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Abstract  

Relatively small genomic introgressions containing quantitative trait loci can have significant 

impacts on the phenotype of an individual plant. However, the magnitude of phenotypic effects 

for the same introgression can vary quite substantially in different environments due to allele-

by-environment interactions. To study potential patterns of allele-by-environment interactions, 

fifteen near-isogenic lines (NILs) with >90% B73 genetic background and multiple Mo17 

introgressions were grown in 16 different environments. These environments included five 

geographical locations with multiple planting dates and multiple planting densities. The 

phenotypic impact of the introgressions was evaluated for up to 26 traits that span different 

growth stages in each environment to assess allele-by-environment interactions. Results from 

this study showed that small portions of the genome can drive significant genotype-by-

environment interaction across a wide range of vegetative and reproductive traits, and the 

magnitude of the allele-by-environment interaction varies across traits. Some introgressed 

segments were more prone to genotype-by-environment interaction than others when 

evaluating the interaction on a whole plant basis throughout developmental time, indicating 

variation in phenotypic plasticity throughout the genome. Understanding the profile of allele-

by-environment interaction is useful in considerations of how small introgressions of QTL or 

transgene containing regions might be expected to impact traits in diverse environments. 
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Introduction 

Many important agronomic traits (i.e. grain yield, flowering time, and plant height) are 

influenced by a large number of quantitative trait loci spread across the genome. These loci 

have varying effects on phenotypic variation and the effects can be variable across 

environments. The integration of all allele-by-environment interactions can lead to a complex 

genotype-by-environment interaction (GxE) effect (Malosetti et al. 2016). Genotype-by-

environment interaction is a major challenge for crop breeding as relative performances, and 

even rankings, of cultivars grown in different environments are not consistent. Sometimes the 

varieties that have the highest performance in one environment can have poor performance in 

other environments. Breeders and growers are often faced with choices between yield stability 

(consistent moderate performance) and yield potential. Increasing our understanding of the 

profiles of allele-by-environment interactions can provide an improved framework to document 

and control for these effects in increasingly unpredictable environments (Allard and Bradshaw 

1964; El-Soda et al. 2014; Zobel and Talbert 1984). 

Although GxE has been well-documented and studied in plant and animal species, it 

remains a significant challenge to breeding programs (Crossa 2012; de Leon et al. 2016; Xu 

2016; Li et al. 2018). Obtaining a rigorous assessment of GxE effects requires phenotypic 

evaluation in a wide range of environments and breeder choices about the level of trait 

instability across environments that will be tolerated. Many GxE studies are focused on traits 

with important economic value, such as yield and quality, which are usually the end products of 

plants (Ndhlela et al. 2014; Mohammadi and Amri 2016; Balakrishnan et al. 2016). There have 

been fewer detailed evaluations of GxE interactions for vegetative traits and yield component 

traits such as ear morphology. Technological advances in high-throughput automated 

phenotyping have increased opportunities to collect quantitative data on numerous phenotypic 

traits at multiple developmental stages in a cost-effective and time saving way (El-Soda et al. 

2014; Miller et al. 2017). 

Studies on GxE frequently utilize contrasting conditions within controlled environments (i.e. 

managed stress trials) that include extreme conditions like drought/water stress (Chapman et 

al. 1997; Ribaut et al. 1997; Ribaut and Hoisington 1998), heat/cold stress (Mohammadi et al. 
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2016; Thiry et al. 2016), or nutritional stress (Bänziger et al. 1997). These extreme conditions or 

drastic environmental change often result in significant GxE (Bebber et al. 2013; Trenberth et al. 

2013; Xu 2016), though it is not necessarily representative of the normal state of the agriculture 

systems that often are subject to more subtle environmental variations through the use of 

intensive management practices. GxE interaction studies that utilize natural environments 

provide a practical understanding of GxE to breeding programs (de Leon et al. 2016; Elias et al. 

2016; Malosetti et al. 2016). Data generated by multi-environment trials, which are trials or 

experiments carried out in multiple environments or contexts with multiple replications, can be 

quite useful in documenting the range of GxE effects that can be observed (Yan et al. 2001; Fan 

et al. 2007; Crossa 2012; Malosetti et al. 2013; Nuvunga et al. 2015; Lado et al. 2016; 

Mohammadi and Amri 2016). 

Genotype-by-environment interaction studies that utilize diverse hybrid or inbred lines are 

limited in that they are unable to identify genomic regions responsible for varying responses to 

the environment. These studies also provide minimal insight into potential environmental 

interactions when transgenes or quantitative trait loci are introgressed into a genome. 

However, potential for extreme interaction of single loci and environment have been reported 

(Lukens and Doebley 1999; Guo et al. 2014). In this study we evaluated near isogenic lines 

(NILs) to investigate allele-by-environment interaction. Our multi-environment trials were 

conducted under normal growing conditions, which provide valuable information for practical 

breeding programs. Understanding the profile of allele-by-environment interaction will provide 

a useful framework for interpreting more complex genome-wide GxE. This information is also 

useful in considerations of how transgenes for quantitative traits or QTL introgressions might 

be expected to interact with the environment and impact traits.  

 

Materials and Methods 

Germplasm 

A set of 15 B73-like NILs was selected from a previously described set of B73 x Mo17 NILs that 

included 186 B73-like genotypes with Mo17 introgressions and 70 Mo17-like genotypes with 

B73 introgressions (Eichten et al. 2011). The full NIL population was planted in St Paul, MN in 
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Summer 2009 and Summer 2010 in single rows (3.35 m long and 0.76 m apart) and six traits 

were measured including plant height (measured from the ground to the top of the tassel after 

flowering), tassel branch number, 50 kernel weight, total kernel weight, cob diameter, and 

kernel row number (Table S1). A subset of 15 B73-like NILs was selected to be grown in 

additional environments. The majority exhibited phenotypic differences relative to the B73 

recurrent parent for at least one of the traits. The set of selected NILs included B004, B040, 

B043, B049, B055, B102, B107, B111, B122, B123, B125, B131, B154, B175, and B189.  

 

Field Phenotypic Evaluation of Selected Near Isogenic Lines 

The 15 selected B73-like NILs, Mo17, and five entries of B73 (21 total entries) were planted in 

16 environments in Iowa, Minnesota, and Wisconsin in the summer of 2015. The 16 

environments were defined by location (5 separate locations) and management practices 

within location including planting date (early and late planting) and plant density (high density: 

70,000 plants ha
-1

 and low density: 20,000 plants ha
-1

). Arlington, WI and Waseca, MN had high 

and low planting densities, for a total of four environments. Curtiss, IA, Kelly, IA, and St. Paul, 

MN had a factorial of high and low planting density and early and late planting at each site, for 

a total of 12 environments (Table S2). Within each location/management environment there 

were two replications and plots were arranged in a randomized complete block design. In each 

location, plots were grown as single rows (3.35 m long and 0.76 m apart).  

A total of 26 traits were collected, including 15 vegetative traits and 11 yield-related traits 

(Table S3). Thirteen vegetative traits were measured on six representative plants per plot. 

These traits included plant height at 14, 21, 28, 35, 42, 49, 56, 63 and 70 days after planting 

(DAP), plant height at maturity, leaf number above the ear, and leaf number (including 

senesced leaves) below the ear. Juvenile leaves were marked to allow leaf number including 

senesced leaves to be counted using previously described methods (Hirsch et al. 2014). Days to 

anthesis and days to silk were measured on a per-plot basis. Custom computer algorithms 

executed on Open Science Grid computational resources (Pordes et al. 2007) in a workflow 

managed by HTCondor software (Thain et al. 2005) were used to quantify eleven ear and kernel 

traits from digital images as previously described (Miller et al. 2017). Six representative ears per 
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plot were measured. Ear weight and grain weight was an average of the weight of the 

uppermost ear on each of six representative plants in the plot and cob weight was measured on 

individual uppermost ears from the six representative plants in the plot. For all traits for which 

single plant measurements were taken, the same six representative plants were used for all 

measurements. See Table S4 for raw phenotypic values. 

Two replicates of the full panel of NILs were also grown in a randomized complete block 

design in St. Paul, MN in summer 2015 using a single planting date and density (Fig. S1). 

 

Sequencing and SNP identification  

Genotyping of NILs was performed using the genotyping-by-sequencing (GBS) method (Elshire 

et al., 2011). Briefly, five seeds of each NIL were planted in the greenhouse and pooled leaf 

samples were collected for each NIL after ten days of planting. Pooled leaf tissue was 

immediately frozen in liquid nitrogen and then lyophilized. Genomic DNA was extracted from 

the lyophilized leaf samples using the BioSprint 96 DNA Plant Kit. The quality and quantity of 

extracted DNA was evaluated using a QuantiFluor® dsDNA System (Promega), and by running 

DNA samples on 1% agarose gel. Library preparation and sequencing of the DNA samples were 

performed at the Institute for Genomic Diversity (IGD) at Cornell University as described by 

Elshire et al. (2011). Single nucleotide polymorphisms (SNPs) were called from the raw 

sequence data using the TASSEL GBS Pipeline version 3.0 (Glaubitz et al., 2014). SNPs were 

filtered for maximum missing percentage (> 20%) and minimum minor allele frequency (< 5%).  

Beagle software package version 4.1 (Browning and Browning 2016) was employed to 

remove SNPs that were heterozygous in either parent or showing no polymorphism between 

the two parents (B73 and Mo17). Missing data in each NIL was then imputed based on the 

parental genotype. SNPs in each line were recorded as A (B73 allele), B (Mo17) and H 

(heterozygous). Due to the relatively high rate of missing data and the potential for sequencing 

error of data generated by the GBS method, a modification of a previously described non-

overlapping sliding window approach was used to evaluate SNPs collectively rather than 

individually (Huang et al. 2009). A window size of 50 SNPs was set continuously along each 

chromosome. In each window, A, B and H were assigned values of 0, 1 and 0.5, respectively, 
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and the average score of the 50 SNPs in the window was calculated. Within each window if the 

average score was less than or equal to 0.25, all 50 loci in that window were coded as A. If the 

average score was greater than or equal to 0.75, all 50 loci in that window were coded as B. If 

the average score was between 0.25 and 0.75 all 50 loci in the window were coded as H (Table 

S5).   

 

Statistical Analyses 

Phenotypic variance of each trait was partitioned into environments, genotypes, and GxE 

effects with a linear model ���� � � � �� � �� � ���	���� � �
�	��� � ����  where ����  is the 

phenotype value of the k
th

 genotype in i
th

 environment of the j
th

 replication; � is the phenotypic 

mean across environments; �� is the k
th

 genotype effect; ��  is the i
th

 environment effect; 

���	���� is the j
th

 replication effect nested within the i
th

 environment; �
�	��� is the interaction 

effect of the k
th

 genotype by the i
th

 environment, and ����  is the residual effect. All variables 

except μ were considered as random effects. Two-way ANOVA with replication was conducted 

with the R function “aov”, and variance components were estimated using least squares. Each 

trait was analyzed using this model with the 15 NILs and B73. 

One-way ANOVA was used to test the phenotypic difference between high density and low 

density environments for each NIL using the model ��� � � � �� � ��� , where ���  represents the 

phenotypic value of the j
th

 observation (j=1,2,…,ni) on the i
th

 density (i=1,2,…,k levels); μ is the 

grand mean; �� represents the i
th

 treatment effect, and ���  represents the random error present 

in the j
th

 observation on the i
th

 treatment. The analysis was done for each trait for each NIL. 

For each trait of each NIL in each environment, the phenotypic difference between the NIL 

and B73 (calculated as B73 minus NIL) was regressed against the mean of all NILs in that 

environment. A linear regression was fit using the “lm” function in R. A polynomial regression 

with degree of 2 was fit for traits without significant linear regression using the “lm” function 

and “ploy” command in R. 

To test for differences between environments by using information across all of the traits, 

the Mantel test (Mantel 1967; Diniz-Filho et al. 2013), which tests for significant differences 

between pairs of matrices, was used. In this case, the matrices consisted of the 26 traits by 17 
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genotypes (15 NILs, B73 and Mo17), with a single matrix for each of the 16 environments (16 

total matrices). Each matrix was converted to a pairwise euclidean distance matrix 

(standardized by mean and standard deviation) (Deza and Deza 2009) between genotypes using 

the “daisy” function in the “cluster” package in R. Pairwise tests between the 16 environment 

distance matrices were then conducted using the “mantel.rtest” function  (“ade4” package) in 

R. Permutation numbers for the Mantel test was set to 999. Standard deviation (SD) of the 

pairwise distances between the 15 NILs across all the environments was calculated as a metric 

of stability of relationships between NILs on a whole plant basis.  

Additive main effects and multiplicative interaction analysis (AMMI) analysis was performed 

using the “AMMI” function in the R package “agricolae” (De Mendiburu and Simon 2015). 

 

Code Availability  

All code used for the analyses in this manuscript is available at 

https://github.com/lixx5447/NIL_project. 

 

Results 

Genomic distribution of introgressions in the selected NILs 

The goal of this study was to determine if introgression segments throughout the genome 

exhibit variation in GxE sensitivity, and what interaction patterns are observed across 

environments for different introgression lines. To address these questions, we selected 15 NILs 

from a larger population of NILs that was previously described (Eichten et al. 2011). During the 

development of the complete NIL population, no selection was imposed, and the introgressed 

segments in each line were considered random. The subset of 15 NILs selected for this study 

exhibited higher or lower trait values relative to B73 in grow-outs of the full NIL panel in 2009 

and 2010 (Table S1) and the full NIL panel was grown in summer 2015 at a single location and 

condition in order to compare the full set of traits used in this study (Fig. S1). The data for the 

2009/2010 grow-outs were used to select a subset of the NILs that exhibited variation for a 

certain trait relative to B73, but did not necessarily contain major-effect QTL for these traits. 

Across the 12 traits, the selected NILs (which are primarily B73 background with a small number 

of Mo17 introgressed segments) showed a large phenotypic effect (deviation greater than 3 
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times the standard error in either direction) for one to nine traits (Table S6). Within each trait, 

however, the 15 selected NILs spanned the range of variation that was observed in the 

complete population of B73-like NILs (Fig. S1). As such, the 15 selected NILs and the 

introgressed segments were considered random.  

To characterize the introgression segments, the 15 selected NILs and the two inbred parents 

were genotyped using the GBS method (Elshire et al. 2011). After quality control and 

imputation, 122,516 SNPs were retained for further analysis for 14 of the 15 NILs (Table S5, Fig. 

S2). Due to a high rate of missing GBS data for NIL B040, genotypic data generated by 

comparative genomic hybridization (CGH) in a previous study (Eichten et al. 2011) was used in 

place of the GBS data for this line. Within each of the NILs there was between three and 12 

introgressions. The sum of lengths of all introgression segments in a particular NIL ranged from 

66.11 Mb (B175, 3.10% of genome) to 327.44 Mb (B125, 15.34% of the genome) with an 

average of 164.61 Mb (7.71% of the genome) in the NIL set. The percentage of heterozygous 

introgression segments across the genome ranged from 0 to 1.25% (26.7 Mb) with an average 

of 0.34% (7.18Mb). The number of annotated genes introgressed into each NIL ranged from 

1,299 to 6,360 with an average of 3,393 (Table S7).  

 

Significant genotype, environment, and genotype-by-environment interaction effects are 

observed across traits within the selected NILs 

An analysis of variance was conducted with the 15 NILs and the recurrent parent B73 for each 

of the 26 traits to initially partition the observed variation by genotype, environment, GxE, and 

residual. For all measured traits, genotype and environmental sources of variation were 

significant at P < 0.001 (Table 1). In addition, 15 of the 26 traits exhibit significant GxE effects. 

As expected, the proportion of the variation explained by genotype, environment, and GxE 

effects varied substantially among the different traits. The percent variation explained by GxE 

effect ranged from a mere 2.2% (Plant Height at 28 DAP) up to 35.0% (Kernel Depth) of the trait 

variation.  There were nine traits, all related to ear or kernel morphology, for which GxE effects 

accounted for at least 20% of the total variation. These observations provide evidence for 

substantial environmental and GxE effects within the set of selected NILs and the environments 
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used in this study.  

 

NILs with different introgression segments respond variably against macro-environmental 

factors  

Given significant GxE effects for most of the traits, we further explored the patterns of 

interactions that can be observed among environments for the NIL lines. We first looked at 

patterns within macro-environments defined based on planting density (i.e. high and low 

planting density). Reaction norm plots were generated for all traits (Fig. S3). We focus here on 

six representative traits including cob length (CL), cob width (CW), grain weight per plant 

(GWT), plant height at maturity (PHt), kernel length (KL), and kernel width (KW) (Fig. 1A). For 

some traits such as CL, CW and KW, the phenotype of all of the NILs was biased toward the 

recurrent parent B73 and was significantly different from the donor parent Mo17. Other traits 

such as GWT, KL and PHt exhibited broader ranges of phenotypic variation that extend beyond 

the parental range. For PHt, planting density had a similar magnitude of positive effect on 

almost all the NILs, indicating the absence of a genotype-by-density effect. By contrast, GWT 

exhibited a variety of effects among the NILs with significant negative effects for six NILs and a 

positive effect for one NIL. The remaining traits (KL, CL, CW and KW) tended to exhibit negative 

effects relative to plant density although the effect magnitude varied substantially among the 

different NILs (Fig. 1A). The total number of NILs with significant variation due to planting 

density was assessed for all traits (Fig. 1B). A wide range was observed across the traits with 

some traits showing no NILs with significant differences across the density macro environments 

(i.e. days to anthesis and days to silking), while for others nearly every NIL had an effect and the 

effect was in the same direction (i.e. plant height and ear height). Interestingly, a number of 

traits were observed to have NILs with significant differences in both directions (i.e. ear width, 

ear weight, and grain weight). 

 

NIL introgressions have variable sensitivity to micro-environmental differences and their 

ability to respond to environmental quality  

We next sought to explore the different potential patterns of trait values that were observed 
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among the NILs across individual environments rather than macro-environments. For this 

analysis the NILs were compared to the trait value of the recurrent parent, B73. The NILs varied 

substantially in terms of the magnitude, and range, of phenotypic differences relative to the 

recurrent parent (Fig 2; Fig. S4). In some cases we observed consistent effects of the 

introgressions across all environments. For example, PHt for B154 and CL for B040 showed very 

little variation across the environments. While others, such as KL for B043 and GWT in general, 

showed a wide range of differences across the environments.  

We further evaluated the effect of the introgressed segments across the micro-

environments by plotting the difference between the NIL and the recurrent parent versus the 

environmental mean (Fig. 3). We can predict different patterns that might be observed in this 

type of plot. For example, for some NILs we expect to see a linear relationship in the plot, which 

would indicate an introgression that has a phenotypic effect and the effect size is directly 

related to the environmental quality. Indeed, we frequently observe this pattern as shown in 

Figure 3A (pattern A, corresponding with CL for NIL B189 and KW for NIL B004), in which the 

introgression effect was positively correlated with environment quality (P = 0.002 and P = 7.9e-

05, respectively). We also observed instances of a significant negative correlation between 

introgression effect and environment quality (pattern B, corresponding with KL for NIL B043 

and B111, P = 0.004 and P = 0.009 respectively). Non-linear relationships (P > 0.05 when a linear 

regression was fitted) were also observed, such as a parabolic-like curve (pattern C, 

corresponding with PHt for NIL B004 and seed length for NIL B131). However, when a 

polynomial regression model (degree = 2) was used to fit the data, no significant relationship 

was detected (P > 0.05), indicating the existence of some other type of non-linear relationship 

(Fig 3C). Finally, we found some ingressions showed a relatively constant genotype effect 

regardless of the increase of environmental quality (pattern D, corresponding with CW for NIL 

B043 and PHt for NIL B175). 

 

Environments do not group by geography or planting date or density when environmental 

similarity is estimated by whole plant performance  

The average performance of all genotypes in an environment can provide an estimate of the 
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biological quality or the physical properties of the environment (Finlay and Wilkinson 1963; 

Malosetti et al. 2013). In the previous analyses the quality of each environment was defined 

based on the average performance of all individuals in that environment for a single trait. In this 

study, we collected phenotypic data on traits that span different growth stages, which provided 

an opportunity to evaluate the relationship between different environments from the 

perspective of whole plant performance. To do this, a Euclidean distance was calculated 

between each pair of NILs from all available traits in each environment, which can also be 

referred to as biological distances (or “biodistances”) (Pilloud and Hefner 2016). The resulting 

dissimilarity matrix formed by the biodistance between each pair of NILs in each environment 

was used to define the biological property of that environment. To test the similarity between 

environments we conducted a Mantel test between each pair of environment dissimilarity 

matrices. The Mantel test is a commonly used method to evaluate the relationship between 

geographic distance and genetic divergence (Mantel 1967; Diniz-Filho et al. 2013). This test can 

assess whether two dissimilarity matrices are correlated with each other. We observed 

significant correlations between most of the environments based on this test (Fig. 4).  However, 

the magnitude of correlation varied among different pairs of environments. Interestingly, there 

was limited evidence for consistent clustering of environments by any single factor for which 

environments could potentially group such as geographic location, planting density, planting 

date (Fig. 4).  

 

Combined analysis of all traits suggests different introgressions exhibit different degrees of 

genotype-by-environment interaction effects 

We were also interested to test if there were differences in stability of genotypes with 

introgressions when evaluating performance on a whole plant basis. To do this we used the 

biodistances calculated above for each pair of NILs in each of the 16 environments. If there is 

no allele-by-environment effect from the introgressed segments, the biodistance of a given pair 

of NILs should be consistent across different environments. We calculated the standard 

deviation (SD) of the biodistance between each pair of NILs across all 16 environments as an 

indicator of the biodistance variation. A wide range of biodistances were observed for most of 
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the pairs of NILs (Fig. 5), which indicates that small introgressions show variable stability on a 

whole plant basis across diverse environments. We found biodistance variation for some NILs 

were consistently high or low between most of the other NILs. For example, the average SD of 

the biodistance for NILs B004, B107 and B043 across all the other NILs were 1.78, 1.75 and 1.70 

respectively, while for NILs B154, B102 and B040, the values were 1.24, 1.29 and 1.28 

respectively (Fig. 5). This result indicates the segments introgressed into some NILs are more or 

less likely to show allele-by-environment interactions. 

We also use the additive main effects and multiplicative interaction analyses (AMMI) model 

(Gauch 1988; van Eeuwijk 1995) to understand and classify interactions between NILs and 

environments. When using AMMI models to dissect the GxE for each single trait, we saw 

different patterns across the distinct traits (Fig. S5). The relative stability of genotype-

environment combination varied across different traits. The relationship between 

environments for single trait analysis can be very different from the results obtained from the 

Mantel test (Fig. 5), which is on the whole plant basis. For example, B004 is one of the most 

interactive NILs on the whole plant basis, however, it is very stable in the AMMI results (near 

the center of the biplot) for five out of the six investigated traits. While for some NILs, such as 

B043 and B040, which are among the most interactive and stable NILs respectively, the results 

of AMMI analysis are consistent with that from the analysis done on an entire plant basis (Fig. 

5, Fig. S5). 

 

Discussion 

Genotype-by-environment interactions can be highly complex. In this experiment we reduced 

this complexity by focusing on the genotype, environment, and GxE effects of small 

introgressed segments of the genome. Introgression of small parts of a genome are common in 

plant breeding programs to backcross in transgenes or other naturally occurring QTL for traits 

of importance such as disease resistance. These introgressed segments do not always perform 

as expected in different backgrounds or environments. Here, we tested to what extent small 

introgressed segments impact phenotypes and drive GxE to provide a foundation to interpret 

the results of introgressions of transgenes or QTL. We observed significant impacts of these 
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small introgressions across a wide range of phenotypic traits and on a whole plant basis and 

found that the effect size and the allele-by-environment interaction of different introgressed 

segments vary substantially.  

The significant effects that we observed were underscored by a number of different 

patterns of interactions. Introgressed regions that showed a consistent effect across 

environments, such as cob width for NIL B043 and plant height at maturity for NIL B175, could 

be defined as constitutive, and are a main target for breeding programs because of their 

relatively stable effect in all potential growing regions (Fig. 3, pattern D). However, most 

introgressions (and potential QTL within those introgressions) conferred environment-specific 

effects on traits, and likely contribute to observed QTL-by-environment interaction effects (Fig. 

3, pattern A-C). Those environment-specific QTL can still be very useful for regional breeding if 

the QTL-by-environment effect can be exploited to achieve a superior effect in adapted 

environments without a penalty in other environments. Some introgressed regions had 

opposing phenotypic effects in different environments (such as NIL B175 for ear weight and NIL 

B049 for kernel row number in Fig. S4). These interactions are relevant to breeders, as they can 

select the preferred allele in their targeted environment. The QTLs within introgressed regions 

in these lines likely caused antagonistic pleiotropic effects (El-Soda et al. 2014), but the results 

could also be due to contrasting effects of different loci within the introgression regions. We 

also found some introgressed regions that had effects in several environments, but not in 

others, similar to conditional neutrality (Holland 2007; Zhao and Xu 2012; Tuberosa 2012) (Fig. 

S4).  It is important to remember, that the NILs used in this study contained an average of 

~2,800 introgressed genes, and the phenotypic difference between the recurrent parent B73 

and the NILs in this study was a combined effect of all the potential QTL/genes in the 

introgressed regions. However, considering the diverse GxE effects brought by relatively small 

number/size of introgression segments, it is an important consideration in thinking about how 

transgenes for quantitative traits or quantitative trait loci introgressions might be expected to 

impact traits in a wide range of environments. 

Previous reports have shown that genotypes can have variable response and tolerance to 

planting densities (Mansfield and Mumm 2014). In this experiment we included 16 
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environments that could be divided into macro environments based on planting density. We 

observed different patterns of reaction norms across both genotypes and traits including grain 

weight (Fig. 1). Gonzalo et al (2010) detected a QTL for response to planting density for maize 

grain yield on chromosome 4 in a RIL population derived from the cross of B73 × Mo17. They 

observed a significant effect difference when replacing the B73 allele with the Mo17 allele at 

this locus under different planting densities for grain yield. The allele from Mo17 had 

significantly higher effect under low planting density compared with high density. In our NIL set, 

there were four NILs (B004, B040, B055, B154) that had introgression segments from Mo17 in 

this QTL region, and three of them (B004, B055, B154) had significantly higher grain yield in low 

density environments (Fig. 1), which is consistent with the results of Gonzalo et al.  

Maize grain yield is a complex quantitative trait controlled by many small-effect genetic 

factors (Holland 2007). The continual increase of planting density has been an important factor 

for genetic yield gain of maize hybrids over time (Duvick 2005a; Messina et al. 2009; Edwards 

2016). However, increasing planting density induces stresses upon plants as they compete for 

resources such as sunlight, water and nutrients in the soil (Mansfield and Mumm 2014). 

Previous studies have shown that older hybrids have as much yield potential as newer elite 

hybrids when grown under stress free conditions (Duvick 2005b), however, little is known about 

the density tolerance of maize inbred lines. In this study, we found that almost all of the NILs 

have higher grain yield production under lower stress environments (low density) except B189 

(Fig. 1A). NIL B189 has two heterozygous introgression segments on chromosome 2 and 5 with 

a total length of ~24.7Mb and four homozygous introgression segments from Mo17 on 

chromosome 1, 5, 6 and 10 with a total length of 178.5Mb (Fig. S2 and Table S7). It is not clear 

whether this increasing density tolerance came from epistatic effects between the homozygous 

introgression segments from Mo17 and other genomic regions of B73, or the heterotic effect of 

the heterozygous segments. Further studies on these introgression segments in NIL B189 could 

provide interesting and useful information about the genetic control of maize density tolerance 

mechanism. 

GxE is complex and there have been many different approaches to both understand and 

exploit and/or manage this interaction. However, the majority of these studies have been 
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focused on GxE where the genotype of each individual in the study is largely different. Here we 

asked, what is the degree and patterns of GxE that can be expected with small introgressed 

segments of a genome? This study provides an important framework for developing breeding 

strategies when backcrossing in QTL and/or transgenes and the types and patterns of effects 

that are possible.  
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Table captions 

Table 1. Analysis of variance for 15 near isogenic lines (NILs) and B73 for 26 traits measured in 

16 environments. 

 

Figure captions 

Fig. 1. Reaction norm plots of the selected near isogenic lines (NILs) under high and low 

planting densities. A. Example reaction norms of the NILs under high and low densities for 

various traits. B. Significance of effect of density on each of the 26 measured traits. Positive and 

negative effects were defined by a significant one-way ANVOA between the two densities. 

Positive effect indicates a higher phenotypic value in high density environment. CL, cob length; 

CW, cob width; GWT, grain weight per plant; PHt, plant height at maturity; KL, kernel length; 

KW, kernel width; CWT, cob weight; DTA, days to anthesis; DTS, days to silk; EH, ear height 

maturity; EL, ear length; EW, ear width; EWT, ear weight; KD, kernel depth; KRN, kernel row 

number; LNA, leaf number above ear; LNB, leaf number below ear. 

 

Fig. 2. Example distribution pattern of NILs in different environments relative to the recurrent 

parent. Red and blue dots indicate high and low planting densities respectively. Difference is 

calculated as B73 minus NIL. CL, cob length (mm); CW, cob width (mm); GWT, per plant grain 

weight (g); KL, kernel length (mm); KW, kernel width (mm); PHt, plant height at maturity (cm). 

 

Fig. 3. Example phenotypic patterns that are observed for NILs across 16 environments. Data 

points are arranged on the x-axis according to the mean of all NILs within the environment and 

the y-axis is the phenotypic difference between the NILs and B73 calculated as B73 minus NIL. 

Linear regression was fitted for data in panel A, B and D; polynomial regression (degree equals 

2) was fitted for data in panel C. The black line or curve in each plot and the nearby gray shaded 

area indicate the fitted line and its corresponding standard error. The corresponding trait and 

NIL name as well as R-square and p value for each model are shown in the embedded text. Red 

and blue dots indicate high and low planting density. CL, cob length; KW, kernel width; KL, 

kernel length; PHt, plant height at maturity; CW, cob width. 
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Fig. 4. Similarity between environments as determined by similarity of performance of 15 

NILs using 26 phenotypic traits. Euclidean distances were calculated between each pair of NILs 

within each environment based on the phenotypic values of 26 traits. The Mantel test was then 

run on each pair of matrices across the 16 environments. The heatmap shows the correlation 

between each pair of environments defined by the results from pairwise Mantel tests. All 

correlations were significant at p=0.05.  

 

Fig. 5. Variation in pairwise relationships between NILs across 16 environments. Standard 

deviation (SD) of the biodistance between each pair of NILs across all 16 environments was 

calculated as an indicator of the biodistance variation. Numbers on the right side of the 

heatmap are the average values of the SD of the biodistance variation for each NIL with all of 

the other NILs. 
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Table 1. Analysis of variance for 15 near isogenic lines (NILs) and B73 for 26 traits measured in 16 environments. 

Trait 

Sum Square Percent of the total variation(%) 

Genotype 
(G) 

Environment 
(E) 

GxE 
Genotype 

(G) 
Environment 

(E) 
GxE Residual 

Days to Anthesis 39.7*** 1295.2*** 3.8*** 2.78 90.86 3.95 2.41 
Days to Silk 46.0*** 1315.8*** 3.8*** 3.15 90.02 3.95 2.88 

Leaf Number Below Ear 8.62*** 5.45*** N.S. 67.03 19.80 7.35 5.82 

Leaf Number Above Ear 1.74*** 1.73*** N.S. 32.78 23.84 22.48 20.91 
Ear Height Maturity 6317*** 2328*** 56* 61.75 22.76 8.15 7.34 

Plant Height Maturity 9834*** 3930*** N.S. 58.89 23.53 8.73 8.85 

Plant Height 14 DAP 25.99 *** 232.12*** N.S. 27.35 48.85 12.37 11.42 

Plant Height 21 DAP 101*** 4712*** N.S. 3.98 86.94 4.03 5.05 

Plant Height 28 DAP 230*** 11984*** N.S. 2.43 93.22 2.20 2.14 

Plant Height 35 DAP 500*** 13023*** N.S. 4.72 90.14 2.56 2.58 

Plant Height 42 DAP  991*** 20050*** N.S. 5.89 87.29 3.57 3.25 

Plant Height 49 DAP 1197*** 35071*** 68** 5.14 90.29 2.62 1.95 

Plant Height 56 DAP 1188*** 40163*** 100 ** 5.62 88.62 3.30 2.47 

Plant Height 63 DAP 738*** 20280*** N.S. 14.18 77.95 4.14 3.74 

Plant Height 70 DAP 439*** 3279*** N.S. 54.44 27.14 6.74 11.68 

Kernel Length 4.24*** 5.22*** 0.22** 28.16 34.72 21.52 15.61 

Kernel Width 2.52*** 0.58*** 0.086** 47.55 10.95 24.13 17.38 

Kernel Depth 2.52*** 0.89*** 0.19*** 31.26 11.09 35.01 22.65 

Kernel Row Number 24.87*** 7.77*** N.S. 45.15 14.10 20.20 20.56 
Cob Width 59.83*** 15.00*** 1.44*** 54.01 13.54 19.52 12.93 
Cob Length 3149.1*** 2068.7*** 141.6*** 38.49 25.29 25.95 10.27 

Ear Width 46.14*** 51.18*** 4.30** 23.62 26.20 31.25 18.93 

Ear length 3158.0*** 1883.6*** 134.1*** 40.10 23.92 25.54 10.44 

Ear Weight 5259*** 8732*** 420*** 22.31 37.04 26.63 14.01 
Cob Weight 184.61*** 159.22*** 10.05*** 33.51 28.90 27.24 10.35 

Per Plant Grain Weight 3756*** 7193*** 318*** 20.49 39.24 25.92 14.35 
* significant at p< 0.05; ** significant at p< 0.01; *** significant at p< 0.001; N.S., not significant. 

DAP, days after planting 
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Fig. 1. Reaction norm plots of the selected near isogenic lines (NILs) under high and low planting 
densities. A. Example reaction norms of the NILs under high and low densities for various traits. B. Significance 
of effect of density on each of the 26 measured traits. Positive and negative effects were defined by a significant 
one-way ANVOA between the two densities. Positive effect indicates a higher phenotypic value in high density 
environment. CL, cob length; CW, cob width; GWT, grain weight per plant; PHt, plant height at maturity; KL, 
kernel length; KW, kernel width; CWT, cob weight; DTA, days to anthesis; DTS, days to silk; EH, ear height 
maturity; EL, ear length; EW, ear width; EWT, ear weight; KD, kernel depth; KRN, kernel row number; LNA, leaf 
number above ear; LNB, leaf number below ear. 
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Fig. 2. Example distribution pattern of NILs in different environments relative to the recurrent parent. Red 
and blue dots indicate high and low planting densities respectively. Difference is calculated as B73 minus NIL. CL, 
cob length (mm); CW, cob width (mm); GWT, per plant grain weight (g); KL, kernel length (mm); KW, kernel width 
(mm); PHt, plant height at maturity (cm). 
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Fig. 3. Example phenotypic patterns that are observed for NILs across 16 environments. Data points are 
arranged on the x-axis according to the mean of all NILs within the environment and the y-axis is the phenotypic 
difference between the NILs and B73 calculated as B73 minus NIL. Linear regression was fitted for data in panel A, 
B and D; polynomial regression (degree equals 2) was fitted for data in panel C. The black line or curve in each 
plot and the nearby gray shaded area indicate the fitted line and its corresponding standard error. The 
corresponding trait and NIL name as well as R-square and p value for each model are shown in the embedded 
text. Red and blue dots indicate high and low planting density. CL, cob length; KW, kernel width; KL, kernel length; 
PHt, plant height at maturity; CW, cob width. 
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Fig. 4. Similarity between environments as 
determined by similarity of performance of 15 NILs 
using 26 phenotypic traits. Euclidean distances were 
calculated between each pair of NILs within each 
environment based on the phenotypic values of 26 
traits. The Mantel test was then run on each pair of 
matrices across the 16 environments. The heatmap 
shows the correlation between each pair of 
environments defined by the results from pairwise 
Mantel tests. All correlations were significant at p=0.05.  
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Fig. 5. Variation in pairwise relationships between 
NILs across 16 environments. Standard deviation 
(SD) of the biodistance between each pair of NILs 
across all 16 environments was calculated as an 
indicator of the biodistance variation. Numbers on the 
right side of the heatmap is the average value of the SD 
of the biodistance variation for each NIL with all of the 
other NILs. 


