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SUMMARY 

Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer 

cells, where it is associated with detrimental patient outcomes. It contains phosphorylated 

tyrosines which evolutionarily preceded deuterostome gastrulation and tissue 

differentiation mechanisms. Here, we demonstrate that manipulating PGRMC1 

phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. 

Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) 

PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) 

exhibited reduced levels of proteins involved in energy metabolism and mitochondrial 

function, and altered glucose metabolism suggesting modulation of the Warburg effect. 

This was associated with increased PI3K/Akt activity, altered cell shape, actin 

cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple 

mutant (TM) indicated the involvement of Y180 in PI3K/Akt activation. Mutation of 

Y180F strongly attenuated mouse xenograft tumor growth. An accompanying paper 

demonstrates altered metabolism, mutation incidence, and epigenetic status in these cells, 

indicating that PGRMC1 phosphorylation strongly influences cancer biology. 

 

KEYWORDS  

mitochondria, migration, invasion, organizer, embryology, metabolism, cytochrome 

P450, mesenchymal amoeboid transition, proteomics 
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INTRODUCTION 

Progesterone (P4) Receptor Membrane Component 1 (PGRMC1) is a cytochrome b5-

related heme-binding protein with multiple functions including interaction with 

cytochrome P450 enzymes. Briefly, (the reader is referred to previous reviews) non-

comprehensive functions briefly membrane trafficking, P4 responsiveness and 

steroidogenesis, fertility, lipid transport, neural axon migration, synaptic function, and 

anti-apoptosis. Its subcellular localization can be cytoplasmic, nuclear/nucleolar, 

mitochondrial, endoplasmic reticulum, cytoplasmic vesicles, or extracellular (Cahill et 

al., 2016a; Riad et al., 2018; Ryu et al., 2017). It is involved in cell cycle processes at the 

G1 checkpoint and during mitosis (Luciano et al., 2010; Luciano and Peluso, 2016; Peluso 

et al., 2014; Sueldo et al., 2015; Terzaghi et al., 2018; Terzaghi et al., 2016), and elevated 

PGRMC1 expression has been associated with poor prognosis in multiple types of cancer 

(Ahmed et al., 2010; Cahill et al., 2016a; Losel et al., 2008; Rohe et al., 2009; Ruan et al., 

2017; Shih et al., 2019; Willibald et al., 2017). 

 

Predicted binding site motifs for Src homology 2 (SH2) and Src homology 3 (SH3) 

proteins in PGRMC1 can potentially be negatively regulated by phosphorylation at 

adjacent casein kinase 2 (CK2) consensus sites (Cahill, 2007; Cahill et al., 2016a; Peluso 

et al., 2006). However, while CK2 knockdown leads to reduced phosphorylation of the 

corresponding C-terminal CK2 site of PGRMC2, PGRMC1 phosphorylation at S181 was 

unaffected by CK2 knockout in C2C12 mouse myoblast cells (Franchin et al., 2018). 

These and Y180 can all be phosphorylated in vivo, and constitute a potential regulated 

signaling module (Cahill et al., 2016b).  

 

We hypothesized that PGRMC1 is a signal hub protein with wide ranging effects on 

cancer and general cell biology (Cahill, 2017; Cahill et al., 2016a; Cahill et al., 2016b; 
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Cahill and Medlock, 2017). The highly conserved motif at Y180/S181 arose early in 

animal evolution concurrently with the embryological organizer of gastrulation (e.g. 

Spemann-Mangold organizer), and prior to the evolution of deuterostomes (Cahill, 2017; 

Hehenberger et al., 2019).  

 

This present study was prompted by our discovery of differential PGRMC1 

phosphorylation status between estrogen receptor-positive and -negative breast cancers. 

PGRMC1 was induced in the hypoxic zone of ductal carcinoma in situ breast lesions at 

precisely the time and place that cells require a switch to glycolytic metabolism known 

as the Warburg effect, leading us to predict a Warburg-mediating role for PGRMC1. 

Furthermore, a PGRMC1 S57A/S181A double CK2 site mutant (DM, Figure 1A) enabled 

the survival of peroxide treatment (Neubauer et al., 2008). Sabbir (2019) recently reported 

that PGRMC1 induced a P4-dependent metabolic change resembling the Warburg effect 

in HEK293 cells, which was associated with changes in PGRMC1 stability, post-

translational modifications, and subcellular locations. PGRMC1 regulation of glucose 

metabolism is supported by its implicated mediation of the placental P4-dependent shift 

from aerobic towards anaerobic glucose metabolism in gestational diabetes (Gras et al., 

2007), and association with the insulin receptor and glucose transporters (Hampton et al., 

2018).  

 

We previously observed that MIA PaCa-2 pancreatic cancer (MP) cells (Duong et al., 

2013; Han et al., 2008; Iwagami et al., 2013; Yunis et al., 1977) exhibited marked 

morphological and metabolic changes when the DM protein was expressed (Gosnell et 

al., 2016b). MP cells exist in culture as a mixed adherent population of elongated 

“fibroblast-shaped” morphology, a minority population of rounded morphology with 

bleb-like protrusions, and some multicellular clumps, as well as some rounded suspension 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/737718doi: bioRxiv preprint 

https://doi.org/10.1101/737718
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

cells. They have undergone epithelial-mesenchymal transition (Gradiz et al., 2016), and 

can further undergo mesenchymal-amoeboid transition (MAT), which requires Rho 

Kinase- (ROCK)- dependent morphological change from “elongated” mesenchymal cells 

to rounded amoeboid cells (Fujita et al., 2011).  

 

Here, we examined the effects of altered PGRMC1 phosphorylation status on MP cells to 

gain insights into PGRMC1-dependent signaling, and its role in subcutaneous mouse 

xenograft tumorigenesis which requires Y180. In a companion paper (Thejer et al., 2019) 

we describe differences in metabolism, genomic mutation rates, and epigenetic genomic 

CpG methylation levels associated with PGRMC1 phosphorylation status in these cells.  

 

RESULTS  

PGRMC1 phosphorylation status alters cellular morphology  

We stably transfected MP cells with the hemagglutinin (HA) epitope-tagged PGRMC1-

HA plasmids including the wild-type (WT) sequence (Suchanek et al., 2005), the 

S57A/S181A DM (Neubauer et al., 2008), or a novel S57A/Y180F/S181A triple mutant 

(TM), which removed the phosphate acceptor of Y180 (Cahill, 2007, 2017; Cahill et al., 

2016b) (Figure 1A). Three independent stable cell lines from each group expressed both 

32 kDa 3xHA-tagged exogenous and a 24 kDa endogenous PGRMC1 species, whereas 

only the 24 kDa species was present in MP cells (Figure 1B-D). Both species were present 

at approximately equimolar ratios, and an anti-HA antibody detected only the 32 kDa 

species (Figure 1D). We reason that any consistent differences between biological 

triplicates should be due to PGRMC1-HA mutations, rather than clonal artifacts. 

Subsequent experiments were performed using respective cell line triplicates 1-3 per 

PGRMC1-HA condition.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/737718doi: bioRxiv preprint 

https://doi.org/10.1101/737718
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Like MP cells, freshly seeded WT cells exhibited predominantly elongated cell 

morphology with some rounded cells. DM and TM cells exhibited primarily rounded 

morphology (Figure 1E), which was reminiscent of the reported MAT of MP cells (Fujita 

et al., 2011). After 72 hours of culture the proportion of round cells in DM and TM 

cultures was reduced, but still elevated relative to WT or MP (not shown). Transient 

transfections with the DM and TM plasmids (but not WT) led to similar increased levels 

of cell rounding across the entire populations of cells by 24 hours after transfection (data 

not shown), indicating that the phosphorylation status of exogenous PGRMC1-HA affects 

cell morphology.  

 

PGRMC1-dependent altered morphology requires Rho Kinase 

The ROCK pathway is required for amoeboid phenotype and migration and its inhibition 

reverses MAT in MP cells (Fujita et al., 2011; Matsuoka and Yashiro, 2014). ROCK 

inhibitor (ROCKI) reversed the rounded phenotype to elongated for DM and TM (Figure 

1F), supporting the hypothesis that morphological transition involves altered actin 

organization. It remains unclear whether the process is truly MAT. 

 

PGRMC1 phosphorylation affects cell motility and invasion 

To further investigate cell plasticity imposed by PGRMC1-HA phosphorylation mutants, 

we examined cell motility via a scratch assay (Cha et al., 1996). MP cells exhibited the 

lowest migration, while DM cell migration was substantially greater than other cell lines 

(Figure 2A-B, File S1). DM cells migrated predominantly as rounded cells, using 

extended filopodia and small pseudopodia, however, a minority of flattened cells 

exhibited more pronounced pseudopodia. Video imaging demonstrated that these cell 

shapes could rapidly interconvert (File S1C). Conversely, DM cells exhibited the lowest 

ability to invade through a Geltrex pseudo-basal membrane (Figure 2C-D). 
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PGRMC1 phosphorylation imposes broad changes 

A total of 1330 proteins were reliably identified by proteomics in at least one sample with 

at least 2 peptides using a combination of information dependent acquisition (IDA) and 

data independent SWATH-MS acquisition. Results are provided as File S2. 

Approximately 50% of variation was explained by two principal components (PCs) in PC 

analysis, which corresponded approximately to “ribosomes and translation” (PC1, 

separated MP&DM from WT&TM) and “mRNA splicing and processing” (PC2, 

separated MP&WT from DM&TM) (Figure S1A, File S3). Of the identified proteins, 243 

differed by 1.5 fold or more between one or more comparisons with p<0.05 (t-test), and 

235 of these withstood PC multiple sample correction. The heat map clustering of those 

243 proteins (Figure 3, File S6) revealed a suite of proteins which strongly discriminated 

between the different PGRMC1-HA-induced conditions. Biological replicates clustered 

tightly in clades of the same cell type, with large distances between clades. We conclude 

that these differences are primarily specific PGRMC1-HA mutant-dependent effects.  

 

Results from those six comparisons of protein abundance between the four sample types 

[1) MP v. WT, 2) MP v. DM, 3) MP v. TM, 4) WT v. DM, 5) WT v. TM, and 6) DM v. 

TM] provide lists of significantly differentially abundant proteins in each pair-wise 

comparison (File S2). WebGestalt enrichment analyses were performed to identify 

pathways or features either significantly more or less abundant (respectively the “red” 

and “blue” lists of proteins for each comparison from columns B of File S4) between each 

of the respective six comparisons at the Benjamini–Hochberg adjusted p-value 

(adjP)<0.001 level in at least one pairwise comparison. WebGestalt mapped features (File 

S5) are plotted against the heat map in File S6 (for primary WebGestalt data see File S5 

and File S6). The results are schematically mapped against the 243 protein heat map in 
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Figure 3, using all pathways that were detected by WebGestalt in any of the inter-sample 

comparisons at the adjP<0.001 level, and including all proteins detected in any of those 

pathways across all 12 comparisons from File S8 at the adjP<0.1 level for respective red 

and blue protein lists from File S4.  

 

WT PGRMC1-HA protein induced the elevated abundance of many proteins involved in 

energy metabolism, including proteasomal components involved in protein degradation, 

and pathways for amino acid, carbohydrate, and fatty acid catabolism (Figure 3). These 

proteins were annotated as both cytoplasmic and mitochondrial. Peroxisomal and 

lysosomal proteins were also upregulated in WT cells. A suite of proteins putatively 

involved in the recognition of mRNA by ribosomes, tRNA aminoacylation, ribosomal 

protein translation, and chaperone-mediated protein folding, was generally less abundant 

in WT and TM than MP and DM cells (Figure 3, File S6). Many of the changes in fatty 

acid and glucose metabolism enzymes resemble the effects of the insulin/glucagon system 

of metabolic regulation.  

 

Many of the above proteins were inversely regulated in the comparison of WT and DM 

cells (Figure 3). The energy metabolizing suite of proteins and some proteins associated 

with translation were less abundant in DM, whereas the T-complex chaperone complex 

as well as some nuclear exportins and importins were elevated in DM cells (Figure S1D-

E). Some differentially enriched pathways were specific for the WT vs. DM comparison. 

Different enzymes associated with heme metabolism were both up- and down-regulated 

while enzymes associated with glycosaminoglycan metabolism were up-regulated in WT 

relative to DM (Figure 3, File S6).  
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Mitochondrial proteins accounted for a large percentage of the proteins more abundant in 

WT than DM cells. Intriguingly, many cytoplasmic proteins were more abundant in WT 

cells than DM (Figure 3, File S6). We also noted higher abundance components of ATP 

synthase in WT and TM cells (Figure S1C), changes of proteins involved in chaperonin 

and microtubule function (Figure S1D), and a group of proteins involved in major 

histocompatibility complex antigen processing and presentation, and proteolysis (Figure 

S1F). The latter are reduced in DM cells and may be associated with their reduced 

invasiveness (Figure 2C-D), which requires future confirmation.  

 

Consideration of the extreme (highest and lowest abundance) differential proteins for 

each cell type offers useful insight into biology (Figure S2). WT and TM cells exhibited 

overlap in the subset of most abundant proteins, which included PSIP1 transcriptional 

coactivator, TOM40 mitochondrial import channel, as well as CDIPT which catalyzes the 

biosynthesis of phosphatidylinositol (circles in Figure S2). One of the WT abundant 

proteins was phosphofructokinase (UniProt P08237), which catalyzes the rate limiting 

reaction and first committed step of glycolysis. The most abundant DM proteins included 

keratin 19, ubiquitin-associated protein 2-like, which is involved in stem cell maintenance 

(Bordeleau et al., 2014), and methyl-CpG-binding protein 2, which was more abundant 

in WT and TM cells, suggesting PGRMC1-mediated changes in genomic methylation 

(see accompanying paper (Thejer et al., 2019)). The least abundant proteins shared a 

surprising mixed overlap between cell types (triangles in Figure S2). TM and WT cells 

shared low levels of Ephrin type-A receptor 2, a tyrosine kinase receptor, which was 

higher in DM (and MP) cells without being a top abundant protein in those cells. WT 

exhibited low levels of signal recognition particle 54 kDa protein, suggesting altered 

translation of endoplasmic reticulum proteins, and AL1A1 retinal dehydrogenase. This 

was notable because both DM and TM exhibited low levels of AL1A3 NAD-dependent 
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aldehyde dehydrogenase involved in the formation of retinoic acid, suggesting alterations 

in retinoic acid metabolism by mutating S57/S181. DM and TM also shared low levels of 

ApoC3 and ApoA1 (Figure S2), probably reflecting common lower lipoprotein synthesis 

by those cells. Taken together, our proteomics analysis revealed significant differences in 

the abundance of enzymes involved in diverse cell processes, many of which are directly 

implicated in cancer biology. The resemblance of WT and TM differential proteomics 

profiles suggests that the DM mutation activates signaling processes that are largely 

dependent upon Y180. (The sole difference between DM and TM proteins is the 

phosphate acceptor oxygen of Y180). Overall, this study indicated that PGRMC1 

phosphorylation status exerts higher order effects in MP cells. 

 

ERR1 activity is not directly affected by PGRMC1 

Some mitochondrial proteins associated with energy metabolism were predicted by 

pathways enrichment analysis to be regulated by estrogen receptor related 1 (ERR1) 

transcription factor (Figure S3A) in the comparisons of DM cells with both WT 

(adjP=0.004) and TM (adjP=0.04) (File S4). Since ERR1 is a steroid receptor, we 

investigated any potential link between the biology of PGRMC1 and ERR1 by attenuating 

ERR1 levels in WT cells by shRNA. This changed cell morphology from predominantly 

elongated to rounded cells (Figure S3B-D). SWATH-MS proteomics revealed that ERR1 

indeed regulated genes differentially abundant between WT and DM cells observed in 

Figure S3A and Figure 3. However, PGRMC1 phosphorylation status affected the 

abundance of only a subset of ERR1-driven proteins.  

 

PGRMC1 phosphorylation affects PI3K/Akt signaling 

Strikingly, proteins associated with PI3K/Akt activity from Figure 3 and File S6 were 

revealed by File S5 to exhibit lower abundance in TM cells (Figure S1B) relative to MP 
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(adjP=0.0063), WT (adjP=0.0001) and DM (adjP=0.0002) cells. We assayed the 

phosphorylation status of two Akt substrates by reverse phase protein array (RPPA). Bad 

is phosphorylated by both PKA at S112 (Harada et al., 1999), and at S136 by Akt 

(Hayakawa et al., 2000). Whereas there was no significant difference between Bad S112 

phosphorylation between DM and TM (Figure 4A), phosphorylated S136 levels were 

lower in TM cells than in all other cells (p<0.001, Figure 4B). It was not possible to 

reliably quantify these levels relative to Bad itself since Bad signals were too low (not 

shown). One of the best attested substrates of Akt is glycogen synthase kinase 3 beta 

(GSK3β), which is phosphorylated on S9 by Akt leading to inactivation of GSK3β (Cross 

et al., 1995). Levels of phosphorylated GSK3β S9 were elevated in WT over MP cells, 

elevated once more by removing the inhibitory CK2 sites in the DM mutation, and 

reduced by the further mutation of Y180 in TM mutant cells (Figure 4C-E). These results 

strengthen the model that PI3K/Akt pathway which is activated in DM cells requires 

phosphorylated PGRMC1 Y180, and is therefore attenuated in TM cells. 

 

PGRMC1 phosphorylation affects FAK activation and HSF levels 

Pathways mapping (File S5) suggested that transcription factor HSF1 activity could be 

involved in the difference between WT v. DM (adjP=0.006). HSF1 has been linked with 

Focal Adhesion Kinase (FAK) activity (Antonietti et al., 2017), and FAK activity is 

dependent upon Rho/ROCK signaling which influences focal adhesion dynamics and 

tumor cell migration and invasion (Joshi et al., 2008). Reverse Phase Protein Array 

(RPPA) measurements showed that FAK1 tyrosine phosphorylation and increased HSF1 

levels were all significantly elevated in WT and TM (Figure 4F-H). Notably, this profile 

resembled the differential proteomics profile of Figure 3, rather than the ROCK-

dependent rounded morphology of Figure 1D. 
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Enhanced DM cell motility requires vinculin  

Proteins of the actin cytoskeleton were more abundant in DM cells (Figure S4A), one of 

which was vinculin (Figure S1B), an actin filament-binding protein associated with cell 

differentiation status, locomotion, and PI3K/Akt, E-cadherin, and β-catenin-regulated 

Wnt signaling in colon carcinoma (Le Clainche et al., 2010; Pal et al., 2019). We 

attenuated vinculin levels in MP, WT, and DM cells via shRNA. Scrambled shRNA 

control (shScr) DM cells exhibited elevated scratch assay motility relative to MP cells. 

However in anti-vinculin shRNA (shVCL) cells, both MP and DM cell motility was 

reduced (Figure S4). These results are consistent with elevated levels of proteins involved 

in the actin cytoskeleton (Figure S4A) contributing directly to the enhanced motility of 

DM cells (Figure 1F-G). However, that hypothesis remains untested except for vinculin. 

 

PGRMC1 affects glucose metabolism 

Figure 3 predicted altered glycolysis activity, which we investigated by glucose uptake 

and lactate production assays. Expression of all PGRMC1-HA proteins (WT, DM, and 

TM) led to significantly lower levels of both measures relative to MP, with DM cells 

exhibiting the lowest levels (Figure 5A-B). PGRMC1 phosphorylation status regulates 

both features, consistent with recently reported regulation of Warburg metabolism by 

PGRMC1 (Sabbir, 2019), which we confirm is regulated by PGRMC1 phosphorylation 

status.  

 

PGRMC1 phosphorylation affects mitochondrial function 

Figure 3 also implied that mitochondria may be affected by PGRMC1 phosphorylation 

status. Naphthalimide-flavin redox sensor 2 (NpFR2) is a fluorophore targeted to the 

mitochondrial matrix. Its fluorescence is elevated approximately 100-fold when oxidized, 

providing an assay for mitochondrial matrix redox state (Kaur et al., 2015). NpFR2 
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revealed that the matrix of WT and TM cells was more oxidizing than MP and DM cells 

(Figure S5A, B), which corresponded with the elevated expression of many nuclear-

encoded mitochondrial proteins in Figure 3.  

 

We then examined mitochondria using the fluorescent marker MitoTracker, whose 

affinity for mitochondria is affected by mitochondrial membrane potential (Δψm) (Perry 

et al., 2011). Flow cytometry revealed the presence of two populations of MitoTracker-

binding cells in each cell type: low and high MitoTracker-binding (Figure S5C-E). These 

populations were about equal for MP, WT, and TM cells, however, DM cells exhibited 

overall lower relative fluorescence level in each population (Figure S5C-D) and a higher 

proportion of cells with higher MitoTracker binding (Figure S5C,E). Notably, higher 

levels of mitochondrial proteins in WT and to some extent TM cells apparently did not 

correspond with higher Δψm caused by actively respiring mitochondria.  

 

Relative to MP cells, the maximal respiratory rate was reduced (between 2 and 3 fold in 

Figure 5C) by expression of DM or WT PGRMC1-HA, but not by TM cells (Figure 5C). 

The relative profiles of basal (Figure S5F) and maximal (Figure S5G) respiratory rates 

for WT and DM were similar, with TM exhibiting rates intermediate to those of MP. This 

profile was observed on three independent comparisons WT/DM/TM. The single 

experiment including MP is shown. We conclude that the altered abundance of 

mitochondrial proteins due to PGRMC1 phosphorylation status detected in Figure 3 was 

accompanied by altered mitochondrial function. However, the relationship is not as 

simple as lower glucose uptake being associated with higher mitochondrial oxygen 

consumption, and may involve alterations in mitochondrial permeability to protons or 

other uncoupling mechanisms, for instance by altered cholesterol content (Cahill and 

Medlock, 2017).  
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PGRMC1 phosphorylation affects mitochondrial morphology and function  

Mitochondria were explored by measuring mitochondrial content (area per cell), size 

(perimeter), and morphology, or form factor (FF). FF is a parameter derived from 

individual mitochondrial area and perimeter, where higher values correspond to a greater 

degree of filamentous than fragmented mitochondria (Gosnell et al., 2016a; Koopman et 

al., 2006). Representative images of mitochondria are shown in Figure 6A. Numbers of 

mitochondria per cell varied greatly, with no significant differences detected between cell 

types (not shown). Over the entire data set, elongated cells exhibited greater 

mitochondrial area, larger mitochondria, and greater average FF (avFF) (Kolmogorov-

Smirnov p<0.0001; not shown). When analyzed according to PGRMC1 status (cell type), 

MP and WT cells were predominantly elongated, and DM and TM were predominantly 

rounded, as expected (Figure 6A-B). We detected no significant differences in average 

mitochondrial area, perimeter or avFF between cell types for elongated cells, however 

rounded cell types exhibited significant differences between the cell types for area, 

perimeter, and avFF (Figure 6B). All cells with avFF < 2.2 exhibited rounded cell shape, 

while all cells with avFF > 2.6 exhibited elongated shape (Figure 6C). The observed 

avFF-associated transition from round to elongated cell shape was discrete for all cells 

except WT, occurring at avFF= 2.4 (MP), 2.2-2.6 (WT), 2.7 (DM) and 2.6 (TM). Notably, 

the single elongated TM cell also exhibited the highest avFF value for TM (Figure 6C). 

Holo-tomographic time-lapse videos (Ali et al., 2016) for each cell type show live 

mitochondria (File S9). PGRMC1 phosphorylation status probably influences 

mitochondrial content, size, and FF (degree of filamentation) by the same mechanisms 

that affect cell shape, consistent with the proposed influence of cytoskeleton on 

mitochondrial morphology and function (Anesti and Scorrano, 2006).  
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PGRMC1 Y180 is required for subcutaneous mouse xenograft tumor growth 

No significant differences in cell proliferation between cell types were observed in culture 

IncuCyte imaging (Figure 7A), or repeated MTT assays (not shown). We established 

subcutaneous xenograft tumors in replicate mice carrying each of sub-lines 1-3 of WT, 

DM and TM (e.g. 4x line 1, 3x line 2, 3x line 3, n=13 per PGRMC1-HA condition), as 

well as n=5 mice with cells expressing the single Y180F mutant (Neubauer et al., 2008), 

or MP cells. Tumors produced by both TM and Y180F cells were significantly smaller 

than those produced by WT or DM cells (Figure 7B-C), indicating that PGRMC1 Y180 

was required for optimal tumor growth, and demonstrating that the cellular responses to 

altered PGRMC1 phosphorylation strongly influence cancer biology. All WT, DM, TM 

and Y180F tumor tissue expressed the PGRMC1-HA proteins (not shown), and therefore 

arose from the injected cells. There were no obvious differences in histology between cell 

types based upon hematoxylin and eosin staining (not shown). 

 

DISCUSSION 

We report new biology associated with the phosphorylation status of PGRMC1-HA 

proteins from Figure 1A profoundly affected cell morphology and migratory behavior. 

The morphotypic change from WT to DM resembled MAT in MP cells, being sensitive 

to ROCKI (Figure 1D). The DM and TM altered morphology is dependent upon activated 

ROCK, which leads to stiffening of cortical actomyosin (Sahai and Marshall, 2003). In 

human glioma cells over-expression of CD99 is implicated in MAT, resulting in rounded 

morphology, increased Rho activity, and enhanced migration (Seol et al., 2012). These 

properties superficially resemble the phenotype of our DM cells (Figure 1E-F), however 

DM cell migration involved pseudopodia and cell adhesion as evidenced in cell migration 

videos (File S1). Very little else is known at the molecular level about the events that 

promote MAT and altered cell motility (Friedl, 2004; Friedl and Wolf, 2010; Parri et al., 
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2009; Taddei et al., 2014). We provide here a global expression study of a possibly MAT-

related process, and show that PGRMC1 phosphorylation status dramatically affects 

mitochondrial morphology and function.  

 

PGRMC1 also influenced mitochondrial function and morphology (Figure 6). The 

elongated cell morphology that predominated in MP and WT cells was associated with a 

higher index of filamentous rather than fragmented mitochondria. Cells with rounded 

morphology and more fragmented mitochondria predominated in DM and TM cells 

(Figure 6). Such changes in mitochondrial function are driven by altered relative rates of 

mitochondrial fission and fusion, leading to mitochondrial fragmentation or elongated 

hypertubulation, respectively (Wai and Langer, 2016). Fragmented mitochondria are 

associated with pathological conditions including cardiovascular and neuromuscular 

disorders, cancer, obesity, and the process of aging, associated largely with altered cell 

differentiation (Wai and Langer, 2016). One of the proteins more abundant in WT and 

TM cells was Opa1 (O60313) (File S6), a protein known specifically to regulate 

mitochondrial fission/fusion, and one that has been reported to interact directly with 

PGRMC1 (Piel et al., 2016).  

 

The strongest driver of mitochondrial morphology appears to have been cell shape, or 

vice versa (Figure 6). The cytoskeleton is thought to influence mitochondrial function and 

morphology (Anesti and Scorrano, 2006), and proteomics pathways mapping suggested 

cytoskeletal changes. WT cells had elevated levels of Tubulin 1alpha (Q71U36), and 

decreased levels of Tubulin alpha-1C (Q9BQE3), Tubulin beta-2A chain (Q13885), 

Tubulin beta-4B chain (P68371) (Figure S1E) relative to DM cells. Rounded DM cells 

exhibited more abundant type II cytoskeletal keratin 8 (P05787), type I cytoskeletal 

Keratin 18 (P05783), and type I cytoskeletal Keratin 19 (P08727) relative to MP cells 
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(which are epithelial markers (Kim et al., 2015)), with WT and TM cells exhibiting 

intermediate keratin levels (see File S6 associated with Figure 3). These keratin 

abundance profiles paralleled the elevated levels of proteins in an enriched actin 

cytoskeleton pathway in DM cells (Figure S1B).  

 

DM cells also displayed elevated levels of proteins in the T-complex protein-1 ring 

complex (TRiC, also known as CCT) (Figure S1E), which contributes to folding of 

proteins including actin and microtubules, and influences deregulated growth control, 

apoptosis, and genomic instability (Boudiaf-Benmammar et al., 2013; Roh et al., 2015). 

TRiC additionally contributes obligatory growth/survival functions in breast (Guest et al., 

2015) and liver (Zhang et al., 2016) cancers. This complex is highly likely to contribute 

to the altered cytoskeletal properties and rounded phenotype of DM cells. TCP1 (P17987, 

Figure S1E) expression is driven by oncogenic PI3K signaling in breast cancer (Guest et 

al., 2015), and we observe both elevated PGRMC1-dependent PI3K/Akt activity and 

TRiC abundance in DM cells (Figure S1E).  

 

In summary, many of the mitochondrial differences observed could be attributable to 

altered cytoskeletal properties. However, the differential mitochondrial functions of 

Figure 5 and Figure S5 did not correspond well with cell shape, indicating that PGRMC1 

also changes complex causative processes driven by more than mitochondrial 

morphology. Results depicted in Figure 3 (as presented in File S5 and File S6) revealed 

that both the ATP synthase subunit beta of the F1 catalytic domain as well as the F0 

proton pore domain were up-regulated in WT cells relative to DM cells (Figure S1C). It 

is possible that the higher Δψm of DM cells is related to low levels of F0/F1 ATPase 

proton channel (Figure S1C), resulting in relatively inefficient proton gradient clearance. 

Mitochondrial cholesterol decreases the permeability of the inner membrane to protons, 
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increasing the efficiency of electron transport chain yield (Cahill and Medlock, 2017). 

Further work will be required to explain the mechanisms underlying the observed 

responses, which we are currently exploring. 

 

Loss of PGRMC1 affects the SREBP-1/fatty acid homeostasis system (Lee et al., 2018), 

and PGRMC1 influences cell surface localization of insulin receptor and glucose 

transporters (Hampton et al., 2018). Chemical proteomics showed that PGRMC2 but not 

PGRMC1 promotes adipogenesis in 3T3-L1 preadipocytes following a gain of function 

interaction with a novel small molecule which displaced heme (Parker et al., 2017). It 

will be interesting to examine whether that treatment mimics the effects of 

phosphorylation. (PGRMC2 possesses cognates to PGRMC1 Y180 and S181, as well as 

heme-chelating Y113 (Cahill, 2017).) 

 

Sabbir recently demonstrated the presence of SUMOylated PGRMC1 primarily in nuclear 

cell fractions (Sabbir, 2019), and Terzaghi et al. (2018) confirmed a nucleolar localization 

for PGRMC1, where it was responsible for nuclear localization of nucleolin which they 

proposed was associated with stress response. The zebrafish knockout of PGRMC1 

results in elevated levels of mPRα mRNA, but decreased levels of the corresponding 

protein (Wu et al., 2018), suggesting that PGRMC1 can indeed affect the translational 

efficiency of certain mRNAs by ribosomes, which is consistent with our pathways 

analysis results, and especially the principal components analysis of Figure S1A which 

predicts that ribosomes and translation contributed most to the differences between cells.  

 

Our results indicate that PI3K/Akt signaling in DM cells required PGRMC1 Y180, which 

was the sole difference to TM cells. PGRMC1 has long been recognized as a modulator 

of Akt activity, with cell type-specific effects (Hampton et al., 2018; Hand and Craven, 
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2003; He et al., 2018; Liu et al., 2009; Neubauer et al., 2008; Zhu et al., 2013; Zhu et al., 

2017). This predicted activation of signals by removal of the putative inhibitory CK2 

consensus sites in the DM protein (Cahill et al., 2016b; Neubauer et al., 2008) was 

dependent upon Y180 because TM (which differs from DM by a single oxygen atom) 

exhibited a protein expression profile that was more similar to WT than DM (Figure 3). 

Furthermore, Y180 is very important for the growth of subcutaneous tumors (Figure 7). 

In a methylomics study of these cells in an accompanying paper, the most significantly 

down-regulated KEGG pathway in the TM/DM comparison was PI3K-Akt (Thejer et al., 

2019), consistent with PI3K/Akt activation requiring PGRMC1 Y180, which was 

required for tumor growth (Figure 7). 

 

Interestingly, PGRMC1 knockdown in human pluripotent stem cells (hPSCs) led to an 

increase in GSK3β inhibitory phosphorylation (Kim et al., 2018). Examination of 

PGRMC1 phosphorylation status in that system is merited, where PGRMC1 suppressed 

the p53 and Wnt pathways to maintain hPSC pluripotency. Similarly to our results, those 

authors concluded that “that PGRMC1 is able to suppress broad networks necessary for 

multi-lineage fate specification.” Our hypothesis suggests that PGRMC1 Y180 

phosphorylation and PI3K/Akt activity could be associated with elevated GSK-3β Ser9 

phosphorylation and β-catenin signaling in some cancers (Pal et al., 2019).  

 

The stem cell-like zygote (most similar animal cells to the unicellular animal ancestor) 

expresses cross-phylum conserved genes involved in processes such as cell cycle, mitosis, 

and chromatin structure (Yanai, 2018). All of these processes can be influenced by 

PGRMC1 (Cahill et al., 2016a). During animal development later embryological stages 

involve the induction of conserved germ layer-specific genes such as those for muscle 

(Yanai, 2018). This may be related to DM actin biology seen in our system, and suggests 
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the hypothesis that CK2-like-site mediated negative regulation of PGRMC1 could be 

involved in these embryological processes, which merits further investigation. 

 

Our initial hypothesis related to differential phosphorylation of PGRMC1, being 

potentially spatially and temporally associated with the onset of the Warburg effect 

(Neubauer et al., 2008). It is notable that the Warburg effect resembles a reversion to 

stem-cell-like metabolism (Riester et al., 2018). While this manuscript was in preparation, 

Sabbir showed that PGRMC1 post-translational modification status in HEK293 cells 

responds to P4 treatment, which was accompanied by a PGRMC1-dependent increase in 

glycolysis (Sabbir, 2019). Because the phospho-acceptor amino acid Y180 has been 

conserved in PGRMC1 proteins since the evolutionary appearance of the differentiation-

inducing Spemann-organizer (Hehenberger et al., 2019), we believe it likely that 

PGRMC1 Y180-regulated modulation of metabolic and growth control that we have 

manipulated could represent a major newly identified foundational axis of animal cell 

biology, whose perturbation is inconsistent with the maintenance of differentiated states 

acquired during the subsequent evolution of complex body plans. 

 

Although we can confidently deduce the existence of a PGRMC1 signal network, as yet 

we have identified neither immediate upstream PGRMC1 effectors nor downstream 

targets. In an accompanying paper (Thejer et al., 2019), we show that the cells 

characterized in this paper differ dramatically in genomic methylation and mutation rates. 

Future studies should urgently explore the relationship between PGRMC1 signaling and 

diseases such as cancer, diabetes, Alzheimer’s disease, and others (Cahill et al., 2016a).  
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FIGURE LEGENDS 

 

Figure 1. MIA PaCa-2 pancreatic cancer cells morphology is affected by PGRMC1 

phosphorylation status.  
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(A) PGRMC1-HA proteins constructed for this figure. TMH: Trans-membrane helix. 

HA: the C-terminal 3x hemaglutinin tag. 

(B) Detection of exogenous PGRMC1 expression levels by western blot (upper panel). 

Equal loading is controlled by quantifying beta actin (lower panel). The results show 

three totally independent stably transfected cell lines per plasmid from (A). Open arrow: 

Exogenous PGRMC1-HA (Ex.). Shaded arrow: endogenous PGRMC1 (End.). Filled 

arrow: beta actin. The molecular weight ladder is Bio-Rad 1610377 Dual Xtra 

Standards. 

(C) Box plots quantification of replicate gels of (B) with signals normalized to beta 

actin from the same respective lanes. n=4 lanes for MP and n=6 for WT, DM and TM 

(replicates of respective lines 1-3 per condition). There were no significant differences 

(ns) except for the exogenous band in MP (ANOVA, post-hoc Dunnet’s T3). 

(D) Western blot quantification of HA-tagged exogenous PGRMC1, following B but 

detecting PGRMC1 with anti-HA antibody. The molecular weight ladder is Abcam 

ab116028 Prestained Protein Ladder. 

(E) PGRMC1 mutant protein expression alters MIA PaCa-2 cell morphology. 

PGRMC1-HA-expressing stable cells (respective lines 1 from B) or MP cells were 

stained with a FITC-tagged anti-HA antibody (Anti-HA) and imaged by confocal 

microscopy. DNA was stained with DAPI. Cells were also imaged in differential 

interference contrast (DIC) microscopy mode. The respective left panels show merged 

images of all 3 channels. 

(F) The rounded phenotype of double and triple mutant (E) was reversed to elongated 

phenotype after 125µM ROCKI addition, but not by addition of DMSO vehicle control. 
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Figure 2. PGRMC1 phosphorylation status affects motility and invasion.  

(A) DM cells exhibit enhanced motility in scratch assay. Representative results for 
scratch assays after 36 hr of cell migration. Cells in the boxed area of the scratched void 
area for each image were counted. 

(B) Scratch assay cell migration results. Box plots of cell migration into the scratch void 
box areas depicted in (A) for multiple replicates. n=12 (MP), or 4 replicates each of 
sublines 1-3 for WT and TM (n=3x4=12). The table shows the results of 1 way 
ANOVA with post hoc Dunnet’s T3 p-values. Video files of cell migration are available 
in File S1. 

(C) DM cells exhibit reduced invasion in Geltrex invasion assay. Representative images 
of crystal-violet stained cells in the lower surface of the transwell insert. 

(D) Boxplots of invasion assay results from (C) for replicates, as produced by SPSS 
software. n=30 (MP), or 10 replicates each of sublines 1-3 for WT and TM 
(n=3x10=30). The table shows the Kruskal-Wallis p-values for pairwise comparisons. 
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Figure 3. Pathways analysis of SWATH-MS proteomics results.  

Pathways significantly enriched at the adjP>0.001 level between all 6 comparisons of 

“red” and “blue” differential proteins (red = higher abundance, blue = lower abundance, 

white = equal abundance). Top left: the proteomic heat map of 243 significantly 

differential proteins. A color code for WebGestalt pathways is given at top right. 

Bottom: WebGestalt pathways mapping. This image is derived from File S6, which 

contains all protein and WebGestalt pathway identities.   
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Figure 4. RPPA measurements of protein and phosphorylated protein levels.  

(A-D, F-H) Average reverse phase protein array (RPPA) normalized fluorescent 
intensity (NFI) from the indicated antibodies (described in supplemental methods) is 
plotted from 6 replicate measurements. NFI is normalized to protein content. Statistical 
calculations for normally distributed data were made using one way ANOVA, and post-
hoc Bonferroni (BF) for equal variances (all variances were equal). For non-parametric 
data, Kruskall-Wallis (KW) pairwise comparisons were calculated for 24 unrelated 
samples. * p<0.05; ** p<0.01, *** p<0.001. Non-phosphorylated Bad levels could not 
be accurately determined because signal values were less than three times background. 
(E) The ratio of average NFI of D relative to C. Labels follow the above.  
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Figure 5. PGRMC1 phosphorylation status affects glucose uptake, lactate 
secretion, and mitochondrial function. 

(A) Glucose uptake by cell lines using the Cayman “Glycolysis” kit. The boxplots 
represent four technical replicates each for each of independent stably transfected sub-
lines 1-3 of each condition WT, DM and TM (lines from Figure 1). i.e. n=4x3 = 12 per 
condition. For MP cells, 12 replicates of the MP cell line were performed. There was 
significant difference between all means (Kruskal-Wallis p<0.0001, pairwise two-
sample Kolmogorov-Smirnov Tests p<0.0002). 
 
(B) Lactate secretion by cell lines. Details follow (A), except duplicates of each stable 
cell line were measured (n=3x2 = 6 per condition). Inter cell-type comparison tests 
revealed that the means of all pairwise comparisons were significantly different from 
one another (ANOVA, post-hoc Dunnet’s T3, p<0.003), except the WT-TM comparison 
which was not significant (p=0.211). 
 
(C) The maximal respiratory capacity of mitochondria is affected by PGRMC1 
phosphorylation status. Mitochondrial oxygen consumption of respective independent 
clonal stable lines C1 of each PGRMC1-HA mutant condition WT, DM and TM. 
Arrows indicate the time of addition of ATP synthase inhibitor oligomycin, Δψm 
uncoupler FCCP, and electron transport chain inhibitors rotenone & antimycin A. OCR: 
oxygen consumption rate (pmol/min normalized per μg protein), n=5; +/- s.d.  
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Figure 6. PGRMC1 phosphorylation influences mitochondrial and cell morphology 
together.  

(A) Images show cells with close to average form factor (avFF) values for elongate or 
rounded cells of each cell type. The numbers of cells scored in each class are indicated. 
All cell images are reproduced to the same scale. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/737718doi: bioRxiv preprint 

https://doi.org/10.1101/737718
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

(B) Elongated and Round cells from (B) examined according to cell type. The top left 
panel shows average percentage elongated cells scored for three independent biological 
replicate cell lines per cell type across all 3 replicates (n(Σ1-3)) corresponding to the 
given n values in (A). The remaining panels showing the distribution of cells in each 
shape and type category of Area, Perimeter and FF. Kruskal-Wallis analysis revealed no 
significant differences at the p<0.05 level between any elongated cell type comparisons 
(ns), whereas all cell types exhibited significant differences for round cells (Kruskal-
Wallis, P<0.001). The accompanying Kruskal-Wallis post-hoc pairwise comparison p-
values for round cells are given in the respective tables. 
 
(C) AvFF per cell plotted including cell shape. The values where cells transition 
between round and elongated morphology (avFF 2.2-2.6) are indicated by dotted lines. 
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Figure 7. PGRMC1 Y180 contributed to growth of subcutaneous mouse xenograft 
tumors.  

(A) There are no differences in cell doubling time in culture. Replicates of stable cell 
lines 1-3 for each condition were measure to give n=6. There were no significant 
differences between cell conditions. 

(B) Typical tumors produced by each respective class of cell. 

(C) Box plot of the distribution of tumor sizes among mice injected with 2x106 cells of 
each of the cell lines. For WT, DM and TM the results depict 4x each of lines 2 and 3, 
and 5 mice from line 1. MP and Y180F each represent 5 replicates of a single cell line. 
The box shows pairwise post-hoc Dunnet’s T3 p-values after one way ANOVA. 
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STAR METHODS 

 

Plasmid preparation 

Plasmids pcDNA3.1-PGRMC1-HA (wild type: WT), pcDNA3.1-PGRMC1-HA_Y180F 

(Y180F), pcDNA3.1-PGRMC1-HA_S57A/S181A (double mutant, DM) and pcDNA3.1-

PGRMC1-HA_Y180F (Y180F) (Neubauer et al., 2008) have been described. The triple 

mutant S57A/Y180F/S181 (TM) was constructed by Genscript (Honk Kong) using the 

DM plasmid as the template and introducing codon TTC for F180. PGRMC1-HA open 

reading frames were reconfirmed by DNA sequencing at Monash Micromon DNA 

Sequencing Facility (Clayton, Vic., Australia) using the 5ꞌ T7 and 3ꞌ BGH sequencing 

primers specific for the parental vector. PGRMC1-HA plasmids were transformed into 

Escherichia coli Top10 strain, and cultured overnight at 37°C on 1% agar plates 

containing Luria broth (LB) media (Invitrogen) and 50 μg/mL ampicillin. A single colony 

was picked and bacteria were grown in 250 ml culture by aeration overnight at 37°C in 

LB media. Plasmid DNA was isolated by GeneJet Maxiprep Kit (ThermoScientific) 

following the manufacturer’s protocol. Plasmid DNA concentration was measured by 

using Nanodrop (Thermo Scientific).  

 

Cell culture 

MIA PaCa-2 (MP) cell identity was verified as MIA PaCa-2 (ATCC CRL-1420) by the 

MHTP Medical Genomics Facility (Monash University, Melbourne) following the ATCC 

Standards Development Organization document ASN-0002 for cell line identification via 

short tandem repeat profiling. MP cells were maintained in Dulbecco's Modified Eagle's 

medium (DMEM-high glucose, Sigma-Aldrich, D5796) supplemented with 10% Foetal 

bovine calf serum (Sigma-Aldrich, F9423) and 1% penicillin-streptomycin (Sigma-

Aldrich, P4333) (complete DMEM) at 37°C and 5% CO2 in a 150i CO2 incubator 

(Heracell, Lane Cove NSW). Cell doubling times were estimated by 3-(4,5-

dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay or by IncuCyte, as 

described (Quin et al., 2016). Mitochondrial respiratory capacity was measured using a 

Seahorse Extracellular Flux analyzer XF24 (Seahorse Biosciences).  

 

Transfection and stable cell line generation: 
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Under our culture conditions, MP cells exist in culture as flattened adherent cells of 

mesenchymal shape, a minority of rounded adherent cells, and a small population of 

rounded suspension cells. Plating the suspension cells regenerates a similar population 

distribution (not shown). On the day before transfection, 2x106 MP cells were seeded onto 

a 6-well plate. The cells were transfected at 70-80% confluency. Before transfection, cells 

were washed with Dulbecco's phosphate-buffered saline (PBS, Sigma-Aldrich, D8537) 

and maintained in antibiotic-free Dulbecco's Modified eagle Medium high glucose 

(DMEM, Sigma-Aldrich, D5796) containing 10% bovine calf serum (Sigma-Aldrich, 

12133C) and 1% penicillin/streptomycin (Sigma-Aldrich, P4458) (complete DMEM). In 

separate transfections, 4μg each of respective PGRMC1-HA plasmids (WT, DM or TM) 

and Lipofectamine 2000 (Life Technologies, 11668-019) were mixed at 1:2 ratio and 

incubated for 25 min at room temperature. The mixture was then added drop-wise to the 

wells of the culture plate. After 6 hours of incubation, cells were washed with PBS and 

cultured at 37°C and 5% CO2 in complete DMEM for 48 hours, after which cells were 

harvested and plated in three fold limiting dilution in complete DMEM containing 50 

μg/ml Hygromycin B (EMD Millipore, 400052) in 96 well plates. Cells were cultured at 

37°C and 5% CO2 for 2 weeks, with regular media changes containing complete DMEM 

with Hygromycin B every 3 days to select for stable integration events. Typically 8 

independent stably transfected cell lines were expanded for each of PGRMC1-HA WT, 

DM and TM and 3 lines with similar levels of PGRMC1-HA expression were selected by 

Western blot. 

Cells were frozen 0.5 – 1.0 mL at -80°C in Bambanker (Novachem, #306-14684) at 2x106 

cells/mL. Frozen cells were introduced back into culture by thawing at 37°C for 20 

seconds followed by addition to 5 ml of complete media and low speed centrifugation at 

180 x g for 3 mins at 25°C. Pelleted cells were resuspended in 6mL fresh complete media 

and seeded in 25 cm2 flasks.  

Because of the dramatic effects observed, MP cells are included in our experiments as a 

literature reference point. MP differ from WT cells by not having undergone hygromycin 

selection, and by lack of overexpression of PGRMC1-HA. Therefore we cannot ascribe 

differences between MP and WT cells to PGRMC1-HA expression. The effects of the 

DM and TM PGRMC1 mutations are assessed relative to WT control levels. 

 

shRNA lentiviral production 
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Lentiviral-delivered shRNAs were constructed using Mission TRC2-pLKO-Puro series 

lentiplasmids (SHCLND, Sigma-Aldrich) targeting ERR1/ESRRA (TRCN0000330191, 

GAGAGGAGTATGTTCTACTAA), vinculin (shVCL) (TRCN0000290168, 

CGGTTGGTACTGCTAATAAAT) or non-target scrambled shRNA (shScr) (SHC202; 

CAACAAGATGAAGAGCACCAA). MP and DM shVCL cells were obtained at first 

attempt, however, despite three attempts, WT cells could not be established. To generate 

virus particles, we co-transfected HEK293 cells with the shRNA plasmids and helper 

plasmids using Lipofectamine 2000 (Invitrogen, 11668-027). Prior to transfection, 6 well 

plates were treated with 50µg/mL D-Lysine overnight. Next day, 1x106 HEK293 cells 

were seeded per well and incubated overnight at 37°C in complete medium. Transfection 

mixture A contained 4 μg plasmid mixture consisting of 2.5 μg target or shScr shRNA 

lentiplasmid, 0.75 μg Pax, 0.3μg Rev and 0.45μg VSV-G helper plasmids (Gurusinghe et 

al., 2015) in 250 μL antibiotic-free medium. Transfection mixture B contained 8 μL 

Lipofectamine and 242 μL antibiotic-free medium. After 5 min incubation at 25°C, 

mixtures A and B were gently mixed and incubated for 25 min at 25°C. HEK293 culture 

medium was removed, cells were washed with PBS, and 2 mL fresh antibiotic-free 

medium was added followed by addition of combined transfection mixture to the cells, 

dropwise with gentle shaking, followed by incubation for 6 h at 37°C. After incubation, 

the medium was replaced with complete medium overnight at 37°C. Virus particles were 

harvested by collecting culture medium followed by the addition of new medium every 

24 h for 72 h. Collected media for each culture were pooled, filtered through a 22 μM 

filter, aliquoted into 1 mL fractions, and frozen at -80°C. 

 

shRNA lentiviral transduction 

Briefly, 1x105 MP, WT, or DM cells per 24 plate well were seeded in 1 mL complete 

DMEM medium and grown to 60% confluency. The medium was removed, and replaced 

by 1 mL of medium per well, containing 2-fold serially diluted virus particles in adjacent 

wells, plus 5µg/mL Polybrene (hexadimethrine bromide, Sigma-Aldrich 107689) to 

enhance viral transduction. After incubation for 24 hours, the medium was removed and 

the cells were washed twice with PBS after which fresh medium was added supplemented 

with 1.5 µg/mL Puromycin, which was replaced every 48 h for 1 week. Cells from wells 

transduced with the lowest dilutions of respective virus particles that survived selection 

were expanded, and stocks frozen at -80°C in Bambanker. 
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Scratch migration assay 

MP cells or stable transfected monoclonal MP cell lines expressing PGRMC1-HA WT, 

DM or TM proteins (1x104 cells) were seeded in a 24 well plate. The monolayer of cells 

at more than 90% confluency was subjected to serum starvation for 2 hours. A scratch 

was created in the middle of the monolayer by a sterile p200 tip and washed twice with 

PBS to remove floating cells. Complete media was then added. The cell monolayer was 

incubated for 36 hours to allow cell migration into the scratched area. Photographic 

images were taken at 0 and 36 hours using an inverted phase microscope (Nikon Eclipse 

Ti-U). Cells in the boxed areas of Figure 2A were manually scored from printed images. 

Cell treatments included 125 nM Y-27632 dihydrochloride (Abcam, ab120129, Rho 

Kinase inhibitor: ROCKI) or vehicle control (DMSO). For video files the cells were 

incubated at 37°C and 5% CO2 for 36 hr in a stage top electrically heated chamber 

(Okolab H301-NIKON-NZ100/200/500-N) including transparent heated lid (H301-EC-

HG-LID), with a 24-well Nunc/Greiner plate base adapter (24MW-NUNC) and a 

chamber riser, for a working distance of 28 mm. The chamber was regulated by a Control 

Unit (Okolab H301-TC1-HMTC) with Digital CO2 controller (Okolab DGT-CO2 BX) 

and Air Pump (Okolab, OKO-AP) and was inserted to a Nano-Z100-N Piezo stage (Mad 

City Labs) on a motorized XY stage (Nikon TI-S-ER). Images were taken every 10 

minutes for 36 hours with a 10× (0.45 NA) Plan Apo objective using the transmitted light 

detector (TD) on a Nikon Ti Eclipse Confocal microscope controlled by NIS Elements 

V4.10 software (Nikon).  

 

Proteomics sample preparation 

Three independent stable transfected lines of each PGRMC1-HA-expressing cell type, 

as well as triplicates of the MP parental cell line, were measured in technical replicate 

data-dependent and independent data acquisition SWATH-MS modes on a 5600 

TripleTof™ mass spectrometer (ABSciex). Global proteomics analysis was carried out 

at the Australian Proteome Analysis Facility (APAF). Cells were grown in Wagga 

Wagga to 80% confluency in 75 cm2 flasks. Three separate cultures of MP cells 

(passages 8, 9 & 11) and three lines of each PGRMC1-HA WT, DM and TM cells were 

used (independent biological triplicates). Cells were harvested and frozen cell pellets 

were shipped on dry ice to APAF for Mass spectrometric analysis. Cell pellets were 

lysed using 200 μL of sodium deoxycholate buffer (1% in 0.03M triethyl ammonium 

bicarbonate), and DNA digested using 0.5 μg of benzonase. Direct detect assay (EMD 
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Millipore, DDAC00010-8P) was performed on the samples and 100 μg of each sample 

was taken for digestion. Samples were reduced with dithiothreitol (5 mM), alkylated 

with iodoacetamide (10 mM) and then digested with 4 μg trypsin for 16 hours at 37°C. 

The digested sample was acidified and centrifuged to remove the sodium deoxycholate. 

Samples were then dried and resuspended in 100 μL of loading buffer (2% acetonitrile 

0.1% formic acid). Individual samples for SWATH analyses were diluted 1:4 into 

loading buffer and transferred to a vial. Each sample was measured in technical 

replicate. For IDA runs a pool was made for each group (MP, WT, DM, and TM) by 

taking equal portions from each biological replicate and diluting 1:4 in loading buffer. 

 

Proteomic Information dependent acquisition 

Tryptic peptides were analyzed on a 5600 TripleTof™ mass spectrometer (ABSciex). 

Chromatographic separation of peptides was performed on a NanoLC-2Dplus HPLC 

system (Eksigent, Dublin, CA) coupled to a self-packed analytical column (Halo C18, 

160Å, 2.7 μm, 75 μm x 10cm). Peptide samples (4 μg of total peptide amount) were 

loaded onto a peptide trap (Opti-trap Cap 0.5mm x 1.3mm, Optimize Technologies) for 

pre-concentration and desalted with 0.1% formic acid, 2% ACN, at 10 µL/min for 5 

minutes. The peptide trap was then switched into line with the analytical column and 

peptides were eluted from the column using linear solvent gradients with steps, from 

98% Buffer A (0.1% formic acid) and 2% Buffer B (99.9% acetonitrile, 0.1% formic 

acid) to 90% Buffer A and 10 % Buffer B for 10 minutes, then to 65% Buffer A and 

35% Buffer B at 500 nL/min over a 78 min period. After peptide elution, the column 

was cleaned with 95% Buffer B for 15 minutes and then equilibrated with 98% Buffer 

A for 15 minutes before the next sample injection. The reverse phase nanoLC eluent 

was subject to positive ion nanoflow electrospray analysis in an IDA mode. Sample 

analysis order for LC/MS was DM1, DM2, DM2, DM3, DM3, MP2, MP2, MP3, MP3, 

TM2, TM2, TM3, TM3, WT1, WT1, WT2, WT2, WT3, WT3, DM1, MP1, MP1, TM1, 

TM1.  

In the IDA mode a TOFMS survey scan was acquired (m/z 350 - 1500, 0.25 second), 

with the 10 most intense multiply charged ions (2+ - 5+; counts >150) in the survey 

scan sequentially subjected to MS/MS analysis. The selected precursors were then 

added to a dynamic exclusion list for 20s. MS/MS spectra were accumulated for 50 

milliseconds in the mass range m/z 100 – 1500 with rolling collision energy. 
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Proteomic Data independent acquisition (SWATH) 

Samples were analyzed by Sequential Window Acquisition of all Theoretical Mass 

Spectrometry (SWATH-MS) (Gillet et al., 2012) proteomics profiling in duplicate, with 

the chromatographic conditions as for IDA analysis above. The reverse phase nanoLC 

eluent was subject to positive ion nanoflow electrospray analysis in a data independent 

acquisition mode (SWATH). For SWATH MS, m/z window sizes were determined 

based on precursor m/z frequencies (m/z 400 – 1250) in previous IDA data (SWATH 

variable window acquisition, 60 windows in total). In SWATH mode, first a TOFMS 

survey scan was acquired (m/z 350-1500, 0.05 sec) then the 60 predefined m/z ranges 

were sequentially subjected to MS/MS analysis. MS/MS spectra were accumulated for 

96 milliseconds in the mass range m/z 350-1500 with rolling collision energy optimized 

for lower m/z in m/z window +10%. To minimize instrument condition caused bias, 

SWATH data were acquired in random order for the samples with one blank run 

between every sample. 

 

SWATH library generation 

The LC-MS/MS data of the IDA data were searched using ProteinPilot (version 4.2) 

(Sciex) and combined into a single search report file. The files were searched against 

Human entries in the Swissprot 2014_04 database (released 16/04/2015, containing 

545,388 entries). The search parameters were selected as follows: iodoacetamide 

cysteine alkylation, trypsin digestion, Triple TOF 5600 instrumentation, biological 

modifications, thorough search and false discovery rate enabled.  

 

SWATH data processing 

SWATH data were extracted using PeakView (version 2.1, Sciex) with the following 

parameters: Top 6 most intense fragments of each peptide were extracted from the 

SWATH data sets (75 ppm mass tolerance, 10 min retention time window). Shared 

peptides were excluded. After data processing, peptides (max 50 peptides per protein) 

with confidence ≥ 99% and FDR ≤1% (based on chromatographic feature after fragment 

extraction) were used for quantitation. The extracted SWATH protein peak areas were 

normalized to the total peak area for each run and subjected to t-test to compare relative 
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protein peak area between the samples. Protein t-test with p-value smaller than 0.05 and 

fold change larger than 1.5 were highlighted as differentially expressed. The analysis of 

four different cell types was treated as six separate paired comparisons: 1) MP vs. WT, 

2) MP vs. DM, 3) MP Vs. TM, 4) WT vs. DM, 5) WT vs. TM, and 6) DM vs. TM. 

Additionally, a similar method for determining differential expression was run at the 

peptide level, with the peptide level fold changes then averaged for each protein. The 

peptide level analysis is more conservative, as peptide level p-values are only generated 

when a protein was identified by at least two proteins. Peptide level data were used for 

this study. The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner 

repository with the dataset identifiers PXD014716 (Figure 3) and PXD014789 (Figure 

S3). Identical methods were employed to quantify effects of the shRNA-mediated 

attenuation of ERR1 versus scramble shRNA expression.  

 

WebGestalt enrichment analyses 

Gene Ontology (GO) and pathway enrichment analysis were conducted on differentially 

abundant proteins from Figure S2D using the WEB-based GEne SeT AnaLysis Toolkit 

(WebGestalt) platform (http://bioinfo.vanderbilt.edu/webgestalt/) (Wang et al., 2013). 

Figures or Supplementary Figures depicting or relying on WebGestalt results describe 

supplementary data files available online that contain the respective original WebGestalt 

analysis files. Attempting to identify the most important driving contributions to the 

phenotypic alterations observed, a complementary WebGestalt analysis was also 

performed at the adjP<0.001% level, but employing the subsets of proteins which were 

detected to be either significantly up- or down-regulated (“red” and “blue” lists of 

proteins for each comparison from File S1). The UniProt protein IDs from respective 

proteomics comparisons were uploaded as text files which accompany the respective 

WebGestalt supplementary data files. KEGG, Pathway Commons, and Wiki Pathways 

were analyzed at the 5% level. GO and transcription Factor analyses were also 

performed for comparisons of differentially up- or down-regulated proteins for each 

pair-wise comparison between cell types at the 0.1% and 10% levels. The following 

WebGestalt settings were employed: Organism: hsapiens; gene Id Type: entrezgene; 

Reference Set for Enrichment Analysis; entrezgene_protein-coding; Significance Level: 

(variable see individual analysis descriptions), Statistical Method: Hypergeometric, 
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Multiple Test Adjustment: Benjamini-Hochberg (BH), Minimum Number of Genes for 

a Category: 3.  

 

Pathway enrichment analyses can consider either a) all differential proteins together 

(including both up- and down-regulated proteins in the one analysis), or b) can examine 

the higher abundance and lower abundance proteins in separate analyses for each 

comparison (“red” or “blue” analyses for each comparison). Our WebGestalt pathway 

analysis strategy of Figure 3 pursued the second of these alternatives. In the first 

analysis, all proteins found to be differential (both up- and down-regulated) between 

two samples in any six of the analyses were entered as a protein list to WebGestalt, and 

pathway enrichment analysis was performed with multiple sample correction at the 

Benjamini and Hochberg (BH) adjusted p (adjP) significance level of 0.001 for KEGG, 

Pathway Commons, and Wikipathways for each of the six basic cell-type comparisons. 

 

Twelve separate WebGestalt analyses were performed for Figure 3, with enrichment 

analyses including KEGG, PC, WikiPathways, as well as Transcription Factor and GO 

cellular component. The schematic representation of Figure 3 shows pathways 

identified as significantly enriched for at least one of 12 comparisons (6x more 

abundant “red” and 6x less abundant “blue”) between 1) MP vs. WT, 2) MP vs. DM, 3) 

MP vs. TM, 4) WT vs. DM, 5) WT vs. TM, and 6) DM vs. TM. The original 

WebGestalt analyses at adjP<0.001 are available as File S7. The pathway mapping for 

all significantly detected features between all comparisons detected at adjP<0.001 is 

available as File S5A. Another WebGestalt analysis was performed at adjP<0.1 

(available as File S8) and the significances of each pathway identified in File S5A at the 

adjP<0.001 level were then recorded for all comparisons at the adjP<0.1 level in File 

S5B. The analysis results are presented for reference as File S4B as drawn from File S7. 

That information was used to assign statistical significance in the pathways map for all 

features that were identified at the adjP<0.001 level in any one comparison, across all 

12 comparisons at the adjP<0.1 level. These data were then used to map all proteins 

from all pathways and all comparisons of File S5B to produce the original image of 

Figure 3 in Microsoft Excel, which is available as File S6 and contains all protein and 

pathway identities. 
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Mapping pathways to the expression heat map 

The matrix of protein membership to pathway or functional group category is a 

resulting sparse matrix with 0/1 indicating that the respective protein is/is not present in 

the respective category. This matrix was clustered using the hclust implementation in 

the R Base Package (www.r-project.org/), using a binary distance and complete linkage, 

to reorder the columns (pathways in this case) according to the proportion of shared 

proteins. The resulting cladogram including overlapping features identified by all 

WebGestalt analyses appears to the right of pathways in Figure 3, and with complete 

accompanying protein and pathway identities in File S5. 

 

Principal Components Analysis on Proteomics results 

Principal component analysis was used to examine the largest contributions to variation 

in the protein measurements. Wilcoxon rank-sum tests were used to identify the 

pathways that were positively or negatively associated with the principal component 

scores. 

 

Sample Preparation for Western blots  

Approximately 70% confluent cells in a T75 flask were washed twice with chilled PBS 

buffer and incubated with 500 µL radio immunoprecipitation assay buffer (RIPA buffer) 

(Sigma-Aldrich, R0278) supplemented with protease and phosphatase inhibitor cocktail 

(Thermoscientific, 88668) following manufacturer’s recommendations. After scraping, 

the lysate was centrifuged at 8000g for 20 minutes (Hermle Centrifuge Z233 M-2) at 

4°C. Protein concentration was determined using the Pierce BCA protein assay kit 

(ThermoFisher, 23225) following the manufacturer’s instructions. 20 µg cell lysates 

were each mixed with 2x Laemmli loading buffer (Sigma-Aldrich, S3401) at a 1:1 ratio 

to give final volume 20 μL, followed by denaturation at 95°C for 5 minutes in a digital 

dry bath heater. Lysates were loaded immediately to a 10% SDS-PAGE gel. For HA 

western we used 17 well gels (Life technologies, NW04127), for PGRMC1 Western 

blots we used 15 well gels (Bio Rad. 456-1069), for vinculin and ERR1 Western blots 

we used 10 well gels (Bio Rad 456-1096). Electrophoresis was at 150V for 45 min. 

Protein was transferred onto PVDF membranes (Bio-Rad, 1620174) with a Trans-Blot 

Turbo transfer system (Bio-Rad, Gladesville NSW) for 7 min by Trans-Blot® Turbo 

RTA Mini LF PVDF Transfer Kit (Bio-Rad, 1704274) or wet transferred in 25 mM 
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Tris, 192 mM glycine, 20% (v/v) methanol (pH 8.3) (1x Towbin buffer) at 20V for 2.5 

hours on mini trans-blot cell (Bio Rad, 1703930) cooled on ice. 

 

Western blots  

Membranes were blocked with TBS-T (0.1% Tween-20 in 1× Tris-buffered saline) 

containing 5% Woolworths Instant Skim Milk Powder (Woolworths, Wagga Wagga, 

NSW, Australia) for 1 hr and incubated overnight at 4ºC with primary (1°) antibody. 

After washing 3 times with TBS-T, blots were incubated with secondary (2°) antibody 

for 1 hr at room temperature. Proteins were detected by the following methods. For 

chemiluminescence detection the membranes were incubated with Clarity Max Western 

ECL Substrate (Bio-Rad, #1705062) for 5 min for detection by enhanced 

chemiluminescence using a Bio-Rad ChemiDoc MP imaging system (Bio-Rad, 

Gladesville NSW). Fluorescence detection was performed on the ChemiDoc (at the 

indicated wavelength). Molecular weight standard proteins for gels imaged for 

fluorescence or chemiluminescence were detected on the ChemiDoc using the IRDy680 

channel. Colorimetric detection (Vinculin and ERR1 Western blots) was performed by 

incubation of membranes with 3 mL Tetramethylbenzidine (TMB) (Sigma-Aldrich, 

T0565) for 5 minutes. These images were captured by Molecular Imager Gel Doc XR+ 

System (Bio-Rad, Gladesville NSW). Multi-channel ChemiDoc images were generated 

with the Bio-Rad Image Lab Software. Some dual channels images were manipulated in 

Adobe Photoshop CC 2018 (Adobe Systems Inc.) by reducing intensity in either red or 

green channel to lower background in the published image. Adjustments were applied 

identically over all image pixels so as to not alter the relative intensities of any bands. 

The following primary (1°) and secondary (2°) antibody pairs were used (at the 

specified dilutions) with the indicated detection methods. For PGRMC1 Western: 1° 

goat anti-PGRMC1 antibody (Abcam, ab48012) (1:1000) and 2° rabbit anti-goat 

secondary antibody (Abcam, ab6741) (1:4000) detected by chemiluminescence. After 

detection, membranes were blocked with TBS-T overnight and then incubated with 1° 

mouse anti-beta actin (Sigma-Aldrich, A5541) (1:2000) and 2° goat anti-mouse IgG 

H&L (IRDye 800CW) (1:5000) detected by fluorescence (IRDye 800CW). For HA 

epitope Western: 1° mouse anti-HA (Sigma-Aldrich, H3663) (1:2000) and 2° goat anti-

mouse IgG H&L (IRDye 800CW) (dilution 1:5000) detected by fluorescence (IRDye 

800CW), as well as 1° rabbit anti-beta-actin (Cell Signaling, 4967) (1:2000) and 2° 

donkey anti-rabbit IgG (Abcam, ab16284) (1:2000) detected by chemiluminescence. 
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For vinculin Western: 1° anti-vinculin (E1E9V) XP (Cell Signaling Technology, 13901) 

(1:1000) and 2° donkey anti-rabbit IgG (Abcam, ab16284) (1:2000) detected 

colorimetrically. For ERR1 Western: 1° rabbit anti-ERRα (E1G1J) (Cell Signaling, 

13826S) (1:1000) and 2° donkey anti-rabbit IgG (Abcam, ab16284) (1:2000) detected 

colorimetrically. 

 

Reverse Phase Protein Array analysis 

Reverse Phase Protein Arrays (RPPA) using Zeptosens technology (Bayer AG, 

Leverkusen, Germany) were used for analysis of signaling protein expression and 

activity profiling as described (Bader et al., 2015; Kaistha et al., 2016; Pawlak et al., 

2002; Pirnia et al., 2009). For the analysis, flash frozen cell pellets were lysed by 

incubation with 100 µl cell lysis buffer CLB1 (Bayer, Germany) for 30 minutes at room 

temperature. Total protein concentrations of the lysate supernatants were determined by 

Bradford Assay (Coomassie Plus, Thermo Scientific). Cell lysate samples were adjusted 

to uniform protein concentration in CLB1, diluted 10-fold in RPPA spotting buffer 

CSBL1 (Bayer) and subsequently printed as series of four dilutions (starting 

concentration at 0.3 µg/µl plus 1.6-fold dilutions) and in two replicates each. All 

samples were printed as replicate microarrays onto Zeptosens hydrophobic chips 

(Bayer) using a NanoPlotter 2 (GeSim, Grosserkmannsdorf, Germany) applying single 

droplet depositions (0.4 nL volume per spot). After printing, the microarrays were 

blocked with 3% w/v albumin, washed thoroughly with double distilled H2O, dried in a 

stream of nitrogen and stored in the dark at 4°C until further use.  

Protein expression and activity levels were measured using a direct two-step sequential 

immunoassay and sensitive, quantitative fluorescence read-out. A single array was 

probed for each protein. Highly specific and upfront validated primary antibodies were 

incubated at the respective dilution in Zeptosens assay buffer overnight (15 hours) at 

room temperature. Arrays were washed once in assay buffer and incubated for 45 

minutes with Alexa647-labeled anti-species secondary antibody (Invitrogen, Paisley, 

UK). Arrays were then washed as before and imaged using a ZeptoREADER instrument 

(Bayer) in the red laser channel. Typically, six fluorescence images were recorded for 

each array at exposure times of between 0.5 and 16 seconds. Negative control assays 

incubated in the absence of primary antibody (blank assays) were also performed to 

measure the non-specific signal contributions of the secondary antibody. In addition, 

one chip out of the print series was stained to measure the relative amount of 
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immobilized protein per spot (protein stain assay). The following primary antibodies 

(provider and reagent number, dilution) were used: Bad (CST 9239, 1:200), Bad-P-

Ser112 (CST 5284, 1:100), Bad-P-Ser136 (CST 4366, 1:100), FAK1-P-Tyr577 

(Invitrogen 44-614ZG, 1:100), FAK1-P-Tyr861 (Epitomics 2153-1, 1:100), GSK3beta 

(CST 9315, 1:200), GSK3beta-P-Ser9 (CST 9336, 1:100), HSF1 (Epitomics 2043-1, 

1:1000). 

After assay measurements (one protein per array), array images and data were analyzed 

with the software ZeptoVIEW 3.1 (Bayer). For each array/antibody, the image taken at 

the longest exposure time without showing any saturation effect was analyzed with the 

spot diameters set to 160 µm. Mean fluorescence signal intensity (MFI) of each sample 

was calculated from referenced, background-corrected mean intensities of the single 

spots (eight spots per sample) applying a linear fit and interpolating to the mean of the 

four printed protein concentrations. Blank-corrected MFI signals of the samples were 

normalized for the relative protein concentration printed on the chip to obtain 

normalized fluorescence intensity signals (NFI). NFI values were used for all 

subsequent statistical analyses. 

 

Glucose uptake & Lactate production assay 

Glucose uptake and lactate production assays were performed by using commercially 

available kits from Cayman chemical (#600470, #700510) following manufacturer’s 

protocols. Glucose uptake was measured with a Fluostar Omega fluorescence 

microplate reader (BMG Labtech, Ortenberg, Germany) and lactate production was 

quantified with a Molecular Devices Spectra Max 190 microplate reader (Bio-Strategy 

P/L, Campbellfield, Vic., Australia). 

 

NpFR2 redox assay 

Intramitochondrial redox status was measured by naphthalimide flavin redox sensor 2 

(NpFR2) (Kaur et al., 2015). Mia PaCa-2 and PGRMC1-HA-expressing stable cells (1x 

106) were suspended in 2 mL complete media and seeded in six well plates and cultured 

for 24 hr at 37ºC and 5% CO2. Cells were washed with PBS, trypsinsed, harvested, and 

resuspended in 1 mL of fresh media containing 25μM NpFR2 in a 1.5 mL 

microcentrifuge tube, followed by incubation for 20 min at 37ºC. Cells were then 

centrifuged in a microcentrifuge at 180 x g, the pellet was resuspended once with 1 mL 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/737718doi: bioRxiv preprint 

https://doi.org/10.1101/737718
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

PBS followed by recentrifugation, and the washed pellet was again resuspended in 1 

mL PBS. 500 μL cell suspension was loaded to a Gallios Flow Cytometer (Beckman 

Coulter) and fluorescence of 2x104 cells was detected using FL1 (green) channel.  

 

Immunofluorescence microscopy 

To detect the expression of exogenous HA tagged PGRMC1 in Figure 1E, cells were 

seeded on coverslips on a six well plate. The cells were washed with ice-cold PBS, 

mildly fixed with 3.7% formaldehyde for 5 minutes at 4ºC. The cells were then 

permeabilized with ice-cold 100% methanol for 10 minutes at -20ºC, followed by 

overnight incubation with anti-HA tag antibody (Sigma, H3663). The cells were washed 

extensively and incubated with FITC conjugated secondary antibody (Sigma, F8521) in 

dark for 1 hour at 4ºC. Cells were washed three times with PBS and counterstained with 

DAPI mounting solution. Images were captured using a Nikon Ti Eclipse Confocal 

microscope (Nikon Australia Pty Ltd). 

 

Analysis of mitochondrial morphology 

Mitochondria were quantified for cell shape (elongated/round), mitochondrial content 

(sum of mitochondrial area/cell), mitochondrial size (average perimeter/cell), and 

mitochondrial morphology or Formfactor (FF): a measure where higher values 

correspond to a greater level of filamentous mitochondria and lower values correspond 

to more highly fragmented mitochondria (Koopman et al., 2006). Formfactor 

(calculated as the P2/4πA) measures mitochondrial morphology based on the perimeter 

and area of shape. The calculation takes in to account not only changes in length, but 

also the degree of branching, making at an ideal form of measurement for the 

quantification of mitochondrial morphology.  

To measure form factor, 1x105 cells were seeded onto Nunc 176740 four well plates 

with a 22x22mm #1.5 glass coverslip on the bottom. Cells were fixed and permeabilized 

as above, then incubated with Abcam mouse anti-mitochondrial IgG1 antibody (Abcam 

ab3298) and then with FITC-conjugated goat anti-mouse secondary antibody (Sigma-

Aldrich F4018) and DAPI, followed phalloidin red staining and imaged with 3D-

Structured Illumination Microscopy (SIM) on a DeltaVisionOMX Blaze microscope as 

described (Strauss et al., 2012). Images were processed using Fiji/ImageJ software 

(Schindelin et al., 2012), and Area and Perimeter values were extracted to calculate 
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form factor. Cell morphology was scored as either ‘round’ or ‘elongated’ by JCC as part 

of the mitochondrial quantification process. 

 

Holo-tomographic imaging 

Holo-tomographic video imaging was performed on a NanoLive (Switzerland) 3D Cell 

Explorer fluo (AXT Pty Ltd, Warriewood, NSW) equipped with a NanoLive live cell 

incubator (AXT Pty Ltd). 1x104 cells were seeded into a FluoroDish cell culture dish 

35mm, 23mm well (World Precision Instruments, FD35) and maintained in phenol red 

free DMEM medium (Sigma-Aldrich, D1145) supplemented with 10% fetal bovine calf 

serum (Sigma-Aldrich, F9423), 2 mM glutamine (Sigma-Aldrich, G7513) and 1% 

penicillin-streptomycin for 48 hours. Immediately prior to imaging the medium was 

removed and replaced with 400 μL of the same medium, followed by transfer to the live 

cell incubator chamber of the 3D Cell Explorer. Cells were incubated at 37°C, 5% CO2 

and 100% humidity for the duration of the time-lapse. Three dimensional holo-

tomographic images were captured every 20 seconds for the duration of the time-lapse 

using the Nanolive STEVE software. For File S9 the center plane of each 96 slice stack 

was exported after capture using the built in STEVE export wizard as an .avi movie file. 

These files were exported at 5 frames per second (100x actual speed) to visualize cellular 

dynamics. 

 

Subcutaneous mouse xenograft tumors 

Cells were expanded in culture for a maximum of 2 weeks before injection. Cells were 

trypsinized, pelleted, washed with PBS and stored on ice. Cell count was determined 

using a hemocytometer and trypan blue. Two million cells were resuspended in 100 µL 

50:50 Matrigel:PBS for sub-cutaneous injection into the left flank of female Nod-Skid 

gamma mice (8-12 weeks) via a 27-gauge needle. Mice were monitored and once the 

tumor was palpable (~2.5 -4 weeks), tumor growth was measured 3 times a week using 

calipers until tumors reach 1 cm3 in volume. Once a group in the cohort reached the 

maximum size of tumor all tumors were harvested, weighed, photographed and fixed with 

formalin. Mouse experiments were approved by The Australian National University 

Animal Experimentation Ethics Committee ethics protocol ANU A2017/16, and by 

Charles Sturt University Animal Care and Ethics Committee ethics protocol CSU 

A17046. 
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Statistical Analyses 

Unless specified otherwise, statistical analysis was performed using the SPSS package 

(IBM). For boxplot data depictions, whiskers represent quartiles 1 and 4 (with maximum 

and minimum values). Boxes represent quartiles 2 and 3, separated by the median, as 

generated by SPSS analyze data function. Datasets conforming with normal distribution 

were analyzed by ANOVA and post-hoc Bonferroni or Tukey HSD test (equal variance) 

or post-hoc Dunnett’s T3 Test (unequal variance). Statistical differences between 

divergent treatments of different cell lines were calculated using two way ANOVA and 

post-hoc pairwise comparisons. For non-parametric data sets Kruskal-Wallis or 

Kolmogorov-Smirnov tests were performed, as indicated in relevant figure legends.  
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SUPPORTING INFORMATION FIGURE LEGENDS 
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Figure S1. Detailed views of selected pathways identified by WebGestalt analyses. 
Related to Figure 3. All panels are adapted from File S6. Heat map colors follow Figure 
3. 

(A) Principal component (PC) analysis of SWATH-MS proteomics results showing 
distribution of PC1 and PC2. PC1 corresponded to pathways associated with ribosomes 
and translation, while PC2 corresponded to pathways associated with mRNA splicing 
processing (see File S3). 

(B) Proteins associated with PI3K/Akt activity (WebGestalt Database: PC, 
DB_ID:1648, “Class I PI3K signaling events mediated by Akt”) are less abundant in 
TM cells.  

(C) F1/F0 ATPase subunits elevated in WT and TM cells. 

(D) Abundances of proteins associated with protein folding and microtubule function 
are altered by PGRMC1 phosphorylation status. Proteins detected in any of the 
following WebGestalt pathways or functions (1-4) or a manual search (5) are mapped 
against their expression profiles. 1) cellular component chaperonin-containing T-
complex GO:0005832. 2) PC pathway Chaperonin-mediated protein folding 
DB_ID:710. 3) cellular component microtubule GO:0005874. 4) PC pathway Protein 
folding DB_ID:712. 5) Description from the list of 243 proteins (File S6) contains 
keywords "tubulin" or "microtubule" (manual search) (Adapted from File S6). 2-tailed 
t-test p-values for all sample comparisons are available in File S4. 

(E) Proteins associated with nuclear import/export that are elevated in DM cells. 

(F) Antigen processing and presentation enzymes are affected by PGRMC1 
phosphorylation status. Manual additions to KEGG pathway ID:04612 “Antigen 
processing and presentation” (no yellow shading: from File S6 and File S5) are 
indicated with yellow highlighting. 
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Figure S2. Highest and lowest differentially abundant proteins. Panels show the six 
most (+) and least (-) abundant proteins for each cell type that were significantly 
differentially abundant between cell types. Related to Figure 3. Identical colored 
symbols depict the same protein in different cell types, where circles represent high 
abundance and triangles represent low abundance. E.g. Mitochondrial import receptor 
subunit TOM40 (O96008), CDP-diacylglycerol-inositol 3-phosphatidyltransferase 
(CDIPT, O14735) (phosphatidylinositol synthesis) and transcriptional coactivator 
PSIP1 (O75475) are more abundant in WT and TM. Aldehyde dehydrogenase 1A3 
(P47895), APOC3 (P02656) and APOA1 (P02647) are less abundant in DM and TM, 
whereas the receptor tyrosine kinase ephrin type-A receptor 2 (EPHA2, P29317) is 
among the lowest abundance differential proteins in WT and TM. Protein abundances 
(measured ion intensities) for all proteins are available in File S2.  
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Figure S3. Proteins associated with predicted Estrogen Receptor Related 1 (ERR1) 
transcription factor activity are more abundant in WT and TM cells. Related to 
Figure 3 and File S6. Data are available via ProteomeXchange with identifier 
PXD014789. 

 
(A) Proteins quantified by SWATH-MS and predicted by WebGestalt Transcription 
Factor target enrichment analysis (WebGestalt Database: Transcription Target, Name: 
hsa_TGACCTY_V$ERR1_Q2, ID:DB_ID:2414) to be dependent upon ERR1 
transcription (Adapted from File S6). Heat map colors follow Figure 3. 
(B) Western blot of shRNA attenuation of ERR1 (top panel) in WT cells, compared to 
scramble shRNA control. Lower panel: beta actin loading control. 
(C) ERR1 attenuation by shRNA induces morphological changes to WT cells. 
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(D) Ratio of rounded to other cells as scored for replicate images from each of the cell 
lines from B. p<0.0005, 1 tailed t-test. 
(E) SWATH MS quantification of proteins significantly differentially abundant between 
cells expressing scramble shRNA or anti-ERR1 shRNA (according to the selection 
criteria of File S4). 57 proteins became more abundant after shRNA depletion of ERR1, 
and 19 proteins became less abundant. In this panel green depicts lower abundance and 
red depicts higher abundance. Brown depicts similar abundance. 
(F) Proteins present in (E) which are also present in the 243 protein list of File S6. Heat 
map colors follow Figure 3. The left panel shows expression in the original result of 
File S6. The right panel shows expression in the presence of scramble shRNA or anti-
ESSR1 shRNA. All proteins from Figure S3A except Q9BPW8 were detected in the 
shRNA experiment. Double headed arrows indicate proteins which differ in expression 
tendency between WT (left) and WT-scramble shRNA cells (right). This may be caused 
by the puromycin selection of both sh-scr and shERR1 cells but not the parental WT 
cells, however this requires further investigation. Proteins with Uniprot ID highlighted 
by asterisk (bold red) are those both originally predicted by WebGestalt to be associated 
with ERR1 transcription factor (A), and which exhibited significantly altered abundance 
after shRNA attenuation of ERR1 protein. 
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Figure S4. The DM migratory phenotype is dependent upon vinculin. Related to 
Figure 3. 

(A) Proteins associated with actin-myosin contraction (WebGestalt Database: PC, 
DB_ID:144, “Smooth Muscle Contraction”) are more abundant in DM cells. Heat map 
colors follow Figure 3. 
(B) Western blot of Vinculin (VCL) and actin levels in cells expressing scramble 
control (shScr) or anti Vinclulin (shVNC) shRNA.  

(C) Scratch assays as indicated were performed following the methods of Figure 1E-F.  

(D) Boxplot showing results of 12 replicates of (C). ANOVA gave F=78.7, p <0.00001. 
The table shows post-hoc Dunnet’s T3 p-values.  
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Figure S5. PGRMC1 phosphorylation status affects mitochondrial function. 
Related to Figure 5. 

(A) Representative flow cytometry results of cells labeled with NpFR2. The percentage 
of the cell population to the right of the dashed reference line (interval labeled “B”, 
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marked by the dotted line) is quantified for each measurement. White arrows indicate 
more oxidized NpFR2 fluorescence in WT and TM cells. 
(B) Boxplots of the percentage of cells exhibiting >10 fluorescent intensity units to the 
right of the reference line in (A). n=6 for each cell type, being 6 replicates of MP cells, 
or duplicate measurements of each of 3 independent lines 1-3 (n=3x2=6) for WT, DM 
and TM cells. White arrows indicate the same differences as in (A). There was 
significant difference between the means (Kruskal-Wallis Test p<0.0001). Independent 
sample median tests revealed that all medians were significantly different from one 
another (p<0.001).  
(C) Representative flow cytometry results of cells labeled with MitoTracker. The 
respective panels depict fluorescence intensity (x axis) plotted against either side scatter 
(left/black plots) or cell number (right/red plots), with or without the addition of 
MitoTracker as indicated. MitoTracker affinity for mitochondria is increased with 
higher mitochondrial membrane potential (Δψm), such that respective left MitoTracker-
treated populations/peaks represent low Δψm populations, and respective right 
MitoTracker-treated populations/peaks represent high ψm populations. Vertical dotted 
lines for Mitotracker-treated cells depict the MFI for MP cell low and high Δψm 
populations. The black arrow for DM cells with Mitotracker highlights reduced MFI of 
both the low and high Δψm DM cell populations. The white arrow highlights the 
reduced proportion of DM cells in the low Δψm peak. The same arrows are depicted for 
replicates in (D) and (E) respectively. 
(D) Median Fluorescent Intensity (MFI) for each of the cell populations observed from 
(C). n=6 measurements per cell type, as per (B). Error bars depict standard deviation. 
The low and high Δψm populations correspond to the respective populations from (C). 
For low Δψm cells the means were significantly different between cell types (ANOVA, 
post-hoc Dunnet’s T3, p<0.003). For high Δψm cells WT vs. TM (p<0.05) and other 
comparisons (p<0.004) were significantly different (Kruskall-Wallis). Tables D(L) and 
D(H) show pairwise comparison p-values for low Δψm (F(L)) and high Δψm (F(H)) 
cells. 
(E) The percentage of cells in each of the low and high Δψm populations from (C) and 
(D), from the same data. Standard deviation error bars for the respective high Δψm 
(upper error bar) and low Δψm (lower error bar) cell populations are given for each cell 
type. Color-coding and all other terminology follows (C). For low Δψm cells, Shapiro-
Wilk’s test showed normal distributions, and Levene’s test revealed non-homogenous 
variance (p=0.04). Table E shows p-values for ANOVA/post hoc Dunnet’s T3 test 
pairwise comparisons. 
(F, G) Area under curve (AUC) plots for basal and FCCP curves from (Figure 5C) 
showing one way ANOVA/post-hoc Bonferroni p-values between samples in the 
respective indicated regions. 
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Supporting Information files 
 
File S1. A zip archive containing time lapse mp4 movies of migrating cells in scratch 
assays. Related to Figure 1. Images were taken at 10 minute intervals over 36 hours and 
are replayed over 65 seconds at 9 frames per second (2000x real time). The presented 
32.4 MB MP4 files were generated from the original 666MB (6000x real time) .avi files 
(length 21 sec, frame width x height 1024x1024, Data rate/bit rate 287462 kbps, frame 
rate 100 fps) by processing in Adobe Premiere Pro 2017 using the following settings: 
Preset “custom”; Width: 1024; Height 1024; Aspect Square Pixels (1.0); Field Order: 
progressive; Profile: high; Target Bitrate [Mbps] 4.08; Maximum Bitrate [Mbps] 4.39; 9 
fps; No Audio; Output as standard .mp4; Time Interpolation: Frame Sampling; Stream 
Compatibility: Standard; Variable bit rate, single pass; Number of frames 00:01:04:09. 
The zip archive contains 4 files with filenames representing cell type and date of 
measurement (yyyymmdd). 

(A) A_MP_20170807.mp4 

(B) B_WT_20170809.mp4 

(C) C_DM_20170815.mp4 

(D) D_TM_20170817.mp4 

 

File S2. An Excel file showing experimental design, normalized ion intensities for 1330 
proteins identified by SWATH-MS proteomics, and six pairwise comparisons between 
the 4 sample types [1) MP v. WT, 2) MP v. DM, 3) MP v. TM, 4) WT v. DM, 5) WT v. 
TM, and 6) DM v. TM]. Related to Figure 3. The first tab contains a detailed descriptive 
legend. Data are available via ProteomeXchange with identifier PXD014716. 

 

File S3. Principal component analysis results for pathways associated with SWATH-
MS proteomics results. 

 

File S4. An excel file containing proteomics results for 243 proteins which fulfil 
stringency criteria of t-test p-value of less than 0.05, and a fold change greater than 1.5 
by both the protein and peptide approaches from File S2. Related to Figure 3. Column B 
shows “red” (more abundant in comparative sample 1) and “blue” (less abundant in 
sample 1) significantly differential proteins for each pair wise comparison which were 
later used for “red” and ‘blue” WebGestalt pathways enrichment analysis (File S5). 
Comparisons follow File S2. 

 

File S5. WebGestalt pathway mapping excel results file for red and blue proteins from 
File S4. Related to Figure 3.  

(A) WebGestalt Features (GO, KEGG Pathways, Wikipathways, Pathway Commons, 
Transcription Factors) significant at the adjP≤0.001 level between any 2 comparisons.  
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(B) Features from A, viewed at the adjP<0.05 level for each red and blue comparison, 
and showing adjusted p-values (adjP) for each comparison where adjP<0.05 (or 
adjP<0.1 for two comparisons as indicated by paler coloring). Blue means that proteins 
associated with a given the feature were less abundant in that cell line, with red 
indicating higher abundance. Because separate WebGestalt analyses were performed for 
red and blue lists of proteins from File S4, some features were significant for both red 
and blue. In that case the color and adjP for the most significant analysis is given, with 
the other cell being colored black. 

 

File S6. An excel file with heat map protein IDs and pathways for red vs. blue pathways 
adjP<0.001. Related to Figure 3. This file is derived from the results of File S5, and is 
the source file for Figure 3. Proteins suggested by clustering by inferred models of 
evolution (CLIME) analysis to co-evolve with PGRMC1 with log likelihood ratio 
greater than 12 (Cahill and Medlock, 2017) are present in the list, marked yellow for 
mitochondrial localization (WebGestalt GO:0005739) or green for cytoplasmic 
(P00387). 

 

File S7. Original WebGestalt results files for the analysis of Figure 3 and File S5. 
Related to Figure 3. WebGestalt results files for red and blue comparison pathways 
adjP<0.001. 

 

File S8. Original WebGestalt results files for red and blue comparison pathways where 
adjP<0.1. Related to Figure 3. 

 

File S9. A zip archive containing time lapse Holo-tomographic video .avi files of cells. 
These images are based upon differences in refractive index (Ali et al., 2016), and are 
provided for the dynamic visualization of mitochondria. Prominent visible features 
include small white lipid droplets and cholesterol-rich mitochondria (Cahill and 
Medlock, 2017), as well as nuclear membrane and nucleoli. The previously described 
MIA PaCa-2 cell bleb-like protrusions (Gradiz et al., 2016) are apparent as highly 
dynamic rearrangements of the cytoplasmic membrane, which may contribute to 
intercellular communication. 

(A) MP cells 

(B) WT cells 

(C) DM cells 

(D) TM cells 
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LIST OF ABBREVIATIONS 

adjP: Benjamini-Hochberg adjusted p-value 

avFF: average mitochondrial form factor 

CK2: Casein kinase 2 

DM: hemagglutinin-tagged PGRMC1 S57A/S181 double mutant 

EMT: epithelial-mesenchymal transition 

ERR1: estrogen receptor related 1 

FF: mitochondrial form factor 

hPSCs: human pluripotent stem cells 

IDA: information dependent acquisition 

LDLR: low density lipoprotein receptor 

MAT: mesenchymal-amoeboid transition 

MP: MIA PaCa-2 pancreatic cancer 

MS/MS: tandem mass spectrometry 

MTT: 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide 

NpFR2: Naphthalimide-flavin redox sensor 2 

P4: progesterone 

PAQR7: progestin and adipoQ receptor 7  

PGRMC1: Progesterone Receptor Membrane Component 1 

PGRMC2: Progesterone Receptor Membrane Component 2 

ROCK: Rho kinase 

ROCKI: Rho kinase inhibitor 

RPPA: Reverse Phase Protein Array  

S2R: Sigma-2 receptor 
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SH2: Src homology 2 

SH3: Src homology 3 

SWATH-MS: Sequential Window Acquisition of all Theoretical Mass Spectrometry 

TM: hemagglutinin-tagged PGRMC1 S57A/Y180F/S181 triple mutant 

TRiC: T-complex protein-1 ring complex 

WT: hemagglutinin-tagged PGRMC1 wild type 

Δψm: mitochondrial membrane potential 
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