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Abstract

Relatively small genomic introgressions containing quantitative trait loci can have significant
impacts on the phenotype of an individual plant. However, the magnitude of phenotypic effects
for the same introgression can vary quite substantially in different environments due to allele-
by-environment interactions. To study potential patterns of allele-by-environment interactions,
fifteen near-isogenic lines (NILs) with >90% B73 genetic background and multiple Mol7
introgressions were grown in 16 different environments. These environments included five
geographical locations with multiple planting dates and multiple planting densities. The
phenotypic impact of the introgressions was evaluated for up to 26 traits that span different
growth stages in each environment to assess allele-by-environment interactions. Results from
this study showed that small portions of the genome can drive significant genotype-by-
environment interaction across a wide range of vegetative and reproductive traits, and the
magnitude of the allele-by-environment interaction varies across traits. Some introgressed
segments were more prone to genotype-by-environment interaction than others when
evaluating the interaction on a whole plant basis throughout developmental time, indicating
variation in phenotypic plasticity throughout the genome. Understanding the profile of allele-
by-environment interaction is useful in considerations of how small introgressions of QTL or

transgene containing regions might be expected to impact traits in diverse environments.
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Introduction

Many important agronomic traits (i.e. grain yield, flowering time, and plant height) are
influenced by a large number of quantitative trait loci spread across the genome. These loci
have varying effects on phenotypic variation and the effects can be variable across
environments. The integration of all allele-by-environment interactions can lead to a complex
genotype-by-environment interaction (GxE) effect (Malosetti et al. 2016). Genotype-by-
environment interaction is a major challenge for crop breeding as relative performances, and
even rankings, of cultivars grown in different environments are not consistent. Sometimes the
varieties that have the highest performance in one environment can have poor performance in
other environments. Breeders and growers are often faced with choices between yield stability
(consistent moderate performance) and yield potential. Increasing our understanding of the
profiles of allele-by-environment interactions can provide an improved framework to document
and control for these effects in increasingly unpredictable environments (Allard and Bradshaw
1964; El-Soda et al. 2014; Zobel and Talbert 1984).

Although GxE has been well-documented and studied in plant and animal species, it
remains a significant challenge to breeding programs (Crossa 2012; de Leon et al. 2016; Xu
2016; Li et al. 2018). Obtaining a rigorous assessment of GxE effects requires phenotypic
evaluation in a wide range of environments and breeder choices about the level of trait
instability across environments that will be tolerated. Many GxE studies are focused on traits
with important economic value, such as yield and quality, which are usually the end products of
plants (Ndhlela et al. 2014; Mohammadi and Amri 2016; Balakrishnan et al. 2016). There have
been fewer detailed evaluations of GxE interactions for vegetative traits and yield component
traits such as ear morphology. Technological advances in high-throughput automated
phenotyping have increased opportunities to collect quantitative data on numerous phenotypic
traits at multiple developmental stages in a cost-effective and time saving way (El-Soda et al.
2014; Miller et al. 2017).

Studies on GxE frequently utilize contrasting conditions within controlled environments (i.e.
managed stress trials) that include extreme conditions like drought/water stress (Chapman et

al. 1997; Ribaut et al. 1997; Ribaut and Hoisington 1998), heat/cold stress (Mohammadi et al.
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2016; Thiry et al. 2016), or nutritional stress (Banziger et al. 1997). These extreme conditions or
drastic environmental change often result in significant GXE (Bebber et al. 2013; Trenberth et al.
2013; Xu 2016), though it is not necessarily representative of the normal state of the agriculture
systems that often are subject to more subtle environmental variations through the use of
intensive management practices. GxE interaction studies that utilize natural environments
provide a practical understanding of GxE to breeding programs (de Leon et al. 2016; Elias et al.
2016; Malosetti et al. 2016). Data generated by multi-environment trials, which are trials or
experiments carried out in multiple environments or contexts with multiple replications, can be
quite useful in documenting the range of GxE effects that can be observed (Yan et al. 2001; Fan
et al. 2007; Crossa 2012; Malosetti et al. 2013; Nuvunga et al. 2015; Lado et al. 2016;
Mohammadi and Amri 2016).

Genotype-by-environment interaction studies that utilize diverse hybrid or inbred lines are
limited in that they are unable to identify genomic regions responsible for varying responses to
the environment. These studies also provide minimal insight into potential environmental
interactions when transgenes or quantitative trait loci are introgressed into a genome.
However, potential for extreme interaction of single loci and environment have been reported
(Lukens and Doebley 1999; Guo et al. 2014). In this study we evaluated near isogenic lines
(NILs) to investigate allele-by-environment interaction. Our multi-environment trials were
conducted under normal growing conditions, which provide valuable information for practical
breeding programs. Understanding the profile of allele-by-environment interaction will provide
a useful framework for interpreting more complex genome-wide GxE. This information is also
useful in considerations of how transgenes for quantitative traits or QTL introgressions might

be expected to interact with the environment and impact traits.

Materials and Methods

Germplasm

A set of 15 B73-like NILs was selected from a previously described set of B73 x Mo17 NILs that
included 186 B73-like genotypes with Mol17 introgressions and 70 Mo17-like genotypes with
B73 introgressions (Eichten et al. 2011). The full NIL population was planted in St Paul, MN in
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Summer 2009 and Summer 2010 in single rows (3.35 m long and 0.76 m apart) and six traits
were measured including plant height (measured from the ground to the top of the tassel after
flowering), tassel branch number, 50 kernel weight, total kernel weight, cob diameter, and
kernel row number (Table S1). A subset of 15 B73-like NILs was selected to be grown in
additional environments. The majority exhibited phenotypic differences relative to the B73
recurrent parent for at least one of the traits. The set of selected NILs included B0O04, B040,

B0O43, B049, BO55, B102, B107, B111, B122, B123, B125, B131, B154, B175, and B189.

Field Phenotypic Evaluation of Selected Near Isogenic Lines

The 15 selected B73-like NILs, Mo17, and five entries of B73 (21 total entries) were planted in
16 environments in lowa, Minnesota, and Wisconsin in the summer of 2015. The 16
environments were defined by location (5 separate locations) and management practices
within location including planting date (early and late planting) and plant density (high density:
70,000 plants ha™ and low density: 20,000 plants ha™). Arlington, Wi and Waseca, MN had high
and low planting densities, for a total of four environments. Curtiss, IA, Kelly, IA, and St. Paul,
MN had a factorial of high and low planting density and early and late planting at each site, for
a total of 12 environments (Table S2). Within each location/management environment there
were two replications and plots were arranged in a randomized complete block design. In each
location, plots were grown as single rows (3.35 m long and 0.76 m apart).

A total of 26 traits were collected, including 15 vegetative traits and 11 yield-related traits
(Table S3). Thirteen vegetative traits were measured on six representative plants per plot.
These traits included plant height at 14, 21, 28, 35, 42, 49, 56, 63 and 70 days after planting
(DAP), plant height at maturity, leaf number above the ear, and leaf number (including
senesced leaves) below the ear. Juvenile leaves were marked to allow leaf number including
senesced leaves to be counted using previously described methods (Hirsch et al. 2014). Days to
anthesis and days to silk were measured on a per-plot basis. Custom computer algorithms
executed on Open Science Grid computational resources (Pordes et al. 2007) in a workflow
managed by HTCondor software (Thain et al. 2005) were used to quantify eleven ear and kernel

traits from digital images as previously described (Miller et al. 2017). Six representative ears per
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plot were measured. Ear weight and grain weight was an average of the weight of the
uppermost ear on each of six representative plants in the plot and cob weight was measured on
individual uppermost ears from the six representative plants in the plot. For all traits for which
single plant measurements were taken, the same six representative plants were used for all
measurements. See Table S4 for raw phenotypic values.

Two replicates of the full panel of NILs were also grown in a randomized complete block

design in St. Paul, MN in summer 2015 using a single planting date and density (Fig. S1).

Sequencing and SNP identification
Genotyping of NILs was performed using the genotyping-by-sequencing (GBS) method (Elshire
et al., 2011). Briefly, five seeds of each NIL were planted in the greenhouse and pooled leaf
samples were collected for each NIL after ten days of planting. Pooled leaf tissue was
immediately frozen in liquid nitrogen and then lyophilized. Genomic DNA was extracted from
the lyophilized leaf samples using the BioSprint 96 DNA Plant Kit. The quality and quantity of
extracted DNA was evaluated using a QuantiFluor® dsDNA System (Promega), and by running
DNA samples on 1% agarose gel. Library preparation and sequencing of the DNA samples were
performed at the Institute for Genomic Diversity (IGD) at Cornell University as described by
Elshire et al. (2011). Single nucleotide polymorphisms (SNPs) were called from the raw
sequence data using the TASSEL GBS Pipeline version 3.0 (Glaubitz et al.,, 2014). SNPs were
filtered for maximum missing percentage (> 20%) and minimum minor allele frequency (< 5%).
Beagle software package version 4.1 (Browning and Browning 2016) was employed to
remove SNPs that were heterozygous in either parent or showing no polymorphism between
the two parents (B73 and Mol7). Missing data in each NIL was then imputed based on the
parental genotype. SNPs in each line were recorded as A (B73 allele), B (Mol17) and H
(heterozygous). Due to the relatively high rate of missing data and the potential for sequencing
error of data generated by the GBS method, a modification of a previously described non-
overlapping sliding window approach was used to evaluate SNPs collectively rather than
individually (Huang et al. 2009). A window size of 50 SNPs was set continuously along each

chromosome. In each window, A, B and H were assigned values of 0, 1 and 0.5, respectively,
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and the average score of the 50 SNPs in the window was calculated. Within each window if the
average score was less than or equal to 0.25, all 50 loci in that window were coded as A. If the
average score was greater than or equal to 0.75, all 50 loci in that window were coded as B. If
the average score was between 0.25 and 0.75 all 50 loci in the window were coded as H (Table

S5).

Statistical Analyses

Phenotypic variance of each trait was partitioned into environments, genotypes, and GxE
effects with a linear model y;;, = u+ fi + e, +7(€) ;i) + (g€)kx;i + &iji Where Y is the
phenotype value of the k™ genotype in i environment of the j" replication; u is the phenotypic
mean across environments; f; is the K genotype effect; ¢; is the i™ environment effect;
r(€)juis the /™ replication effect nested within the i environment; (ge),.; is the interaction
effect of the k™ genotype by the i environment, and &;jk is the residual effect. All variables
except p were considered as random effects. Two-way ANOVA with replication was conducted
with the R function “aov”, and variance components were estimated using least squares. Each
trait was analyzed using this model with the 15 NILs and B73.

One-way ANOVA was used to test the phenotypic difference between high density and low
density environments for each NIL using the model y;; = u + f; + ¢;;, where y;; represents the
phenotypic value of the jth observation (j=1,2,...,n;) on the ith density (i=1,2,...,k levels); u is the
grand mean; f; represents the i"™ treatment effect, and ¢;; represents the random error present
in thejth observation on the i treatment. The analysis was done for each trait for each NIL.

For each trait of each NIL in each environment, the phenotypic difference between the NIL
and B73 (calculated as B73 minus NIL) was regressed against the mean of all NILs in that
environment. A linear regression was fit using the “Im” function in R. A polynomial regression
with degree of 2 was fit for traits without significant linear regression using the “Im” function
and “ploy” command in R.

To test for differences between environments by using information across all of the traits,
the Mantel test (Mantel 1967; Diniz-Filho et al. 2013), which tests for significant differences

between pairs of matrices, was used. In this case, the matrices consisted of the 26 traits by 17
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genotypes (15 NILs, B73 and Mo17), with a single matrix for each of the 16 environments (16
total matrices). Each matrix was converted to a pairwise euclidean distance matrix
(standardized by mean and standard deviation) (Deza and Deza 2009) between genotypes using
the “daisy” function in the “cluster” package in R. Pairwise tests between the 16 environment
distance matrices were then conducted using the “mantel.rtest” function (“ade4” package) in
R. Permutation numbers for the Mantel test was set to 999. Standard deviation (SD) of the
pairwise distances between the 15 NILs across all the environments was calculated as a metric
of stability of relationships between NILs on a whole plant basis.

Additive main effects and multiplicative interaction analysis (AMMI) analysis was performed

using the “AMMI” function in the R package “agricolae” (De Mendiburu and Simon 2015).

Code Availability

All code used for the analyses in this manuscript is available at
https://github.com/lixx5447/NIL_project.

Results

Genomic distribution of introgressions in the selected NiLs

The goal of this study was to determine if introgression segments throughout the genome
exhibit variation in GxE sensitivity, and what interaction patterns are observed across
environments for different introgression lines. To address these questions, we selected 15 NILs
from a larger population of NILs that was previously described (Eichten et al. 2011). During the
development of the complete NIL population, no selection was imposed, and the introgressed
segments in each line were considered random. The subset of 15 NILs selected for this study
exhibited higher or lower trait values relative to B73 in grow-outs of the full NIL panel in 2009
and 2010 (Table S1) and the full NIL panel was grown in summer 2015 at a single location and
condition in order to compare the full set of traits used in this study (Fig. S1). The data for the
2009/2010 grow-outs were used to select a subset of the NILs that exhibited variation for a
certain trait relative to B73, but did not necessarily contain major-effect QTL for these traits.
Across the 12 traits, the selected NILs (which are primarily B73 background with a small number

of Mo1l7 introgressed segments) showed a large phenotypic effect (deviation greater than 3


https://doi.org/10.1101/738070
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738070; this version posted August 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

times the standard error in either direction) for one to nine traits (Table S6). Within each trait,
however, the 15 selected NILs spanned the range of variation that was observed in the
complete population of B73-like NILs (Fig. S1). As such, the 15 selected NILs and the
introgressed segments were considered random.

To characterize the introgression segments, the 15 selected NILs and the two inbred parents
were genotyped using the GBS method (Elshire et al. 2011). After quality control and
imputation, 122,516 SNPs were retained for further analysis for 14 of the 15 NILs (Table S5, Fig.
S2). Due to a high rate of missing GBS data for NIL B040, genotypic data generated by
comparative genomic hybridization (CGH) in a previous study (Eichten et al. 2011) was used in
place of the GBS data for this line. Within each of the NILs there was between three and 12
introgressions. The sum of lengths of all introgression segments in a particular NIL ranged from
66.11 Mb (B175, 3.10% of genome) to 327.44 Mb (B125, 15.34% of the genome) with an
average of 164.61 Mb (7.71% of the genome) in the NIL set. The percentage of heterozygous
introgression segments across the genome ranged from 0 to 1.25% (26.7 Mb) with an average
of 0.34% (7.18Mb). The number of annotated genes introgressed into each NIL ranged from
1,299 to 6,360 with an average of 3,393 (Table S7).

Significant genotype, environment, and genotype-by-environment interaction effects are
observed across traits within the selected NiLs

An analysis of variance was conducted with the 15 NILs and the recurrent parent B73 for each
of the 26 traits to initially partition the observed variation by genotype, environment, GxE, and
residual. For all measured traits, genotype and environmental sources of variation were
significant at P < 0.001 (Table 1). In addition, 15 of the 26 traits exhibit significant GxE effects.
As expected, the proportion of the variation explained by genotype, environment, and GxE
effects varied substantially among the different traits. The percent variation explained by GxE
effect ranged from a mere 2.2% (Plant Height at 28 DAP) up to 35.0% (Kernel Depth) of the trait
variation. There were nine traits, all related to ear or kernel morphology, for which GxE effects
accounted for at least 20% of the total variation. These observations provide evidence for

substantial environmental and GxE effects within the set of selected NILs and the environments
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used in this study.

NILs with different introgression segments respond variably against macro-environmental
factors

Given significant GxE effects for most of the traits, we further explored the patterns of
interactions that can be observed among environments for the NIL lines. We first looked at
patterns within macro-environments defined based on planting density (i.e. high and low
planting density). Reaction norm plots were generated for all traits (Fig. S3). We focus here on
six representative traits including cob length (CL), cob width (CW), grain weight per plant
(GWT), plant height at maturity (PHt), kernel length (KL), and kernel width (KW) (Fig. 1A). For
some traits such as CL, CW and KW, the phenotype of all of the NILs was biased toward the
recurrent parent B73 and was significantly different from the donor parent Mo17. Other traits
such as GWT, KL and PHt exhibited broader ranges of phenotypic variation that extend beyond
the parental range. For PHt, planting density had a similar magnitude of positive effect on
almost all the NILs, indicating the absence of a genotype-by-density effect. By contrast, GWT
exhibited a variety of effects among the NILs with significant negative effects for six NILs and a
positive effect for one NIL. The remaining traits (KL, CL, CW and KW) tended to exhibit negative
effects relative to plant density although the effect magnitude varied substantially among the
different NILs (Fig. 1A). The total number of NILs with significant variation due to planting
density was assessed for all traits (Fig. 1B). A wide range was observed across the traits with
some traits showing no NILs with significant differences across the density macro environments
(i.e. days to anthesis and days to silking), while for others nearly every NIL had an effect and the
effect was in the same direction (i.e. plant height and ear height). Interestingly, a number of
traits were observed to have NILs with significant differences in both directions (i.e. ear width,

ear weight, and grain weight).

NIL introgressions have variable sensitivity to micro-environmental differences and their
ability to respond to environmental quality

We next sought to explore the different potential patterns of trait values that were observed

10
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among the NILs across individual environments rather than macro-environments. For this
analysis the NILs were compared to the trait value of the recurrent parent, B73. The NILs varied
substantially in terms of the magnitude, and range, of phenotypic differences relative to the
recurrent parent (Fig 2; Fig. S4). In some cases we observed consistent effects of the
introgressions across all environments. For example, PHt for B154 and CL for BO40 showed very
little variation across the environments. While others, such as KL for BO43 and GWT in general,
showed a wide range of differences across the environments.

We further evaluated the effect of the introgressed segments across the micro-
environments by plotting the difference between the NIL and the recurrent parent versus the
environmental mean (Fig. 3). We can predict different patterns that might be observed in this
type of plot. For example, for some NILs we expect to see a linear relationship in the plot, which
would indicate an introgression that has a phenotypic effect and the effect size is directly
related to the environmental quality. Indeed, we frequently observe this pattern as shown in
Figure 3A (pattern A, corresponding with CL for NIL B189 and KW for NIL BO04), in which the
introgression effect was positively correlated with environment quality (P = 0.002 and P = 7.9e-
05, respectively). We also observed instances of a significant negative correlation between
introgression effect and environment quality (pattern B, corresponding with KL for NIL B043
and B111, P = 0.004 and P = 0.009 respectively). Non-linear relationships (P > 0.05 when a linear
regression was fitted) were also observed, such as a parabolic-like curve (pattern C,
corresponding with PHt for NIL BOO4 and seed length for NIL B131). However, when a
polynomial regression model (degree = 2) was used to fit the data, no significant relationship
was detected (P > 0.05), indicating the existence of some other type of non-linear relationship
(Fig 3C). Finally, we found some ingressions showed a relatively constant genotype effect
regardless of the increase of environmental quality (pattern D, corresponding with CW for NIL

B0O43 and PHt for NIL B175).

Environments do not group by geography or planting date or density when environmental
similarity is estimated by whole plant performance

The average performance of all genotypes in an environment can provide an estimate of the

11
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biological quality or the physical properties of the environment (Finlay and Wilkinson 1963;
Malosetti et al. 2013). In the previous analyses the quality of each environment was defined
based on the average performance of all individuals in that environment for a single trait. In this
study, we collected phenotypic data on traits that span different growth stages, which provided
an opportunity to evaluate the relationship between different environments from the
perspective of whole plant performance. To do this, a Euclidean distance was calculated
between each pair of NILs from all available traits in each environment, which can also be
referred to as biological distances (or “biodistances”) (Pilloud and Hefner 2016). The resulting
dissimilarity matrix formed by the biodistance between each pair of NILs in each environment
was used to define the biological property of that environment. To test the similarity between
environments we conducted a Mantel test between each pair of environment dissimilarity
matrices. The Mantel test is a commonly used method to evaluate the relationship between
geographic distance and genetic divergence (Mantel 1967; Diniz-Filho et al. 2013). This test can
assess whether two dissimilarity matrices are correlated with each other. We observed
significant correlations between most of the environments based on this test (Fig. 4). However,
the magnitude of correlation varied among different pairs of environments. Interestingly, there
was limited evidence for consistent clustering of environments by any single factor for which
environments could potentially group such as geographic location, planting density, planting

date (Fig. 4).

Combined analysis of all traits suggests different introgressions exhibit different degrees of
genotype-by-environment interaction effects

We were also interested to test if there were differences in stability of genotypes with
introgressions when evaluating performance on a whole plant basis. To do this we used the
biodistances calculated above for each pair of NILs in each of the 16 environments. If there is
no allele-by-environment effect from the introgressed segments, the biodistance of a given pair
of NILs should be consistent across different environments. We calculated the standard
deviation (SD) of the biodistance between each pair of NILs across all 16 environments as an

indicator of the biodistance variation. A wide range of biodistances were observed for most of
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the pairs of NILs (Fig. 5), which indicates that small introgressions show variable stability on a
whole plant basis across diverse environments. We found biodistance variation for some NILs
were consistently high or low between most of the other NILs. For example, the average SD of
the biodistance for NILs BO0O4, B107 and B043 across all the other NILs were 1.78, 1.75 and 1.70
respectively, while for NILs B154, B102 and B040, the values were 1.24, 1.29 and 1.28
respectively (Fig. 5). This result indicates the segments introgressed into some NILs are more or
less likely to show allele-by-environment interactions.

We also use the additive main effects and multiplicative interaction analyses (AMMI) model
(Gauch 1988; van Eeuwijk 1995) to understand and classify interactions between NILs and
environments. When using AMMI models to dissect the GxE for each single trait, we saw
different patterns across the distinct traits (Fig. S5). The relative stability of genotype-
environment combination varied across different traits. The relationship between
environments for single trait analysis can be very different from the results obtained from the
Mantel test (Fig. 5), which is on the whole plant basis. For example, B004 is one of the most
interactive NILs on the whole plant basis, however, it is very stable in the AMMI results (near
the center of the biplot) for five out of the six investigated traits. While for some NILs, such as
B043 and B040, which are among the most interactive and stable NILs respectively, the results
of AMMI analysis are consistent with that from the analysis done on an entire plant basis (Fig.

5, Fig. S5).

Discussion

Genotype-by-environment interactions can be highly complex. In this experiment we reduced
this complexity by focusing on the genotype, environment, and GxE effects of small
introgressed segments of the genome. Introgression of small parts of a genome are common in
plant breeding programs to backcross in transgenes or other naturally occurring QTL for traits
of importance such as disease resistance. These introgressed segments do not always perform
as expected in different backgrounds or environments. Here, we tested to what extent small
introgressed segments impact phenotypes and drive GxE to provide a foundation to interpret

the results of introgressions of transgenes or QTL. We observed significant impacts of these
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small introgressions across a wide range of phenotypic traits and on a whole plant basis and
found that the effect size and the allele-by-environment interaction of different introgressed
segments vary substantially.

The significant effects that we observed were underscored by a number of different
patterns of interactions. Introgressed regions that showed a consistent effect across
environments, such as cob width for NIL B043 and plant height at maturity for NIL B175, could
be defined as constitutive, and are a main target for breeding programs because of their
relatively stable effect in all potential growing regions (Fig. 3, pattern D). However, most
introgressions (and potential QTL within those introgressions) conferred environment-specific
effects on traits, and likely contribute to observed QTL-by-environment interaction effects (Fig.
3, pattern A-C). Those environment-specific QTL can still be very useful for regional breeding if
the QTL-by-environment effect can be exploited to achieve a superior effect in adapted
environments without a penalty in other environments. Some introgressed regions had
opposing phenotypic effects in different environments (such as NIL B175 for ear weight and NIL
B049 for kernel row number in Fig. S4). These interactions are relevant to breeders, as they can
select the preferred allele in their targeted environment. The QTLs within introgressed regions
in these lines likely caused antagonistic pleiotropic effects (EI-Soda et al. 2014), but the results
could also be due to contrasting effects of different loci within the introgression regions. We
also found some introgressed regions that had effects in several environments, but not in
others, similar to conditional neutrality (Holland 2007; Zhao and Xu 2012; Tuberosa 2012) (Fig.
S4). 1t is important to remember, that the NILs used in this study contained an average of
~2,800 introgressed genes, and the phenotypic difference between the recurrent parent B73
and the NILs in this study was a combined effect of all the potential QTL/genes in the
introgressed regions. However, considering the diverse GxE effects brought by relatively small
number/size of introgression segments, it is an important consideration in thinking about how
transgenes for quantitative traits or quantitative trait loci introgressions might be expected to
impact traits in a wide range of environments.

Previous reports have shown that genotypes can have variable response and tolerance to

planting densities (Mansfield and Mumm 2014). In this experiment we included 16
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environments that could be divided into macro environments based on planting density. We
observed different patterns of reaction norms across both genotypes and traits including grain
weight (Fig. 1). Gonzalo et al (2010) detected a QTL for response to planting density for maize
grain yield on chromosome 4 in a RIL population derived from the cross of B73 x Mo17. They
observed a significant effect difference when replacing the B73 allele with the Mo17 allele at
this locus under different planting densities for grain yield. The allele from Mol7 had
significantly higher effect under low planting density compared with high density. In our NIL set,
there were four NILs (B004, BO40, BO55, B154) that had introgression segments from Mo17 in
this QTL region, and three of them (B004, BO55, B154) had significantly higher grain yield in low
density environments (Fig. 1), which is consistent with the results of Gonzalo et al.

Maize grain yield is a complex quantitative trait controlled by many small-effect genetic
factors (Holland 2007). The continual increase of planting density has been an important factor
for genetic yield gain of maize hybrids over time (Duvick 2005a; Messina et al. 2009; Edwards
2016). However, increasing planting density induces stresses upon plants as they compete for
resources such as sunlight, water and nutrients in the soil (Mansfield and Mumm 2014).
Previous studies have shown that older hybrids have as much yield potential as newer elite
hybrids when grown under stress free conditions (Duvick 2005b), however, little is known about
the density tolerance of maize inbred lines. In this study, we found that almost all of the NILs
have higher grain yield production under lower stress environments (low density) except B189
(Fig. 1A). NIL B189 has two heterozygous introgression segments on chromosome 2 and 5 with
a total length of ~24.7Mb and four homozygous introgression segments from Mol7 on
chromosome 1, 5, 6 and 10 with a total length of 178.5Mb (Fig. S2 and Table S7). It is not clear
whether this increasing density tolerance came from epistatic effects between the homozygous
introgression segments from Mo17 and other genomic regions of B73, or the heterotic effect of
the heterozygous segments. Further studies on these introgression segments in NIL B189 could
provide interesting and useful information about the genetic control of maize density tolerance
mechanism.

GxE is complex and there have been many different approaches to both understand and

exploit and/or manage this interaction. However, the majority of these studies have been
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focused on GxE where the genotype of each individual in the study is largely different. Here we
asked, what is the degree and patterns of GxE that can be expected with small introgressed
segments of a genome? This study provides an important framework for developing breeding
strategies when backcrossing in QTL and/or transgenes and the types and patterns of effects

that are possible.
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Table captions
Table 1. Analysis of variance for 15 near isogenic lines (NILs) and B73 for 26 traits measured in

16 environments.

Figure captions

Fig. 1. Reaction norm plots of the selected near isogenic lines (NILs) under high and low
planting densities. A. Example reaction norms of the NILs under high and low densities for
various traits. B. Significance of effect of density on each of the 26 measured traits. Positive and
negative effects were defined by a significant one-way ANVOA between the two densities.
Positive effect indicates a higher phenotypic value in high density environment. CL, cob length;
CW, cob width; GWT, grain weight per plant; PHt, plant height at maturity; KL, kernel length;
KW, kernel width; CWT, cob weight; DTA, days to anthesis; DTS, days to silk; EH, ear height
maturity; EL, ear length; EW, ear width; EWT, ear weight; KD, kernel depth; KRN, kernel row

number; LNA, leaf number above ear; LNB, leaf number below ear.

Fig. 2. Example distribution pattern of NILs in different environments relative to the recurrent
parent. Red and blue dots indicate high and low planting densities respectively. Difference is
calculated as B73 minus NIL. CL, cob length (mm); CW, cob width (mm); GWT, per plant grain
weight (g); KL, kernel length (mm); KW, kernel width (mm); PHt, plant height at maturity (cm).

Fig. 3. Example phenotypic patterns that are observed for NiLs across 16 environments. Data
points are arranged on the x-axis according to the mean of all NILs within the environment and
the y-axis is the phenotypic difference between the NILs and B73 calculated as B73 minus NIL.
Linear regression was fitted for data in panel A, B and D; polynomial regression (degree equals
2) was fitted for data in panel C. The black line or curve in each plot and the nearby gray shaded
area indicate the fitted line and its corresponding standard error. The corresponding trait and
NIL name as well as R-square and p value for each model are shown in the embedded text. Red
and blue dots indicate high and low planting density. CL, cob length; KW, kernel width; KL,
kernel length; PHt, plant height at maturity; CW, cob width.
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Fig. 4. Similarity between environments as determined by similarity of performance of 15
NILs using 26 phenotypic traits. Euclidean distances were calculated between each pair of NILs
within each environment based on the phenotypic values of 26 traits. The Mantel test was then
run on each pair of matrices across the 16 environments. The heatmap shows the correlation
between each pair of environments defined by the results from pairwise Mantel tests. All

correlations were significant at p=0.05.

Fig. 5. Variation in pairwise relationships between NILs across 16 environments. Standard
deviation (SD) of the biodistance between each pair of NILs across all 16 environments was
calculated as an indicator of the biodistance variation. Numbers on the right side of the
heatmap are the average values of the SD of the biodistance variation for each NIL with all of

the other NILs.

21


https://doi.org/10.1101/738070
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/738070; this version posted August 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Tablel. Analysis of variancefor 15 near isogenic lines (NILs) and B73 for 26 traits measured in 16 environments.

Sum Square Percent of the total variation(%)
Trait Genotype  Environment Genotype  Environment .
(G)y P ©® GxE (G)y P ©® GxE Residual
Daysto Anthesis 39.7%*x 1295.2%** 3.8¢** 2.78 90.86 3.95 2.41
Daysto Silk 46.0%** 1315.8*** 3.8*** 3.15 90.02 3.05 2.88
Leaf Number Below Ear ~ 8.62*** S.45%** N.S. 67.03 19.80 7.35 5.82
Leaf Number Above Ear ~ 1.74*** 173> N.S. 32.78 23.84 22.48 20.91
Ear Height Maturity 6317*** 2328*** 56* 61.75 22.76 8.15 7.34
Plant Height Maturity 9834*** 3930*** N.S. 58.89 2353 8.73 8.85
Plant Height 14 DAP ~ 25.99***  232.12*** N.S. 27.35 48.85 12.37 11.42
Plant Height 21 DAP 101*** 4712%** N.S. 3.98 86.94 4.03 5.05
Plant Height 28 DAP 230%** 11984*** N.S. 2.43 93.22 2.20 2.14
Plant Height 35 DAP 500*** 13023*** N.S. 4.72 90.14 2.56 2.58
Plant Height 42 DAP 991*** 20050*** N.S. 5.89 87.29 357 3.25
Plant Height 49 DAP 1197*** 35071*** 68** 5.14 90.29 2.62 1.95
Plant Height 56 DAP 1188*** 40163*** 100 ** 5.62 88.62 3.30 2.47
Plant Height 63 DAP 738 ** 20280*** N.S. 14.18 77.95 4.14 3.74
Plant Height 70 DAP 439 3279*** N.S. 54.44 27.14 6.74 11.68
Kernel Length 424> 5.22** 0.22** 28.16 34.72 21.52 15.61
Kernel Width 2.52F%* 0.58*** 0.086** 4755 10.95 24.13 17.38
Kernel Depth 2.52F** 0.89*** 0.19%** 31.26 11.09 35.01 22.65
Kernel Row Number 24.87%** 177> N.S. 45.15 14.10 20.20 20.56
Cob Width 59.83*** 15.00*** 1.44%** 54.01 13.54 19.52 12.93
Cob Length 3149.1%** 2068.7*** 141.6%** 38.49 25.29 25.95 10.27
Ear Width 46.14*** 51.18*** 4.30** 23.62 26.20 31.25 18.93
Ear length 3158.0%**  1883.6*** = 134.1*** 40.10 23.92 25.54 10.44
Ear Weight 5259*** 8732%** 420%** 22.31 37.04 26.63 14.01
Cob Weight 184.61*** 159.22%** 10.05*** 3351 28.90 27.24 10.35
Per Plant Grain Weight ~ 3756*** 7193*** 318*** 20.49 39.24 25.92 14.35

* significant at p< 0.05; ** significant at p< 0.01; *** significant a p< 0.001; N.S,, not significant.
DAP, days after planting
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Fig. 1. Reaction norm plots of the selected near isogenic lines (NILs) under high and low planting
densities. A. Example reaction norms of the NILs under high and low densities for various traits. B. Significance
of effect of density on each of the 26 measured traits. Positive and negative effects were defined by a significant
one-way ANVOA between the two densities. Positive effect indicates a higher phenotypic value in high density
environment. CL, cob length; CW, cob width; GWT, grain weight per plant; PHt, plant height at maturity; KL,
kernel length; KW, kernel width; CWT, cob weight; DTA, days to anthesis; DTS, days to silk; EH, ear height
maturity; EL, ear length; EW, ear width; EWT, ear weight; KD, kernel depth; KRN, kernel row number; LNA, leaf
number above ear; LNB, leaf number below ear.
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Fig. 2. Example distribution pattern of NiLs in different environments relative to the recurrent parent. Red

and blue dots indicate high and low planting densities respectively. Difference is calculated as B73 minus NIL. CL,

cob length (mm); CW, cob width (mm); GWT, per plant grain weight (g); KL, kernel length (mm); KW, kernel width

(mm); PHt, plant height at maturity (cm).
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Fig. 3. Example phenotypic patterns that are observed for NILs across 16 environments. Data points are
arranged on the x-axis according to the mean of all NILs within the environment and the y-axis is the phenotypic
difference between the NILs and B73 calculated as B73 minus NIL. Linear regression was fitted for data in panel A,
B and D; polynomial regression (degree equals 2) was fitted for data in panel C. The black line or curve in each
plot and the nearby gray shaded area indicate the fitted line and its corresponding standard error. The
corresponding trait and NIL name as well as R-square and p value for each model are shown in the embedded
text. Red and blue dots indicate high and low planting density. CL, cob length; KW, kernel width; KL, kernel length;
PHt, plant height at maturity; CW, cob width.
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Fig. 4. Similarity between environments as
determined by similarity of performance of 15 NILs
using 26 phenotypic traits. Euclidean distances were
calculated between each pair of NILs within each
environment based on the phenotypic values of 26
traits. The Mantel test was then run on each pair of
matrices across the 16 environments. The heatmap
shows the correlation between each pair of
environments defined by the results from pairwise
Mantel tests. All correlations were significant at p=0.05.
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Fig. 5. Variation in pairwise relationships between
NILs across 16 environments. Standard deviation
(SD) of the biodistance between each pair of NILs
across all 16 environments was calculated as an
indicator of the biodistance variation. Numbers on the
right side of the heatmap is the average value of the SD
of the biodistance variation for each NIL with all of the
other NILs.



