

1 **Cellular heterogeneity and lineage restriction during mouse digit tip regeneration at single**
2 **cell resolution**

3

4 Gemma L. Johnson^{1,2}, Erick J. Masias¹, Jessica A. Lehoczky^{1,*}

5

6 ¹Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA

7 ²Department of Systems Biology, Harvard Medical School, Boston, MA, USA

8 *Corresponding author, tel: 857-307-5416, email: jlehoczky@bwh.harvard.edu

9

10 Keywords: blastema, digit tip regeneration, single cell RNAseq, fibroblast heterogeneity, Mest

11

12

13

14 **ABSTRACT**

15 Innate regeneration following digit tip amputation is one of the few examples of epimorphic
16 regeneration in mammals. Digit tip regeneration is mediated by the blastema, the same structure
17 invoked during limb regeneration in some lower vertebrates. By genetic lineage analyses in
18 mice, the digit tip blastema has been defined as a population of heterogeneous, lineage restricted
19 progenitor cells. These previous studies, however, do not comprehensively evaluate blastema
20 heterogeneity or address lineage restriction of closely related cell types. In this report we present
21 single cell RNA sequencing of over 38,000 cells from mouse digit tip blastemas and
22 unamputated control digit tips and generate an atlas of the cell types participating in digit tip
23 regeneration. We define the differentiation trajectories of vascular, monocytic, and fibroblastic
24 lineages over regeneration, and while our data confirm broad lineage restriction of progenitors,
25 our analysis reveals an early blastema fibroblast population expressing a novel regeneration-
26 specific gene, *Mest*.

27

28 INTRODUCTION

29 Many animals have the amazing ability to regenerate entire body parts such as the limb,
30 tail, or spinal cord following amputation. This process has been termed epimorphic regeneration,
31 where a complex structure comprised of multiple tissue types is regenerated from progenitor
32 cells within a structure termed the blastema (Carlson, 1978; Hay and Fischman, 1961; Morgan,
33 1901). Examples of vertebrates that employ epimorphic regeneration include axolotl, newt, and
34 juvenile xenopus which can regenerate many structures including limbs and the spinal cord
35 (Dent, 1962; Overton, 1963; Spallanzani, 1768); and zebrafish, which can regenerate their fins
36 (Johnson and Weston, 1995). In contrast to these species, mammals have limited epimorphic
37 regeneration of complex tissues, though examples do exist: deer can repeatedly shed and
38 regenerate antlers, and mice and human children can regenerate amputated digit tips (Goss,
39 1961; Illingworth, 1974; Neufeld and Zhao, 1995). Mouse is a well characterized model for
40 studying digit tip regeneration. Following amputation in adult digit tips, there is an initial
41 inflammation and wound healing phase (Fernando et al., 2012). When the wound epithelium has
42 closed, the blastema, a proliferative and heterogeneous structure, forms and goes on to regenerate
43 all non-epidermal structures of the digit tip by approximately 28 days post-amputation (dpa)
44 (Fernando et al., 2012; Lehoczky et al., 2011; Rinkevich et al., 2011).

45 The blastema is the common structure that links together regeneration in species that
46 seem disparate such as zebrafish, axolotl, and mouse. The blastema is a critical yet transient
47 structure and much remains to be learned about how it mediates regeneration of complex tissues,
48 particularly in mammals. Two hypotheses exist as to how blastema cells give rise to regenerated
49 tissues. One posits that blastema cells are multipotent and can differentiate into any of the
50 regenerating tissues. Another is that the blastema is a heterogeneous population of cells that are

51 lineage restricted, and only contribute to their tissue of origin in the regenerate. While species-
52 specific nuances likely exist, genetic lineage tracing studies in several regenerative models
53 support that the blastema contains cells that are lineage restricted, not multipotent (Flowers et al.,
54 2017; Gargioli and Slack, 2004; Tu and Johnson, 2011). In the mammalian digit tip specifically,
55 mouse genetic lineage analyses have revealed that embryonic germ layer identities hold true
56 during digit tip regeneration and there is no evidence for transdifferentiation (Lehoczky et al.,
57 2011; Rinkevich et al., 2011). Progeny of epithelial progenitor cells traced using *Krt5* or *Krt14*
58 inducible cre drivers remain restricted to the regenerated epithelium (Lehoczky et al., 2011;
59 Rinkevich et al., 2011; Takeo et al., 2013). Similarly, *Sp7* or *Sox9* marked osteoprogenitors
60 contribute solely to the regenerating bone and periosteum, and *VE-cadherin*- or *Tie2*-expressing
61 endothelial cells only give rise to endothelium in the regenerate (Lehoczky et al., 2011;
62 Rinkevich et al., 2011). In the neural lineage, Schwann cells marked by *Sox2* contribute only to
63 the regenerated glial lineage (Johnston et al., 2016). Fibroblasts are one of the most abundant cell
64 types within the digit tip, and as found for the other cell types, lineage marked *Prrx1*-expressing
65 fibroblasts remain fate restricted to the regenerated mesoderm (Rinkevich et al., 2011). In a
66 similar experiment, *Msx1*-expressing cells in the mesenchyme and bone contribute highly to the
67 blastema but do not transdifferentiate into tissues lineages derived from other germ layers
68 (Lehoczky et al., 2011). Collectively, these studies support a heterogeneous blastema comprised
69 of lineage restricted progenitor cells in the regenerating mouse digit tip. However, these previous
70 analyses lack a precise description of all the cell types present in the blastema and an assessment
71 of lineage restriction among closely related cell types.

72 To this point, previous genetic lineage analyses in axolotl found the regenerating limb
73 blastema to be heterogeneous and lineage restricted (Kragl et al., 2009), and recently single cell

74 RNAseq and lineage tracing have been combined to elucidate a more detailed understanding of
75 the axolotl limb blastema (Gerber et al., 2018; Leigh et al., 2018). For example, the presence of
76 macrophages, muscle progenitors, and fibroblasts was confirmed while additional cell types were
77 discovered in both regenerating and homeostatic limbs (Leigh et al., 2018). Moreover,
78 supporting transdifferentiation of closely related lineages, a multipotent fibroblast-like progenitor
79 competent to contribute to multiple regenerated lineages including tendon, skeleton, and
80 fibroblasts was found in the blastema (Gerber et al., 2018). However other lineages, including
81 muscle and wound epithelium, remained more restricted (Gerber et al., 2018; Leigh et al., 2018).
82 These studies demonstrate that single cell transcriptome profiling can offer a more nuanced view
83 of the blastema not possible with genetic lineage analyses alone. Addressing similar questions in
84 the context of mouse digit tip regeneration is important, especially in the context of working
85 towards regenerative therapies.

86 In this paper we build upon previous findings that the mouse digit tip blastema is
87 heterogeneous and lineage restricted by generating single cell transcriptomes of four stages of
88 regenerating mouse digit tip blastemas as well as unamputated control digit tips. We sequenced
89 over 38,000 total cells, allowing us to comprehensively define the cell type heterogeneity of the
90 blastema throughout regeneration. We analyze an integrated data set from all regenerative and
91 control time points and find that a clear signature of the cell types found in the quiescent control
92 digit tip already exists in the early blastema, supporting lineage restriction. We find that blastema
93 population dynamics vary by cell type and we focus specifically on a population of fibroblasts
94 enriched in early blastema stages as compared to unamputated control digit tips. Differential
95 expression analysis concentrated on these blastema-enriched fibroblasts reveals ten highly
96 significant genes. Of these, *Mest* is expressed broadly in the blastema by RNA in situ

97 hybridization, but not in the unamputated digit tip. This finding supports the notion of a
98 regeneration-specific factor and opens the door to more subtle transdifferentiation relationships
99 within the fibroblast lineage. Collectively, this data has important implications for regeneration
100 of other musculoskeletal tissues and our broad understanding of epimorphic regeneration in
101 mammals.

102 **RESULTS**

103 **The early blastema is heterogeneous in cell type**

104 Previous studies have used tissue/cell-type specific mouse genetic lineage analyses to
105 characterize the regenerating digit tip blastema as both cellularly heterogeneous and lineage
106 restricted (Lehoczky et al., 2011; Rinkevich et al., 2011). However, these studies leave room for
107 additional insights into the origin of the blastema cells, the complexity of the cellular
108 heterogeneity, and lineage relationships within germ layers. Toward these questions, we set out
109 to characterize the adult mouse digit tip blastema as it first emerges from the stump tissue. By
110 histology in outbred mice, the blastema is first detected at 10dpa (Fernando et al., 2012). While
111 this timing is consistent with inbred FVB/NJ mice used in our study, we find gross
112 microdissection of the blastema is not possible until 11dpa due to lack of tissue integrity at
113 earlier stages. We amputated adult FVB/NJ mouse hindlimb digits 2, 3, and 4, midway through
114 the terminal phalanx at a level permissive for innate regeneration (Figure 1A) (Fernando et al.,
115 2012; Han et al., 2008; Neufeld and Zhao, 1995). At 11dpa we euthanized the mice and manually
116 dissected the blastemas away from the surrounding epithelium and stump tissue. 12 blastemas
117 dissected from two mice were pooled, dissociated, and subjected to single cell RNA sequencing
118 using the 10X Genomics platform (Figure 1A). 7,830 cells were captured, with an average of
119 15,491 sequencing reads per cell. Quality control and filtering of reads was performed using a

120 standard computational pipeline in Seurat, leaving RNA sequencing data for 7,610 high quality
121 cells (Butler et al., 2018; Stuart et al., 2019), which was then used for unbiased cell clustering
122 based on differential gene expression.

123 Unbiased clustering of the 11dpa blastema cells revealed 17 discrete populations (Figure
124 1B). We assigned cell identities to each of these clusters based on the top 10-20 most
125 differentially expressed genes associated with each cluster and the known expression of these
126 genes based on the literature, as well as checking expression of broadly established cell type
127 marker genes in each cluster (Supplemental Table 1A). The assigned cell types include:
128 fibroblasts (clusters 0-2, 4-6, and 8; *Prrx1*, *Msx1*, *Vim*); bone (cluster 7; *Bglap*, *Ibsp*, *Spp1*);
129 monocytes (clusters 11; *Lyz2*, *Cd14*, *Cd86*) and macrophages (clusters 3, 14, 16; *Adgre1*, *C1qa*,
130 *Lyz2*); T cells (cluster 15; *Cd3g*, *Icos*, *Trdc*); endothelial cells (cluster 10; *Pecam1*, *Cd93*, *Egfl7*);
131 vascular smooth muscle cells (cluster 9; *Rgs5*, *Notch3*, *Myh11*), Schwann cells (cluster 13; *Plp1*,
132 *Mbp*, and *Scn7a*); and epithelial cells (cluster 12; *Krt14*, *Krt42*, *Perp*) (Figure 1B and 1C). Our
133 experiment was designed to capture the cells within the blastema, so we interpret the presence of
134 epithelial cells within our sample as a technical artifact secondary to dissection (Figure 1B,
135 cluster 12). While the nail and wound epithelia are both important cell types necessary for digit
136 tip regeneration (Fernando et al., 2012; Lehoczky and Tabin, 2015; Mohammad et al., 1999;
137 Takeo et al., 2013) they were not intentionally captured in this study and have been excluded
138 from all of our analyses. We also interpret the presence of a mature bone population at 11dpa as
139 a dissection artifact consistent with inclusion of stump bone adjacent to the blastema (Figure 1B,
140 cluster 7). We include this cluster in our analyses as these cells provide terminally differentiated
141 tissue to facilitate analysis of osteoprogenitor differentiation in the blastema.

142 Of the non-epithelial 11dpa populations, we captured several cell types already described
143 in mouse digit tip regeneration. We find most cells in our sample are fibroblasts marked in
144 particular by *Prrx1* and *Msx1*; previous genetic lineage analyses with these markers demonstrate
145 that these cell types contribute broadly to the blastema (Lehoczky et al., 2011; Rinkevich et al.,
146 2011). In addition, de-differentiated Schwann cells have been shown to secrete growth factors
147 that may play a role in expansion of blastema cells during regeneration (Johnston et al., 2016),
148 and in line with this we observe a population of Schwann cells (Figure 1B and 1C, cluster 13).
149 Macrophages have been described in the post-amputation digit tip during wound closure and
150 have been shown to be necessary for successful digit tip regeneration (Simkin et al., 2017).
151 While this previous study finds peak numbers of macrophages prior to blastema formation by
152 histology (Simkin et al., 2017), our blastema stage single cell analysis identifies three discrete
153 macrophage populations (Figure 1B, clusters 3, 14, and 16), with one of the populations (cluster
154 14) likely representing mitotic macrophages based on expression of cell cycle genes such as
155 *Top2a* and *Cdk1*. In addition, we find a population of endothelial cells (Figure 1B, cluster 10).
156 *Scal1/Ly6a* positive endothelial cells have been characterized in the 10dpa blastema (Yu et al.,
157 2014) and in line with previous data, 68% of the 11dpa endothelial cells in our dataset express
158 *Scal1/Ly6a* (Supplemental Table 1A). Collectively, the presence of these previously described
159 populations (Schwann cells, macrophages, endothelial cells, and fibroblasts) validates the
160 robustness of our experimental approach. Importantly, unbiased single cell RNA sequencing also
161 enabled us to identify cell populations that have not formally been described in the digit tip
162 blastema. We isolated vascular smooth muscle cells and a small population of T cells (Figure 1B,
163 clusters 9, and 15). We also isolated monocytes which likely contribute to the local macrophage
164 population (Figure 1B, cluster 11).

165 To begin exploring the relationships among these populations, we constructed a cluster
166 dendrogram and find the clusters fall into four main branches. The bone cells (cluster 7) make up
167 their own branch of the dendrogram. Monocytes (cluster 11) and two macrophage populations
168 (clusters 3 and 14) make up a separate branch (Supplemental Figure 1A), which correlates with
169 the known lineage relationship between monocytes and macrophages (van Furth and Cohn,
170 1968; Virolainen, 1968). A third branch of the dendrogram is comprised of the fibroblast
171 populations (clusters 0-2, 4-6, and 8) and the remaining macrophage population (cluster 16).
172 While we expected the fibroblast populations to be closely related, the presence of a macrophage
173 population in this clade was unanticipated. The fourth branch is made up of the remaining un-
174 related populations: T-cells, endothelial cells, vascular smooth muscle cells, epithelial cells, and
175 Schwann cells. As validation of the cell population relationships, we calculated the Pearson
176 correlation between *in silico* bulk transcriptomes of each cluster (Supplemental Figure 1B).
177 Consistent with the dendrogram, the resultant correlation matrix shows that the fibroblast
178 clusters are highly correlated with macrophage cluster 16. Many of the genes marking cluster 16
179 indicate that it is made up of macrophages (*C1qa* (83%), *Adgre1* (74%)), while this cluster also
180 expresses fibroblast marker genes (*Prrx1* (100%), *Fmod* (100%)). While this could be a rare
181 hybrid cell type, the mixed expression is more parsimonious with doublet cells (encapsulating
182 two cells in one droplet before library preparation). To investigate this, we analyzed our dataset
183 with DoubletFinder (McGinnis et al., 2018) and found 419 cells (5.5 %) classified as potential
184 doublets, including 41 out of 53 cells (77%) in macrophage cluster 16 (Supplemental Figure 2,
185 11dpa). This finding prompted us to remove all putative doublet cells from subsequent analyses,
186 though the existence of hybrid cell types has not been formally ruled out.

187 Although fibroblasts are known to participate in digit tip regeneration (Lehoczky et al.,
188 2011; Marrero et al., 2017; Rinkevich et al., 2011; Y. Wu et al., 2013), the high proportion of the
189 11dpa blastema comprised of fibroblasts and the heterogeneity of these cells is striking, and has
190 not been described previously. To begin to understand the biological significance of the seven
191 discrete 11dpa fibroblast populations, we investigated the cluster marker genes that specifically
192 mark these populations (Supplemental Table 1A). While all fibroblast clusters have gene
193 expression in common, such as *Prrx1*, *Msx1*, and *Pdgfra* (Carr et al., 2018; Lehoczky et al.,
194 2011; Rinkevich et al., 2011), these broad fibroblast markers ultimately mask the underlying
195 heterogeneity of fibroblasts in the blastema. In line with the dendrogram and correlation matrix,
196 clusters 0, 1, and 2 show common expression of many genes like *Ndnf*, *Matn4*, and *Mest*
197 (Supplemental Figure 1C). However, *Ccl2* expression is more specific to cluster 0, and *Mmp13*
198 expression to cluster 1, both perhaps consistent with a role in cytokine signaling or immune
199 response (Supplemental Table 2). Cells in clusters 4 and 6 are not closely related and have
200 distinct expression profiles, for example *Acan* and *Scara5* respectively, and GO analysis predicts
201 involvement in the different biological processes of skeletal development and ECM organization
202 for cluster 4 and iron ion import and transmembrane receptor protein tyrosine kinase signaling
203 pathway for cluster 6 (Supplemental Figure 1C and Supplemental Table 2). Cluster 5 is also
204 predicted to be involved in ECM organization, though these cells also express different genes
205 than cluster 4, including *Aldh1a2*. Cluster 8, which expressed markers of proliferation such as
206 *Top2a*, is comprised of mitotic fibroblasts. Taken together this demonstrates the heterogeneity of
207 fibroblastic cells in the blastema, which suggests that blastema fibroblasts may participate in a
208 diverse set of functions and lineages in the regenerating digit tip.

209

210 **Signature of the terminally differentiated digit tip already exists in the early blastema**

211 The diversity of cell types we find by single cell RNAseq in the 11dpa blastema is
212 supported by previous studies which demonstrate the mouse digit tip blastema is heterogeneous
213 through genetic lineage analyses and staining for cell type specific markers (Carr et al., 2018;
214 Johnston et al., 2016; Lehoczky et al., 2011; Lehoczky and Tabin, 2015; Rinkevich et al., 2011).
215 However, digit tip regeneration is a prolonged, dynamic process, and little is known about how
216 the heterogeneous blastema resolves into regenerated tissues or how the blastema cells relate to
217 the cells of the original digit tip. Toward addressing these questions, we generated single cell
218 RNAseq data from progressive blastema stages, as well as from the mesenchyme of unamputated
219 digit tips. As with our 11dpa experiment, we amputated adult FVB/NJ mouse hindlimb digits 2,
220 3, and 4 (Figure 1A) and manually dissected blastemas at 12, 14, or 17dpa. For unamputated
221 samples, mice were euthanized and non-epithelial tissues distal to our standardized amputation
222 plane were dissected from hindlimb digits 2, 3, and 4. All four samples were separately
223 dissociated and subjected to single cell RNA sequencing as above. Likely due to variation in cell
224 dissociation, encapsulation, and library preparation we captured a range of cell numbers and
225 reads for our samples: 12dpa (3,433 cells/27,628 average reads per cell), 14dpa (6,065
226 cells/27,026 reads), 17dpa (9,112 cells/21,416 reads), unamputated (UA) (13,750 cells/9,831
227 reads). Samples and reads were processed as with the 11dpa sample, and quality control and
228 filtering left 3,309, 5,896, 8,778, and 12,871 cells in each data set respectively. We first analyzed
229 each sample separately to determine which cell types were present at each regenerative stage
230 (Supplemental Figures 3-6; Supplemental Tables 1B-1E). Intriguingly, all the cell types
231 identified in the 11dpa blastema are also present in all four more mature blastema stages, as well
232 as in the unamputated digit tip. Moreover, there are only a few additional cell types that appear

233 in any sample and are limited to pre-osteoclasts (12dpa and 14dpa), neutrophils (14dpa), and a
234 second population of Schwann cells (UA), though the emergence of these cell types in only
235 certain regenerative stages could be explained by the differing number of sequenced cells.

236 The finding that the majority of cell types identified in the unamputated digit tip are
237 already present in the 11dpa blastema presents at least two scenarios: 1) these are the same cells
238 in terms of gene expression and only differ in quantity and perhaps spatial organization, or 2)
239 these are cells within the same tissue-specific lineage that differ in gene expression and
240 differentiation state at the time points sampled. Importantly, these possibilities need not be
241 mutually exclusive given many of our assigned cell types have multiple discrete populations of
242 cells (for example macrophages or fibroblasts) which could have separate roles in digit tip
243 regeneration. To begin to address these questions, we removed all predicted doublet cells from
244 the 11dpa, 12dpa, 14dpa, 17dpa, and UA single cell RNAseq data sets (Supplemental Figure 2),
245 and combined and normalized the data for the remaining cells using the Integration workflow in
246 Seurat (Stuart et al., 2019). Unbiased clustering of this combined data set revealed that cells from
247 all stages were qualitatively well-mixed among 23 clusters (Figure 2A and 2B, Supplemental
248 Table 3). This combined data set also allowed for increased resolution of cell types that might be
249 rare in each stage and we now observed defined populations for myelinating (cluster 20, marked
250 by *Mbp* and *Plp1*) and non-myelinating Schwann cells (cluster 14, marked by *C4b* and *Scn7a*),
251 lymphatic endothelium (cluster 19, marked by *Pdpn* and *Lyve1*), and mitotic vascular smooth
252 muscle cells (cluster 22, marked by *Rgs5* and *Top2a*) (Figure 2B). Overlaying each regenerative
253 stage individually over the total integrated data set reveals that no cluster is comprised of cells
254 from a single time point (Figure 2C), reinforcing the conclusion that unamputated digit cell types
255 exist at all blastema stages and ruling out a broadly multipotent cell in the blastema.

256

257 **Blastema population dynamics during regeneration vary by cell type**

258 To examine the dynamics of individual blastema cell populations throughout
259 regeneration, we sought to assess 1) the proportion of cells in each cluster present at each
260 regenerative stage and whether it changes over time, and 2) cell type specific gene expression
261 changes through regeneration and whether this reflects tissue specific differentiation states. To
262 compare cluster membership over time, we performed differential proportion analysis (Farbahi et
263 al., 2019) on our integrated data set segregated by stage. This analysis allows for building
264 hypotheses about the timing and function of blastema populations and whether they are
265 regeneration or homeostasis specific. As a first pass analysis we looked for changes in relative
266 population size as compared to the unamputated digit and found significant regenerative
267 population dynamics for Schwann cells (clusters 14 and 20), vascular smooth muscle cells
268 (clusters 6 and 9), and several fibroblast populations (clusters 0, 1, 4, and 13). Notably, no
269 significant population dynamics were found in the immune-related clusters (Figure 2D,
270 Supplemental Table 4).

271 Little is known about the influence of immune cells in digit tip regeneration. Only
272 macrophages have been characterized and found to be necessary (Simkin et al., 2017), but it is
273 important to understand whether additional immune cells play a role in the blastema as well as
274 the initial inflammation response. In our data, differential proportion analysis finds no significant
275 differences in proportion of monocytes, macrophages, pre-osteoclasts, T cells, or neutrophils
276 between any two stages in our data set (Figure 2D, Supplemental Table 4). Given the small
277 number of cells (565 total) in the pre-osteoclast, T cell, and neutrophil clusters, we are likely
278 statistically underpowered to make meaningful conclusions for these cell types. That said, we

279 have relatively large populations of macrophages and monocytes at all stages of our data (4,611
280 cells total), thus the absence of significant population dynamics for these cell types is likely
281 reflective of the biology of the digit tip regeneration immune response. To understand the lineage
282 relationship of these cells, and if there is a differentiation trend during regeneration, we subjected
283 the cells in these clusters to SPRING force-directed trajectory analysis (Weinreb et al., 2018).
284 The data reveals a major differentiation trajectory from monocytes to macrophages, with no
285 skewing in differentiation state based on regenerative/unamputated stage (Supplemental Figure
286 7A-C). This finding suggests that the production of macrophages from monocytes in the digit tip
287 is at a homeostatic rate once the blastema is formed. No specific lineage relationships are
288 revealed for the population of ECM producing macrophages, T-cells, or neutrophils, though we
289 have a minimal sampling of these populations (Supplemental Figure 7A). However, there is a
290 qualitative increase in differentiation of monocytes to pre-osteoclasts and an increase in
291 proliferative macrophages marked by *Adgre1* and *Top2a* in the blastema (Supplemental Figure
292 7B, 7D, and 7E). The presence of proliferative macrophages could reflect a lingering response to
293 the initial wound or a physiological role in the blastema itself that is not satisfied by recruited
294 monocytes.

295 Previous studies demonstrate that innervation and neural associated cell types such as
296 Schwann cell precursors are necessary for digit tip regeneration (Carr et al., 2018; Dolan et al.,
297 2019; Johnston et al., 2016; Mohammad and Neufeld, 2000; Takeo et al., 2013). Both sensory
298 and sympathetic axons innervate the connective tissue of the unamputated digit tip, and they are
299 accompanied by both myelinating and non-myelinating Schwann cells (Dolan et al., 2019). In the
300 unamputated digit tip, we find that myelinating and non-myelinating Schwann cells make up
301 0.40% and 1.9% of the captured cells, respectively. Despite small numbers of cells, differential

302 proportion analysis reveals a significant depletion of both populations in the 11dpa blastema
303 compared to the unamputated digit tip (Figure 2D, Supplemental Table 4). Notably, the
304 myelinating Schwann cells remain significantly reduced through all of our assayed stages and do
305 not reinstate pre-amputation levels by 17dpa. This observation is in line with previous work,
306 which showed that Schwann cells are present in the blastema but are qualitatively less abundant
307 than in the quiescent digit tip, and only non-myelinating Schwann cells appear to recover to pre-
308 amputation levels by 4 weeks post amputation (Dolan et al., 2019; Johnston et al., 2016). The
309 reduction in population size of non-myelinating Schwann cells persists through 14dpa and begins
310 to recover to pre-amputation levels by 17dpa. While it is important to understand whether these
311 dynamics correlate with the differentiation trajectory of these cell types, these clusters (clusters
312 14 and 20) contained too few cells for a meaningful SPRING trajectory analysis, thus these
313 questions remain for future experiments designed to specifically enrich these populations.

314 In previous studies, *VE-cadherin*-expressing endothelial cells have been shown to be
315 lineage restricted during digit tip regeneration (Rinkevich et al., 2011) and individual endothelial
316 cells are found in the blastema (Fernando et al., 2012). However, the overall dynamics of
317 vascular-related cells in the blastema, including vascular smooth muscle cells, has not yet been
318 characterized. Differential proportion analysis of our all stage integrated single cell RNAseq data
319 reveals no significant change in the relative population sizes of endothelial cells or vascular
320 smooth muscle cells between 11dpa or 14dpa compared to UA. However, at 17dpa, both
321 populations are significantly expanded (Figure 2D). The low relative percentage of vascular cell
322 types in the early regenerative stages is consistent with previous work that describes minimal
323 angiogenesis in the early blastema (Yu et al., 2014), and the spike in vascular cell types at 17dpa
324 could be indicative of over-sprouting of blood vessels before they are pruned (reviewed in Korn

325 and Augustin, 2015). To explore these cell types further, we determined the differentiation
326 trajectory using SPRING. The four vascular-related cell clusters (Figure 2B clusters 6, 9, 19, and
327 22) appear separate in the SPRING visualization, with a lineage of proliferative vascular smooth
328 muscle cells streaming into the main cluster of vascular smooth muscle (VSM) cells. No major
329 lineage relationship is found between vascular and lymphatic endothelial cells (Figure 3A).
330 Lymphatic endothelial cells have not yet been described in digit tip regeneration so it is an
331 important advance to have captured them, and their associated markers; that said, this is an
332 extremely small population and we are underpowered to make conclusions on a differentiation
333 trajectory. When analyzing the VSM cells and the vascular endothelial populations by
334 regeneration stage, there is qualitative spatial variation between the different time points on the
335 SPRING plot (Figure 3B). Closer evaluation of the VSM cells confirms that all of the cells
336 express the tissue-specific marker *Rgs5* (Figure 3C) (Li et al., 2004). However, early blastema
337 cells (11, 12, and 14dpa) are concentrated on one side of the cluster, while UA cells are on the
338 other and 17dpa cells appear throughout. This observation is consistent with the differentiation of
339 VSM cells from a progenitor state to terminally differentiated cells and is supported by the
340 differential expression of *Gadd45b* and *Lgals1* (Figure 3B and 3C) (Gizard et al., 2008; Kim et
341 al., 2014; Moiseeva et al., 2000). Similarly, the cluster of vascular endothelial cells all express
342 the broad marker *Pecam1* (Figure 3D) (Albelda et al., 1990; Müller et al., 2002), though the
343 trajectory shows UA cells concentrated on one edge and blastema cells throughout the rest of the
344 cluster, consistent with differentiation from vascular endothelial progenitors (expression of *Egfl7*
345 (Campagnolo et al., 2005)) to terminally differentiated cells (expression of *Rnd1* (Suehiro et al.,
346 2014)) (Figure 3D). Overall, the different vascular populations have recovered by 17dpa, and

347 there are differences in differentiation state between the blastema stages and the unamputated
348 digit tip. The 17dpa vascular cells span both mature and de-differentiated states.

349

350 **Diversity and dynamics of fibroblasts during regeneration reveal regeneration-specific**
351 **markers**

352 As fibroblasts make up the majority of the blastema and are more heterogeneous than
353 previously described (Supplemental Figure 1) (Lehoczky et al., 2011; Rinkevich et al., 2011; Y.
354 Wu et al., 2013), we analyzed all fibroblast and bone cells separately from the rest of the cell
355 types. This unbiased clustering resulted in 15 populations that were broadly concordant with the
356 original all-cell-type clustering, yet more refined (Figure 4a compared to Figure 2a). We
357 performed SPRING analysis on the all-cell-integrated data set and found no populations
358 transdifferentiating from fibroblasts or bone into any other cell type within the blastema or
359 unamputated digit tip (Figure 4B), supporting the lineage restriction found in previous genetic
360 lineage studies (Lehoczky et al., 2011; Rinkevich et al., 2011). Among the fibroblast clusters
361 there is a distinct differentiation trajectory from clusters 1 and 7 into bone (cluster 8; *Bglap* and
362 *Ibsp* expression) (Figure 4C). While the presence of mature bone cells at all regenerative stages
363 (Figure 4G) is an artifact of our microdissection, these cells facilitate trajectory mapping and
364 allow for cell type identification of clusters 1 and 7 as osteoprogenitors and differentiating
365 osteoblasts, respectively (Figure 4C, *Postn* expression; Supplemental Table 5). Another possible
366 group of trajectories originate in cluster 2, then branch and terminate in clusters 5, 6, 9, 12, and
367 14 (Figure 4D). It is unclear if these trajectories reflect the differentiation of resident fibroblast
368 subtypes within the digit tip, or whether they reflect skeletal tissue lineages (ex. tenocytes or
369 adipocytes). Clusters 6 and 12 express several tendon-specific genes, such as *Fibin* and *Tnmd*

370 (Supplemental Table 5) (Brandau et al., 2001; Pearse et al., 2009), and we hypothesize that
371 cluster 2 contains mesenchymal stem cells (MSCs) or minimally, tendon progenitor cells because
372 of *Scx* expression (Schweitzer et al., 2001). However, no discrete skeletal lineage can be
373 assigned to clusters 5, 9, and 14 based on marker gene expression, for example *SI100a4* and
374 *Smoc2*, thus they may be incompletely differentiated MSCs that also reside in the unamputated
375 digit, or resident fibroblast subtypes that have not been characterized. Clusters 0, 3, and 4 make
376 up a third major concentration of cells. They do not appear to differentiate into a specific lineage
377 and remain centrally located on the trajectory map (Figure 4F). Intriguingly, this analysis reveals
378 that these clusters are enriched for cells from early blastema stages and this is not a function of
379 proliferation (Figures 4E and 4G). This finding could be consistent with the dedifferentiation of
380 fibroblasts (lineage contribution), or regenerative-specific fibroblasts (non-lineage, providing
381 signals).

382 Differential proportion analyses of the re-clustered fibroblasts support our qualitative
383 findings from the trajectory analysis. Clusters 1, 3, 7, 8, 9, and 14 do not have significant
384 changes in population size through regeneration, though for clusters 1, 7, and 8, this can be
385 attributed to inclusion of bone in all dissections (Figure 5A and Supplemental Table 6).
386 Cell populations in clusters 2, 5, 6, and 12 all are significantly depleted at 11dpa, and are
387 restored to unamputated levels by 17dpa, with the exception of cluster 12 (Figure 5B and
388 Supplemental Table 6). This profile may be consistent with amputated tissue lineages being
389 restored through regeneration. Unexpectedly, we found the cell populations in clusters 0, 4, 10,
390 11, and 13 to be significantly increased at 11dpa; by 17dpa clusters 0 and 10 have still not
391 returned to unamputated levels (Figure 5C and Supplemental Table 6). For cluster 11 and 13,
392 these population dynamics can be attributed to cellular proliferation (Figure 4E and

393 Supplemental Table 5), however for clusters 0, 4, and 10 this suggests a regeneration specific
394 function. Gene expression analysis between cells from blastema-enriched clusters (Figure 5C)
395 and blastema-depleted clusters (Figure 5B) results in 370 significantly differentially expressed
396 genes (Supplemental Table 7). We prioritized these genes by selecting those with an average log
397 fold-change ≥ 0.75 and with the percent of cells in other clusters expressing the gene ≤ 0.25 ,
398 leaving 10 genes (Figure 5D). Of these, several had distinct regeneration-specific expression
399 profiles. *Ccl2* and *Cxcl2* both showed increased expression at early blastema stages, with low
400 expression in late regeneration as well as the unamputated digit tip (Figure 5E). *Mmp13* and *Mest*
401 both showed expression at all blastema stages, with negligible expression in the unamputated
402 digit tip (Figure 5E). While *Mmp13* has already been implicated in regeneration in other species
403 as a necessary mediator of ECM remodeling (Calve et al., 2010; Miyazaki et al., 1996; Vinarsky
404 et al., 2005; C.-H. Wu et al., 2013), *Mest* is a novel marker of the blastema and epimorphic
405 regeneration.

406 To determine the distribution of *Mest* expressing cells within the regenerating mouse
407 digit tip, we utilized RNA in situ hybridization. The *Mest* antisense RNA probe revealed the
408 expected expression domains, including tongue and vertebrae, on control E12.5 embryonic
409 mouse sections (Supplemental Figure 8A-C). No significant *Mest* expression was found on
410 unamputated digit tip sections (Figure 6A) and appeared comparable to *Mest* sense RNA control
411 probe hybridization on unamputated digits (Supplemental Figure 8E). In contrast, at 11dpa *Mest*
412 expression is found scattered throughout blastema cells which is not seen for sense RNA probe
413 11dpa controls (Figure 6B and Supplemental Figure 8D). Heterogeneous *Mest* blastema
414 expression becomes even more pronounced at 12dpa and 14 dpa, then begins to decrease and

415 become centrally restricted at 17dpa (Figure 6C-E). These *in situ* validate our computational
416 analysis and establish *Mest* as a novel regeneration-specific marker of mouse digit tip blastema.

417 **DISCUSSION**

418 Historically, the blastema has been described as a collection of proliferative and
419 homogeneous cells that give rise to the regenerated tissue (Hay and Fischman, 1961). Based on
420 this description, we would expect there to be a high proportion of actively dividing cells in the
421 blastema. We find a dividing fibroblast cluster in 11, 12, and 14dpa blastema stages that is
422 depleted by 17dpa and not found at all in the unamputated digit tip. These dividing fibroblasts
423 account for less than 10% of the total cells captured, which is consistent with previous results
424 using EdU (Johnston et al., 2016). This challenges the idea of the blastema as a highly
425 proliferative structure and suggests that relatively few proliferative cells are needed to support
426 regeneration once the blastema is formed.

427 The classical assessment of the blastema as homogeneous was based on cell morphology
428 in the regenerating newt limb (Hay and Fischman, 1961), however recent studies of digit tip
429 regeneration use genetic lineage tracing to collectively conclude that the digit tip blastema
430 contains progenitors that are heterogeneous in cell-type and lineage restricted (Johnston et al.,
431 2016; Lehoczky et al., 2011; Rinkevich et al., 2011). While these studies clearly demonstrate the
432 blastema is not pluripotent across tissue germ layers, multipotency within germ layers was never
433 formally addressed likely due to the tissue-specificity limitations of the available genetic alleles.
434 Our single cell RNAseq analysis reveals that all of the defined cell populations of the
435 unamputated digit tip are already present in the 11dpa blastema, validating both the lineage
436 restriction and heterogeneity of the blastema as defined by genetic lineage analyses (Lehoczky et
437 al., 2011; Rinkevich et al., 2011). This regenerative dataset allows for an unbiased view of the

438 cell types within the mouse digit tip blastema, and includes several cell types that have already
439 been described during digit tip regeneration including Schwann cells, macrophages, neutrophils,
440 endothelial cells, osteoblasts, and fibroblasts (Johnston et al., 2016; Lehoczky et al., 2011;
441 Rinkevich et al., 2011; Simkin et al., 2017). Importantly, our clustered data reveals sub-
442 populations and more detailed gene expression associated with these previously reported
443 populations, including two Schwann cell populations, three macrophage populations, and 15
444 distinct fibroblast populations (Figures 2B and 4A). Our data also provides insight into cell types
445 that have not previously been described during digit tip regeneration, including T cells,
446 monocytes, pre-osteoclasts, vascular smooth muscle cells, and lymphatic endothelium. From the
447 standpoint of epimorphic regeneration, this adds considerable information to our understanding
448 of the number of unique cell types participating in digit tip regeneration. From an experimental
449 standpoint, we now have access to specific genetic markers for each of these individual cell types
450 to refine future *in vivo* experimentation.

451 Integration of our longitudinal regenerative data set reveals that a signature of
452 unamputated digit tip cell types exists in the early blastema. Importantly, these are not
453 necessarily identical cell populations and can instead be related cells in distinct cell states
454 (Morris, 2019). With trajectory analysis, we find differentiation from monocytes to macrophages
455 equally at all regenerative stages, however we do find more blastema cells in the pre-osteoclast
456 lineage than are found in the homeostatic digit tip (Supplemental Figure 7E). This likely
457 indicates that our analysis missed the post-amputation macrophage response which occurs prior
458 to the emergence of the blastema (Simkin et al., 2017). Conversely, our data finds discrete
459 clusters of vascular related cells (vascular smooth muscle, vascular endothelium, and lymphatic
460 endothelium) taking on distinct cell states throughout digit tip regeneration (Figure 3). Our

461 analysis provides a refined view of these tissue-specific differentiating cells; for example, a
462 canonical cell-type specific marker such as *Pecam1* would label all vascular endothelial cells,
463 whereby our data details genes and timing of emergence of different populations potentially
464 useful for experimental access to vascular endothelial progenitors (Figure 3, *Egfl7*) or terminally
465 differentiated cells (Figure 3, *Rnd1*).

466 A similar analysis with the digit tip fibroblast and bone populations enriches our previous
467 understanding of heterogeneity and lineage restriction within the connective tissue and skeletal
468 lineages of the regenerating digit tip. The extensive fibroblastic heterogeneity seemed
469 unprecedented given the limited number of mesenchymally-derived tissues within the digit tip
470 regenerate, which includes bone and tendon but not cartilage or muscle. This may suggest that
471 only a portion of the fibroblast populations are progenitors (mesenchymal stem cells (MSCs))
472 differentiating into tissue-specific lineages, whereby the remaining populations might function as
473 niche fibroblasts for ECM production, chemotaxis, etc. Trajectory analysis with these cells
474 indeed reveals multiple tissue-specific lineages, including osteoprogenitors into bone, as well as
475 MSCs into tendon (Figure 4). From this analysis it is not clear if these progenitors can
476 transdifferentiate between skeletal lineages, though it certainly seems possible (Figure 4, clusters
477 1 and 2). This analysis also underscores the importance of re-visiting conclusions from previous
478 fibroblastic genetic lineage analyses, as it is likely that these cre alleles (ex. *Msx1* or *Prrx1*) mark
479 the majority of our newly defined fibroblastic clusters, ultimately limiting the conclusions about
480 transdifferentiation that can be drawn (Lehoczky et al., 2011; Rinkevich et al., 2011).

481 Beyond lineage restriction and heterogeneity, our data offers new insight into the
482 molecular biology of digit tip regeneration. Differential gene expression analysis between
483 blastema cells and homeostatic digit cells enabled us to identify markers of regenerating

484 fibroblasts (Figure 5 and Supplemental Table 7). We found several such markers of blastemal
485 fibroblasts that are upregulated in clusters associated with regeneration and not the quiescent
486 digit tip, including some associated with inflammation (*Ccl2*, *Cxcl2*) and some that regulate
487 extracellular matrix (*Matn4*, *Mmp13*). The gene with the most dramatic change in expression
488 from unamputated digit tip to blastema is *Mest*. The molecular function of *Mest* is not known,
489 but it bears resemblance to the α/β hydrolase family of enzymes and is important for embryonic
490 growth (Lefebvre et al., 1998). Intriguingly, *Mest* has been associated with other regenerative
491 models, in particular the regeneration of adipocytes and hair follicles following skin wounding,
492 where it is thought to be a marker of de-differentiated fibroblasts that differentiate into
493 myofibroblasts (Guerrero-Juarez et al., 2019). The role of *Mest* in digit tip regeneration needs to
494 be explored in vivo. It will be important to determine whether *Mest*-expressing cells are MSCs or
495 de-differentiated fibroblasts that can transdifferentiate into multiple mesenchymal lineages or
496 whether these cells are regeneration-specific fibroblasts that do not contribute to a tissue lineage,
497 but instead provide niche factors. These findings can give insight into inducing epimorphic
498 regeneration in other mammalian tissues.

499 This work presents extensive new and refined data for the regenerating mouse digit tip.
500 Moving forward, much experimental work is required to determine which of these cell types and
501 genes are necessary for regeneration and what molecular role they play. Studies on the necessity
502 and role of Schwann cells and macrophages exemplify the types of focused experiments needed
503 to put this comprehensive digit tip cell atlas into biological context (Johnston et al., 2016; Simkin
504 et al., 2017). Importantly, our study cannot conclusively define the origin of blastema cells and
505 whether they arise via de-differentiation of terminally differentiated cells or whether they are
506 derived from tissue-resident progenitor cells. Our data suggest that both could be true, depending

507 on the lineage. For instance, macrophages in the blastema appear to originate from resident
508 monocytes (Supplemental Figure 7B), whereby vascular cells and at least a subset of fibroblasts
509 may de-differentiate to form the blastema (Figures 3B and 4G). Future experiments, taking
510 advantage of the markers defined in this work, are needed to formally distinguish between these
511 mechanisms for each cell-type.

512 **MATERIALS AND METHODS**

513 **Mouse digit tip amputation surgery**

514 All mice were housed in the Hale BTM specific pathogen free vivarium at Brigham and
515 Women's Hospital. All mouse breeding and surgery was performed in accordance with BWH
516 IACUC approved protocols. All experiments used inbred wild-type FVB/NJ mice (JAX 001800),
517 maintained in our colony. 6-week-old adult male mice were used for unamputated controls and
518 digit tip amputation surgeries and subsequent blastema collection; 2 mice were used for each
519 time point (12 total hindlimb digits). Mice were anesthetized with inhaled isoflurane (1-2% in
520 oxygen) and digits were visualized with a Leica MZ6 stereomicroscope. For each mouse, digits
521 2, 3, and 4 of both hindlimbs were amputated midway through the distal digit segment using a
522 #11 disposable scalpel. Subcutaneous buprenorphine (0.05 mg/kg) was given peri- and post-
523 operatively as analgesia. Post-surgical animals were housed individually. Mice were euthanized
524 and digits were collected at 11, 12, 14, and 17 days post amputation for blastema collection.

525 **Digit tip single cell isolation**

526 For all regenerating digits, blastemas were microdissected from the digit tip while being
527 visualized under a Leica M165FC stereomicroscope. To minimize collection of epithelial cells,
528 the nail and associated epithelium was reflected and removed, leaving direct access to the

529 blastema. The blastema was removed intact with super-fine forceps and placed into ice-cold
530 PBS. Control unamputated digit tip samples were collected in a similar manner whereby the nail
531 and associated epithelium was removed and the exposed digit tip bone and attached connective
532 tissues were amputated with a #11 scalpel at a position comparable to all other digit tip
533 amputations. These control digit tips were collected into ice-cold PBS and processed in parallel
534 with the blastema samples. All tissues were enzymatically dissociated with trypsin (Thermo
535 Fisher) (0.25%, 37°C for 1 hour), then with collagenase type I (Thermo Fisher) (0.65%, 37°C for
536 20 minutes), followed by manual trituration with a pipette. Red blood cells were lysed using
537 ACK lysis buffer. Dissociated cells were washed, filtered, and resuspended in 0.4% BSA in PBS
538 for cell counting on. All samples were adjusted to a concentration of 1,000 cells/uL for the single
539 cell RNAseq pipeline.

540 **Single cell capture, library construction and next generation sequencing**

541 All single cell RNAseq experiments used the 10x Chromium commercially available
542 transcriptomics platform (10x Genomics Inc) implemented by the Brigham and Women's
543 Hospital Single Cell Genomics Core. Single cells were captured using the 10X system; the 12dpa
544 blastema sample cDNA library was made with Single Cell 3' v2 chemistry, and all other libraries
545 (11dpa, 14dpa, 17dpa, and UA) were made with Single Cell 3' v3 chemistry. Libraries were
546 sequenced at the Dana Farber Cancer Institute Molecular Biology Core Facilities on the Illumina
547 NextSeq 500 sequencing system.

548 **Single cell clustering and differential expression analysis**

549 Computationally intensive portions of this research were conducted on the O2 High Performance
550 Computing Cluster, supported by the Research Computing Group at Harvard Medical School

551 (<http://rc.hms.harvard.edu>) using R version 3.5.1 (R Core Team, 2018). 10x Genomics Cell
552 Ranger software (version 3.0.2) was used to convert raw BCL files to FASTQ files, align reads
553 to the mouse mm10 transcriptome, filter low quality cells, and count barcodes and unique
554 molecular identifiers (UMIs). The cell by gene matrices for each of the five datasets generated by
555 Cell Ranger were individually imported to Seurat version 3.0 (Stuart et al., 2019), and cells with
556 unusually high numbers of UMIs (possible doublets) or mitochondrial gene percent (possible
557 dying cells) were filtered out (thresholding in Supplemental Table 8). Gene counts were
558 normalized using the LogNormalize method and highly variable genes selected for downstream
559 analysis (variable feature selection described in Stuart et al., 2019). Data was scaled and
560 principal components selected and adjusted for each experimental group of cells for dimensional
561 reduction (Supplemental Table 8). Cells were clustered using the standard Seurat workflow and
562 visualized using t-distributed stochastic neighbor embedding (tSNE) (van der Maaten and
563 Hinton, 2008). Cluster markers were found using FindAllMarkers with the Wilcoxon rank sum
564 test, with only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25. For the blastema-enriched
565 vs. blastema-depleted differential expression analysis, FindMarkers was run on the fibroblast
566 only Seurat object with clusters determined to be expanded in the blastema (0, 4, 10, 11, and 13)
567 as ident.1 and clusters determined to be depleted in the blastema (2, 5, 6, and 12) as ident.2. All
568 other parameters were default.

569 **Hierarchical and correlation analyses**

570 The dendrogram of 11dpa cell populations was built in R version 3.5.1 (R Core Team, 2018)
571 using the Seurat version 3.0 (Butler et al., 2018; Stuart et al., 2019) command BuildClusterTree
572 on the 11dpa Seurat object with default parameters. The dendrogram was visualized using
573 PlotClusterTree in Seurat. For the correlation analysis, bulk transcriptomes for each cluster were

574 calculated using AverageExpression in Seurat. Pearson correlations were calculated from the
575 resulting gene x cluster expression matrix using R base function cor with method = “pearson”.
576 The correlation matrix was visualized using the corrplot function from the corrplot library (Wei
577 and Simko, 2017).

578 **GO biological process category analysis**

579 For GO category analysis of 11dpa fibroblast populations, cluster marker genes with adjusted p-
580 value ≤ 0.05 and average log fold-change ≥ 0.5 were used as input to the PANTHER
581 classification system web interface (<http://pantherdb.org>) (Mi et al., 2010; Thomas et al., 2003).
582 The statistical overrepresentation test was used with the slim biological processes category,
583 fisher’s exact test, and the Bonferroni correction for multiple hypothesis testing. All genes in the
584 gene by cell matrix from the 11dpa Seurat object were used as the background set for the
585 overrepresentation test.

586 **Cell doublet identification**

587 Initial broad screening for doublets in each data set was performed via quality control processing
588 in Seurat by UMI thresholding (Supplemental Table 8). For specific detection of putative doublet
589 cells, we implemented the DoubletFinder (McGinnis et al., 2018) package in R version 3.5.1 (R
590 Core Team, 2018) as described in detail at <https://github.com/chris-mcginnis-ucsf/DoubletFinder>.
591 The doublet rate used was estimated from the 10x Chromium users guide and the number of cells
592 captured, and is as follows: UA, 7.6%. 11dpa, 5.5%. 12dpa, 2.5%. 14dpa, 4.6%. 17dpa, 6.9%.
593 All identified putative doublets were removed from data sets.

594 **Batch correction, dataset integration and sub-clustering**

595 The cells for our five experimental samples were collected and processed on multiple days,
596 potentially contributing to batch effects in the data. To minimize this, we used the integrate
597 function in Seurat version 3.0 to cluster all cells from all samples together with 11dpa as the
598 anchor data set with dims = 1:20 and all other parameters set to default (Butler et al., 2018;
599 Stuart et al., 2019). The integrated dataset was then scaled and 30 principal components used for
600 clustering with a resolution of 0.6 and visualized with tSNE. For sub-clustering of fibroblast and
601 bone populations, fibroblast and bone clusters were subsetted from the integrated data set as
602 Seurat objects and re-normalized. These objects were re-integrated in Seurat, again using 11dpa
603 as the anchor data set and dims = 1:20, scaled, and clustered with principal components 1:20 and
604 resolution 0.6 to reveal any subpopulations.

605 **Differential proportion analysis**

606 Differential proportion analysis (Farbahi et al., 2019) was performed in R to statistically test for
607 significant cluster membership over regenerative time. Cluster membership tables were
608 calculated in Seurat and the resulting table of cells in each cluster by time point was used in
609 differential proportion analysis. In the first step, generateNull was used with n = 100,000 and p =
610 0.1 as in the original reference. Significance values were calculated for pairwise comparisons of
611 each time point with every other time point and were corrected for multiple hypothesis testing
612 with the Benjamini-Hochberg method in R (Benjamini and Hochberg, 1995). Significance values
613 reported in figures are: p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

614 **Cell trajectory analyses**

615 The SPRING web interface (<https://kleintools.hms.harvard.edu/tools/spring.html>) (Weinreb et
616 al., 2018) was used to generate reproducible, continuous k nearest neighbors force-directed

617 graphs of cells in gene expression space. A gene by cell expression matrix, a file containing time
618 point and Seurat cluster metadata for each cell, and a list of gene names was the input to the web
619 interface. All parameters were left at default values. Blastema datasets (11dpa, 12dpa, 14dpa, and
620 17dpa) were projected onto the unamputated dataset to avoid batch effects. Qualitative analysis
621 of trajectories was facilitated by overlaying Seurat cluster information, regenerative stage, or
622 gene expression. Differential gene expression associated with lineage trajectory (Figure 3, 4, and
623 Supplemental Figure 7) was assessed in SPRING. Only genes with Z-score >1.96 were analyzed.

624 **Section RNA in situ hybridization**

625 Adult wild-type CD1(ICR) (Charles River Laboratories) mice were used for all RNA in situ
626 experiments. Blastema stage regenerating mouse digit tips, and contralateral unamputated
627 controls, were collected and fixed in 4% paraformaldehyde at 4°C overnight, followed by
628 washing and decalcification in decalcifying solution lite (Sigma Aldrich) (40 minutes at room
629 temperature). Digits were prepared for embedding with a 5% to 30% sucrose gradient over 3
630 days, embedded in OCT (Tissue-Tek), and sectioned at 20µm on a Leica CM3050S cryostat.
631 E12.5 embryos used for probe controls were collected from CD1(ICR) timed pregnant females,
632 followed by PFA fixation and sucrose/OCT embedding as above, with solution change times of
633 30 minutes. A *Mest* cDNA for in situ probe template was PCR amplified from E10.5 mouse limb
634 bud random-primed cDNA library with primers 5'GCTCCAGAACCGCAGAATCA and
635 5'GGGAGGTAATACAGGGAGGC (Mesman et al., 2018). The cDNA was cloned into the
636 pGEM-T easy vector (Promega) and sequenced to confirm identity. Antisense RNA probe and
637 sense negative control probe were generated by SP6 or T7 in vitro transcription with
638 digoxigenin-UTP (Sigma Aldrich). Section RNA in situ hybridization was performed as

639 previously reported (Murtaugh et al., 1999), with proteinase K used at 3ug/mL (room temp, 10
640 minutes). All digit tip in situ hybridized sections were developed for the same amount of time.

641 **Data and code availability**

642 All single cell RNAseq FASTQ files and cell by gene expression matrices from this project are
643 available in the NCBI Gene Expression Omnibus, Dataset Accession GSExxxxxx [upon
644 publication]. No new computational tools were developed in this project, however the code for
645 the usage of existing tools, as detailed above, is available at the permanent link:
646 <https://github.com/LehoczkyBWH/xxxxxx> [upon publication].

647 **ACKNOWLEDGEMENTS**

648 We appreciate helpful conversations with Drs. Michael Brenner and Soumya Raychaudhuri. We
649 thank Drs. Caleb Weinreb and Allon Klein for help with SPRING data input. We are grateful for
650 constructive comments from all members of the Lehoczky Lab. This work was supported by the
651 Eunice Kennedy Shriver National Institute of Child and Human Development (R03HD093922
652 and R21HD097405 to J.A.L), The Osher Center for Integrative Medicine, and funds from BWH
653 Department of Orthopedic Surgery to J.A.L.

654 **DISCLOSURES**

655 The authors have no conflicts of interest to disclose.

656

657 **REFERENCES**

658 Albelda SM, Oliver PD, Romer LH, Buck CA. 1990. EndoCAM: a novel endothelial cell-cell
659 adhesion molecule. *J Cell Biol* **110**:1227–37. doi:10.1083/jcb.110.4.1227
660 Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and
661 Powerful Approach to Multiple Testing. *J R Stat Soc Ser B*. doi:10.1111/j.2517-

662 6161.1995.tb02031.x

663 Brandau O, Meindl A, Fässler R, Aszódi A. 2001. A novel gene, tendin, is strongly expressed in
664 tendons and ligaments and shows high homology with chondromodulin-I. *Dev Dyn* **221**:72–
665 80. doi:10.1002/dvdy.1126

666 Butler A, Hoffman P, Smibert P, Papalex E, Satija R. 2018. Integrating single-cell
667 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol*
668 **36**:411–420. doi:10.1038/nbt.4096

669 Calve S, Odelberg SJ, Simon H-G. 2010. A transitional extracellular matrix instructs cell
670 behavior during muscle regeneration. *Dev Biol* **344**:259–271.
671 doi:10.1016/j.ydbio.2010.05.007

672 Campagnolo L, Leahy A, Chitnis S, Koschnick S, Fitch MJ, Fallon JT, Loskutoff D, Taubman
673 MB, Stuhlmann H. 2005. EGFL7 is a chemoattractant for endothelial cells and is up-
674 regulated in angiogenesis and arterial injury. *Am J Pathol* **167**:275–284.
675 doi:10.1016/S0002-9440(10)62972-0

676 Carlson BM. 1978. Types of morphogenetic phenomena in vertebrate regenerating systems.
677 *Integr Comp Biol* **18**:869–882. doi:10.1093/icb/18.4.869

678 Carr MJ, Toma JS, Johnston APW, Steadman PE, Yuzwa SA, Mahmud N, Frankland PW,
679 Kaplan DR, Miller FD. 2018. Mesenchymal Precursor Cells in Adult Nerves Contribute to
680 Mammalian Tissue Repair and Regeneration. *Cell Stem Cell* 1–17.
681 doi:10.1016/j.stem.2018.10.024

682 Dent JN. 1962. Limb regeneration in larvae and metamorphosing individuals of the South
683 African clawed toad. *J Morphol* **110**:61–77. doi:10.1002/jmor.1051100105

684 Dolan CP, Yan M, Zimmel K, Yang T, Leininger E, Dawson LA, Muneoka K. 2019. Axonal
685 regrowth is impaired during digit tip regeneration in mice. *Dev Biol* **445**:237–244.
686 doi:10.1016/j.ydbio.2018.11.010

687 Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JWK, Nordon
688 RE, Harvey RP. 2019. Single-cell expression profiling reveals dynamic flux of cardiac
689 stromal, vascular and immune cells in health and injury. *eLife* **8**:1–39.
690 doi:10.7554/eLife.43882

691 Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K.
692 2012. Wound healing and blastema formation in regenerating digit tips of adult mice
693 **350**:301–310. doi:10.1016/j.ydbio.2010.11.035. Wound

694 Flowers GP, Sanor LD, Crews CM. 2017. Lineage tracing of genome-edited alleles reveals high
695 fidelity axolotl limb regeneration. *eLife* **6**. doi:10.7554/eLife.25726

696 Gargioli C, Slack JMW. 2004. Cell lineage tracing during *Xenopus* tail regeneration.
697 *Development* **131**:2669–2679. doi:10.1242/dev.01155

698 Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, Gac-Santel M,
699 Nowoshilow S, Kageyama J, Khattak S, Currie J, Camp JG, Tanaka EM, Treutlein B. 2018.
700 Single-cell analysis uncovers convergence of cell identities during axolotl limb

701 regeneration. *Science* (80-) **0681**:eaaq0681. doi:10.1126/science.aaq0681

702 Gizard F, Nomiyama T, Zhao Y, Findeisen HM, Heywood EB, Jones KL, Staels B, Bruemmer
703 D. 2008. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell
704 proliferation by repressing cell cycle-dependent telomerase activation. *Circ Res* **103**:1155–
705 63. doi:10.1161/CIRCRESAHA.108.186205

706 Goss RJ. 1961. Experimental investigation of morphogenesis in the growing antler. *J Embryol
707 Exp Morphol* **9**:342–354.

708 Guerrero-Juarez CF, Dedhia PH, Jin S, Ruiz-Vega R, Ma D, Liu Y, Yamaga K, Shestova O, Gay
709 DL, Yang Z, Kessenbrock K, Nie Q, Pear WS, Cotsarelis G, Plikus M V. 2019. Single-cell
710 analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in
711 murine skin wounds. *Nat Commun* **10**:1–17. doi:10.1038/s41467-018-08247-x

712 Han M, Yang X, Lee J, Allan CH, Muneoka K. 2008. Development and regeneration of the
713 neonatal digit tip in mice. *Dev Biol* **315**:125–35. doi:10.1016/j.ydbio.2007.12.025

714 Hay ED, Fischman DA. 1961. Origin of the blastema in regenerating limbs of the newt *Triturus
715 viridescens*. An autoradiographic study using tritiated thymidine to follow cell proliferation
716 and migration. *Dev Biol* **3**:26–59.

717 Illingworth CM. 1974. Trapped fingers and amputated finger tips in children. *J Pediatr Surg*
718 **9**:853–858. doi:10.1016/S0022-3468(74)80220-4

719 Johnson SL, Weston JA. 1995. Temperature-sensitive mutations that cause stage-specific defects
720 in zebrafish fin regeneration. *Genetics* **141**:1583–1595.

721 Johnston APW, Yuzwa SA, Carr MJ, Mahmud N, Storer MA, Krause MP, Jones K, Paul S,
722 Kaplan DR, Miller FD. 2016. Dedifferentiated Schwann Cell Precursors Secreting Paracrine
723 Factors Are Required for Regeneration of the Mammalian Digit Tip. *Cell Stem Cell* **19**:433–
724 448. doi:10.1016/j.stem.2016.06.002

725 Kim J-H, Qu A, Reddy JK, Gao B, Gonzalez FJ. 2014. Hepatic oxidative stress activates the
726 Gadd45b gene by way of degradation of the transcriptional repressor STAT3. *Hepatology*
727 **59**:695–704. doi:10.1002/hep.26683

728 Korn C, Augustin HG. 2015. Mechanisms of Vessel Pruning and Regression. *Dev Cell* **34**:5–17.
729 doi:10.1016/j.devcel.2015.06.004

730 Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM. 2009. Cells keep
731 a memory of their tissue origin during axolotl limb regeneration. *Nature* **460**:60–65.
732 doi:10.1038/nature08152

733 Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Azim Surani M. 1998. Abnormal
734 maternal behaviour and growth retardation associated with loss of the imprinted gene Mest.
735 *Nat Genet* **20**:163–169. doi:10.1038/2464

736 Lehoczky J, Robert B, Tabin C. 2011. Mouse digit tip regeneration is mediated by fate-restricted
737 progenitor cells. *Proc Natl Acad Sci U S A* **108**:20609–14. doi:10.1073/pnas.1118017108

738 Lehoczky J, Tabin C. 2015. Lgr6 marks nail stem cells and is required for digit tip regeneration.

739 *Proc Natl Acad Sci U S A* **112**:13249–13254. doi:10.1073/pnas.1518874112

740 Leigh ND, Dunlap GS, Johnson K, Mariano R, Oshiro R, Wong AY, Bryant DM, Miller BM,
741 Ratner A, Chen A, Ye WW, Haas BJ, Whited JL. 2018. Transcriptomic landscape of the
742 blastema niche in regenerating adult axolotl limbs at single-cell resolution. *Nat Commun*
743 **9**:5153. doi:10.1038/s41467-018-07604-0

744 Li J, Adams LD, Wang X, Pabon L, Schwartz SM, Sane DC, Geary RL. 2004. Regulator of G
745 protein signaling 5 marks peripheral arterial smooth muscle cells and is downregulated in
746 atherosclerotic plaque. *J Vasc Surg* **40**:519–528. doi:10.1016/J.JVS.2004.06.021

747 Marrero L, Simkin J, Sammarco M, Muneoka K. 2017. Fibroblast reticular cells engineer a
748 blastema extracellular network during digit tip regeneration in mice. *Regen (Oxford,
749 England)* **4**:69–84. doi:10.1002/reg2.75

750 McGinnis CS, Murrow LM, Gartner ZJ. 2018. DoubletFinder: Doublet detection in single-cell
751 RNA sequencing data using artificial nearest neighbors. *bioRxiv* 352484.
752 doi:10.1101/352484

753 Mesman S, Krüse SJ, Smidt MP. 2018. Expression analyzes of early factors in midbrain
754 differentiation programs. *Gene Expr Patterns* **27**:8–15. doi:10.1016/j.gep.2017.09.001

755 Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. 2010. PANTHER version 7:
756 improved phylogenetic trees, orthologs and collaboration with the Gene Ontology
757 Consortium. *Nucleic Acids Res* **38**:D204–D210. doi:10.1093/nar/gkp1019

758 Miyazaki K, Uchiyama K, Imokawa Y, Yoshizato K. 1996. Cloning and characterization of
759 cDNAs for matrix metalloproteinases of regenerating newt limbs. *Proc Natl Acad Sci*
760 **93**:6819–6824. doi:10.1073/pnas.93.13.6819

761 Mohammad KS, Day FA, Neufeld DA. 1999. Bone Growth is Induced by Nail Transplantation
762 in Amputated Proximal Phalanges. *Calcif Tissue Int* **65**:408–410.
763 doi:10.1007/s002239900722

764 Mohammad KS, Neufeld DA. 2000. Denervation retards but does not prevent toe tip
765 regeneration. *Wound Repair Regen* **8**:277–281. doi:wrr277 [pii]

766 Moiseeva EP, Javed Q, Spring EL, de Bono DP. 2000. Galectin 1 is involved in vascular smooth
767 muscle cell proliferation. *Cardiovasc Res* **45**:493–502. doi:10.1016/s0008-6363(99)00276-x

768 Morgan TH. 1901. Regeneration and liability to injury. *Science (80-).*
769 doi:10.1126/science.14.346.235

770 Morris SA. 2019. The evolving concept of cell identity in the single cell era.
771 doi:10.1242/dev.169748

772 Müller AM, Hermanns MI, Skrzynski C, Nesslinger M, Müller KM, Kirkpatrick CJ. 2002.
773 Expression of the endothelial markers PECAM-1, vWF, and CD34 in Vivo and in Vitro.
774 *Exp Mol Pathol* **72**:221–229. doi:10.1006/exmp.2002.2424

775 Murtaugh LC, Chyung JH, Lassar AB. 1999. Sonic hedgehog promotes somitic chondrogenesis
776 by altering the cellular response to BMP signaling. *Genes Dev* **13**:225–237.

777 doi:10.1101/gad.13.2.225

778 Neufeld DA, Zhao W. 1995. Bone regrowth after digit tip amputation in mice is equivalent in
779 adults and neonates. *Wound Repair Regen* **3**:461–466. doi:10.1046/j.1524-
780 475X.1995.30410.x

781 Overton J. 1963. Patterns of limb regeneration in *Xenopus laevis*. *J Exp Zool* **154**:153–161.
782 doi:10.1002/jez.1401540202

783 Pearse RV 2nd, Esshaki D, Tabin CJ, Murray MM. 2009. Genome-wide expression analysis of
784 intra- and extraarticular connective tissue. *J Orthop Res* **27**:427–434. doi:10.1002/jor.20774

785 R Core Team. 2018. R: A Language and Environment for Statistical Computing.

786 Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. 2011. Germ-layer and lineage-
787 restricted stem/progenitors regenerate the mouse digit tip. *Nature* **476**:409–13.
788 doi:10.1038/nature10346

789 Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ.
790 2001. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and
791 ligaments. *Development* **128**:3855–66.

792 Simkin J, Sammarco MC, Marrero L, Dawson LA, Yan M, Tucker C, Cammack A, Muneoka K.
793 2017. Macrophages are required to coordinate mouse digit tip regeneration. *Development*
794 **144**:3907–3916. doi:10.1242/dev.150086

795 Spallanzani L. 1768. Prodromo di un' opera da imprimersi sopra la riproduzioni animali,
796 Giovanni Montanari, Modena. *An Essay Anim Reprod.*

797 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius
798 M, Smibert P, Satija R. 2019. Comprehensive Integration of Single-Cell Data. *Cell*
799 **177**:1888-1902.e21. doi:10.1016/j.cell.2019.05.031

800 Suehiro J, Kanki Y, Makihara C, Schadler K, Miura M, Manabe Y, Aburatani H, Kodama T,
801 Minami T. 2014. Genome-wide approaches reveal functional vascular endothelial growth
802 factor (VEGF)-inducible nuclear factor of activated T cells (NFAT) c1 binding to
803 angiogenesis-related genes in the endothelium. *J Biol Chem* **289**:29044–59.
804 doi:10.1074/jbc.M114.555235

805 Takeo M, Chou WC, Sun Q, Lee W, Rabbani P, Loomis C, Taketo MM, Ito M. 2013. Wnt
806 activation in nail epithelium couples nail growth to digit regeneration. *Nature* **499**:228–232.
807 doi:10.1038/nature12214[nature12214 [pii]]

808 Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan
809 A, Narechania A. 2003. PANTHER: a library of protein families and subfamilies indexed
810 by function. *Genome Res* **13**:2129–41. doi:10.1101/gr.772403

811 Tu S, Johnson SL. 2011. Fate restriction in the growing and regenerating zebrafish fin. *Dev Cell*
812 **20**:725–32. doi:10.1016/j.devcel.2011.04.013

813 van der Maaten L, Hinton G. 2008. Visualizing high-dimensional data using t-SNE. *J Mach
814 Learn Res* **9**:2579–2605.

815 van Furth R, Cohn ZA. 1968. The origin and kinetics of mononuclear phagocytes. *J Exp Med*
816 **128**:415–435. doi:10.1084/jem.128.3.415

817 Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ. 2005. Normal newt limb
818 regeneration requires matrix metalloproteinase function. *Dev Biol* **279**:86–98.
819 doi:10.1016/j.ydbio.2004.12.003

820 Virolainen M. 1968. Hematopoietic origin of macrophages as studied by chromosome markers in
821 mice. *J Exp Med* **127**:943–52. doi:10.1084/jem.127.5.943

822 Wei T, Simko V. 2017. R package “corrplot”: Visualization of a Correlation Matrix.

823 Weinreb C, Wolock S, Klein AM. 2018. SPRING: A kinetic interface for visualizing high
824 dimensional single-cell expression data. *Bioinformatics* **34**:1246–1248.
825 doi:10.1093/bioinformatics/btx792

826 Wu C-H, Tsai M-H, Ho C-C, Chen C-Y, Lee H-S. 2013. De novo transcriptome sequencing of
827 axolotl blastema for identification of differentially expressed genes during limb
828 regeneration. *BMC Genomics* **14**:434. doi:10.1186/1471-2164-14-434

829 Wu Y, Wang K, Karapetyan A, Fernando WA, Simkin J, Han M, Rugg EL, Muneoka K. 2013.
830 Connective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip
831 Regeneration. *PLoS One* **8**:e54764. doi:10.1371/journal.pone.0054764

832 Yu L, Yan M, Simkin J, Ketcham PD, Leininger E, Han M, Muneoka K. 2014. Angiogenesis is
833 inhibitory for mammalian digit regeneration 33–46. doi:10.1002/reg.2.24

834

835 **FIGURE LEGENDS AND TABLES**

836 **Figure 1**

837 **Cellular heterogeneity of the 11dpa blastema**

838 (A) Schematic overview of innate mouse digit tip regeneration following amputation mid-way
839 through the terminal phalanx. Schematic of the experimental design whereby blastemas were
840 dissected, dissociated, and single cells captured. Single cell RNA libraries were prepared and
841 sequenced for computational analysis. (B) Unbiased single cell clustering of 7,610 high quality
842 cells visualized by tSNE plot. Each dot represents a single cell and cells assigned to the same
843 cluster are similarly colored. Cell type identities are assigned as follows: fibroblasts (clusters 0-2,
844 4-6, and 8), macrophages (clusters 3, 14, and 16), bone (cluster 7), vascular smooth muscle cells

845 (VSM) (cluster 9), endothelial cells (cluster 10), monocytes (cluster 11), epithelial cells (cluster
846 12), Schwann cells (SC) (cluster 13), T cells (cluster 15). (C) Gene expression tSNE overlay with
847 examples of highly expressed, cell type specific markers used to assign cluster cell identities:
848 *Bglap* (bone), *Krt14* (epithelial cells), *Plp1* (SCs), *Lyz2* (macrophages), *Pecam1* (endothelial
849 cells), *Rgs5* (vascular smooth muscle cells), *Cd3g* (T cells), *Prrx1* (fibroblasts). Gray depicts low
850 expression and purple depicts high expression as specified on the scale for each gene.

851 **Figure 2**

852 **Integrated analysis of single cell populations through a regenerative time course**

853 All analyses use combined and normalized 11dpa, 12dpa, 14dpa, 17dpa, and unamputated (UA)
854 scRNAseq data sets. (A) tSNE plot of integrated data sets colored by regenerative stage: 11dpa
855 (orange), 12dpa (olive green), 14dpa (green), 17dpa (blue), and unamputated (purple). (B) tSNE
856 of integrated data sets showing clusters and cluster cell type annotations. Assigned cell types are:
857 fibroblasts (FB; clusters 0-5, and 13), vascular smooth muscle cells (VSM; clusters 6 and 22),
858 epithelial cells (Epi; clusters 10, 15, and 16), macrophages (M ϕ ; clusters 7, 11, and 18),
859 endothelial cells (Endo; clusters 9 and 19), bone (cluster 8), monocytes (Mono; cluster 12),
860 Schwann cells (SC; clusters 14 and 20), T cells (cluster 17), pre-osteoclasts (PreOC; cluster 21),
861 and neutrophils (N; cluster 23). (C) tSNE plot of integrated data set (gray) showing the cluster
862 distribution of cells from each regenerative stage (pink). (D) The percentage of total cells
863 represented by each cluster for the given regenerative stage. Each stage has been compared to the
864 proportion of cells in UA, and significant changes were determined by differential proportion
865 analysis (marked with asterisk). Clusters are categorized by overarching cell types (fibroblast or
866 bone, immune, vasculature, or neural). Significance values are as follows: * denotes p<0.05, **
867 denotes p<0.01, *** denotes p<0.001.

868 **Figure 3**

869 **Vasculature differentiation trajectory of integrated data set**

870 SPRING lineage trajectory analysis of cells from the integrated data set vascular clusters 6, 9, 19
871 and 22. (A) Force-directed plot of cells showing clusters of vascular smooth muscle cells,
872 vascular endothelial cells, and lymphatic endothelial cells. (B) SPRING plot as in (A) with
873 regenerative stages of each cell colored coded: 11dpa (orange), 12dpa (light blue), 14dpa
874 (medium blue), 17dpa (dark blue), unamputated (yellow). Differential clustering of blastema
875 cells and unamputated cells suggests tissue specific differentiation of the vascular smooth muscle
876 cells and the vascular endothelium (curved arrows). (C) Gene expression overlay on vascular
877 smooth muscle cells. *Rgs5* is expressed in all cells, *Gadd45b* is more highly expressed in UA
878 cells, and *Lgals1* is more highly expressed in blastema cells. High expression is in green and low
879 expression is black. (D) Gene expression overlay on vascular endothelial cells. *Pecam1* is
880 expressed in all cells, *Rnd1* is more highly expressed in UA cells, and *Egfl7* is more highly
881 expressed in blastema cells.

882 **Figure 4**

883 **Fibroblast differentiation trajectory of integrated data set**

884 (A) tSNE plot of unbiased re-clustering of fibroblast and bone cells from integrated data set
885 (Figure 2: clusters 0-5, 8, and 13), reveals 15 refined clusters. (B) SPRING lineage trajectory
886 analysis of cells from the integrated data set showing fibroblasts (FB) or bone (B) do not
887 transdifferentiate into Schwann cells (SC), monocytes (M), macrophages (MΦ), pre-osteoclasts
888 (pOC), endothelium (Endo), epithelium (Epi), T cells (T), or vascular smooth muscle (VSM).
889 Fibroblast SPRING lineage trajectory overlaid with (C) bone lineage from cluster 1 to cluster 8

890 (curved arrow). Marker gene expression for each cluster shown with *Bglap*, *Ibsp*, and *Postn*.
891 High expression is in green and low expression is black. (D) Proposed mesenchymal stem cell
892 lineage from cluster 2 to clusters 5, 6, 9, 12, and 14 (curved arrows), with distinct lineages
893 marked by *Tnmd*, *S100a4*, and *Smoc2*. Curved line depicts terminally differentiated cells. (E)
894 Clusters 11 and 13 mark mitotic cells (black circle) and (F) clusters 0, 3, and 4 do not contribute
895 to a lineage, but are (G) enriched for early stage blastema cells (arrow pointing to orange).

896 **Figure 5**

897 **Analysis of blastema fibroblast population dynamics**

898 Differential proportion analysis of fibroblast clusters parsed by regeneration profile where
899 clusters in (A) have no significant population dynamics between blastema stages and
900 unamputated. (B) Cells in clusters 2, 5, 6, and 12 are significantly depleted as compared to
901 unamputated and (C) cells in clusters 0, 4, 10, 11, and 13 are enriched during regeneration as
902 compared to unamputated. Significance values are as follows: * denotes $p<0.05$, ** denotes
903 $p<0.01$, *** denotes $p<0.001$. (D) Subset of genes enriched in blastema stages as compared to
904 unamputated. Gray depicts low expression and dark purple is high expression; small circles
905 depict a low percentage of cells and large circles depict a high percentage. (E) Violin plots of
906 representative genes enriched in blastema fibroblasts as compared to unamputated. Black points
907 represent individual cells and the colored curve shows the distribution of cells at a given
908 expression level.

909 **Figure 6**

910 ***Mest* expression during digit tip regeneration**

911 RNA section *in situ* hybridization for *Mest* on regenerating digit tips. (A) Unamputated digit tip
912 with orientation shown by schematic below. (B) 11dpa with region of the blastema depicted in
913 the schematic below. Additional regenerative stages include (C) 12dpa, (D) 14dpa, and (E)
914 17dpa. Asterisks (*) denote artifacts from coverslipping. Abbreviations: (N) nail, (CT)
915 connective tissue, (E) epithelium, (B) bone, (BL) blastema.

916 **Supplemental Figure 1**

917 **11dpa cluster relationships and fibroblast heterogeneity**

918 Additional analyses of data presented in Figure 1. (A) Dendrogram showing the relationships
919 between clusters; cell cluster numbers correlate with tSNE plot cluster numbers in Figure 1B.
920 Asterisks denote four main branches of the dendrogram, and red arrows denote fibroblast
921 clusters. (B) Heatmap showing the Pearson correlation between each cell cluster, where dark
922 blue represents highly correlated (r nears 1) and light blue represents lowly correlated (r nears 0).
923 (C) Violin plots of representative genes differentially expressed among fibroblast clusters. Black
924 points represent individual cells and the colored curve shows the distribution of cells at a given
925 expression level. Examples include: *Ccl2* (cluster 0), *Mmp13* (cluster 1), *Ndnf* (clusters 0, 1, 2,
926 and 8), *Acan* (cluster 4), *Aldh1a2* (cluster 5), *Scara5* (cluster 6), and *Top2a* (cluster 8).

927 **Supplemental Figure 2**

928 **Visualization of predicted doublet cells at each regenerative time point**

929 tSNE plots for each blastema regenerative timepoint: unamputated (UA) (corresponds to data in
930 Supplemental Figure 6A), 11dpa (corresponds to data in Figure 1A), 12dpa (corresponds to data
931 in Supplemental Figure 3A), 14dpa (corresponds to data in Supplemental Figure 4A), and 17 dpa
932 (corresponds to data in Supplemental Figure 5A). 419 cells were classified as doublets in the

933 11dpa sample, 83 in 12dpa, 271 in 14dpa, 606 in 17dpa, and 978 in UA. Cells classified as
934 doublets and excluded from all subsequent analyses are in red; all other cells are in gray.

935 **Supplemental Figure 3**

936 **Single cell RNAseq of 12dpa blastema**

937 (A) Unbiased single cell clustering of 3,309 high quality cells visualized by tSNE plot. Each dot
938 represents a single cell and cells assigned to the same cluster are similarly colored. Cell type
939 identities are assigned as follows: fibroblasts (clusters 0-3, and 9), macrophages (clusters 4 and
940 12), bone (cluster 5), monocytes (cluster 6), vascular smooth muscle cells (VSM) (cluster 7),
941 endothelial cells (cluster 8), epithelial cells (cluster 10), Schwann cells (SC) (cluster 11), T cells
942 (cluster 13), and pre-osteoclasts (Pre-OC) (cluster 14). (B) Gene expression tSNE overlay with
943 examples of highly expressed, cell type specific markers used to assign cluster cell identities:
944 *Bglap* (bone), *Krt14* (epithelial cells), *Plp1* (SCs), *Lyz2* (macrophages), *Pecam1* (endothelial
945 cells), *Rgs5* (vascular smooth muscle cells), *Cd3g* (T cells), *Prrx1* (fibroblasts). Gray depicts low
946 expression and purple depicts high expression as specified on the scale for each gene.

947 **Supplemental Figure 4**

948 **Single cell RNAseq of 14dpa blastema**

949 (A) Unbiased single cell clustering of 5,896 high quality cells visualized by tSNE plot. Each dot
950 represents a single cell and cells assigned to the same cluster are similarly colored. Cell type
951 identities are assigned as follows: fibroblasts (clusters 0-3, 5, 7, and 9), macrophages (clusters 4
952 and 16), bone (cluster 6), vascular smooth muscle cells (VSM) (cluster 8), monocytes (clusters
953 10 and 12), endothelial cells (cluster 11), T cells (cluster 13), epithelial cells (cluster 14), pre-
954 osteoclast (Pre-OC) (cluster 15), Schwann cells (SC) (cluster 17), neutrophils (cluster 18). (B)
955 Gene expression tSNE overlay with examples of highly expressed, cell type specific markers

956 used to assign cluster cell identities: *Bglap* (bone), *Krt14* (epithelial cells), *Plp1* (SCs), *Lyz2*
957 (macrophages), *Pecam1* (endothelial cells), *Rgs5* (vascular smooth muscle cells), *Cd3g* (T cells),
958 *Prrx1* (fibroblasts). Gray depicts low expression and purple depicts high expression as specified
959 on the scale for each gene.

960 **Supplemental Figure 5**

961 **Single cell RNAseq of 17dpa blastema**

962 (A) Unbiased single cell clustering of 8,778 high quality cells visualized by tSNE plot. Each dot
963 represents a single cell and cells assigned to the same cluster are similarly colored. Cell type
964 identities are assigned as follows: fibroblasts (clusters 0-2, and 4), endothelial cells (cluster 3),
965 vascular smooth muscle cells (VSM) (clusters 5, 13 and 16), macrophages (cluster 6), epithelial
966 cells (clusters 7 and 10), bone (cluster 8), monocytes (clusters 9 and 15), Schwann cells (SC)
967 (cluster 11), endothelial cells (cluster 12), T cells (cluster 14). (B) Gene expression tSNE overlay
968 with examples of highly expressed, cell type specific markers used to assign cluster cell
969 identities: *Bglap* (bone), *Krt14* (epithelial cells), *Plp1* (SCs), *Lyz2* (macrophages), *Pecam1*
970 (endothelial cells), *Rgs5* (vascular smooth muscle cells), *Cd3g* (T cells), *Prrx1* (fibroblasts).
971 Gray depicts low expression and purple depicts high expression as specified on the scale for each
972 gene.

973 **Supplemental Figure 6**

974 **Single cell RNAseq of the unamputated digit tip**

975 (A) Unbiased single cell clustering of 12,871 high quality cells visualized by tSNE plot. Each dot
976 represents a single cell and cells assigned to the same cluster are similarly colored. Cell type
977 identities are assigned as follows: fibroblasts (clusters 0-3, 5, 6, 9, 20 and 21), macrophages
978 (clusters 4 and 16), vascular smooth muscle cells (VSM) (cluster 7), epithelial cells (clusters 8,

979 12, and 13), endothelial cells (cluster 10 and 18), Schwann cells (SC) (clusters 11 and 19),
980 monocytes (cluster 14), bone (cluster 15), T cells (cluster 17). (B) Gene expression tSNE overlay
981 with examples of highly expressed, cell type specific markers used to assign cluster cell
982 identities: *Bglap* (bone), *Krt14* (epithelial cells), *Plp1* (SCs), *Lyz2* (macrophages), *Pecam1*
983 (endothelial cells), *Rgs5* (vascular smooth muscle cells), *Cd3g* (T cells), *Prrx1* (fibroblasts).
984 Gray depicts low expression and purple depicts high expression as specified on the scale for each
985 gene.

986 **Supplemental Figure 7**

987 **Differentiation trajectory analysis of immune-related cells**

988 SPRING lineage trajectory analysis of cells from the integrated data set immune-related clusters
989 7, 11, 12, 17, 18, 21, and 23. (A) Force-directed plot of cells showing a monocytes,
990 macrophages, ECM macrophages (express ECM related genes; population of unknown
991 relevance), mitotic macrophages, pre-osteoclasts, T cells. (B) SPRING plot as in (A) with
992 regenerative stages of each cell colored coded: 11dpa (orange), 12dpa (light blue), 14dpa
993 (medium blue), 17dpa (dark blue), unamputated (yellow). Known differentiation trajectories
994 from monocytes to macrophages, and monocytes to pre-osteoclasts are depicted with curved
995 arrows. (C) Gene expression overlay showing monocyte to macrophage differentiation. *H2-Abl*
996 is expressed in monocytes and *Adgre1*(F4/80) is expressed in macrophages. High expression is in
997 green and low expression is black. (D) Gene expression overlay showing *Ocstamp* pre-osteoclast
998 expression and *Top2a* mitotic macrophage expression. (E) Close-up of pre-osteoclasts and
999 mitotic macrophages in (B); qualitative evaluation shows enrichment for blastema stages.

1000 **Supplemental Figure 8**

1001 ***Mest* RNA *in situ* control expression**

1002 All panels are DIG labeled section RNA *in situ* controls. (A-C) *Mest* antisense probe positive
1003 control on E12.5 mouse embryo sections. (A) Transverse section through head and neck region
1004 with positive expression (purple) in the developing forebrain, tongue, and vertebrae (arrows).
1005 Magnified view of panel (A) of (B) tongue and (C) vertebrae. (D and E) *Mest* sense probe
1006 negative control on adult mouse digit tip sections. No appreciable expression is found on (D)
1007 12dpa or (E) unamputated tissues.

1008 **Supplemental Table 1**

1009 **Cell cluster differential gene expression by regenerative stage**

1010 Differential gene expression analysis output from the FindAllMarkers function in Seurat. Each
1011 tab contains data from discrete regenerative stages: (A) 11dpa, (B) 12 dpa, (C) 14dpa, (D) 17dpa,
1012 and (E) unamputated. Column headers are: gene (NCBI gene ID), p-val (unadjusted p-value),
1013 avg logFC (average log fold-change among all cell clusters at this stage), pct.1 (percentage of
1014 cells in this cluster with this gene expression), pct.2 (percentage of cells in all other clusters with
1015 this gene expression), adj p-val (Bonferroni corrected p-value), cluster (cell cluster number on
1016 associated tSNE plot), cell type (cell cluster associated cell type assigned by literature review of
1017 most significant genes).

1018 **Supplemental Table 2**

1019 **GO terms associated with 11dpa fibroblast cluster gene expression**

1020 Significant GO slim biological process categories for 11dpa fibroblast clusters with adjusted p-
1021 value ≤ 0.05 and average log fold-change ≥ 0.05 .

11dpa fibroblast cluster #	GO significant categories
0	granulocyte chemotaxis, inflammatory response, Wnt signaling pathway, response to cytokine, regulation of signal transduction
1	antimicrobial humoral immune response, response to lipopolysaccharide, response to cytokine
2	none significant
4	skeletal system development, extracellular matrix organization
5	extracellular matrix organization, cell development, regulation of signal transduction
6	iron ion import, transmembrane receptor protein tyrosine kinase signaling pathway
8	DNA recombination, chromosome segregation, chromosome condensation, regulation of cyclin-dependent protein serine/threonine kinase activity, positive regulation of cell cycle, mitotic nuclear division, chromatin organization, microtubule cytoskeleton organization, nucleotide biosynthetic process

1022

1023 **Supplemental Table 3**

1024 **Integrated data set cell cluster differential gene expression**

1025 Differential gene expression analysis of 11dpa, 12dpa, 14dpa, 17dpa, and unamputated
1026 integrated data set. Output is from the FindAllMarkers function in Seurat. Column headers are:
1027 gene (NCBI gene ID), p-val (unadjusted p-value), avg logFC (average log fold-change among all
1028 cell clusters at this stage), pct.1 (percentage of cells in this cluster with this gene expression),
1029 pct.2 (percentage of cells in all other clusters with this gene expression), adj p-val (Bonferroni
1030 corrected p-value), cluster (cell cluster number on associated tSNE plot), cell type (cell cluster
1031 associated cell type assigned by literature review of most significant genes).

1032 **Supplemental Table 4**

1033 **P-values for differential population analysis**

1034 All resultant p-values for regenerative stage pairwise differential proportion analyses testing for
1035 significant changes in proportion of cells within clusters. Reported values have been corrected
1036 for multiple hypothesis testing. Column headers indicate regenerative stages being compared: 11
1037 = 11dpa, 12 = 12dpa, 14 = 14dpa, 17 = 17dpa, and ua = unamputated. Cluster numbers in each

1038 row refer to tSNE cluster classification in Figure 2B. All table cells in gray are noted as
1039 significant with $p \leq 0.05$.

	ua vs. 11	ua vs. 12	ua vs. 14	ua vs. 17	11 vs. 12	11 vs. 14	11 vs. 17	12 vs. 14	12 vs. 17	14 vs. 17
cluster_0	0.0023	0.0568	0.0568	0.4455	0.3148	0.1976	0.0023	0.4455	0.0568	0.0568
cluster_1	0.0000	0.0010	0.0002	0.1390	0.1390	0.0746	0.0000	0.4276	0.0124	0.0059
cluster_2	0.1002	0.2819	0.1362	0.1645	0.4646	0.4725	0.4646	0.4646	0.4973	0.4646
cluster_3	0.2321	0.2321	0.2742	0.2742	0.3901	0.4293	0.4258	0.3454	0.3425	0.4646
cluster_4	0.0028	0.1201	0.1296	0.1296	0.3100	0.1296	0.1201	0.3317	0.3117	0.4456
cluster_5	0.4473	0.4719	0.4719	0.4719	0.4719	0.4473	0.4473	0.4719	0.4719	0.4719
cluster_6	0.1108	0.2819	0.1604	0.0384	0.4438	0.4438	0.0029	0.4438	0.0289	0.0060
cluster_7	0.4243	0.4243	0.4243	0.4243	0.4256	0.4243	0.4243	0.4243	0.4243	0.4243
cluster_8	0.1539	0.1363	0.0815	0.1539	0.2702	0.2702	0.4995	0.4995	0.2702	0.2702
cluster_9	0.4636	0.4947	0.2743	0.0002	0.4636	0.2688	0.0011	0.3520	0.0031	0.0000
cluster_10	0.0005	0.0015	0.0001	0.0631	0.3808	0.2893	0.0767	0.3808	0.0767	0.0270
cluster_11	0.4779	0.4779	0.4779	0.4779	0.4779	0.4779	0.4779	0.4779	0.4779	0.4779
cluster_12	0.4540	0.4540	0.4540	0.4540	0.4540	0.4540	0.4540	0.4540	0.4540	0.4540
cluster_13	0.0000	0.0100	0.0086	0.3184	0.2567	0.0846	0.0001	0.3184	0.0192	0.0192
cluster_14	0.0285	0.0853	0.0066	0.1366	0.4755	0.3185	0.3125	0.3185	0.3185	0.1366
cluster_15	0.0095	0.1772	0.0095	0.3703	0.2934	0.4438	0.0359	0.2910	0.2850	0.0359
cluster_16	0.0000	0.0038	0.0003	0.0652	0.4495	0.4735	0.0505	0.4495	0.1109	0.0568
cluster_17	0.4860	0.4860	0.1714	0.4860	0.4860	0.1714	0.4860	0.1879	0.4860	0.1891
cluster_18	0.4443	0.4443	0.4443	0.4443	0.4756	0.4443	0.4443	0.4443	0.4443	0.4443
cluster_19	0.3982	0.4135	0.3982	0.3982	0.3982	0.4135	0.3892	0.4135	0.3982	0.3982
cluster_20	0.0460	0.0460	0.0460	0.0460	0.4745	0.4745	0.4745	0.4745	0.4745	0.4745
cluster_21	0.2324	0.2324	0.1822	0.2997	0.3372	0.2745	0.2997	0.3637	0.2745	0.2324
cluster_22	0.3231	0.3231	0.3231	0.3231	0.3231	0.3231	0.4699	0.4699	0.3231	0.3231
cluster_23	0.3733	0.3733	0.3920	0.3920	0.3920	0.3733	0.3733	0.3733	0.3733	0.3733

1040

1041 **Supplemental Table 5**

1042 **Differential gene expression from all-stage integrated and re-clustered fibroblasts and bone**

1043 Differential gene expression analysis from only clustering of only fibroblast and bone cells of
1044 11dpa, 12dpa, 14dpa, 17dpa, and unamputated digit tip data. Output is from the FindAllMarkers
1045 function in Seurat. Column headers are: gene (NCBI gene ID), p-val (unadjusted p-value), avg
1046 logFC (average log fold-change among all cell clusters at this stage), pct.1 (percentage of cells in
1047 this cluster with this gene expression), pct.2 (percentage of cells in all other clusters with this
1048 gene expression), adj p-val (Bonferroni corrected p-value), cluster (cell cluster number on
1049 associated tSNE plot (Figure 4A)), cell type (cell cluster associated cell type assigned by
1050 literature review of most significant genes).

1051 **Supplemental Table 6**

1052 **P-values for differential population analysis of re-clustered fibroblast and bone populations**

1053 All resultant p-values for regenerative stage pairwise differential proportion analyses testing for
1054 significant changes in proportion of cells within clusters. Reported values have been corrected
1055 for multiple hypothesis testing. Column headers indicate regenerative stages being compared: 11
1056 = 11dpa, 12 = 12dpa, 14 = 14dpa, 17 = 17dpa, and ua = unamputated. Cluster numbers in each
1057 row refer to tSNE cluster classification in Figure 4A. All table cells in gray are noted as
1058 significant with $p \leq 0.05$.

	ua vs. 11	ua vs. 12	ua vs. 14	ua vs. 17	11 vs. 12	11 vs. 14	11 vs. 17	12 vs. 14	12 vs. 17	14 vs. 17
cluster_0	0.0000	0.0009	0.0006	0.0405	0.1726	0.0554	0.0006	0.3089	0.0554	0.0785
cluster_1	0.1733	0.4456	0.4456	0.4456	0.3454	0.2305	0.2156	0.4456	0.4456	0.4456
cluster_2	0.0104	0.0812	0.0359	0.3688	0.3688	0.3913	0.0409	0.4161	0.1740	0.0812
cluster_3	0.4408	0.4408	0.4408	0.4408	0.4408	0.4408	0.4408	0.4408	0.4408	0.4408
cluster_4	0.0015	0.0345	0.0722	0.2622	0.3607	0.1418	0.0188	0.2622	0.0931	0.1814
cluster_5	0.2015	0.0477	0.0825	0.3363	0.1497	0.2620	0.2828	0.2620	0.0825	0.1591
cluster_6	0.0004	0.0052	0.0081	0.0677	0.4803	0.2895	0.0911	0.3230	0.1509	0.2734
cluster_7	0.4862	0.4962	0.4862	0.4862	0.4862	0.4862	0.4862	0.4862	0.4862	0.4962
cluster_8	0.3203	0.1738	0.1738	0.1738	0.3203	0.3203	0.3203	0.4540	0.4540	0.4890
cluster_9	0.4461	0.4461	0.4461	0.4461	0.4461	0.4461	0.4461	0.4461	0.4461	0.4461
cluster_10	0.4364	0.0568	0.0198	0.0288	0.0674	0.0219	0.0414	0.4364	0.4364	0.3863
cluster_11	0.0189	0.0366	0.0366	0.4015	0.4406	0.4015	0.0366	0.4015	0.0603	0.0620
cluster_12	0.0000	0.0001	0.0000	0.0018	0.4978	0.4978	0.2252	0.4978	0.2252	0.2252
cluster_13	0.0116	0.3093	0.2400	0.3513	0.1733	0.1588	0.0489	0.4763	0.3703	0.3513
cluster_14	0.0996	0.0996	0.0996	0.0996	0.4437	0.4437	0.4437	0.4437	0.4437	0.4437

1059

1060 **Supplemental Table 7**

1061 **Differential gene expression of blastema-enriched versus blastema-depleted cell clusters**

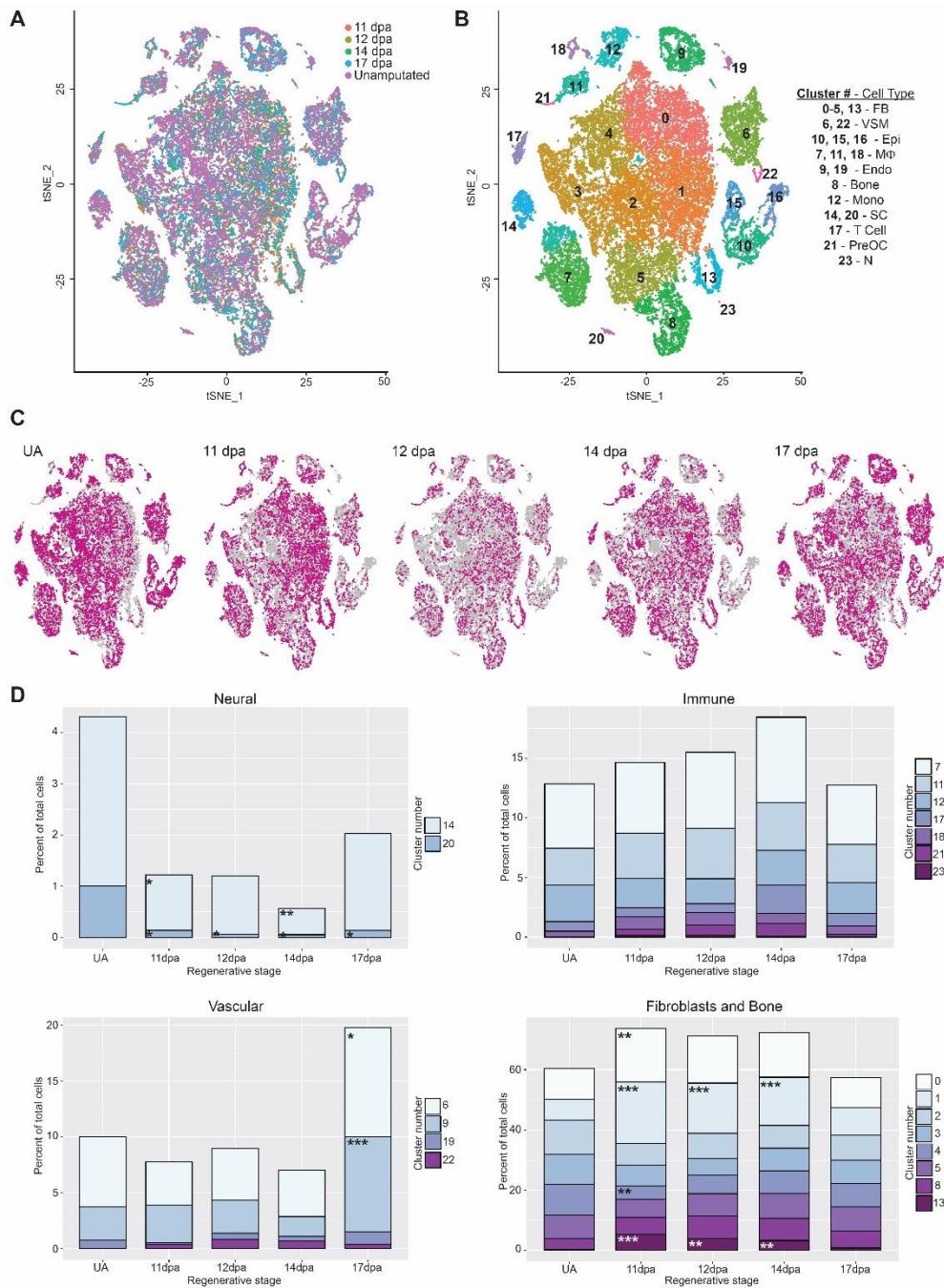
1062 Differential gene expression analysis from defined blastema-enriched clusters (Figure 4C) versus
1063 blastema-depleted clusters (Figure 4B). Output is from the FindAllMarkers function in Seurat.
1064 Column headers are: gene (NCBI gene ID), p-val (unadjusted p-value), avg logFC (average log
1065 fold-change among all cell clusters at this stage), pct.1 (percentage of cells in blastema-enriched

1066 clusters with detected expression of the gene), pct.2 (percentage of cells in blastema-depleted
1067 clusters with detected expression of the gene), and adj p-val (Bonferroni corrected p-value).

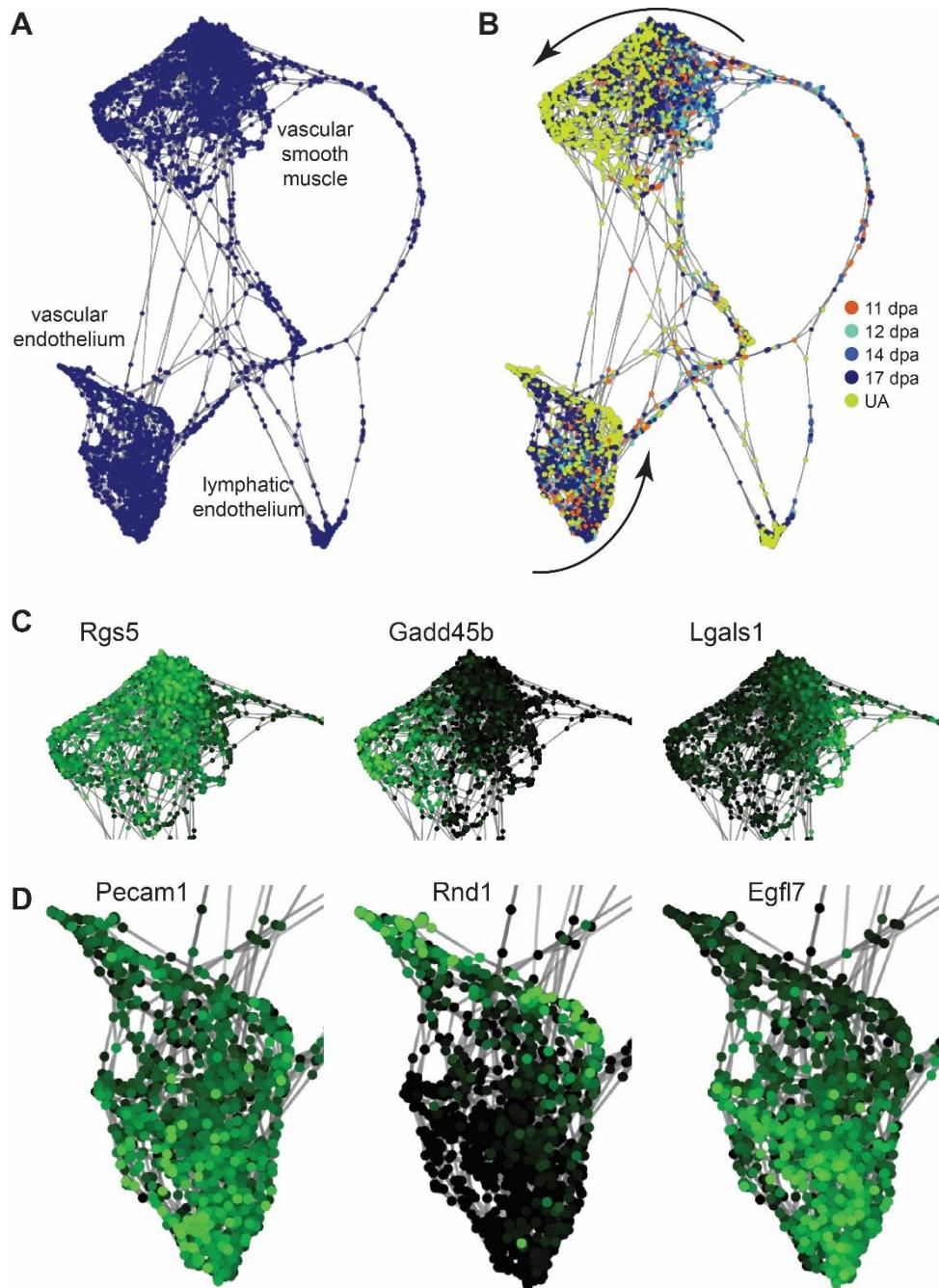
1068 **Supplemental Table 8**

1069 **Metadata for single cell RNAseq data thresholding**

1070 Summary of thresholding parameters for data processing, quality control, and cell clustering of
1071 each single cell RNAseq data set. Column headers denote blastema datasets (11dpa, 12dpa,
1072 14dpa, and 17dpa) and unamputated control (UA). Parameters are: percent of mitochondrial
1073 genes upper bound, number of unique molecular identifiers (nUMI) lower and upper bounds,
1074 number of principal components, and resolution.


	11dpa	12dpa	14dpa	17dpa	UA
% Mitochondrial genes	25	20	20	25	25
nUMI lower bound	200	200	200	200	200
nUMI upper bound	5500	4000	6500	6500	5000
# of principal components	16	16	20	20	20
Resolution	0.6	0.6	0.6	0.6	0.6

1075


Figure 1

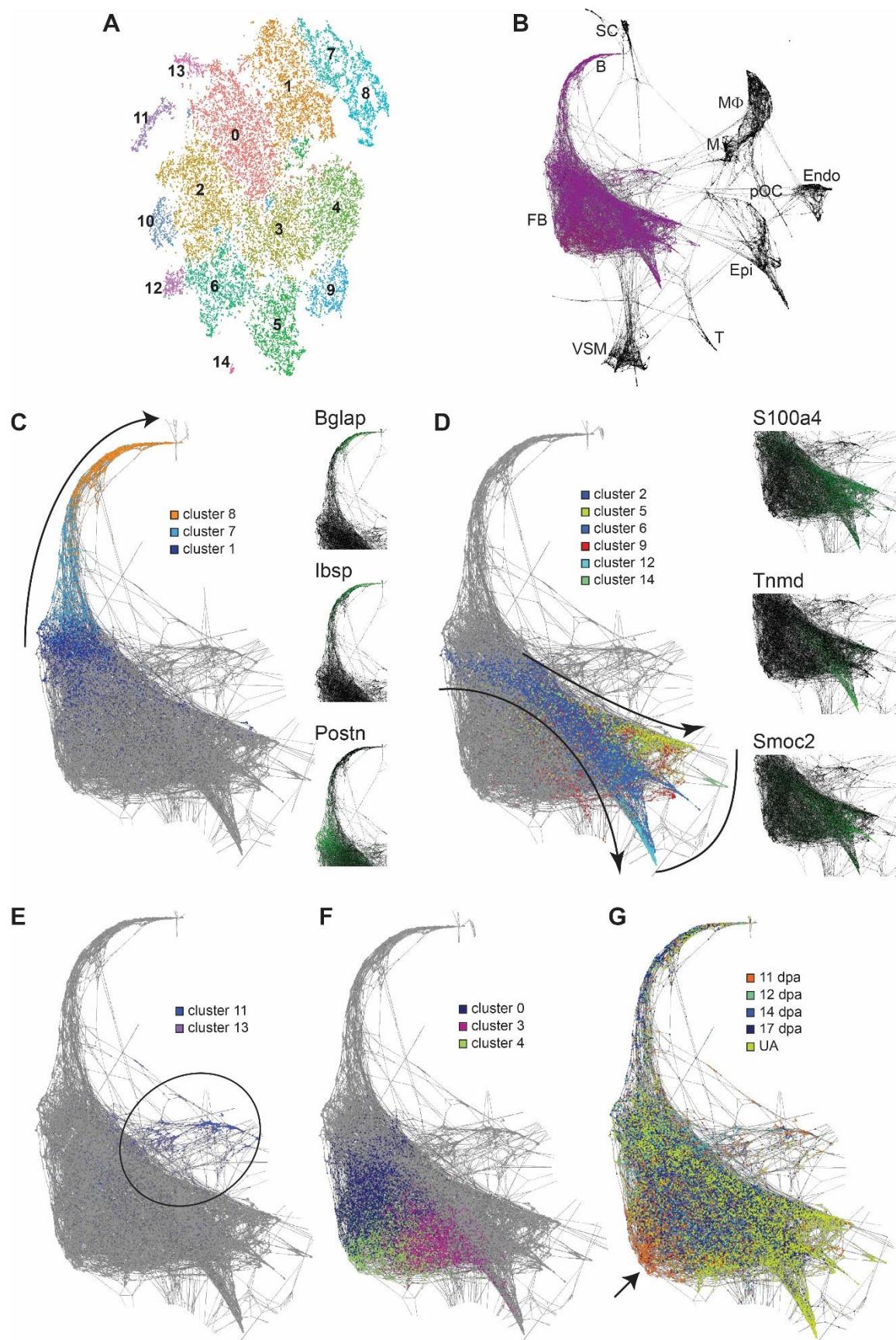
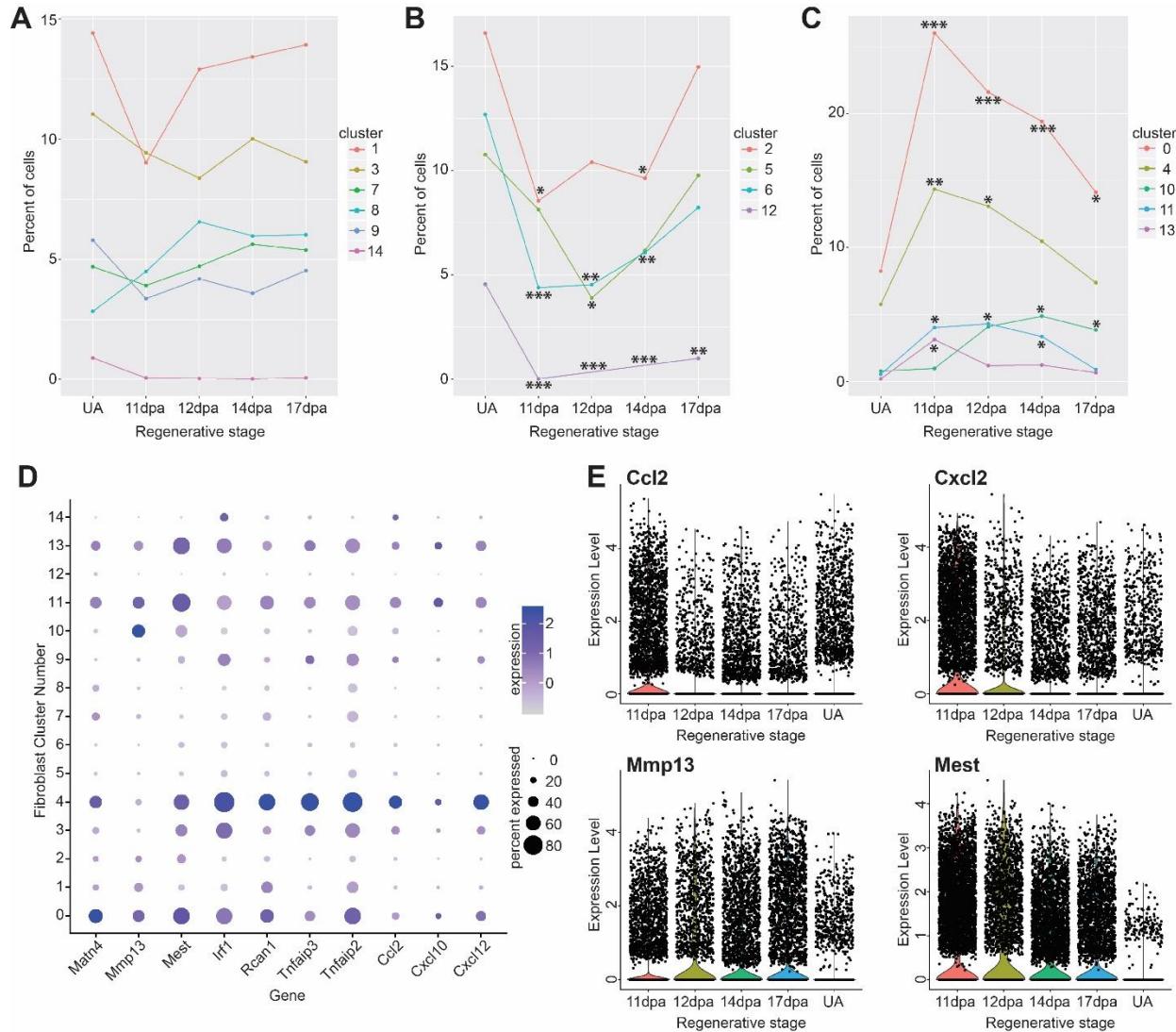
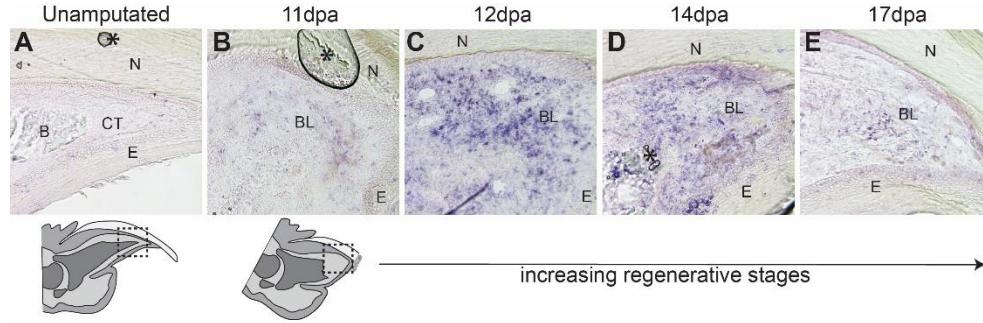


Figure 2


Figure 3



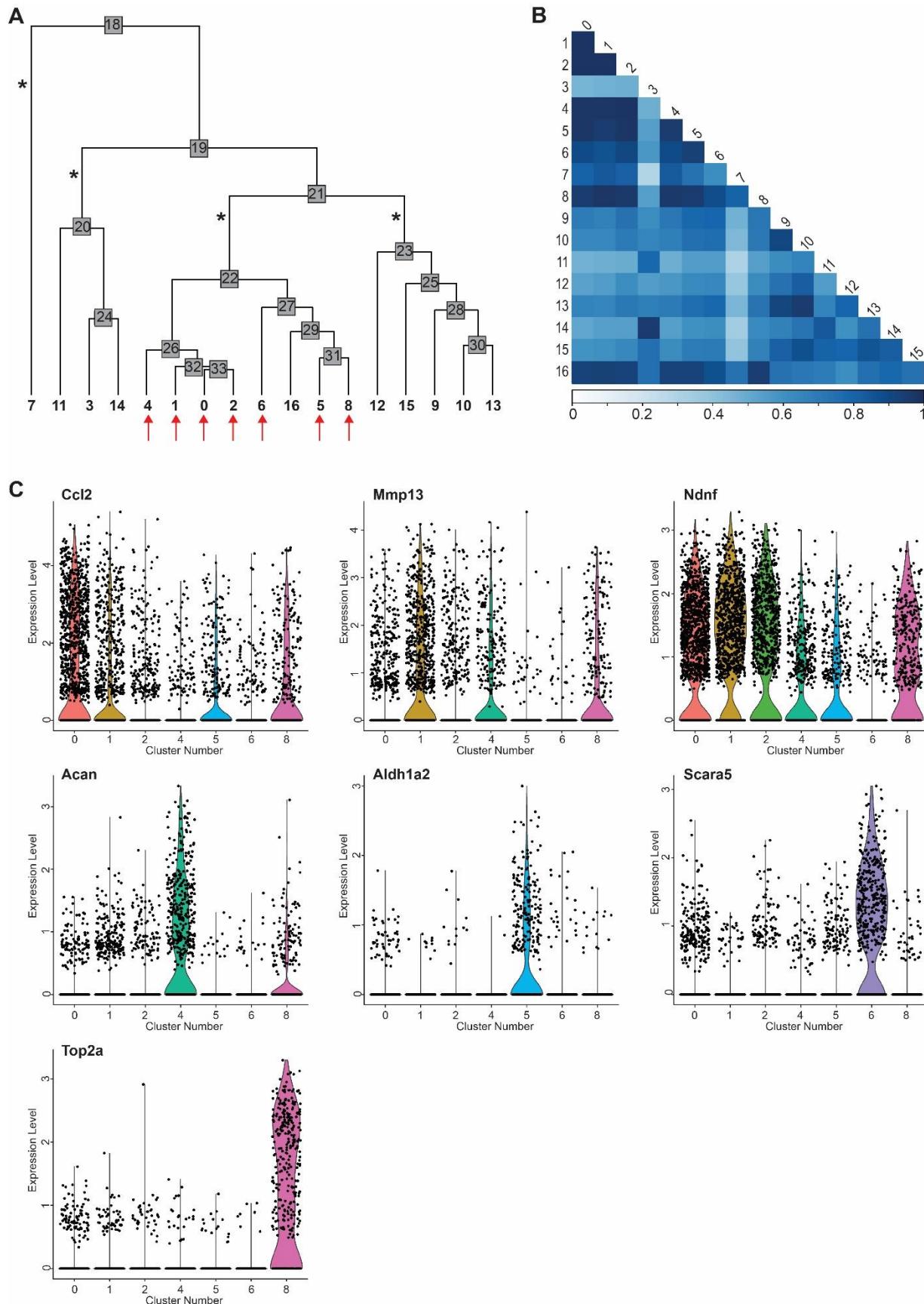

Figure 4

Figure 5

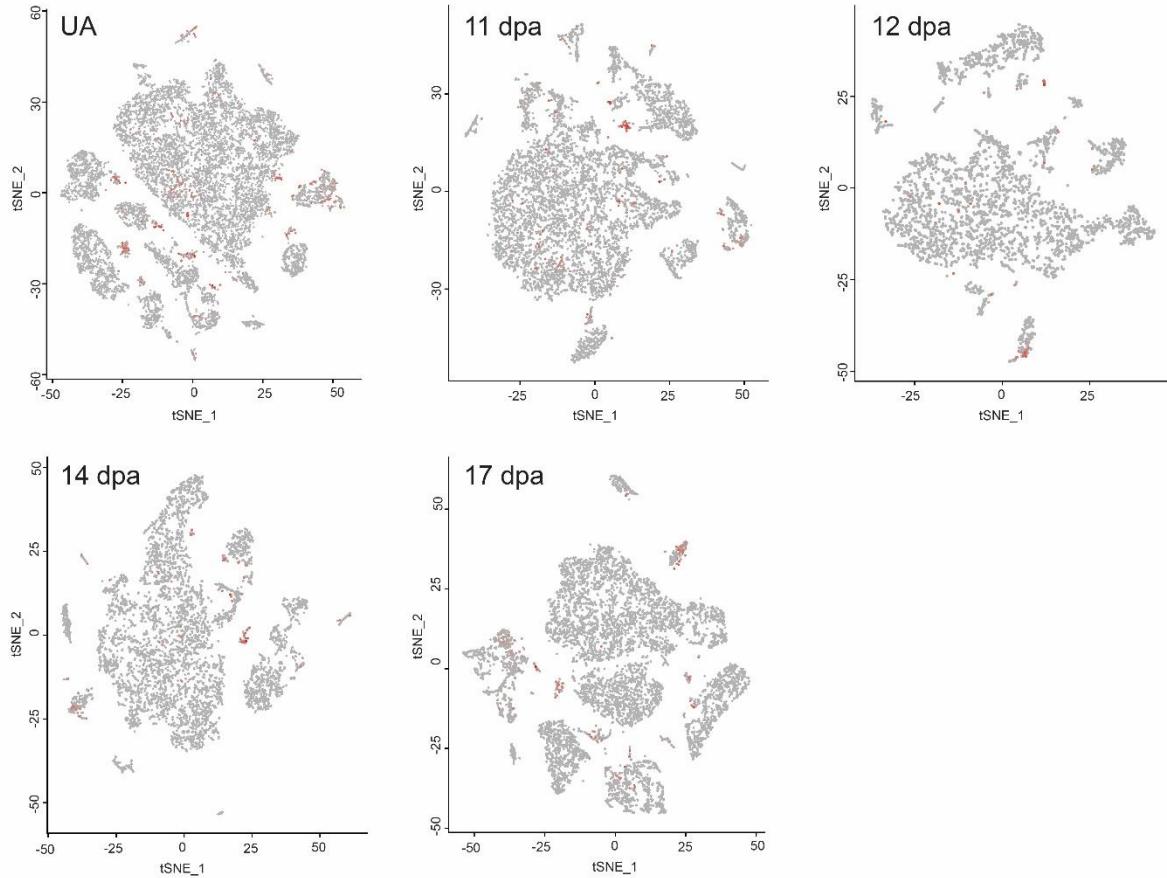
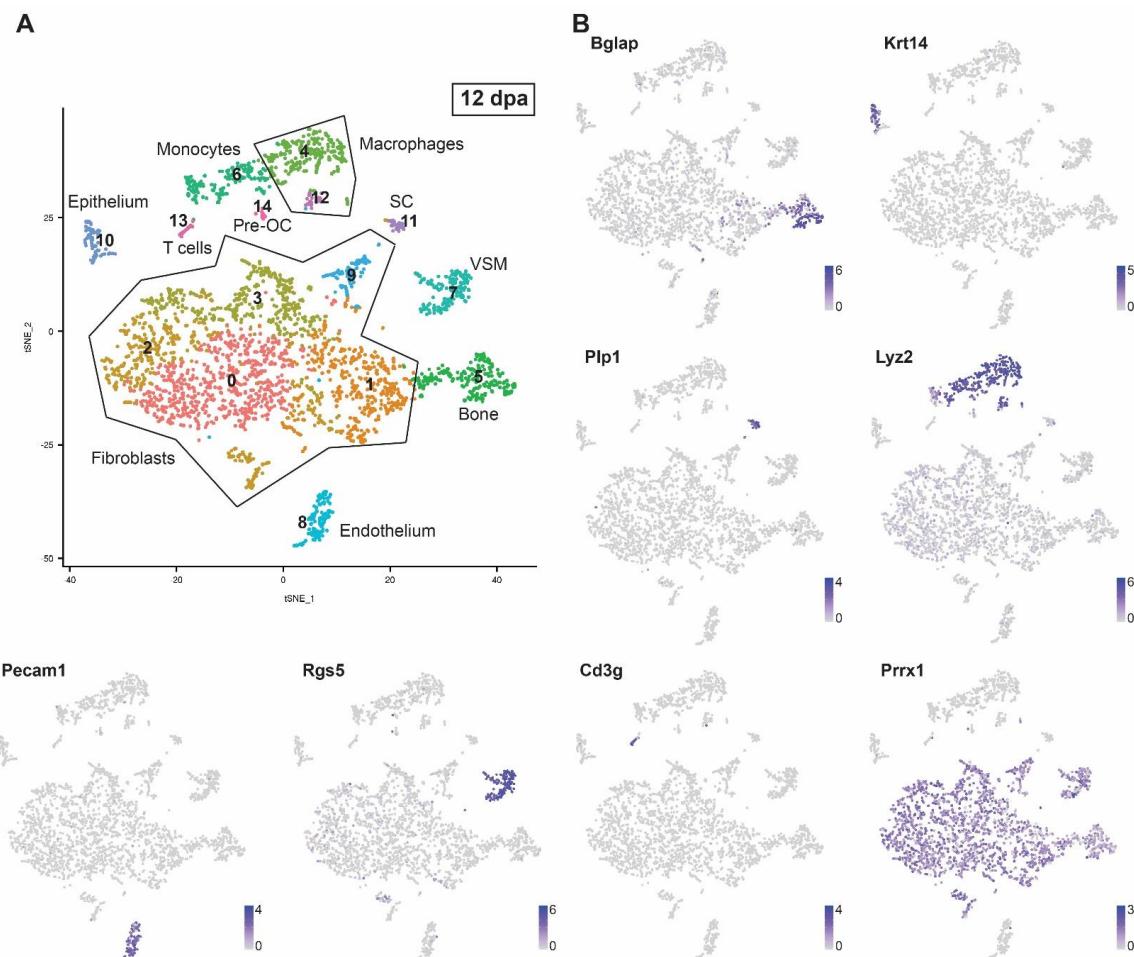
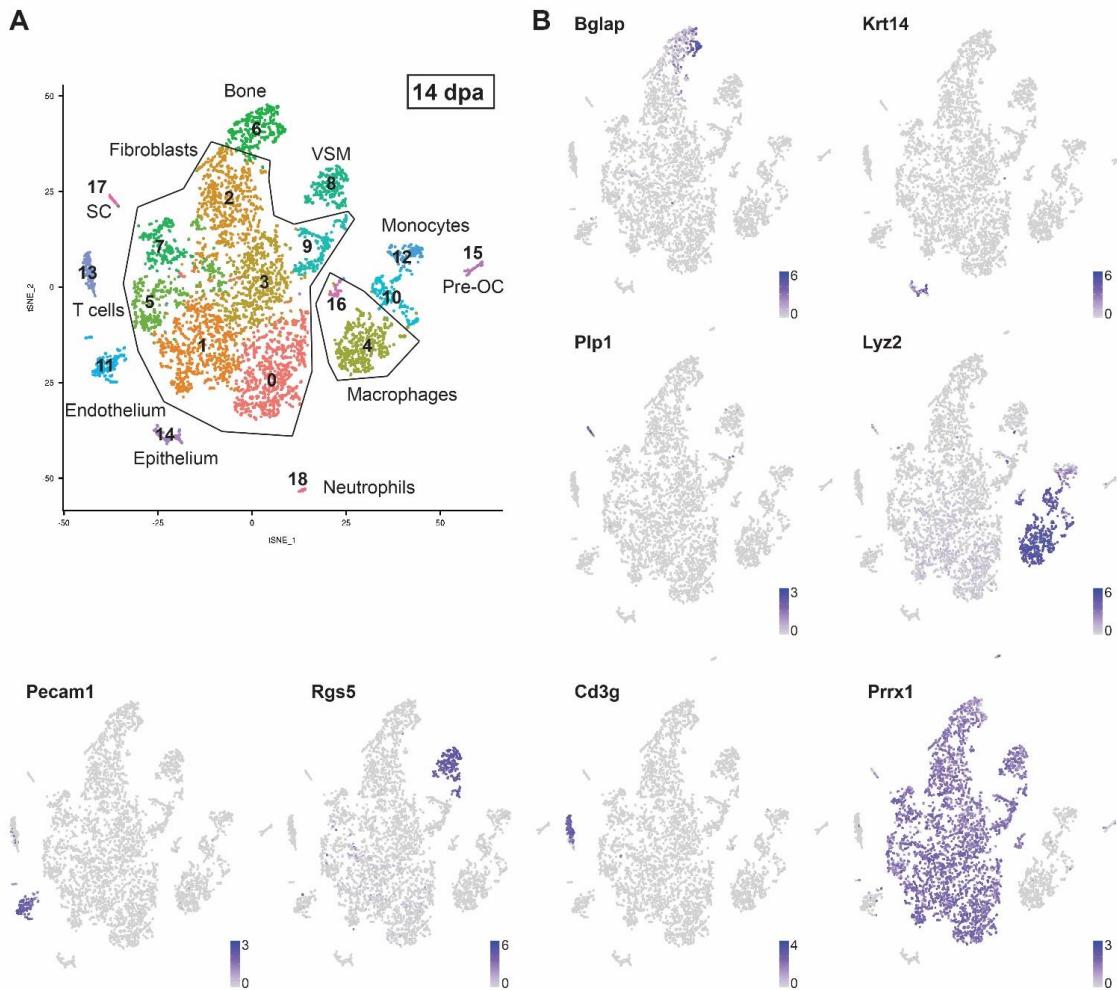
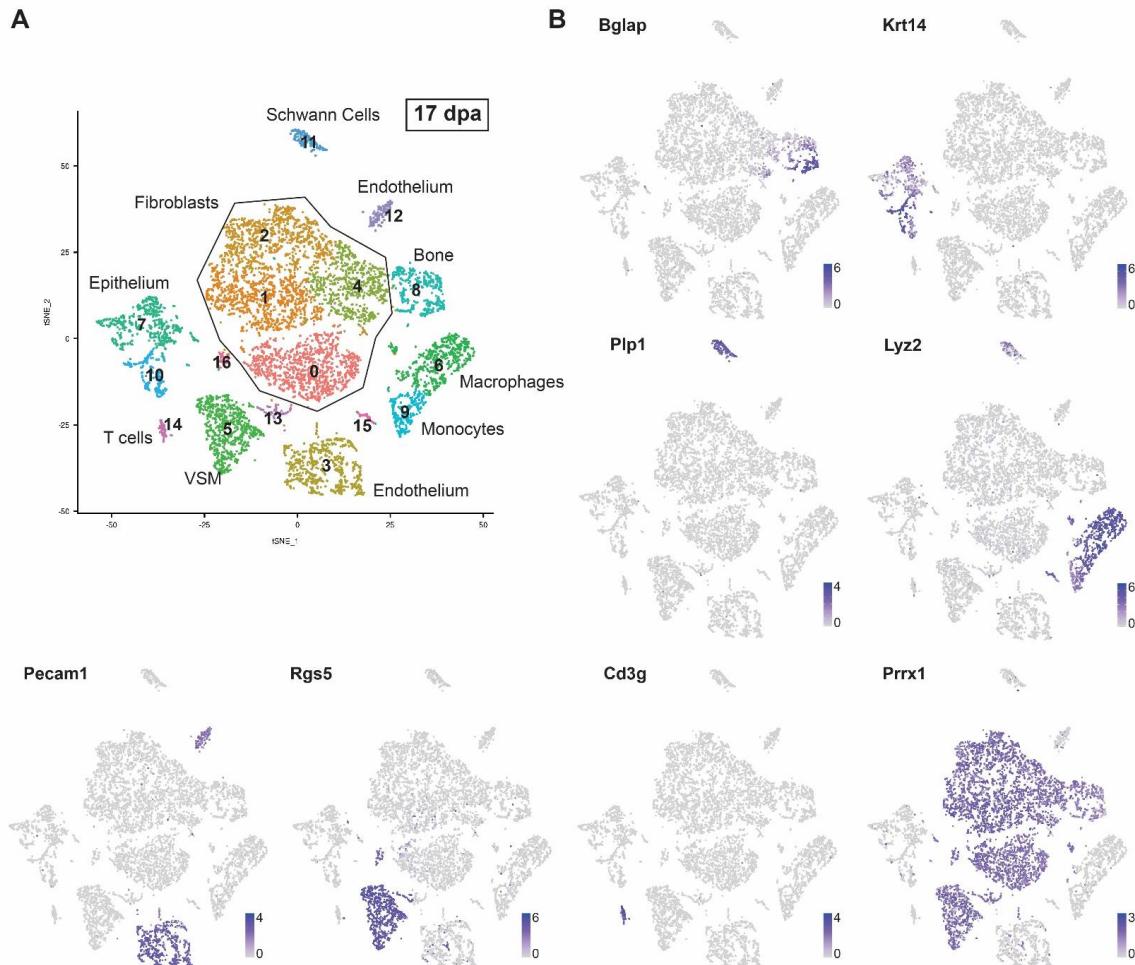
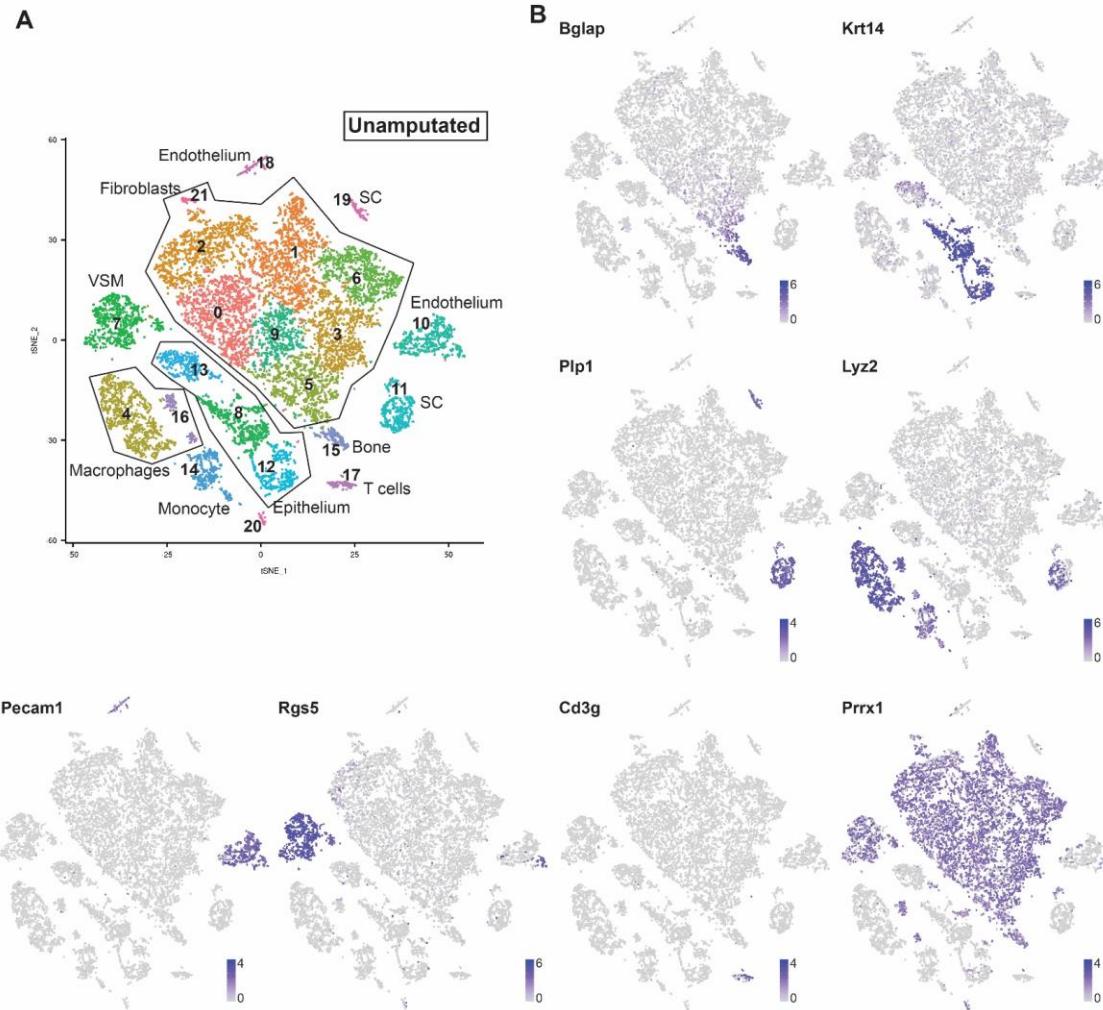


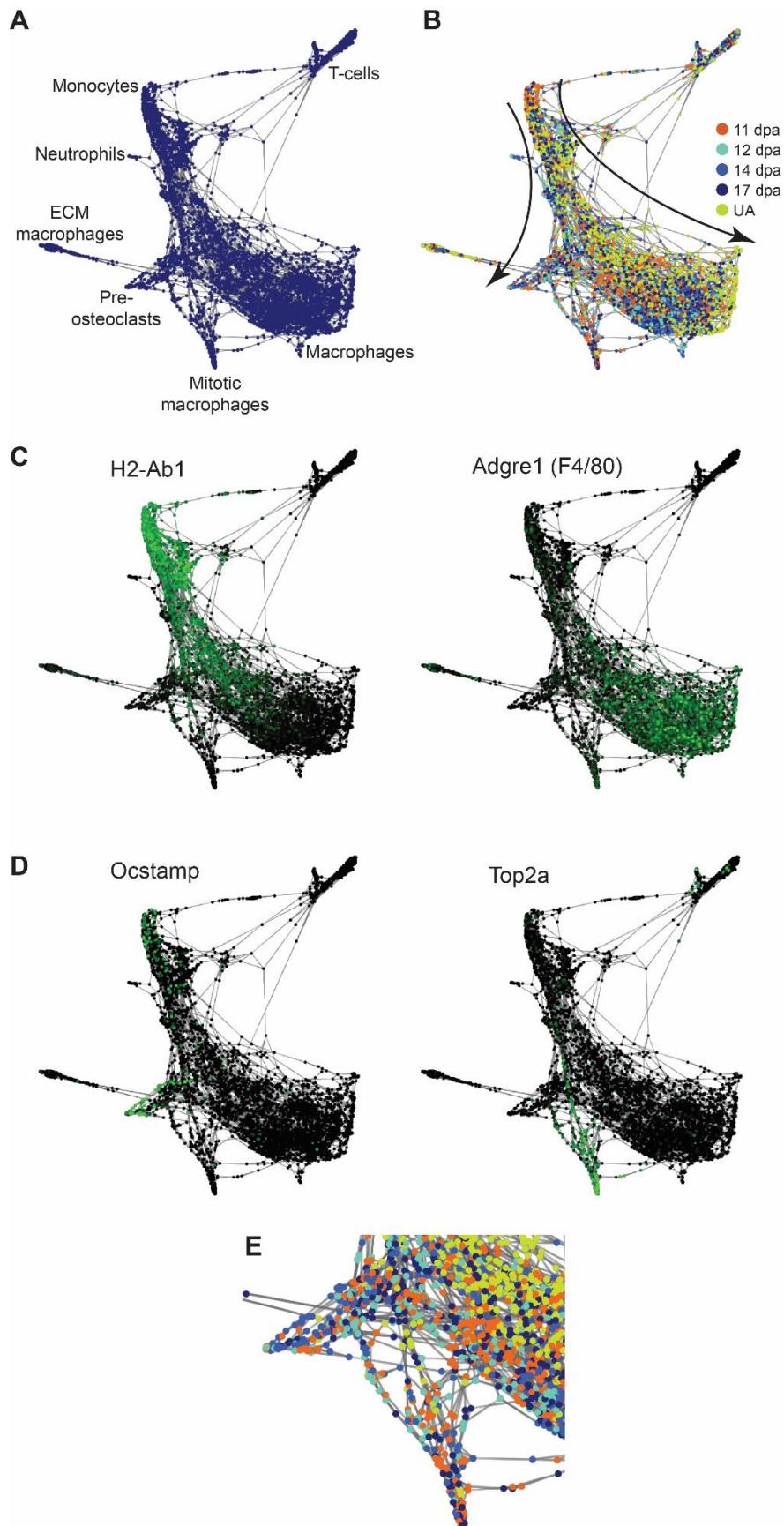
Figure 6



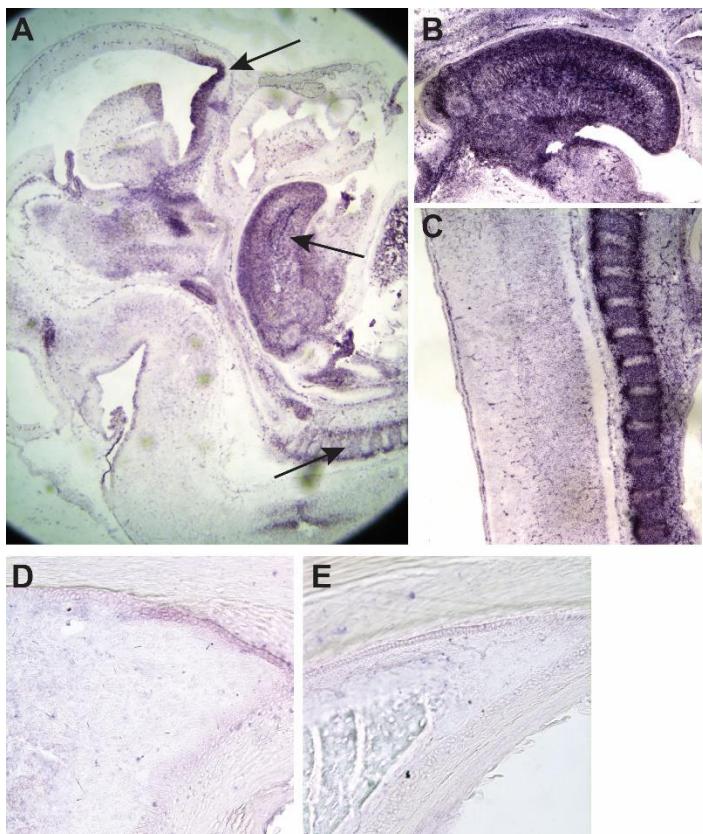

Supplemental Figure 2


Supplemental Figure 3


Supplemental Figure 4



Supplemental Figure 5



Supplemental Figure 6

Supplemental Figure 8

