effective
486 sample size) were removed, leaving 14,069,427 variants.

487

488 **AUD polygenic risk score in UKB.** We calculated AUD polygenic risk scores (PRS) for each of
489 the 82,930 unrelated subjects in UKB who had AUDIT-P information [7]. A PRS was calculated
490 as the sum of the number of effective alleles with p-values less than a given threshold, weighted
491 by the effect sizes from AUD meta-analysis (MVP+PGC). We analyzed 10 p-value thresholds: 5×10^{-8} ,
492 1×10^{-7} , 1×10^{-6} , 1×10^{-5} , 1×10^{-4} , 0.001, 0.05, 0.3, 0.5, and 1, and clumped the AUD
493 summary data by LD with $r^2 < 0.3$ in a 500 kb window. Then we tested the association between
494 AUD PRS and AUDIT-P, corrected for age, sex, and 10 PCs. The analysis was performed using
495 PRSice-2 [43].

496

497 **Independent variants and conditional analyses.** We identified the independent variant ($p < 5 \times 10^{-8}$)
498 in each locus (1 Mb genomic window) based on the smallest p value and $r^2 < 0.1$ with
499 other independent variants. Variants with $p < 1 \times 10^{-8}$ and $r^2 > 0.1$ with respect to the
500 independent variants were assigned to the independent variant's clump. Any two independent

501 variants less than 1 Mb apart whose clumped regions overlapped were merged into one locus.
502 Given the known long-range LD for the ADH gene cluster on chromosome 4, we defined
503 chr4q23–q24 (~97.2 Mb – 102.6 Mb) as one locus. When multiple independent variants were
504 present in a locus, we ran conditional analyses using GCTA-COJO [44] to define conditionally
505 independent variants. For each variant other than the most significant one (index), we tested the
506 marginal associations conditioning on the index variant using Europeans (n = 503) from the
507 1000 Genomes as the LD reference sample. Variants with significant marginal associations ($p <$
508 5×10^{-8}) were defined as conditionally independent variants (i.e., independent when
509 conditioned on other variants in the region) and subject to another round of conditional analyses
510 for each significant association.

511 For the conditionally independent variants for AUD or PAU, we also conducted a multi-
512 trait analysis conditioning on GSCAN drinks per week [9] using GCTA-mtCOJO [45] to identify
513 variants associated with AUD or PAU, but not drinks per week, i.e., not alcohol consumption
514 alone. Europeans from the 1000 Genomes were used as the LD reference. For variants missing
515 in GSCAN, we used proxy variants ($p < 5 \times 10^{-8}$) in high LD with the locus for analyses.
516 Whereas conditional analyses require the beta (effect size) and standard error, we calculated
517 these using Z-scores (z), allele frequency (p) and sample size (n) from the meta-analyses [46]:

$$518 \quad \begin{aligned} \text{beta} &= \frac{z}{\sqrt{2p(1-p)(n+z^2)}} \\ \text{SE} &= \frac{1}{\sqrt{2p(1-p)(n+z^2)}} \end{aligned}$$

519
520 **Gene-based association analysis.** Gene-based association analysis for PAU was performed
521 using MAGMA implemented in FUMA [17, 18], which uses a multiple regression approach to
522 detect multi-marker effects that account for SNP p-values and LD between markers. We used

523 default settings to analyze 18,952 autosomal genes, with $p < 2.64 \times 10^{-6}$ (0.05/18,952)
524 considered GWS.

525

526 **Drug-gene interaction.** For the genes identified as significant by MAGMA, we examined drug-
527 gene interaction through Drug Gene Interaction Database (DGIdb) v3.0.2 [11]
528 (<http://www.dgidb.org/>), a database integrated drug–gene interaction information resource
529 based on 30 sources.

530

531 **SNP-based h^2 and partitioning heritability enrichment.** LDSC [12] was used to estimate the
532 SNP-based h^2 for common SNPs mapped to HapMap3 [47], using Europeans from the 1000
533 Genomes Project [39] as the LD reference panel. We excluded the major histocompatibility
534 complex (MHC) region (chr6: 26–34Mb).

535 We conducted portioning h^2 enrichment analyses for PAU using LDSC in different
536 models [13, 14]. First, a baseline model consisting of 52 functional categories was analyzed,
537 which included genomic features (coding, intron, UTR etc), regulatory annotations (promoter,
538 enhancer etc), epigenomic annotations (H3K27ac, H3K4me1, H3K3me3 etc) and others (see
539 ref [13] for details, Supplementary Figure 5). We then analyzed cell type group h^2 enrichments
540 with 10 cell types: central nervous system (CNS), adrenal and pancreas, immune and
541 hematopoietic, skeletal muscle, gastrointestinal, liver, cardiovascular, connective tissue and
542 bone, kidney, and other (see ref [13] for details, Supplementary Figure 4). Third, we used LDSC
543 to test for enriched heritability in regions surrounding genes with the highest tissue-specific
544 expression using 53 human tissue or cell type RNA-seq data from the Genotype-Tissue
545 Expression Project (GTEx) [16], or enriched heritability in epigenetic markers from 396 human
546 epigenetic annotations (six features in a subset of 88 primary cell types or tissues) from the

547 Roadmap Epigenomics Consortium [15] (see ref [14] for details, Supplementary Figure 6,
548 Supplementary Table 6). For each model, the number of tested annotations was used to
549 calculate a Bonferroni corrected p-value < 0.05 as a significance threshold.

550

551 **Gene-set and functional enrichment.** We performed gene-set analysis for PAU for curated
552 gene sets and Gene Ontology (GO) terms using MAGMA [17, 18]. We then used MAGMA for
553 gene-property analyses to test the relationships between tissue-specific gene expression
554 profiles and PAU-gene associations. We analyzed gene expression data from 53 GTEx (v7)
555 tissues. We also performed gene-set analysis on the 152 prioritized genes using MAGMA. Gene
556 sets with adjusted p-value < 0.05 were considered as significant.

557

558 **Genetic correlation.** We estimated the genetic correlation (r_g) between traits using LDSC [48].
559 For PAU, we estimated the r_g with 218 published traits in LD Hub [49], 487 unpublished traits
560 from the UK Biobank (integrated in LD Hub), and recently published psychiatric and behavioral
561 traits [9, 30, 32-35, 50-54], bringing the total number of tested traits to 715 (Supplementary
562 Table 8). For traits reported in multiple studies or in UKB, we selected the published version of
563 the phenotype or used the largest sample size. Bonferroni correction was applied and
564 correlation was considered significant at a p-value threshold of 6.99×10^{-5} .

565

566 **S-PrediXcan and S-MultiXcan.** To perform transcriptome-wide association analysis, we used
567 S-PrediXcan [23] (a version of PrediXcan that uses GWAS summary statistics [55]) to integrate
568 transcriptomic data from GTEx [16] and the Depression Genes and Networks study (DGN) [24]
569 to analyze the summary data from the PAU meta-analysis. Forty-eight tissues with sample size >
570 70 from GTEx release v7 were analyzed, totaling 10,294 samples. DGN contains RNA

571 sequencing data from whole blood of 992 genotyped individuals. The transcriptome prediction
572 model database and the covariance matrices of the SNPs within each gene model were
573 downloaded from the PredictDB repository (<http://predictdb.org/>, 2018-01-08 release). Only
574 individuals of European ancestry in GTEx were analyzed. S-PrediXcan was performed for each
575 of the 49 tissues (48 from GTEx and 1 from DGN), for a total of 254,345 gene-tissue pairs.
576 Significant association was determined by Bonferroni correction ($p < 1.97 \times 10^{-7}$).

577 Considering the limited eQTL sample size for any single tissue and the substantial
578 sharing of eQTLs across tissues, we applied S-MultiXcan [26], which integrates evidence across
579 multiple tissues using multivariate regression to improve association detection. Forty-eight
580 tissues from GTEx were analyzed jointly. The threshold for condition number of eigenvalues
581 was set to 30 when truncating singular value decomposition (SVD) components. In total, 25,626
582 genes were tested in S-MultiXcan, leading to a significant p-value threshold of 1.95×10^{-6}
583 (0.05/25,626).

584

585 **PAU PRS for phenotype-wide associations.** Polygenic scores were generated using PRS-CS
586 [56] on all genotyped individuals of European descent ($n = 67,588$) in Vanderbilt University
587 Medical Center's EHR-linked biobank, BioVU. PRS-CS uses a Bayesian framework to model
588 linkage disequilibrium from an external reference set and a continuous shrinkage prior on SNP
589 effect sizes. We used 1000 Genomes Project Phase 3 European sample [39] as the LD
590 reference. Additionally, we used the PRS-CS-auto option, which allows the software to learn the
591 continuous shrinkage prior from the data. Polygenic scores were constructed from PRS-CS-auto
592 adjusted summary statistics containing 811,292 SNPs. All individuals used for polygenic scoring
593 were genotyped on the Illumina Multi-Ethnic Global Array (MEGA). Genotypes were filtered for
594 SNP (95%) and individual (98%) call rates, sex discrepancies, and excessive heterozygosity.
595 For related individuals, one of each pair was randomly removed ($\pi_{\text{hat}} > 0.2$). SNPs showing

596 significant associations with genotyping batch were removed. Genetic ancestry was determined
597 by principal component analysis performed using EIGENSTRAT [57]. Imputation was completed
598 using the Michigan Imputation Server [38] and the Haplotype Reference Consortium [58] as the
599 reference panel. Genotypes were then converted to hard calls, and filtered for SNP imputation
600 quality ($R^2 > 0.3$), individual missingness (>2%), SNP missingness (>2%), minor allele frequency
601 (<1%) and Hardy-Weinberg Equilibrium ($p > 1 \times 10^{-10}$). The resulting dataset contained
602 9,330,483 SNPs on 67,588 individuals of European ancestry.

603 We conducted a phenome-wide association study (PheWAS) [59] of the PAU PRS, by
604 fitting a logistic regression model to 1,372 case/control phenotypes to estimate the odds of each
605 diagnosis given the PAU polygenic score, controlling for sex, median age across the medical
606 record, top 10 principal components of ancestry, and genotyping batch. We required the
607 presence of at least two International Classification of Disease (ICD) codes that mapped to a
608 PheWAS disease category (Phecode Map 1.2) to assign “case” status. A phenotype was
609 required to have at least 100 cases to be included in the analysis. PheWAS analyses were run
610 using the PheWAS R package [60]. Bonferroni correction was applied to test for significance (p
611 $< 0.05/1,372$).

612

613 **PAU PRS in independent samples.** We calculated PAU PRS in three independent samples,
614 where we tested the association between PAU PRS and AD, corrected for age, sex, and 10
615 PCs. Ten p-value thresholds were applied in all samples.

616 *iPSYCH Group.* DNA samples for cases and controls were obtained from newborn bloodspots
617 linked to population registry data [61]. Cases were identified with the ICD-10 code F10.2 (AD; n
618 = 944); controls were from the iPSYCH group ($n = 11,408$; $n_{\text{effective}} = 3,487$). The iPSYCH
619 sample was genotyped on the Psych Array (Illumina, San Diego, CA, US). GWAS QC,

620 imputation against the 1,000 Genomes Project panel [39] and association analysis using the
621 Ricopili pipeline [62] were performed.

622 *UCL Psych Array*. Cases were identified with ICD-10 code F10.2 ($n = 1,698$) and comprised 492
623 individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH (Steroids
624 or Pentoxifylline for Alcoholic Hepatitis) trial (ISRCTN88782125; EudraCT Number: 2009-
625 013897-42) and 1,206 subjects recruited from the AD arm of the DNA Polymorphisms in Mental
626 Health (DPIM) study; controls were UK subjects who had either been screened for an absence
627 of mental illness and harmful substance use ($n = 776$), or were random blood donors ($n=452$;
628 total $n = 1,228$; $n_{\text{effective}} = 2,851$). The sample was genotyped on the Psych Array (Illumina, San
629 Diego, CA, US). GWAS QC was performed using standard methods and imputation was done
630 using the haplotype reference consortium (HRC) panel [63] on the Sanger Imputation server
631 (<https://imputation.sanger.ac.uk/>). Association testing was performed using Plink1.9 [41].

632 *UCL Core Exome Array*. Cases had an ICD-10 diagnosis of F10.2 ($n = 637$), including 324
633 individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH trial and
634 313 subjects recruited from the AD arm of the DPIM study; controls were unrelated UK subjects
635 from the UK Household Longitudinal Study (UKHLS; $n = 9,189$; $n_{\text{effective}} = 2,383$). The sample
636 was genotyped on the Illumina Human Core Exome Array (Illumina, San Diego, CA, US).
637 GWAS QC was performed using standard methods and imputation was done using the HRC
638 panel [63] on the Sanger Imputation server (<https://imputation.sanger.ac.uk/>). Association
639 testing was performed with Plink1.9 [41].

640

641 **Mendelian Randomization.** We used Mendelian Randomization (MR) to investigate the causal
642 relationships with PAU liability of the many traits that were significantly genetically correlated (p
643 $< 6.99 \times 10^{-5}$). However, all or most of the published traits in recent large GWAS include UKB

644 data. To avoid biases caused by overlapping samples in MR analysis, we only tested the
645 relationship between published traits and AUD (MVP+PGC). For robust causal effect inference,
646 we limited the traits studied to those with more than 30 available instruments (association $p < 5$
647 $\times 10^{-8}$). Only the causal effects of liability to other exposures on AUD risk were tested given that
648 there are only 24 independent variants for AUD. In total, 13 exposures were analyzed (Table 2).

649 Three methods, weighted median [28], inverse-variance weighted (IVW, random-effects
650 model) [27], and MR-Egger [29], implemented in the R package “MendelianRandomization
651 v0.3.0” [64] were used for MR inference. Evidence of pleiotropic effects was examined by the
652 MR-Egger intercept test, where a non-zero intercept indicates directional pleiotropy [29].
653 Instrumental variants that are associated with PAU ($p < 5 \times 10^{-8}$) were removed. For
654 instrumental variants missing in the PAU summary data, we used the results of the best-proxy
655 variant with the highest LD ($r^2 > 0.8$) with the missing variant. If the MAF of the missing variant
656 was < 0.01 , or none of the variants within 200 kb had LD $r^2 > 0.8$, we removed the instrumental
657 variant from the analysis.

658

659 **MTAG between PAU and drinks per week.** Multiple trait analysis between PAU and drinks per
660 week (DrnkWk) from GSCAN was performed on summary statistics with multi-trait analysis of
661 GWAS (MTAG) v1.0.7 [10]. The summary data of DrnkWk were generated from 537,352
662 subjects, excluding the 23andMe samples that were not available to us for inclusion. We
663 analyzed variants with a minimum effective sample size of 80,603 (15%) in DrnkWk and a
664 minimum effective sample size of 45,118 (15%) in PAU, which left 10,613,246 overlapping
665 variants.

666

667

668 **Acknowledgements**

669 This research used data from the Million Veteran Program, Office of Research and
670 Development, Veterans Health Administration, and was supported by award #1I01BX003341
671 and CSP575B. This publication does not represent the views of the Department of Veterans
672 Affairs or the United States Government. Supported also by NIH (NIAAA) P50 AA12870, a
673 NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation (HZ), and
674 NIH grants 5T32GM080178 (JMS) and K02DA32573 (AA); and the NIHR Imperial Biomedical
675 Research Centre (SRA and MRT). This research also used summary data from the Psychiatric
676 Genomics Consortium (PGC) Substance Use Disorders (SUD) working group. The PGC-SUD is
677 supported by funds from NIDA and NIMH to MH109532 and, previously, had analyst support
678 from NIAAA to U01AA008401 (COGA). PGC-SUD gratefully acknowledges its contributing
679 studies and the participants in those studies, without whom this effort would not be possible.
680 This research also used summary data from UK Biobank, a population-based sample of
681 participants whose contributions we gratefully acknowledge. We thank the iPSYCH-Broad
682 Consortium for access to data on the iPSYCH cohort. The iPSYCH project is funded by the
683 Lundbeck Foundation (R102-A9118 and R155-2014-1724) and the universities and university
684 hospitals of Aarhus and Copenhagen. Genotyping of iPSYCH samples was supported by grants
685 from the Lundbeck Foundation and the Stanley Foundation, The Danish National Biobank
686 resource was supported by the Novo Nordisk Foundation. Data handling and analysis on the
687 GenomeDK HPC facility was supported by NIMH (1U01MH109514-01 to ADB). High-
688 performance computer capacity for handling and statistical analysis of iPSYCH data on the
689 GenomeDK HPC facility was provided by the Centre for Integrative Sequencing, iSEQ, Aarhus
690 University, Denmark (grant to ADB).

691

692 Disclosure: Dr. Kranzler is a member of the American Society of Clinical Psychopharmacology's
693 Alcohol Clinical Trials Initiative, which was supported in the last three years by AbbVie,
694 Alkermes, Ethypharm, Indivior, Lilly, Lundbeck, Otsuka, Pfizer, Arbor, and Amygdala
695 Neurosciences. Drs. Kranzler and Gelernter are named as inventors on PCT patent application
696 #15/878,640 entitled: "Genotype-guided dosing of opioid agonists," filed January 24, 2018.

697 **References**

- 698 1. GBD 2016 Alcohol Collaborators., *Alcohol use and burden for 195 countries and territories, 1990-
699 2016: a systematic analysis for the Global Burden of Disease Study 2016*. Lancet, 2018.
700 **392**(10152): p. 1015-1035.
- 701 2. Walters, R.K., et al., *Transancestral GWAS of alcohol dependence reveals common genetic
702 underpinnings with psychiatric disorders*. Nat Neurosci, 2018. **21**(12): p. 1656-1669.
- 703 3. Kranzler, H.R., et al., *Genome-wide association study of alcohol consumption and use disorder in
704 274,424 individuals from multiple populations*. Nat Commun, 2019. **10**(1): p. 1499.
- 705 4. Sanchez-Roige, S., et al., *Genome-Wide Association Study Meta-Analysis of the Alcohol Use
706 Disorders Identification Test (AUDIT) in Two Population-Based Cohorts*. Am J Psychiatry, 2019.
707 **176**(2): p. 107-118.
- 708 5. Gelernter, J., et al., *Genome-wide Association Study of Maximum Habitual Alcohol Intake
709 in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci*. Biol Psychiatry,
710 2019.
- 711 6. Gaziano, J.M., et al., *Million Veteran Program: A mega-biobank to study genetic influences on
712 health and disease*. J Clin Epidemiol, 2016. **70**: p. 214-23.
- 713 7. Bycroft, C., et al., *The UK Biobank resource with deep phenotyping and genomic data*. Nature,
714 2018. **562**(7726): p. 203-209.
- 715 8. Gelernter, J., et al., *Genome-wide association study of alcohol dependence: significant findings in
716 African- and European-Americans including novel risk loci*. Mol Psychiatry, 2014. **19**(1): p. 41-9.
- 717 9. Liu, M., et al., *Association studies of up to 1.2 million individuals yield new insights into the
718 genetic etiology of tobacco and alcohol use*. Nat Genet, 2019. **51**(2): p. 237-244.
- 719 10. Turley, P., et al., *Multi-trait analysis of genome-wide association summary statistics using MTAG*.
720 Nat Genet, 2018. **50**(2): p. 229-237.
- 721 11. Cotto, K.C., et al., *DGIdb 3.0: a redesign and expansion of the drug-gene interaction database*.
722 Nucleic Acids Res, 2018. **46**(D1): p. D1068-D1073.
- 723 12. Bulik-Sullivan, B.K., et al., *LD Score regression distinguishes confounding from polygenicity in
724 genome-wide association studies*. Nat Genet, 2015. **47**(3): p. 291-5.
- 725 13. Finucane, H.K., et al., *Partitioning heritability by functional annotation using genome-wide
726 association summary statistics*. Nat Genet, 2015. **47**(11): p. 1228-35.
- 727 14. Finucane, H.K., et al., *Heritability enrichment of specifically expressed genes identifies disease-
728 relevant tissues and cell types*. Nat Genet, 2018. **50**(4): p. 621-629.
- 729 15. Roadmap Epigenomics Consortium, et al., *Integrative analysis of 111 reference human
730 epigenomes*. Nature, 2015. **518**(7539): p. 317-30.
- 731 16. GTEx Consortium, *Genetic effects on gene expression across human tissues*. Nature, 2017.
732 **550**(7675): p. 204-213.
- 733 17. Watanabe, K., et al., *Functional mapping and annotation of genetic associations with FUMA*. Nat
734 Commun, 2017. **8**(1): p. 1826.
- 735 18. de Leeuw, C.A., et al., *MAGMA: generalized gene-set analysis of GWAS data*. PLoS Comput Biol,
736 2015. **11**(4): p. e1004219.
- 737 19. Marees, A.T., et al., *Potential influence of socioeconomic status on genetic correlations between
738 alcohol consumption measures and mental health*. Psychol Med, 2019: p. 1-15.
- 739 20. Grant, B.F., et al., *Epidemiology of DSM-5 Alcohol Use Disorder: Results From the National
740 Epidemiologic Survey on Alcohol and Related Conditions III*. JAMA Psychiatry, 2015. **72**(8): p. 757-
741 66.

742 21. Andersen, A.M., et al., *Polygenic Scores for Major Depressive Disorder and Risk of Alcohol*
743 *Dependence*. JAMA Psychiatry, 2017. **74**(11): p. 1153-1160.

744 22. Zhou, H., et al., *Genetic Risk Variants Associated With Comorbid Alcohol Dependence and Major*
745 *Depression*. JAMA Psychiatry, 2017. **74**(12): p. 1234-1241.

746 23. Barbeira, A.N., et al., *Exploring the phenotypic consequences of tissue specific gene expression*
747 *variation inferred from GWAS summary statistics*. Nat Commun, 2018. **9**(1): p. 1825.

748 24. Battle, A., et al., *Characterizing the genetic basis of transcriptome diversity through RNA-*
749 *sequencing of 922 individuals*. Genome Res, 2014. **24**(1): p. 14-24.

750 25. Edenberg, H.J. and J.N. McClintick, *Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and*
751 *Alcohol Use Disorders: A Critical Review*. Alcohol Clin Exp Res, 2018. **42**(12): p. 2281-2297.

752 26. Barbeira, A.N., et al., *Integrating predicted transcriptome from multiple tissues improves*
753 *association detection*. PLoS Genet, 2019. **15**(1): p. e1007889.

754 27. Bowden, J., et al., *A framework for the investigation of pleiotropy in two-sample summary data*
755 *Mendelian randomization*. Stat Med, 2017. **36**(11): p. 1783-1802.

756 28. Bowden, J., et al., *Consistent Estimation in Mendelian Randomization with Some Invalid*
757 *Instruments Using a Weighted Median Estimator*. Genet Epidemiol, 2016. **40**(4): p. 304-14.

758 29. Bowden, J., G. Davey Smith, and S. Burgess, *Mendelian randomization with invalid instruments:*
759 *effect estimation and bias detection through Egger regression*. Int J Epidemiol, 2015. **44**(2): p.
760 512-25.

761 30. Howard, D.M., et al., *Genome-wide meta-analysis of depression identifies 102 independent*
762 *variants and highlights the importance of the prefrontal brain regions*. Nat Neurosci, 2019. **22**(3):
763 p. 343-352.

764 31. Schizophrenia Working Group of the Psychiatric Genomics, C., *Biological insights from 108*
765 *schizophrenia-associated genetic loci*. Nature, 2014. **511**(7510): p. 421-7.

766 32. Nagel, M., et al., *Meta-analysis of genome-wide association studies for neuroticism in 449,484*
767 *individuals identifies novel genetic loci and pathways*. Nat Genet, 2018. **50**(7): p. 920-927.

768 33. Karlsson Linner, R., et al., *Genome-wide association analyses of risk tolerance and risky*
769 *behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences*. Nat
770 Genet, 2019. **51**(2): p. 245-257.

771 34. Jansen, P.R., et al., *Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk*
772 *loci and functional pathways*. Nat Genet, 2019. **51**(3): p. 394-403.

773 35. Lee, J.J., et al., *Gene discovery and polygenic prediction from a genome-wide association study of*
774 *educational attainment in 1.1 million individuals*. Nat Genet, 2018. **50**(8): p. 1112-1121.

775 36. Evangelou, E., et al., *New alcohol-related genes suggest shared genetic mechanisms with*
776 *neuropsychiatric disorders*. Nat Hum Behav, 2019.

777 37. Loh, P.R., et al., *Reference-based phasing using the Haplotype Reference Consortium panel*. Nat
778 Genet, 2016. **48**(11): p. 1443-1448.

779 38. Das, S., et al., *Next-generation genotype imputation service and methods*. Nat Genet, 2016.
780 **48**(10): p. 1284-1287.

781 39. 1000 Genomes Project Consortium, *A global reference for human genetic variation*. Nature,
782 2015. **526**(7571): p. 68-74.

783 40. Galinsky, K.J., et al., *Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B*
784 *in Europe and East Asia*. Am J Hum Genet, 2016. **98**(3): p. 456-472.

785 41. Chang, C.C., et al., *Second-generation PLINK: rising to the challenge of larger and richer datasets*.
786 Gigascience, 2015. **4**: p. 7.

787 42. Willer, C.J., Y. Li, and G.R. Abecasis, *METAL: fast and efficient meta-analysis of genomewide*
788 *association scans*. Bioinformatics, 2010. **26**(17): p. 2190-1.

789 43. Euesden, J., C.M. Lewis, and P.F. O'Reilly, *PRSice: Polygenic Risk Score software*. Bioinformatics, 790 2015. **31**(9): p. 1466-8.

791 44. Yang, J., et al., *Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies* 792 *additional variants influencing complex traits*. Nat Genet, 2012. **44**(4): p. 369-75, S1-3.

793 45. Zhu, Z., et al., *Causal associations between risk factors and common diseases inferred from* 794 *GWAS summary data*. Nat Commun, 2018. **9**(1): p. 224.

795 46. Zhu, Z., et al., *Integration of summary data from GWAS and eQTL studies predicts complex trait* 796 *gene targets*. Nat Genet, 2016. **48**(5): p. 481-7.

797 47. International HapMap Consortium, et al., *Integrating common and rare genetic variation in* 798 *diverse human populations*. Nature, 2010. **467**(7311): p. 52-8.

799 48. Bulik-Sullivan, B., et al., *An atlas of genetic correlations across human diseases and traits*. Nat 800 Genet, 2015. **47**(11): p. 1236-41.

801 49. Zheng, J., et al., *LD Hub: a centralized database and web interface to perform LD score regression* 802 *that maximizes the potential of summary level GWAS data for SNP heritability and genetic* 803 *correlation analysis*. Bioinformatics, 2017. **33**(2): p. 272-279.

804 50. Pasman, J.A., et al., *GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with* 805 *psychiatric traits, and a causal influence of schizophrenia*. Nat Neurosci, 2018. **21**(9): p. 1161- 806 1170.

807 51. Savage, J.E., et al., *Genome-wide association meta-analysis in 269,867 individuals identifies new* 808 *genetic and functional links to intelligence*. Nat Genet, 2018. **50**(7): p. 912-919.

809 52. Demontis, D., et al., *Discovery of the first genome-wide significant risk loci for attention* 810 *deficit/hyperactivity disorder*. Nat Genet, 2019. **51**(1): p. 63-75.

811 53. Jansen, I.E., et al., *Genome-wide meta-analysis identifies new loci and functional pathways* 812 *influencing Alzheimer's disease risk*. Nat Genet, 2019. **51**(3): p. 404-413.

813 54. Stahl, E.A., et al., *Genome-wide association study identifies 30 loci associated with bipolar* 814 *disorder*. Nat Genet, 2019. **51**(5): p. 793-803.

815 55. Gamazon, E.R., et al., *A gene-based association method for mapping traits using reference* 816 *transcriptome data*. Nat Genet, 2015. **47**(9): p. 1091-8.

817 56. Ge, T., et al., *Polygenic prediction via Bayesian regression and continuous shrinkage priors*. Nat 818 Commun, 2019. **10**(1): p. 1776.

819 57. Price, A.L., et al., *Principal components analysis corrects for stratification in genome-wide* 820 *association studies*. Nat Genet, 2006. **38**(8): p. 904-9.

821 58. McCarthy, S., et al., *A reference panel of 64,976 haplotypes for genotype imputation*. Nat Genet, 822 2016. **48**(10): p. 1279-83.

823 59. Denny, J.C., et al., *Systematic comparison of genome-wide association study of electronic* 824 *medical record data and genome-wide association study data*. Nat Biotechnol, 2013. **31**(12): p. 825 1102-10.

826 60. Carroll, R.J., L. Bastarache, and J.C. Denny, *R PheWAS: data analysis and plotting tools for* 827 *phenome-wide association studies in the R environment*. Bioinformatics, 2014. **30**(16): p. 2375-6.

828 61. Pedersen, C.B., et al., *The iPSYCH2012 case-cohort sample: new directions for unravelling genetic* 829 *and environmental architectures of severe mental disorders*. Mol Psychiatry, 2018. **23**(1): p. 6-14.

830 62. Lam, M., et al., *RICOPILI: Rapid Imputation for COnsortias PipeLine*. BioRxiv, 2019. 831 <https://doi.org/10.1101/587196>.

832 63. McCarthy, S., et al., *A reference panel of 64,976 haplotypes for genotype imputation*. Nat Genet, 833 2016. **48**(10): p. 1279-83.

834 64. Yavorska, O.O. and S. Burgess, *MendelianRandomization: an R package for performing* 835 *Mendelian randomization analyses using summarized data*. Int J Epidemiol, 2017. **46**(6): p. 1734- 836 1739.