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ABSTRACT 

Injuries from exposure to explosions rose dramatically during the Iraq and Afghanistan 

wars, which motivated investigations of blast-related neurotrauma and operational 

breaching. In this study,  military “breachers” were exposed to controlled, low-level blast 

during a 10-day explosive breaching course. Using an omics approach, we assessed 

epigenetic, transcriptional, and inflammatory profile changes in blood from operational 

breaching trainees, with varying levels of lifetime blast exposure, along with daily self-

reported symptoms (with tinnitus, headaches, and sleep disturbances as the most 

frequently reported). Although acute exposure to blast did not confer epigenetic 

changes, specifically in DNA methylation, differentially methylated regions (DMRs) with 

coordinated gene expression changes associated with chronic lifetime cumulative blast 

exposures were identified. The accumulative effect of blast showed increased 

methylation of PAX8 antisense transcript with coordinated repression of gene 

expression, which has been associated with sleep disturbance. DNA methylation 

analyses conducted in conjunction with reported symptoms of tinnitus in the low vs. high 

blast incidents groups identified DMRS in KCNE1 and CYP2E1 genes. KCNE1 and 

CYP2E1 showed the expected inverse correlation between DNA methylation and gene 

expression, which have been previously implicated in noise related hearing loss. 

Although no significant transcriptional changes were observed in samples obtained at 

the onset of the training course relative to chronic cumulative blast, we identified a large 

number of transcriptional perturbations acutely pre- versus post-blast exposure. Acutely, 

67 robustly differentially expressed genes (fold change ≥1.5), including UFC1 and 

YOD1, ubiquitin-related proteins were identified. Inflammatory analyses of cytokines 
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and chemokines revealed dysregulation of MCP-1, GCSF, HGF, MCSF, and RANTES 

acutely following blast exposure. These data show the importance of an omics 

approach, revealing that transcriptional and inflammatory biomarkers capture acute low-

level blast overpressure exposure, whereas DNA methylation marks encapsulate 

chronic long-term symptoms. 

 

 

Keywords: Epigenetics; blast overpressure; traumatic brain injury; tinnitus; sleep 
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INTRODUCTION 

Injuries from exposure to explosive blasts rose dramatically during Operation 

Iraqi Freedom and Operation Enduring Freedom (OIF, OEF) due to increased use of 

improvised explosive devices (IEDs) in military settings and has also increased in 

civilian populations through acts of terrorism1-3, thus motivating investigations of blast-

related neurotrauma. Congressional acts including the John S. McCain National 

Defense Authorization Act for Fiscal Year 2019 have called for "review of guidance on 

blast exposure during training” (Section 253), which emphasize the importance of 

understanding and mitigating the effects of blast after successive days of training and 

over the course of a military career.4 Despite the increase in occurrence and public 

awareness, our understanding of the effects of blast and the mechanisms behind 

subsequent injury are limited.5, 6 Blast overpressure (BOP) events are capable of 

injuring the brain by means of high energy pressure waves that are rapidly emitted from 

the explosive, which propagate from the object and turn into shock waves upon 

interacting with a medium—in this case being the military warfighter.7 The clinical and 

pathological effects of blast exposure varies depending on the magnitude of the 

detonation, proximity to the blast, and the use of protective gear7-9, and includes but is 

not limited to neuronal swelling, subdural hematomas, myelin deformation, 

inflammation, loss of consciousness, temporary disorientation, sleep disturbances, 

memory deficits, and tinnitus.10-18 A better understanding of the systemic biomarkers 

underlying blast exposure responses is critical to not only the identification of blast-

related injury, but also to the development of effective diagnostics and potential 

treatments.  
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In this effort, we have undertaken prospective human studies involving 

“Breachers,” military and law enforcement personnel who are exposed to repeated blast 

as part of their occupational duty. Breachers are typically in close proximity to 

controlled, repeated, low-level blast during operations and training, and have reported a 

range of physical, emotional, and cognitive symptoms, including headache, sleep 

disturbance, anxiety, and impaired cognitive performance.19 It has been previously 

shown that blast overpressure exposure is capable of inducing changes in gene 

expression in military personnel20 and in animal models of blast injury.21    

We took an omics approach, performing large-scale epigenetics, as well as 

transcriptional, and inflammatory profiling to identify blood-based biomarkers associated 

with acute and chronic blast exposure. We investigated DNA methylation, a highly 

stable epigenetic marker associated with gene repression as well as gene expression 

patterns, in addition to transcriptome analysis via RNA-seq to identify potential 

epigenetic and coordinated gene expression abnormalities. Furthermore, we assessed 

inflammatory changes following blast exposure, in addition to self-reported symptoms. 

These data allow us to investigate regulatory, transcriptional, and inflammatory 

biosignatures of blast exposure. 

 

METHODS  

Samples & Subjects: This study was approved by the Institutional Review Board 

(NMRC#2011.0002; WRAIR#1796). The present study obtained samples from 34 

healthy, male participants at U.S. Army explosive entry training sites (special operations 

and combat engineer courses). Biological specimens for epigenetics and transcriptional 
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studies were collected at the start (baseline) and at the end of the training course (pre-

vs post-blast exposure), and serum samples for inflammatory analyses were collected 

daily. Demographic information including sex, age, lifetime operational exposure to 

blast, as well as self-reported TBI history were recorded at the start of the training. 

During the course of the training, self-report symptom assessments were completed 

daily.  

 

DNA methylation sample processing & Quality Control: Blood was collected using 

EDTA tubes, and processed to separate peripheral blood mononuclear cells (PBMCs). 

PBMCs were purified by Ficoll gradient, washed with PBS and stored at -80˚C. DNA 

was extracted with QIAamp DNA Micro Kit (QIAGEN, Hilden, Germany). Genomic DNA 

was bisulfite converted (Zymo Research, Irvine, CA, USA) and CpG methylation was 

determined using Illumina Infinium HumanMethylationBeadChip microarrays (HM450, 

Illumina, Inc., San Diego, CA, USA), as described previously.22 Data & quality control 

(QC) analyses were performed using R Language 3.03 23, an environment for statistical 

computing, and Bioconductor 2.13.24 Raw data files (.idat) were processed by minfi 

package.25 All samples displayed a mean probe-wise detection call for the 485512 array 

probes < 0.0005 (Figure S1). Sex QC analysis, also confirmed methylation-based sex 

prediction with those reported (Figure S2). For QC sample tracking of pre- vs. post- 

Breacher training, we used the 65 single nucleotide polymorphism (SNP) probes 

included in the HumanMethylation 450k BeadChip, confirming that subjects for which 

multiple samples were available grouped together (Figure S3).  
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DNA methylation data analysis: For all DNA methylation analyses, we used the matrix 

of M-values (logit transformation of beta-values) which correspond to methylation levels. 

Surrogate variable analysis (SVA) was performed to add surrogate variables and rule 

out potential batch effects. A linear model was used for the binary variable of interest, 

while including age and history of TBI as covariates in the model. Performing the 

comparative analysis in limma26 implemented in R, we obtained t-statistics and 

associated p-values for each CpG site. The point-wise p-values, were then used for the 

identification of differentially methylated regions (DMRs) using the combined-p-value 

tool.27  

 

Total RNA sample/ library preparation and sequencing: Blood was collected using 

Paxgene RNA tubes (PreAnalytiX, QIAGEN/BD, Hombrechtikon, Switzerland) according 

to manufacturer’s instructions and stored at -80˚C. RNA was extracted with the 

Paxgene Blood RNA Kit (PreAnalytiX). Globin mRNA was removed with Globin Clear 

Human Globin mRNA Removal kit (Ambion, Inc., Austin, TX, USA). All RNA samples 

had RNA integrity numbers (RIN) ≥6.0. Total RNA sequencing libraries were prepared 

using the Illumina Stranded Total RNA Library Prep Kit with Ribo-Zero Gold (Illumina, 

Inc.) in accordance with the manufacturer’s instructions. Briefly, 290ng-500ng of total 

RNA was used for ribosomal depletion and fragmented by divalent cations under 

elevated temperatures. The fragmented RNA underwent first strand synthesis using 

reverse transcriptase and random primers followed by second strand synthesis to 

generate cDNA. The cDNA fragments underwent end repair, adenylation and ligation of 

Illumina sequencing adapters. The cDNA library was enriched using 11 cycles of PCR 
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and purified. Final libraries were evaluated using PicoGreen (Life Technologies, 

Carlsbad, CA, USA) and Fragment Analyzer (Advanced Analytical, Agilent 

Technologies, Santa Clara, CA, USA) and were sequenced on an Illumina HiSeq2500 

sequencer (v4 chemistry) using 2 x 125bp read lengths. 

RNA-seq data preprocessing and bioinformatics analysis: Reads were aligned to 

the human reference hg19 using STAR aligner (v2.4.0c).28 Quantification of genes 

annotated in Gencode v18 was performed using featureCounts (v1.4.3). QC metrics 

were collected with Picard (v1.83) and RSeQC 29 (http://broadinstitute.github.io/picard/). 

Normalization of feature counts was done. Furthermore, for gene expression analysis, 

we used the voom function in limma to get logCPM matrix, where the design matrix 

consists of intercept, age, history of TBI, and variable of interest. We used SVA to rule 

out potential batch effects. Analyses were performed in limma, and point-wise as well as 

multiple testing adjusted p-values were reported.  

Gene Ontology & Gene Set Enrichment Analyses: We performed Gene Ontology 

(GO) analysis using goseq R package, with gene length bias considered. Gene set 

enrichment analysis (GSEA) version 3.0 30 was run on our ranked list of 8,157 genes, 

which is filtered from the logCPM matrix obtained in pre-post analysis by criteria that 

average logCPM is greater than or equal to 4 in either of the comparison groups 

considered here, and ordered by t-statistics. GSEA preranked was run with 1000 

permutations using gene sets from the Molecular Signatures Database (MsigDB) 31 as 

follows: 1) gene ontology gene sets (C5) including biological processes (BP), cellular 

components (CC), and molecular function (MF); and 2) hallmark gene set (H).  
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Cytokine sample processing via Luminex: For assays of inflammatory cytokines, we 

used the Luminex 63-Plex assay (eBiosciences/Affymetrix, Inc., Santa Clara, CA, USA), 

which has the ability to multiplex, measuring levels of 63 inflammatory cytokines 

simultaneously. Assays were performed by the Human Immune Monitoring Center at 

Stanford University and kits were used according to the manufacturer’s 

recommendations with modifications as described here briefly. Beads were added to a 

96 well plate and washed in a BioTek Elx405 washer (BioTek Instruments, Inc., 

Winooski, VT, USA). Serum samples were added to the plate containing the mixed 

antibody-linked beads and incubated at room temperature for 1 hour followed by 

overnight incubation at 4°C with shaking. Cold and room temperature incubation steps 

were performed on an orbital shaker at 500-600 rpm. Following the overnight 

incubation, plates were washed in a BioTek Elx405 washer, and then biotinylated 

detection antibody was added for 75 minutes at room temperature with shaking. Plates 

were washed as above and streptavidin-PE was added. After incubation for 30 minutes 

at room temperature, a wash was performed as above and reading buffer was added to 

the wells. Each sample was measured in duplicate. Plates were read using a Luminex 

200 instrument (Millipore Sigma, Burlington, MA, USA) with a lower bound of 50 beads 

per sample per cytokine. Custom assay control beads by Radix Biosolutions 

(Georgetown, TX, USA) were added to all wells. 

 

Cytokine data analysis: Cytokine data was available for a subset of subjects, for 5 

days: Day 4, Day 7, Day 8, Day 9 and Day 10. Two levels were taken for each subject 
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for each day, and all values were analyzed. All cytokine levels were log-transformed, 

and then graphed. Since outliers were present in many of the cytokines, values were 

capped (winsorized) from both below and above, at the lower quartile minus 1.5 times 

the Inter Quartile Range (IQR), and the upper quartile plus 1.5 times the IQR, 

respectively. Separate mixed effect models were fit for each log-transformed and 

capped cytokine measure, with day as fixed, categorical predictor, and subject-specific 

random intercepts. P-values for each level of the fixed effect were recorded, and 

corrected for multiple testing (for K=63 cytokines) using the Bonferroni method. To 

calculate standardized effect sizes for the contrast of each experimental day compared 

to the baseline, the model coefficients were divided by the standard deviation of the 

baseline measure, with the scaleless effect sizes then represented via heatmap plots.   

 

RESULTS 

The present study collected data from 34 participants during 3 separate 2-week data 

collection cycles at U.S. Army explosive entry training sites (special operations and 

combat engineer courses). In these advanced training courses, both trainees and 

instructors have a career history of repeated exposure to low level blasts. Blood 

samples were obtained pre- and post-training for epigenetics, transcriptional, and 

protein assays, subsequently referred to as pre- vs post-blast exposure. All participants 

were male, with an average age of 30.79 years (S.D. 4.57 years). Self-report history of 

injury and of blast exposure was recorded at baseline, and daily self-report symptom 

assessment during the training course was also recorded (Supplemental Figure S4). 

The chronology of exposures during the 2-week Breacher training and participants’ 
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reported history of lifetime exposure to blast and TBI history is provided in Figure 1A & B, 

demonstrating participant exposures ranging from tens to hundreds over a military career. A 

total of 60% of these 34 breachers self-reported at least one lifetime mild traumatic 

brain injury (TBI) event; however, there was no correlation between history of TBI and 

the number of lifetime blast exposures (p > 0.8). 

 

DNA methylation & transcriptional changes associated with chronic cumulative 

career blast exposures. For baseline low vs. high career blast exposure DNA 

methylation analyses, we used 34 subjects for which baseline data were available to 

examine whether the number of cumulative blast exposure events during a career in 

military service was associated with changes in transcriptional regulation. We 

empirically defined the low exposure group as those with less than 40 reported blast 

exposures and the high group reporting greater numbers. We asked whether the 

number of cumulative blast exposure events during a career in military service is 

associated with changes in transcriptional regulation. Whole genome transcriptional 

profiling via RNA-seq did not show significant gene expression changes between low 

vs. high blast lifetime exposed groups following multiple testing correction (data not 

shown). However, DNA methylation analyses of these samples via Illumina 450K 

methylation microarrays identified significant methylation differences. We found 10 

significantly differentially methylated regions (DMRs) and genes associated with 

cumulative blast (Figure 2A and Supplementary Table S1). The majority of DMRs 

exhibited gain of methylation associated with cumulative blast exposure, with 

corresponding gene expression changes (Figure 2B). The PAX8 gene is an antisense 
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transcript within the PAX8 gene, wherein the DMR is localized in promoter of this 

antisense transcript (Figure 2C). Interestingly, gain of DNA methylation in those 

subjects with high cumulative blast exposure corresponds to loss of gene expression in 

the PAX8 antisense transcript (NR_047570) (Figure 2B-C). PAX8 transcription factor is 

responsible for control of expression of thyroid specific genes involved in thyroid 

function, and, more recently, genome-wide association studies have implicated variants 

associated with PAX8 and sleep duration.32-34  

 

DNA methylation & transcriptional changes associated with acute blast exposure. 

31 of the subjects had available samples for both the baseline timepoint and at day 10 

(completion of Breacher training). Comparing DNA methylation patterns pre- vs. post-

blast exposure, no differences were identified. Interestingly, however, gene expression 

analyses of RNA-seq data revealed 6362 genes with statistically significant differential 

expression following multiple testing corrections (Figure 3A and Supplementary Table 

S2). To investigate robust gene expression changes associated with acute blast 

exposure, we focused on those genes with moderate-to-large fold change in expression 

(≥1.5 FC) and at least moderate expression levels in pre- or post-assessments 

(logCPM≥4). Using these stringent criteria, we identified 67 genes that show robust fold-

change pre- vs. post-blast exposure (Figure 3B). An overwhelming number of these 

genes are involved in ribosomal functioning, which were dysregulated following blast. 

Transcripts of ribosomal proteins constituted 30% of these genes, with additional related 

transcripts of chaperone proteins involved in protein biogenesis and degradation (i.e., 

heatshock protein HSP90, translation elongation factors EEF1B2, EEF1A1P5, EEF1A1, 
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ribosome biogenesis homolog [NSA2], and ubiquitins UFC1 & YOD1). Some of these 

loci and genes in related pathways have been previously implicated in responses to 

cellular stress, neurodegeneration, and TBI.35-38 Of note, ubiquitin proteins have been 

implicated in TBI and neurodegenerative disease, and  the ubiquitin C-terminal 

hydrolase-L1 (UCH-L1) has been FDA approved as a robust blood-based biomarker for 

acute mild brain injury.39 

 

Blast associated physiological and psychological symptoms linked to DNA 

methylation and transcriptional changes. Given that daily symptom reports were 

ascertained from all participants, we utilized this information to track DNA methylation 

and gene expression changes associated with symptom reporting. Given the data 

sparsity, with missing symptom reporting by some participants, we performed initial 

symptom filtering. We kept those symptoms which were endorsed by ≥10 subjects for 

each comparison. For the baseline analysis of the high vs low cumulative blast exposed 

groups (day 1 symptom report), we observed a higher average symptom score (>0.25) 

in the high vs. low lifetime blast groups and filtering produced one symptom, tinnitus 

(ringing in the ear), with 11 participants reporting (Figure 4A). Tinnitus is a commonly 

reported symptom by military and Veteran subjects with repeated exposure to blast.19 

Although we found no significant genome-wide transcriptional changes following 

multiple testing correction, we report point-wise transcriptional changes for the most 

robustly differentially expressed loci (with FC≥±1.5 Supplementary Table S3). We did 

identify genes with differential DNA methylation changes that track with reported 

symptoms of tinnitus in the high vs. low career breaching groups (Figure 4B). Of these 
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differentially methylated regions and associated loci potassium voltage-gated channel, 

Isk-related family, member 1 (KCNE1), Cytochrome P450 family 2, subfamily E, 

member 1(CYP2E1), dual specificity phosphatase 22 (DUSP22), and hyperpolarization 

activated cyclic nucleotide gated potassium channel 2 (HCN2) genes have been 

previously implicated in auditory functioning.40-42 To determine whether these DMRs 

confer transcriptional regulatory changes, we examined the corresponding gene 

expression levels in the low vs. high breaching groups in these loci. We found that the 

genes KCNE1 and CYP2E1 showed the expected anticorrelated pattern of gain in DNA 

methylation and loss of gene expression (Figure 4C). KCNE1 is associated with noise 

related hearing loss through human genetic studies and animal studies have also 

implicated CYP2E1 as associated with nitrile exposure and noise related hearing loss in 

rodents.43-45 

  For the pre-post blast exposure analysis, we accounted for the observation that 

the breachers had a higher exposure to blast on day 7 (average exposure of ~12psi; 

Figure 1A), well beyond the 4psi exposure level used as a safety threshold on most 

training ranges.46 Typical exposures in this type of training are less than 1psi.47 For 

consideration of the large magnitude blast exposure we recorded, we took the average 

symptom levels reported in days 1-6 and compared with the average from days 7-10, 

inclusive of the 7th day high magnitude blast event. Similarly, for pre-post breaching 

course analyses, we analyzed symptoms that ≥10 subjects had when responding pre- 

vs. post-blast, where pre corresponds to symptoms reported at least once during 

training days 2-6 and post days 7-10, with higher (again >0.25) average symptom 

scores in post- vs. pre- days. We chose this separation interval, because the breaching 
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cohort was exposed to a higher level of blast (max ~12psi) during day 7 of training. 

Using an a priori sample size criterion of ≥10 participants reporting, we found that 

headache was the most highly reported symptom pre-post blast exposure, endorsed by 

18 subjects (Figure S4). In line with the pre-post DNA methylation results on the total 

subjects, the symptom analysis also did not show statistically significant genome-wide 

DMRs that tracked with reported symptoms of headache post blast exposure, following 

multiple testing correction. Also, no significant transcriptional changes were detected 

with multiple testing correction, yet pointwise data for the most significant gene 

expression changes with ≥±1.5 fold change are reported in supplementary data (Table 

S4).    

 

Inflammatory markers of acute blast exposure: Assaying cytokine levels across the 

training course allows us to determine how repeated exposure to blast and breaching 

environment induces perturbations in levels of cytokine proteins. Data was available for 

32 subjects. Cytokine measures on day 4 were used as a reference, because by this 

time the participants had acclimated to the training environment and had no exposure to 

high explosive blast or physical exertions on that day. Comparatively, days 7-10 were 

considered post-blast exposure days respectively. We contrasted cytokine levels for 

each of the post-blast days (7-10) to those from the reference (day 4). Comparing 

cytokine levels pre-post exposure, we found significant elevation in five out of 63 

cytokines (MCP1, GCSF, HGF, MCSF and RANTES) associated with acute blast 

exposure (Figure 5; p≤0.05 corrected for multiple testing). These data show that 

changes in cytokines track acute exposure to blast, as indicated by the observed effect 
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sizes depicted in Figure 5 (with effect sizes for all cytokines shown in Supplemental 

Figure S5 and Supplementary Table S5). 

 

DISCUSSION: 

In the present study, we have taken a multimodal omics approach to elucidate changes 

in inflammatory, epigenetic, and transcriptional profiles of military breachers following a 

10-day breacher operations training course. We obtained DNA methylation, RNA-seq, 

and chemokine/cytokine data for military subjects before and after blast exposure in 

order to identify changes in DNA methylation, transcriptional, and inflammatory 

processes, which could serve as potential acute & chronic biomarkers of blast exposure 

in neurotrauma patients. Cumulative blast exposure history was used in conjunction 

with epigenetic and transcriptional data in order to determine the extent to which low or 

high numbers of exposure to repeated blast impacts physiological responsivity. 

Furthermore, self-reported symptom information was used in order to identify novel 

gene associations with blast-related symptomology. 

A major limitation of the study is that DNA methylation and gene expression 

changes detected may not be reflective of acute changes associated with blast 

exposure, due to the blood collection end point on day 10. Although this likely has a 

bigger effect in regards to gene expression rather than DNA methylation, future studies 

would require specimen collection directly following blast exposure training sessions in 

order to more accurately assess transient changes in methylation and transcriptional 

processes. An additional limitation of the study is the lack of longitudinal data, for both 

genetic and symptom-based studies, on the breacher participants. Increased collection 
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points several weeks or months after blast exposure training would allow for a better 

understanding of the dynamics and long term effects of blast exposure on the 

epigenetic, transcriptional, and symptom-based profiles in blast-exposed individuals. 

Furthermore, we acknowledge that our study lacks representation of both sexes, for the 

present cohort involved only male participants; thus findings may not be generalizable 

to females.  

The primary findings of our study suggest that DNA methylation and gene 

expression are modulated by blast exposure in military personnel following blast 

exposure training programs. Although we were unable to detect acute changes in DNA 

methylation pre- vs. post-blast exposure, we show that high cumulative blast exposure 

history alters DNA methylation patterns relative to subjects with lower blast exposure 

throughout their military careers. Most notably, these DNA methylation changes 

associated with cumulative exposures generally conferred functional changes in gene 

expression. Specifically, increase in DNA methylation in the promoter region of the 

paired box gene 8, PAX8, antisense transcript in breachers with high cumulative blast 

exposure history (Figure 2A), conferred decrease in PAX8 gene expression (Figure 2B). 

This is potentially important mechanistically, because the PAX8 transcription factor is 

involved in the control of the expression of thyroid specific genes and thyroid 

development 33, 48, and it has recently been associated with alterations in sleep 

duration.32, 34 The association between PAX8 and sleep duration is particularly relevant, 

for sleep dysregulation is reported in our breacher symptom data (Figure S4) and in 

both active duty service members and US Veterans.49, 50 Reciprocally, sleep 

dysregulation has been shown to impact both metabolic and endocrine function51, 
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possibly linking PAX8 with modulatory relationship between sleep dysregulation and 

endocrine processes.  

This finding associating high lifetime cumulative blast exposure to changes in 

PAX8 antisense transcript methylation (and its respective association with changes in 

sleep duration) is important because sleep disturbances are reported in military 

warfighters in both active duty and post-deployment settings.49, 50, 52 Sleep disturbances 

lead to immediate impairments in cognition and alertness potentially resulting in 

accidents or death53, and are also associated with mental health outcomes including 

PTSD and depression in military populations.49, 52 While the changes in DNA 

methylation of PAX8 represent more stable marks as chronic biosignatures of lifetime 

blast exposure history.  

Acute transcriptional alteration post-blast exposure in the KCTD12 gene was 

previously shown to be involved in circadian regulation 54, were also detected in this 

study. Potassium channel tetramerization domain containing protein (KCTD) 12, an 

auxiliary subunit of the GABAB receptor gene, has been shown to both increase 

desensitization and slow the onset of GABAB G protein-coupled receptor responses.55, 

56 Previous animal studies by Cathomas et al. generated Kctd12 null mutant (Kctd12-/-) 

and heterozygous (Kctd12+/-) mice in order to determine if behavioral and 

neurobiological observations could be made that are in line with the endophenotypes 

observed in psychiatric populations with KCTD12 perturbations.54 Notably, Kctd-/- and 

Kctd+/- mice show increased electrical excitability of CA1 pyramidal neurons 54, further 

implicating KCTD12 in mediating synaptic transmission and neuropsychiatric 

endophenotypes. Phenotypically, mice are typically inactive during the light phase of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/738054doi: bioRxiv preprint 

https://doi.org/10.1101/738054
http://creativecommons.org/licenses/by-nc-nd/4.0/


their circadian rhythm cycle 57, however, Kctd12+/- mice exhibit increased activity during 

the inactive (light) phase of the circadian cycle54, suggesting that downregulation of 

KCTD12 modulates circadian rhythm cycles. Interestingly, we also found KCTD12 as 

significantly downregulated pre-post blast exposure. Our RNA-seq findings in 

conjunction with our DNA methylation findings further associate the effects of blast 

overpressure exposure with biological/molecular perturbations potentially resulting in 

sleep dysregulation in our military warfighters.  

Furthermore, RNA-seq data revealed 67 genes (32 upregulated; 35 

downregulated) that had robust changes in gene expression (fold expression changes 

greater than or equal to 1.5) following exposure to blast (Figure 3B). We identified a 

subset of these 67 significantly differentially expressed genes that are involved in cell-

cell adhesion, fibrosis, and accumulation of extracellular matrix (ECM) proteins. 

Specifically, VCAN encodes the proteoglycan versican which is one of the primary 

proteins that makes up the ECM.58 FBN2 regulates processes related to elastic fiber 

assembly and both TLN1 and DSC2 are implicated in cell-cell adhesion.59-61 It may be 

posited that increase expression of these genes as a protective mechanism following 

blast exposure in order to allow cells to potentially better resist the harmful effects of 

mechanical stress. We speculate that the notable increases in expression in 

CRISPLDL2 and STAB-1, genes involved in angiogenesis and lung morphogenesis, are 

likely modulated in response to blast exposure rather than related to respiratory 

processes. Decrease in expression of HBA1, HBA2, and HBB (hemoglobin subunit 

alpha 1, hemoglobin subunit alpha 2 and hemoglobin subunit beta, respectively [Figure 

3B]), may suggest that the increase in expression of angiogenesis-related genes could 
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be associated to the body’s injury response rather than physiological oxygen needs. 

These gene expression findings were corroborated by Gene Set Enrichment Analyses 

(GSEA), where positive enrichment in gene sets related to vasculature development, 

blood vessel morphogenesis, wound healing, and cortical cytoskeleton organization 

were also observed (Supplementary Table S6).  

Furthermore, we observed CRISPLD2 has been shown to be immune-

responsive, in that patients with asthma, chronic inflammation in the lungs, exhibit 

significant expression levels of CRISPLD2 following glucocorticoid treatment.62 

Glucocorticoids (GCs) are anti-inflammatory, highlighting that anti-inflammatory actions 

in the lung via GCs occurred in conjunction with increases in CRISPLD2 gene 

expression. Himes et al. investigated this further and found CRISPLD2 to be an 

immune-responsive gene that increased in response to proinflammatory cytokine 

IL1ß.62 We identified an increase in CRISPLD2 expression in our pre- vs. post-blast 

exposure gene expression analyses (Figure 3B), highlighting the presence of an 

inflammatory response following exposure to blast overpressure waves in our study. We 

further observe inflammation-related gene expression in the downregulation of KCTD12 

(Figure 3B), which was shown to be under expressed in a genome-wide expression 

microarray study by Miller et al. investigating chronic stress within caregivers of brain 

cancer patients vs. controls63, thus indicating a repressive effect of chronic stress on 

KCTD12 expression.  

Additionally, other inflammatory pathways enriched in our gene expression 

dataset include the NF-kB mediated TNF-alpha signaling gene hallmark set, with the 

highest normalized enrichment score (Supplementary Table S7). The NF-kB pathway 
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responds to elevation of proinflammatory cytokine TBF-alpha, and further NF-kB 

activation is known to occur in both acute inflammatory responses and in chronic 

inflammatory diseases.64-66 Acute changes in circulating inflammatory cytokines 

following blast exposure were also observed in our assessment of serum cytokine levels 

across multiple timepoints of the breacher operations training course. We observed an 

increase in MCP-1, GCSF, HGF, MCSF (CSF-1), and RANTES on days of blast 

exposure (Figure 5, Days 7 and 9). Notably, MCP-1 (monocyte chemoattractant protein-

1, CCL-2) has been shown to be involved in neuron-immune cell interactions and more 

specifically, is responsible for macrophage movement into peripheral nerves, microglia 

activation, and recently has been implicated as modulated by the transcription factor 

ATF3 following traumatic brain injury.67-70 Generally, these cytokines play a role in the 

recruitment of white blood cells to injured areas 71, which supports previous 

observations on inflammatory response following blast exposure, even in short (day to 

day) time frames.72-74 

 Moreover, blast-associated physiological and psychological symptom analyses in 

participants with low vs. high cumulative blast exposure revealed that tinnitus was the 

primary symptom present using daily symptom reports throughout the breaching 

operations course. This finding is not surprising because not only is tinnitus a commonly 

reported symptom by military and Veteran populations, but it is in fact the most 

prevalent service-connected disability of all Veterans Benefit Administration 

compensation recipients, according to the 2018 VA Annual Benefits Report.75 DNA 

methylation and transcriptional profiles were compared in the low vs. high cumulative 

blast groups, and although we identified no significant genome wide transcriptional 
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changes following multiple testing correction, we did identify genes with differential DNA 

methylation changes that track with the reported symptom of tinnitus in the low vs. high 

career blast groups (Figure 4B). Two of the genes, KCNE1 and CYP2E1, showed the 

expected inversely correlated pattern of increase in DNA methylation and decrease in 

gene expression. KCNE1 is a potassium channel that has been previously implicated in 

noise induced hearing loss (NIHL) and tinnitus through genetic studies43, 44, and has 

been shown to play a critical role in K+ recycling in the endolymph of the inner ear.76 

CYP2E1 metabolizes acrylonitriles, which have been demonstrated to promote NIHL 

through oxidative stress mechanisms.45 We also observed changes in hearing-related 

genes in our pre-post blast exposure gene expression analysis, in that KCTD12 which 

was robustly downregulated has been associated with tinnitus.77 This is of particular 

interest to the Veterans Affairs (VA) community because tinnitus is a commonly 

reported symptom by military and Veteran personnel with repeated exposure to blast. 

Our knowledge of the neurobiological mechanisms behind auditory and vestibular 

injuries in our military warfighters is limited but particularly relevant given that tinnitus is 

present in 11% of OIF and OEF Veterans and has been demonstrated in active duty 

medical records to be the primary clinical risk for personnel in military occupational 

specialties (MOSs) associated with blast exposure.78 Our results suggest that these 

hearing-related genes may play a direct role in auditory processing and the perception 

of sound.  

Overall, we demonstrate that blast exposure, both acutely and accumulation, is 

capable of altering gene expression and DNA methylation patterns, respectively. 
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Further epigenetic, transcriptional, and inflammatory studies are required to deduce the 

molecular biosignatures of blast and the associated symptoms. 

 

CONCLUSION  

As DNA methylation represents highly stable, long lasting marks, these are likely 

representative of cumulative blast exposures, whereas changes in gene transcription 

are facile and represent acute or proximal exposure to blast events. Hence, it is not 

surprising that we did not detect significant gene expression changes at baseline 

associated with lifetime blast exposure. We did, however, detect changes in gene 

expression directly following blast exposure representing a rapid molecular response to 

blast overpressure blast. The present study suggests that physiological responsivity to 

different environmental factors, in this case blast overpressure exposure, may be 

captured by differing biomarkers–with DNA methylation encapsulating the chronic 

cumulative exposures and inflammatory & RNA transcription the acute response. This 

systems-based approach allows for context-dependent investigations, allowing for 

discovery of molecular perturbations and symptomatology both proximally to exposure 

to blast overpressure and distally across the lifespan.  
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Figure 1: (A) Protocol for operational breaching and blast exposure throughout the 10-day training 
course, showing pre- and post-blast exposure blood draws on Days 1 and 10, respectively. (B) 
Distribution of number of lifetime operational blast exposures  with history of self-reported TBI (red) and 
no history of TBI (blue). 
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Figure S1: Quality control, detection p-value. Showing the proportion of probes with poor quality 
(p>0.0005) probes for each biological sample. All samples had high quality data, with at least 98% of 
probes passing criteria.   
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Figure S2: Quality Control, gender prediction. Showing QC plot for gender prediction demonstrating 
consistency for predicted and reported gender, using Chromosome X and Chromosome Y median 
intensity. Known male and female reference samples were added as experimental controls. Blue circles 
are males and red circles are females.  
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Figure S3: Quality Control, genotype consistency check. QC of paired samples pre- and post-training 
exposure. Dendrogram showing clustering of individuals by genotypes derived from the 65 SNP probes 
for biological samples collected pre/post training. The y-axis shows Euclidean distance and samples 
that show no clustering were those for which no post-training biological samples were available. 
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Figure 2: Differentially methylated regions (DMRs) associated with accumulative blast exposure. (A) 
DMRs with corresponding observed methylation data, showing gain (red) and loss (blue) of DNA 
methylation in low vs. high lifetime exposure to blast events. (B) DNA methylation and gene expression 
changes, with the majority of genes showing the expected anti-correlation between DNA methylation 
and gene expression. (C) Genome browser representation of PAX8 antisense transcript expression 
relative to accumulative lifetime blast exposure in low (blue) vs high (red) exposed breacher groups. 
Following an anticorrelated pattern of gain of DNA methylation and repression of gene expression, we 
see that the low accumulative blast exposed group shows a loss of DNA methylation DMR track in blue, 
whereas the high accumulative blast exposed group shows a gain of methylation indicated in red in the 
DMR track with coordinated repression of gene expression, as shown per subject. It should be noted 
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that the DMR seems to be specifically regulating the PAX8 antisense transcript since the upstream 
gene PSD4 does not seem to be impacted by the differential methylation at the DMR.  
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Figure 3: Gene expression changes tracks molecular response to acute exposure to blast. (A) Volcano 
plot highlighting genes that passed multiple testing correction (6362 genes), that also showed greater 
than ±1.5 fold change in expression (336 genes, red). The y-axis shows the unadjusted p-value. (B) 
Showing genes (67) with robust expression changes pre vs. post blast training with fold change ≥ |1.5| 
and excluding rarely expressed genes (logCPM<4).   
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c 
Figure 4: (A) To determine the effect of cumulative blast exposure on physiological and psychological 
symptoms, we examined average symptom levels at baseline for those with low vs high career 
breaching, with ringing in the ear being the top reported symptom. (B) Differentially methylated genes 
associated with ringing in the ear/tinnitus in low vs. high career breaching, denoting genes implicated in 
auditory functioning by (*). (C) Of note, KCNE1 and CYP2E1 genes follow the expected anti-correlated 
pattern of increase in DNA methylation with decrease in gene expression. 
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Figure S4: Average symptom score pre-post blast exposure, with headache being the highest reported 
symptom (endorsed by 18 participants).  
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Figure 5: Heat map showing significant changes in cytokine level tracking with blast exposure (days 7 
and 9) using day 4 (no exposure to blast activity) as the reference (Bonferroni corrected).  
 

 
Figure S5: Heatmap showing extended cytokine panel with significant changes in cytokine level 
tracking with blast exposure (days 7 and 9) using training day 4 as the reference.  
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