

1
2
3
4
A role of oligodendrocytes in information processing
independent of conduction velocity

5
6
7
8
9
10
11
12 Sharlen Moore^{1,2,3,◊}, Martin Meschkat^{1,4}, Torben Ruhwedel¹, Iva D. Tzvetanova¹, Andrea Trevisiol¹, Arne
13 Battefeld^{5,‡}, Kathrin Kusch¹, Maarten Kole^{5,6}, Nicola Strenzke⁷, Wiebke Möbius^{1,4},
14 Livia de Hoz^{1,§,*}, Klaus-Armin Nave¹

15
16
17
18
19
20
21¹Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

22²International Max Planck Research School for Neurosciences, Göttingen, Germany. ³Göttingen
23 Graduate School of Neurosciences and Molecular Biosciences, Germany. ⁴Center for Nanoscale
24 Microscopy and Molecular Physiology of the Brain, Göttingen, Germany. ⁵Netherlands Institute for
25 Neurosciences, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands. ⁶Cell
26 Biology, Faculty of Science, University of Utrecht, The Netherlands. ⁷Institute for Auditory Neuroscience,
27 University Medical Center, Göttingen, Germany.

28[◊]Current address: Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de
29 México, Mexico City, Mexico.

30[#]Current address: Charité Medical University, Neuroscience Research Center, Berlin, Germany.

31[‡]Current address: Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France.
32^{*}Corresponding author: dehoz@em.mpg.de

33
34
35 **Keywords:** myelin, auditory cortex, sound processing, reliability, temporal acuity

36

37

38

39

40 **Abstract**

41

42 Myelinating oligodendrocytes enable fast impulse propagation along axons as revealed
43 through studies of homogeneously myelinated white matter tracts. However, gray matter
44 myelination patterns are different, with sparsely myelinated sections leaving large
45 portions of the axons naked. The consequences of this patchy myelination for
46 oligodendrocyte function are not understood but suggest other roles in information
47 processing beyond the regulation of axonal conduction velocity. Here, we analyzed the
48 contribution of myelin to auditory information processing using paradigms that are good
49 predictors of speech understanding in humans. We compared mice with different degrees
50 of dysmyelination using acute cortical multiunit recordings in combination with behavioral
51 readouts. We identified complex alterations of neuronal responses that reflect fatigue and
52 temporal acuity deficits. Partially discriminable but overall similar deficits were observed
53 in mice with oligodendrocytes that can myelinate but cannot fully support axons
54 metabolically. Thus, myelination contributes to sustained stimulus perception in
55 temporally complex paradigms, revealing a role of oligodendrocytes in the CNS beyond
56 the increase of axonal conduction velocity.

57 **Introduction**

58 In the central nervous system (CNS), oligodendrocytes generate myelin, a multilayered
59 sheath of membrane, spirally wrapped around axonal segments and best known for its
60 role in enabling fast saltatory impulse propagation ¹. An additional function of
61 oligodendrocytes is the metabolic support of myelinated axons ²⁻⁴, most important when
62 axons spike at higher frequency ⁵. Mouse mutants with abnormalities of CNS myelination
63 have been used as models of human leukodystrophies and demyelinating diseases.
64 However, analyses of these mice have been largely restricted to the diagnosis and
65 assessment of severely reduced motor functions.

66

67 Importantly, at the network level, the contribution of CNS myelination to information
68 processing remains poorly understood, in part because suitable phenotyping instruments
69 have been lacking. Yet, there is an increasing awareness that myelination is required for
70 higher-order brain functions. Subtle defects of the white matter have been associated with
71 various psychiatric diseases ⁶. Moreover, in the aging brain, the physiological decline of
72 function is associated with subtle but widespread structural deterioration of myelin ^{7,8}.
73 Functional studies of myelin have largely been restricted to motor behavior, which is
74 under control of myelinated axons in white matter tracts, and to the fast impulse
75 propagation and millisecond precision required for sound location in a highly specialized
76 circuit of the brain stem ⁹. However, myelin is also present within the cortical grey matter,
77 where it is heterogeneous and patchy along projection neurons ^{10,11}. Moreover, a large
78 fraction of the parvalbumin-positive interneuron axons are myelinated ¹²⁻¹⁴, even though
79 their typical short distance to their target cells has been estimated to cause insignificant
80 conduction delay times ¹³. Oligodendrocyte lineage cells can myelinate axons in an
81 activity dependent manner and influence their conduction velocity properties ¹⁵⁻¹⁹. Mature
82 oligodendrocytes respond to glutamatergic signals with enhanced glycolytic support of
83 the axonal energy metabolism ^{4,5}. These data are compatible with the idea that myelin
84 function in the CNS that go beyond regulating conduction velocity.

85

86 Indeed, there is still a major conceptual gap between the role of myelin in saltatory
87 impulse propagation and its function at the network level. Virtually nothing is known about

88 the contribution of myelination to information processing, a function that should be most
89 evident for pathways that build on constant information transfer, as it is the case for the
90 auditory system. In the sound location system, nerve conduction velocity is fine-tuned by
91 myelination beginning at the brainstem level in order to facilitate sound localization^{20,21}.
92 However, the sound location system is a highly specialized circuit dedicated to sub-
93 millisecond precision of coincidence detection. Auditory processing is clearly broader than
94 sound localization and must constantly cope with the appearance of both short and
95 repetitive stimuli. This is essential e.g. for speech perception.

96

97 In humans, myelin abnormalities and nerve conduction velocities have been mostly
98 studied in terms of developmental delays, and rarely with respect to signal detection,
99 precision and acuity. And yet, it is clinically well known that patients with myelin disease,
100 similar to individuals at old age, show deficits in auditory processing^{22,23} that cannot
101 simply be explained by delays in conduction velocity. For example, deficits in speech
102 recognition in noisy environments increase despite normal hearing thresholds²⁴, which
103 is suggestive of problems in temporal acuity, rather than the speed of processing.

104 In animal models of CNS dysmyelination, a few studies reported general auditory
105 abnormalities²⁵⁻²⁸ or a specific delay at central auditory stations²⁹⁻³¹, as detected by
106 evoked response latencies. Using brainstem slices, e.g. Kim et al. reported excitability
107 defects at the Calyx of Held, a specialized synapse in the brainstem, important for sound
108 localization²⁸. However, the perceptual consequences have not and cannot be assessed
109 with an *in vitro* system.

110

111 Here, we used a novel approach for the *in vivo* analysis of information processing and
112 perception in mice as a function of oligodendrocyte and myelin abnormalities. To
113 determine how dysmyelination and impairments in axonal metabolic support affect
114 temporal and spectral auditory processing, we compared adult wild type animals with
115 three lines of mutant mice. We used 1) the *shiverer* mice (*Mbp^{shi/shi}*)³² as a model of
116 severe dysmyelination, 2) a newly generated *Mbp* allele (*Mbp^{neo/neo}*) as a hypomyelination
117 model (see below), and 3) mice with the heterozygous null allele of the *Slc16A1* gene
118 (*MCT1^{+/−}*)³, encoding a monocarboxylate transporter (MCT1) that is required for

119 metabolic support. The use of these mouse models allowed the comparison of different
120 degrees of myelination, and to distinguish that from the role of oligodendrocytes in axonal
121 metabolic support.

122

123 Multiunit recordings of the cortex enabled us to test stimulus detection during auditory
124 processing in combination with behavioral readouts. Altered neuronal responses in the
125 auditory cortex of dysmyelinated mice were surprisingly complex, and included neuronal
126 fatigue, likely energy-related, and temporal acuity deficits that clearly exceeded the effect
127 of delays in conduction velocity. Moreover, deficits in “sound gap detection”, a measure
128 relevant to speech recognition in humans, indicate that myelination of CNS axons is
129 critical for normal sound processing beyond the (data not shown) finely tuned conduction
130 velocity for sound localization. Our data reveal that CNS myelination not only speeds
131 impulse conduction but also determines the quality of information processing, which we
132 suggest is partially dependent on the metabolic roles of oligodendrocytes.

133 **Results**

134 To monitor auditory processing in the adult brain with compromised oligodendrocyte
135 functions, we chose three types of mutant mice. To study the role of compacted myelin,
136 we compared different *Mbp* mutations in mice. MBP is an abundant structural protein
137 required for myelin growth and compaction ^{33,34}. One mutant is defined by the nearly
138 complete absence of CNS myelin, the well-known *shiverer* (*Mbp^{shi/shi}*) mouse ³⁵ with a
139 truncated *Mbp* gene ³². The second *Mbp* model was newly generated for this study as a
140 hypomorph mouse (*Mbp^{neo/neo}*) with MBP expression levels below 50% as detailed below.
141 A third mutant, heterozygous null for the *Slc16A1* gene (MCT1^{+/−}) shows reduced
142 expression of the monocarboxylate transporter MCT1, which is required by
143 oligodendrocytes to metabolically support axons ³. MCT1 enables the export of lactate
144 and pyruvate and supports the generation of ATP in myelinated axons ⁵.

145

146 ***Mbp^{neo}*: a novel mouse mutant with reduced myelin sheath thickness**

147 Shiverer mice have no compact myelin and a shivering phenotype that makes them
148 suboptimal for behavioral testing. Since heterozygous *Mbp^{shi/+}* mice show close to normal
149 amounts of myelin ³⁶, we sought to establish a hypomyelinated mouse model by reducing
150 *Mbp* expression levels below 50% (see methods and Figure S1A), in agreement with
151 earlier observations of transgenic complementation of *shiverer* mice ^{37,38}.
152 Oligodendrocytes in adult *Mbp^{neo/neo}* brains expressed 30% of the *Mbp* mRNA and 20%
153 MBP at the protein level (Figures S1B and S1C). These mutants appeared clinically
154 normal and were long-lived. Different from conventional *shiverer* mice, in which the vast
155 majority of optic nerve axons are unmyelinated ³⁵, *Mbp^{neo/neo}* mice have 75% of their optic
156 nerve axons myelinated (wild type: 92%). Importantly, this myelin was fully compacted
157 but significantly thinner, as determined by g-ratio analysis (Figures S1D to S1F). Axon
158 caliber distribution was not different between wild type and *Mbp^{neo/neo}* mice (Figure S1G).

159

160 **Central dysmyelination causes signs of auditory neuropathy**

161 In wild type mice, all auditory projections, including the auditory nerve, are well myelinated
162 ^{39,40}. Before studying the effect of dysmyelination on information processing, we
163 determined latencies and amplitudes of sound-evoked responses at different auditory

164 stations using auditory brainstem responses (ABR), recorded *in vivo* through electrodes
165 located on the scalp (Figure 1A i). ABRs consisted of five waves (I-V) that reflect the
166 consecutive activation of the auditory nerve, cochlear nucleus, superior olive, lateral
167 lemniscus and inferior colliculus (Figure 1A ii). In the *Mbp^{shi/shi}* mice, ABR waves were
168 significantly delayed at all auditory stations (Figures 1B and 1C) and delays increased
169 progressively. The peak-to-peak amplitude, which reflects the synchronous spiking in
170 response to sound onset, was unchanged in wave I (Figure 1F). This, together with the
171 findings that also response thresholds were not different from controls (Figures S2A and
172 S2B), confirms that cochlear function and peripheral conduction is normal in *Mbp^{shi/shi}*
173 mice. This was expected because the outer region of the auditory nerve is myelinated by
174 Schwann cells that do not require MBP for myelination (Figure 1A iii) ⁴⁰. However, the
175 amplitudes of waves II and III were reduced, and those of waves IV and V were increased
176 (Figures 1B and 1F). Such downstream improvements of diminished brainstem ABR
177 amplitudes have been observed in several animal models of auditory
178 synaptopathy/neuropathy (disorders of the inner hair cell ribbon synapse and/or auditory
179 nerve), and are thought to reflect compensatory mechanism of changes in gain to
180 peripheral hearing loss ⁴¹⁻⁴⁶. Hypomyelinated *Mbp^{neo/neo}* mice were similarly normal with
181 respect to the shape of ABR wave I (Figures 1D and 1E) and threshold (Figure S2C).
182 They also showed a reduction in the amplitudes of waves II and III, and a larger wave V
183 at the IC level (Figure 1G). The *Mbp^{shi/shi}* and *Mbp^{neo/neo}* wave V/I ratio increase appeared
184 proportional to the degree of dysmyelination (230% and 100% increase respectively;
185 Figure 1F and 1G, bottom right). In contrast to the dysmyelination models, MCT1⁺⁻
186 mutants revealed no changes in threshold, latency, or amplitude of ABR waves (Figures
187 S2E to S2H). Thus, latency increase, and signal desynchronization are a result of partial
188 or complete dysmyelination, unrelated to metabolic defects.

189

190 **Myelination of primary auditory cortex is patchy and heterogeneous**

191 To study auditory processing, we first assessed the presence of myelin in the inferior
192 colliculus (IC), an important subcortical relay station in the auditory path, and in layer 4 of
193 the primary auditory cortex (ACx), where we obtained multi-unit recordings (Figure 2A).
194 As in other grey matter areas, myelination profiles are present at low density ^{10,13}.

195 Compared to the IC, myelination of the ACx was even sparser (Figure 2B, left upper
196 panel). In *Mbp^{shi/shi}* mice there was no compact myelin, but oligodendrocyte processes
197 loosely ensheathed the axons. Interestingly, when quantified, both *Mbp^{shi/shi}* (*shiverer*)
198 and *Mbp^{neo/neo}* mice had the same number of ensheathed axons (quantified irrespective
199 of their compaction) in the ACx as their respective controls (Figure 2B, right panels
200 graphs). Dysmyelination of *Mbp^{neo/neo}* was only obvious by electron microscopy (Figure
201 2B, lower insets). Wild type axons were surrounded by electron-dense (compact) myelin
202 (Figure 2B, left panels), *Mbp^{shi/shi}* axons were loosely ensheathed (Figure 2B, right upper
203 panel) and *Mbp^{neo/neo}* mice exhibited an intermediate profile with compact but thinner
204 myelin compared to wild type (Figure 2B, right lower panel).

205

206 **Cortical responses to simple sounds in dysmyelinated mice**

207 To study the effect of dysmyelination, we performed *in vivo* extracellular recordings in
208 *Mbp^{shi/shi}* mice (Figure 3A) following basic single sound stimuli (clicks) to evoke
209 responses. Surprisingly, at the level of the IC, we obtained an increased response
210 strength compared to controls (Figures 3B and S3A). However, at the level of the ACx,
211 response strength was similar to controls both in *Mbp^{shi/shi}* (Figures 3C and S3B, left) and
212 *Mbp^{neo/neo}* mice (Figures 3D and S3B, middle). In contrast, response latencies (Figure 3E)
213 were increased in *Mbp^{shi/shi}* at both auditory stations (Figures 3C, 3F and 3G) similar to
214 *Mbp^{neo/neo}* mice (Figures 3D and 3H), and this increase correlated with the degree of
215 dysmyelination (Figure S3B right). Response jitter (Figure S3C) and inter-trial reliability
216 (Figure S3G) were not different in any of the models or stations (Figure S3D to S3F and
217 S3H to S3J). Not surprisingly, cortical neurons in the normally myelinated *MCT1^{+/−}* mice
218 responded like controls to simple clicks and showed only a tendency towards longer
219 latencies (Figure S3K to S3N).

220 Changes in the ion channel distribution of the axon initial segment (AIS) are believed to
221 underlie dysmyelination-dependent changes of excitability⁴⁷. Puzzled by the fact that the
222 hyperexcitable responses detected in the IC of *Mbp^{shi/shi}* mice were not present in the ACx
223 (Figure 3B to 3C and S3A to S3B), we measured AIS length in the ACx. Interestingly,
224 here *Mbp^{shi/shi}* mice exhibited a reduction in the lengths of AIS (Figures S4A and S4B),

225 which may explain the absence of hyperexcitable responses, as a short AIS is typically
226 associated with reduced intrinsic neuronal excitability⁴⁷⁻⁴⁹.

227

228 **Spectral processing of pure tones**

229 Key features of spectral processing are frequency tuning and response adaptation, both
230 of which are strongly influenced by neuronal integration, i.e. the functional convergence
231 of stimuli onto individual cortical neurons. Frequency tuning, a property of the auditory
232 system, builds on frequency-specific inputs onto a given cell and is modulated by lateral
233 inhibition. Thus, differential conduction velocities in converging pathways as a result of
234 reduced myelination could have a lasting effect on neuronal integration. Surprisingly,
235 upon stimulation with pure tones (Figure 3I), tuning curves had comparable shapes in
236 *Mbp^{shi/shi}* and wild type mice, as a function of sound intensity (Figure 3J), and covered
237 comparable best-frequency (BF) ranges within the sampled regions (Figure 3K). There
238 was no difference between groups in hearing thresholds (Figure 3L) or tuning bandwidth
239 (Figure 3M), which depends largely on convergent inputs⁵⁰.

240

241 Adaptation is crucial for sensory filtering in the auditory system^{51,52} and a measure of
242 neuronal integration. It is typically tested using oddball paradigms (Figure S4C), in which
243 two frequencies that elicit responses of similar magnitude are presented sequentially such
244 that one appears with higher probability ('standard') than the other ('deviant'). Here,
245 stimulus-specific adaptation (SSA) is reflected in a decreased response to the standard
246 tone, while the response to the deviant tone remains constant or increases^{52,53}.
247 Importantly, cortical SSA was not reduced in *Mbp^{shi/shi}* compared to wild type mice (Figure
248 S4D). Thus, widespread dysmyelination had no obvious effect on the integration of
249 auditory stimuli, presumably because the convergent inputs were all similarly delayed.

250

251 **Dysmyelination affects temporal reliability and acuity of sound processing**

252 Naturally occurring sounds are characterized by rich temporal structures. In many
253 species, the reliable temporal coding of communication sounds is an important factor for
254 survival or successful mating. Correct auditory coding relies on the ability of the nervous
255 system to convey the temporal structure of sounds with precise spike timing and to

256 maintain this precision while listening to continuous sound streams. We determined, on
257 one hand the neuronal capacity of our mouse models to follow click-trains (a measure of
258 temporal reliability) at different presentation rates. We also determined 'gap-detection', a
259 measure of temporal acuity, as used for audiometric testing in humans⁵⁴⁻⁵⁶.

260

261 Click-rate detection was tested with a set of 10 clicks presented at different temporal rates
262 (Figure 4A). In wild type mice, the rates at which auditory neurons can follow were lower
263 in ACx compared to subcortical stations, consistent with a previous report⁵⁷. Repeated
264 presentations revealed that the timing of spikes is reproducible, although failures were
265 observed in the response to the last clicks in this sequence (Figure 4B, top). Importantly,
266 in *Mbp^{shi/shi}* mice, ACx neurons followed the initial clicks in a set of 10, but (already in the
267 5 Hz condition) revealed a strong decay in the response strength to the last clicks
268 (individual example Figure 4B, bottom). Scoring the responses to click number 1, 5 and
269 10 (taken as representatives), we observed that the response magnitude in *Mbp^{shi/shi}* mice
270 was the same as in wild type after click 1 but was smaller after click 5 and virtually non-
271 existent by click 10 (Figure 4C). This decrease in response magnitude was associated
272 with a decreased synchrony of spiking (between repetitions along the 10 clicks) compared
273 to wild type (Figure 4D and 4E). A similar effect was observed in the cortex of *Mbp^{neo/neo}*
274 mice (Figure 4E center). Thus, 'naked' axons of *Mbp^{shi/shi}* mice were not a prerequisite for
275 this observation. Importantly, MCT1^{+/−} mice, which are normally myelinated but fail to fully
276 support axonal energy metabolism, exhibited the same deficit, which was evident at even
277 slower click rates (Figure 4E right). This suggests that axonal energy deficits are the likely
278 cause of conduction failure following repetitive neuronal firing.

279

280 The observed deficit in temporal reliability could be explained by the altered K_v channels
281 distribution (dispersed along internodes and overexpressed in *Mbp^{shi/shi}*) in axonal
282 excitable domains⁵⁸, which we confirmed in the form of shortened AIS for the ACx of
283 *Mbp^{shi/shi}* mice at the level of the AIS (Figures S4A and S4B). In a dysmyelinated brain,
284 axonal excitability, membrane repolarization, and energy consumption could be affected
285 by the general misdistribution of ion channels^{47,59}. As a model for other CNS white matter
286 tracts that are difficult to study directly, we used a well-established optic nerve preparation

287 ⁶⁰. This acute *ex vivo* system allowed us to measure compound action potentials (CAP)
288 for myelinated axons (Figure S5A) and to apply pharmacological manipulations ^{4,5,60}. In
289 wild type optic nerves (ON), CAPs exhibited the expected 3-peak shape, but we observed
290 strong differences with both *Mbp*^{sh₁/sh₁} and *Mbp*^{neo/neo} nerves. In these mutants, CAP peaks
291 were delayed in latency (Figure S5B) reflecting slowed nerve conduction velocity (Figure
292 S5C) proportional to the level of dysmyelination (Figures S5D). Dysmyelinated optic
293 nerves also showed a decrease in peak amplitude (Figure S5B) and CAP area (Figure
294 S5G), suggesting conduction blocks in the ON, and we noted an increase of the
295 hyperpolarizing phase with a larger negative CAP area (Figure S5H). These features
296 were similar to CAP recordings from the spinal cord of *Mbp*^{sh₁/sh₁} mice ⁵⁸. To test our
297 hypothesis that excess potassium fluxes in dysmyelinated *Mbp*^{sh₁/sh₁} optic nerve axons
298 cause energy loss (due to repolarization-associated ATP consumption) and contribute to
299 reduced temporal reliability, we blocked potassium channels with 4-aminopyridine (4-AP,
300 25 μ M) in a bath application. This treatment normalized the CAP amplitude and
301 decreased the hyperpolarizing phase of *Mbp*^{sh₁/sh₁} axons (Figures S5F gray, S5G
302 rightmost and S5H rightmost). This finding is compatible with abnormal ion fluxes in the
303 mutant axons, which increase ATP consumption and cause abnormal repolarization
304 dynamics.

305
306 The second key aspect of auditory processing is temporal acuity. Gap-detection protocols
307 measure the ability of neurons to detect short silent gaps in the middle of a white noise
308 sound (Figure 5A), a capacity also crucial in human speech processing ⁶¹. In mice, the
309 presence and the strength of any post-gap sound response reflects whether the gap has
310 been detected (Figure 5B). *Mbp*^{sh₁/sh₁} mice revealed a significant decrease (compared to
311 wild types) in their post-gap response strength for gaps shorter than 3 ms in duration
312 (Figures 5B and 5D). Quantification of this effect (by comparing for each recording the
313 ratio between baseline activity and post-gap activity) confirmed that the cortical neurons
314 of *Mbp*^{sh₁/sh₁} mice failed to detect small gaps (Figure 5C). A milder but similar effect was
315 observed in *Mbp*^{neo/neo} mice (Figures 5E, S6A and S6B), suggesting that these temporal
316 acuity deficits reflect the level of dysmyelination. Importantly, MCT1^{+/−} mice revealed only
317 very minor gap detection deficit compared to their respective controls (Figures S6C to

318 S6E). Thus, loss of temporal acuity must be attributed to hypomyelination, rather than
319 reduced metabolic support of the axonal compartment.

320

321 **Behavioral correlates of reduced temporal acuity**

322 To understand the correlation between gap-detection deficits and perception at the
323 behavioral level we performed two tests in behaving mice. First, we tested 'gap-
324 dependent pre-pulse inhibition of the acoustic startle reflex' (GDIASR). This paradigm is
325 widely used to behaviorally assess the detection of gaps within sound stimuli⁶²⁻⁶⁵. For
326 this test we could only use hypomyelinated *Mbp*^{neo/neo} mice that have no motor defects.

327

328 Pre-pulse inhibition of the acoustic startle reflex (ASR) requires sensorimotor gating.
329 Acoustic startles are triggered by a loud unexpected sound⁶⁶ and can be measured by a
330 piezo element under the animal (Figure S7A). A change in the sound background, for
331 example a 'silent gap' just before the startling sound (Figure 6A), can inhibit the ASR if it
332 is salient enough⁶⁷. In this paradigm, we used the level of inhibition by different 'silent
333 gap' lengths (Figure S7B) as a behavioral measure of gap-detection (i.e. gap perception).
334 Consistent with previous reports from wild type mice^{62,65,67,68}, shorter gaps elicited less
335 inhibition than longer gaps (Figure 6B). Importantly, dysmyelinated *Mbp*^{neo/neo} mice
336 showed a significant decrease in the inhibition of the ASR, when triggered by different
337 gap lengths. Moreover, we determined a two-fold increase in the gap detection threshold
338 (from 8 ms to 17 ms) (Figure 6B and 6C). Thus, deficits in temporal acuity, discovered at
339 the physiological level in the ACx, were also paralleled at the perceptual level. We note
340 that mice with slightly higher levels of *Mbp* expression, i.e. thinly myelinated heterozygous
341 *Mbp*^{sh/+} mutants, did not show a reduction in basic startle or in gap-perception (Figures
342 6B, 6C, S7C and S7D). Thus, significant hypomyelination (>50%) is required to elicit gap-
343 detection deficits at the behavioral level.

344

345 To confirm altered gap perception in freely behaving mice, we tested *Mbp*^{neo/neo} mutants
346 in the 'AudioBox' (NewBehavior, TSE systems), an automated system for auditory
347 behavioral testing⁶⁹⁻⁷³. Animals were exposed to 'safe visits' of one cage corner (Figure
348 S7E), in which a continuous sound was played, and water was always available.

349 However, during 'conditioned visits' of that corner the continuous sound was interrupted
350 by a series of 50 ms 'silent gaps' that were paired (i.e. negatively conditioned) with short
351 air-puffs to the nose when animals attempted to drink. We then compared the sensitivity
352 to different gap lengths in mutants and controls ranging between 1 and 45 ms (Figures
353 6D and S7F). For each gap length we quantified the percentage of visits in which the mice
354 avoided penalized nose-pokes, indicating perception of this gap. Despite equivalent
355 sound exposure in the Audiobox (Figure S7G), gap detection threshold was increased to
356 4 ms in *Mbp^{neo/neo}* compared to the 2 ms threshold of wild type mice (Figure 6E). We
357 conclude that in freely moving animals, myelination contributes to auditory perceptual
358 acuity.

359

360 **Discussion**

361 To explore the role of CNS myelination in information processing, i.e. beyond the known
362 function of myelin in speeding axonal conduction, we studied the detection and perception
363 of auditory stimuli in mice. We used auditory brainstem potentials and multiunit recordings
364 in the auditory cortex of mutant mice, as well as behavioral readouts in awake animals,
365 to compare the effect of partial (*Mbp^{neo/neo}*) and complete (*Mbp^{sh1/sh1}*) dysmyelination with
366 that of an isolated reduction of glial metabolic support (MCT1^{+/−}). The combined pattern
367 of results reveals that diminished glial support of axonal metabolism, in the absence of
368 dysmyelination, impairs sustained stimulus detection relevant for speech processing. The
369 deficits were largely comparable, although partially discriminable from those resulting
370 from dysmyelination. Oligodendrocytes, therefore, play an important role in ongoing
371 perception through energetic support (Figure 7A), most evident when dysmyelination
372 results in misdistribution of axonal ion channels (Figure 7B), and independent of a role in
373 saltatory conduction. (Figure 7C).

374

375 On the other hand, subcortical delays in dysmyelinated mice were accompanied by
376 reduced synchrony of auditory brainstem potentials, a feature not observed in mice with
377 only reduced glial metabolic support. The decreased amplitudes and shapes of waves II
378 and III, were likely reflecting some desynchronization of the converging input at the level
379 of the cochlear nucleus and olivary complex (where ascending auditory signals become

380 bilateral). The later waves IV and V showed instead an increase in size in dysmyelinated
381 mutants, most likely reflecting a compensatory mechanism to the loss of synchrony at the
382 earlier stations. Similarly gain increases have been reported in mice deprived of auditory
383 stimuli ⁷⁴, and in humans as a result of aging ⁴⁴ or multiple sclerosis lesions ^{7,75–78}.

384

385 While dysmyelination had a strong effect on conduction velocity, spectral processing of
386 simple stimuli (pure tones) in the primary auditory cortex appeared normal. Auditory
387 information can reach the IC and then the ACx through different parallel pathways, each
388 of which might be differently affected by dysmyelination. While simple click sounds, and
389 pure tones are likely activating a limited (possibly the most direct) subset of sound
390 encoding circuits, responses to these stimuli were normal, indicating that basic relay
391 processing and sound integration is not affected by the absence of myelin. However, we
392 detected deficits in temporal processing in a manner unexplained by reduced conduction
393 velocity alone. Temporal reliability and acuity were affected in all mutants. Unexpectedly,
394 the magnitude of this defect was correlated with the degree of hypomyelination but was
395 not limited to dysmyelination phenotypes. It was also a feature of MCT1^{+/−} mice with an
396 isolated metabolic support defect. Behavioral tests demonstrated that the temporal
397 processing deficits, as detected by cortical multi-unit recordings, were paralleled at the
398 perceptual level. Myelinating oligodendrocytes are thus clearly involved in the temporal
399 processing of auditory signals, which have previously been implicated in higher CNS
400 functions in humans, such as speech recognition ^{79–81}. Here, the phenotypical similarities
401 of two different mouse mutants, *Mbp*^{neo/neo} and MCT1^{+/−}, suggest that compromised
402 metabolic support alone is a critical component of reduced myelination and becomes
403 detectable at the network level in the absence of any sign of axonal degeneration.

404

405 Myelination defects clearly affected the coding of a stimulus' temporal envelope, reflected
406 for example as 'fatigability', i.e. a lack of temporal reliability. For *Mbp* mutants it was
407 unexpected that the responses to longer trains of clicks diminished or even stopped after
408 5 to 6 repetitions of the stimulus, especially when the intervals between consecutive clicks
409 were 200 ms apart (repetition rate 5 Hz). Here, the altered distribution of sodium and
410 potassium channels in unmyelinated regions is critical. In *Mbp*^{shi/shi} mice sodium channels

411 are increased along bare axons^{82,83}, and abnormally high expression of $\text{Na}_v1.2$ channels
412 does not revert to $\text{Na}_v1.6$ in development^{84,85}. This might contribute to increased
413 fatigability in *Mbp^{shi/shi}* mice since $\text{Na}_v1.6$ channels are not only associated with - but also
414 necessary for - repetitive firing⁸⁶. In addition, an elongation of nodes^{58,87} and
415 overexpression of $\text{K}_v1.1$ and $\text{K}_v1.2$ potassium channels has been reported in *shiverer*
416 mice^{58,88}. K_v1 channels are normally clustered at juxtaparanodal domains⁸⁹ but may
417 become abnormally exposed to the extracellular space upon dysmyelination and
418 redistribute into the paranodal and internodal membrane causing increased K_v1 -mediated
419 potassium efflux. In the absence of myelin, oligodendrocyte-dependent potassium
420 siphoning would be reduced⁹⁰. Together, this might lead to a greater activity-driven
421 accumulation of extracellular potassium, decreasing its driving force and resulting in a
422 longer time course of membrane hyperpolarization. In agreement with these findings,
423 when potassium channels in *shiverer* mice were acutely blocked with 4-AP in the *ex vivo*
424 electrophysiological recordings of *Mbp^{shi/shi}* optic nerves (our accessible model of a
425 dysmyelinated tract), we noted a partial restoration of single compound action potential
426 (CAP) amplitude and a smaller hyperpolarization phase. The latter is consistent with the
427 efficiency of 4-AP as a symptomatic treatment for MS⁹¹.

428
429 Interestingly, reduced reliability was also observed in the $\text{MCT1}^{+/-}$ mice, without
430 dysmyelination, suggesting that reduced metabolic support to axons might be one of the
431 responsible mechanisms. An indirect effect, and not necessarily an alternative
432 explanation to the channel misdistribution, is the burden of dysmyelination and increased
433 ion fluxes on the energy consumption of axonal Na^+/K^+ ATPases, postulated to be a
434 contributing factor to axonal degeneration in demyelinated plaques of multiple sclerosis
435 (MS)⁹². Indeed, hearing difficulties have been reported also in MS patients⁷⁸. In the *Mbp*
436 mutants, inadequate support might occur locally but have a dominant effect on the entire
437 pathway. For example, lack of myelin might reduce energy reserves at higher spiking
438 rates when the ATP-dependent ion pumps are most active. This might cause conduction
439 blocks in the absence of axonal degeneration.

440

441 In addition to some loss of ‘temporal reliability’, we determined a myelination dependent
442 defect of ‘temporal acuity’, i.e. a defect in the coding of rapid changes in the temporal
443 structure of the stimulus. Here, a powerful paradigm is sound gap-detection ^{54,93}, a
444 function that relies on cortical auditory processing ^{65,94–96}. In humans, defects in such a
445 gap detection test are closely associated with a corresponding loss of accurate speech
446 discrimination ^{97,98}. Cortical neurons of dysmyelinated *shiverer* mice failed to detect silent
447 gaps within a stream of white noise when these gaps were shorter than 3 ms, a marked
448 deviation from control mice that detect gaps as short as 0.5-1 ms. Hypomyelinated
449 *Mbp^{neo/neo}* mice exhibited a milder deficit.

450

451 Poor gap detection in *Mbp^{shi/shi}* mice could be caused by longer refractory periods and
452 reduced excitability of the axons secondary to the abnormal distribution of ion channels.
453 It would explain why these deficits in temporal acuity were less severe in the
454 hypomyelinated *Mbp^{neo/neo}* mice. In contrast, neuronal ‘fatigue’ and the loss of temporal
455 reliability are both caused by an underlying metabolic problem that is also prominent in
456 MCT1 heterozygotes.

457

458 All multi-unit recordings were performed in anaesthetized mice. We note that key aspects
459 of auditory processing occur ‘pre-attentively’ and should be unaffected by anesthetics ⁹⁹.
460 However, neuronal circuits with inhibitory input can behave differently under anesthesia,
461 which can bias experimental results. Thus, it was important to parallel the
462 electrophysiological results with behavioral experiments on auditory perception in freely
463 moving animals. Since motor impaired *Mbp^{shi/shi}* mice could not be used for these
464 experiments, we analyzed mice homozygous for the newly created *Mbp^{neo/neo}* allele,
465 which had no visible motor defects and were long-lived. In this mutant, we confirmed poor
466 gap detection at the perceptual level by operant conditioning of auditory stimuli and
467 responses. We observed no such auditory deficits in heterozygous *shiverer* mice, which
468 exhibit a minor dysmyelination ³⁶. This suggests that a threshold level of hypomyelination
469 is required for the auditory phenotype.

470

471 It has become increasingly clear that the role of myelination is not limited to speeding
472 axonal conduction velocity. Moreover, the patchy myelination pattern of cortical circuits
473 points to a broader role of oligodendrocytes and myelin in information processing¹⁰⁰. Our
474 mouse models with predominant structural or metabolic defects of CNS myelin allowed
475 exploring the role of myelination at the network level. This enabled us to mechanistically
476 dissect reliability defects from acuity deficits in auditory processing. Thus, our studies
477 revealed a novel role of myelin forming oligodendrocytes in information processing that
478 goes beyond the speeding of neuronal responses. We discovered that myelin influences
479 the sustained and temporally precise axonal firing, essential to properly code auditory
480 stimuli. Moreover, specific phenotypical similarities between mutants with dysmyelination
481 and metabolic defects suggests that a myelin-dependent energetic failure marks a
482 common mechanism underlying auditory dysfunctions. Auditory phenotyping emerges as
483 a promising experimental system to investigate the role of oligodendrocytes and
484 myelination in information processing.

485

486 **Methods**

487 **Mice**

488 All mice were housed in standard plastic cages with 1-5 littermates in a 12 h/12 h light/dark cycle
489 (5:30 am/5:30 pm) in a temperature-controlled room (~21°C), with *ad libitum* access to food and
490 water. All mice used were bred under the C57BL6/N background. Data obtained from male and
491 female mice were pooled unless otherwise stated. The experimental and surgical procedures
492 were approved and performed in accordance with the Niedersächsisches Landesamt für
493 Verbraucherschutz und Lebensmittelsicherheit (licence number 33.19-42502-04-16/2337).

494

495 Homozygous *shiverer* mice were obtained by crossing heterozygotes (*Mbp*^{sh/+}). In all
496 experiments, *Mbp*^{sh/shi} mice and their control littermates (Wt) were 6-12 weeks of age, unless
497 otherwise stated.

498

499 A new hypomyelinated mouse with reduced *Mbp* expression (<50%), was generated by
500 homologous recombination in ES cells, using a modified *Mbp* gene carrying a LacZ-neomycin
501 cassette upstream of exon 1. Successful targeting disrupted the 5' regulatory region without
502 affecting the larger GOLLI transcription unit (Figure S1A). Homozygous *Mbp*^{neo/neo} mice were born

503 at the expected frequency. For all experiments, *Mbp*^{neo/neo} and controls (Wt) were used at age 9.5-
504 14 weeks, unless otherwise stated.

505

506 MCT1^{+/−} mice, with reduced axo-glial metabolic support ³ were kindly provided by Pierre
507 Magistretti (Lausanne) and analyzed at age 10-14 weeks.

508

509 **Acoustic stimulation**

510 All sound stimuli were digitally synthesized and presented using Matlab (The Mathworks[®], USA),
511 at a sampling rate of 98 kHz and in a pseudorandom order. There were typically 10 repetitions of
512 each stimulus, unless otherwise stated. The intensities were measured in decibel sound pressure
513 levels (dB-SPL). Sounds used for electrophysiology were delivered by an USB audio interface
514 (Octa-capture, Roland, USA), amplified with a Portable Ultrasonic Power Amplifier (Avisoft,
515 Germany) and played in a free-field ultrasonic speaker (Ultrasonic Dynamic Speaker Vifa, Avisoft,
516 Germay). Calibration of the testing apparatus was made using BBN and click sounds at different
517 intensities with a Brüel & Kjaer (4939 1/4") free field microphone, with Brüel & Kjaer amplifier
518 (D4039, 2610, Denmark). All experiments were performed in a sound-attenuated and anechoic
519 room.

520

521 **Auditory Brainstem Responses**

522 Auditory brainstem responses (ABRs) were measured as described ¹⁰¹. Mice were anesthetized
523 with an intraperitoneal injection of 250 mg/kg Avertin (mixture of 2,2,2-tribromoethyl alcohol 2%,
524 Sigma-Aldrich, and tert-amyl-alcohol 2%, Merck), except for the *Mbp*^{neo/neo} line, which was treated
525 as in Jung et al. (2015) ¹⁰² and anesthetized with ketamine (125 mg/kg) and xylazine (2.5 mg/kg)
526 i.p. Temperature was kept at 36° via a heating pad (World Precision Instruments, ATC 1000). For
527 the recordings, subdermal needles (BD Microlance, 30G 1/2", 0.3x13mm) were placed at the vertex
528 (active electrode), the left pinna (reference) and the back of the animal (active shielding). Click
529 stimuli were ipsilaterally delivered from a speaker located ~9 cm from the left ear. Square click
530 waveforms (0.03 ms long) were presented at 20 Hz (50 ms inter-trial intervals (ITI)) at different
531 intensities (0-80 dB). The difference in potentials was amplified 10,000 times using a custom-
532 made amplifier. A National Instruments shielded I/O connector block (NI SCB-68), interfaced in a
533 Matlab environment was used for data acquisition (50,000 Hz sampling rate). Recorded voltage
534 traces were bandpass filtered offline (300 - 3000 Hz) using a Butterworth filter. Data was cut from
535 the stimulus presentation onset (0 ms) in 12 ms windows. Trials with heart rate artifacts (wave
536 shapes larger than ± 4.7-9.2 µV) were removed, and 1000 trial repetitions of each stimulus were

537 used for data analysis. Hearing thresholds were determined as the lowest intensity that evoked a
538 response that was 3 times the root mean square of the response at 0 dB within a window of 1 ms
539 centered on wave I. In addition, this measurement was confirmed by visual inspection of the
540 lowest intensity that evoked a response (compared to 0 dB) within 6 ms from stimulus onset. The
541 identity of the waves was determined by visual selection of the maximum peak value
542 corresponding to each of the five waves according to the typical reported position of each wave
543 (1 ms apart). For the analysis, an ANOVA was used to assess the changes in latencies or
544 amplitudes of each wave, comparing control to mutant animals.

545

546 **Electron microscopy**

547 After transcardial perfusion fixation (4% formaldehyde and 2.5% glutaraldehyde in phosphate
548 buffer), mouse brains were dissected, and sagittal or coronal vibratome (Leica VT1000S) slices
549 of 200-300 μ m thickness were prepared. A punch of the region of interest was taken, prepared
550 for electron microscopy ¹⁰³ and embedded in Epon. Ultrathin sections were prepared using a Leica
551 Ultracut S ultramicrotome (Leica, Vienna, Austria) and imaged with a LEO912 electron
552 microscope (Zeiss, Oberkochen, Germany) using a 2k on-axis CCD camera (TRS, Moorenweis,
553 Germany). G-ratios (axonal diameter/fibre diameter) were determined by analyzing 100 axons
554 per animal selected by systematic random sampling on 10 random images taken at a
555 magnification of 8,000 x.

556

557 **Acute electrophysiology**

558 Prior to surgery, mice were anesthetized and maintained as reported for the ABR procedure. Mice
559 were placed on a stereotaxic apparatus using inverted ear bars to avoid damage to the ear canal
560 (World Precision Instruments, Sarota, FL USA, 502063). A cut was made along the midline and
561 the skull exposed and cleaned of adherent tissue with a scalpel and hydrogen peroxide. A metal
562 screw (M1x1, Germany) was inserted into the right parietal cortex and used as ground. A metal
563 post was glued on the skull frontal to lambda with dental cement (Unifast, TRAD), this allowed for
564 removal of the ear bars. The muscle temporalis was detached from the skull and a 4x2 mm
565 craniotomy was performed using a dental drill (World Precision Instruments, Omnidrill3, tip #7),
566 following the contour delimited rostral and ventrally by the squamosal suture, dorsally by the
567 temporal ridge and caudally by the lambdoid suture. The speaker was placed ~13 cm from the
568 right ear of the mouse. At the end of every experiment, mice were euthanized by anesthesia
569 overdose. The brain was removed, and immersion fixed in 4% PFA. After 24h, the brain was
570 washed with PBS 1x and stored in 30% sucrose (Merk, K43386951).

571
572 Recordings were performed with glass-covered tungsten electrodes (AlphaOmega, Germany) or
573 platinum/tungsten glass coated electrodes (Thomas Recordings, Germany) with impedances
574 between 1.5 and 2 MΩ. In 30% of the recordings, the electrode was stained with Dye I
575 (dioctadecyl-tetramethylindocarbocyanine perchlorate, Aldrich, 468495) dissolved in absolute
576 ethanol, before insertion, for later visualization of its position. After the craniotomy, a drop of saline
577 was used to clean the surface of the brain. The electrode was inserted perpendicular to the
578 surface of the primary auditory cortex ¹⁰⁴ using a micromanipulator (Kopf, Inc., Germany). We
579 recorded extracellular multi-unit (MUA) sound-evoked responses in layer 3/4 of the ACx of
580 anesthetized mice. Responses were characterized by onset latency and shape. ACx recordings
581 in *Mbp*^{sh1/sh1} mice were done at a depth of ~405 μm (62 μm standard deviation (sd)) without
582 differences in depth between control and mutant mice (p=0.71). In the *Mbp*^{neo/neo} line, depth of
583 recording was on average ~350 μm (60.5 μm sd) without differences between groups (p=0.520).
584 In MCT1^{+/−} mice, recordings were on average at ~380 μm depth (37 μm sd) (p=0.32).
585
586 Electrophysiological signals were acquired at 32 kHz sampling rate, pre-amplified (HS-36-Led,
587 Neuralynx, USA) and sent to an acquisition board (Digital Lynx 4SX, Neuralynx, USA) to yield the
588 raw signals, which were acquired using a bandpass filter (0.1 or 200 Hz to 9000 Hz) and stored
589 for offline analysis. Recording and visualization of the data was made using the Cheetah Data
590 Acquisition System software (Neuralynx, USA). For multi-unit analysis (MUA), spikes that are not
591 attributed to a single neuron, the signals were high-pass filtered at 350 Hz. For spike detection, a
592 threshold of 6 times the mean absolute deviation from the median of the filtered voltage traces
593 was used. For the analysis, only recordings that had significant auditory evoked responses at any
594 sound intensity compared to a 200 ms pre-sound baseline activity (paired t-test) were used.
595
596 To measure tonotopy, *pure tones* of variable frequencies and intensities were presented (24 tones
597 with frequencies between 2 to 31 kHz, and intensities between 0 and 80 dB) (Figure 3I). Each
598 tone was 30 ms long, had on/off ramps of 5 ms. Presentation rate was 2 Hz (500 ms inter-trial
599 interval). Five repetitions of each frequency/intensity combination were presented in a random
600 order. The analysis was performed on individual recording sites, although in many mice
601 recordings were obtained from several site along the ACx.
602
603 For the reconstruction of the single-site tuning (Figure 3J), the spikes elicited by each frequency
604 in a 200 ms window after stimulus onset were added. The tuning curves (TC) were smoothed

605 using a zero-phase digital hamming filter with a window of 4 points. The smoothed TC were
606 then used to calculate the best frequency (BF; the frequency that elicited the maximum number
607 of spikes at 60 and 80 dB). In normalized tuning curves, activity was expressed as a function not
608 of frequency but of the distance (in octaves) from the best frequency. Response thresholds were
609 obtained by visual inspection (blinded as to the genotype) of a 200 ms window from stimulus
610 onset. Tuning curve width both at the base and the half distance from the peak activity (Figure
611 3M), was calculated as the z-score of the sum of spikes over a 60 ms window from stimulus onset
612 at all frequencies and intensities.

613

614 The *click rate* (CR) protocol (Figure 4A) was used to assess temporal reliability. Each was a 0.05
615 millisecond long positive step function. Bursts of ten clicks were presented every 6 s, each at a
616 different rate (2 - 50 Hz). The first click of each burst was used to characterize latency, amplitude,
617 reliability and jitter of auditory response (Figure 3 and S3). For the *latencies* measurement we
618 only included the spikes that occurred at least 10 ms after sound onset, given latencies reported
619 for the ACx in anesthetized mice ¹⁰⁴. To measure reliability of repeated responses (click rate
620 protocol, Figure 4), synchronicity measurements were obtained from a measure of the vector
621 strength ¹⁰⁵ of the spikes occurring for the duration of the stimulation in all repetitions of the
622 stimulus was obtained by converting each spike time (τ_i) as a circular vector with phase (θ_i)
623 between 0 and 2π , according to the stimulus phase of a specific rate. All the spikes occurring after
624 each of the 10 clicks were selected in terms of their latency respective to the previous click. A
625 window equivalent to the phase duration (equal to the inter-click interval) was selected for each
626 click rate presentation. The spike phases were then expressed in terms of:
627

Equation 1

628
$$\theta_i = 2\pi \frac{\text{mod}(\tau_i, \rho)}{\rho}$$

629 Here, τ_i is the latency of each spike, θ_i was the phase representation of each spike, and ρ was
630 the phase of the stimulus presented (for example for a click train at 5 Hz, $\rho = \frac{1}{5}$, $\rho = 0.2$). To calculate
631 the percentage of spike synchronicity, the total spike phase distribution was binned in 20 bins
632 from 0 to 2π , and the spike count of the bin with the maximum synchronization in the first half of
633 the vector (π), was taken. This spike count was expressed in terms of percentage, which means
634 the percentage of spikes that were fully synchronized per stimulus in one recording.

635

636 The *gap-in-noise detection* paradigm was used to evaluate temporal acuity. Once every second,
637 200 ms long broad band noise (BBN, pre-gap) sound was followed, after a short silent gap, by a
638 50 ms long BBN sound (post-gap). Silent gaps durations were 0, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, 50
639 and 100 ms (Figure 5A). Rise/fall time of the BBN pulse was 1 ms. For *gap-detection* analysis,
640 only recordings with a significant response to the mean of the pre-gap sound (sum of spikes over
641 100 ms window after stimulus onset), compared to pre-sound baseline, were used (paired t-test).
642 For each animal, recordings at different locations were averaged. Additionally, only those animals
643 that had a significant response to the post-gap BBN following a 100 ms gap were included in the
644 analysis (100 ms window from the start of the post-gap BBN). Peri-stimulus time histograms
645 (PSTH) were generated by adding spikes across trials in 1 ms bins over a 100 ms window (Figure
646 5D). The pre-gap response (PSTH in a 100 ms window) was generated from all gap trials, since
647 the pre-gap response should not be affected by the gap that follows it. For the post-gap responses
648 (PSTH over 100 ms), each gap was treated separately. Comparisons between control and
649 *Mbp^{shi/shi}* and *Mbp^{neo/neo}* mice revealed no significant differences in the amplitude of the pre-gap
650 response (ANOVA, p=0.53 and p=0.6 respectively). Also, the peak of the post-gap response was
651 used for group comparisons. Since some groups showed increased latencies, the PSTHs were
652 centered at their peaks. An ANOVA was performed in a 21 ms window centered on the peak.

653

654 For the analysis of the gap-detection vs baseline, a 50 ms window of baseline activity was
655 compared to a 50 ms window of the post-gap response for each recording site using a paired t-
656 test.

657

658 **Gap pre-pulse inhibition of the acoustic startle reflex**

659 We used behavioral Gap-PPI to test behavioral temporal acuity ⁶⁷. This test was performed in
660 *Mbp^{neo/neo}*, *Mbp^{shi/+}* and their control littermates. We used 9 control animals (wild types pulled
661 together from both dysmyelination lines), 6 *Mbp^{neo/neo}*, 6 *Mbp^{shi/+}*. All mice were between 9 and 16
662 weeks at the age of testing. For testing, a mouse was confined in a custom-made Plexiglas tunnel
663 (12 cm long by 4 cm diameter), placed above a piezo element (TRU components, 800 Ohms
664 impedance, 50 mm diameter, spanning 30V) (Figure S7A). The piezo was connected to a data
665 acquisition system (NI SCB-68). Data acquisition (1 kHz sampling rate) was controlled with a
666 custom-made code in a Matlab and sound delivery was done using pre-synthesized sound tracks
667 in Matlab, played through VLC media player (Video Lan Organization).

668

669 Testing protocol was as summarized in Figure S7B. Mice were initially acclimatized to the setup
670 for 10 min before the start of the experiment: 5 min. of silence followed by 5 min. of exposure to
671 the background sound (BBN of 70 dB). Testing was then initiated. The startle noise was a BBN
672 105 dB with 40 ms duration. It appeared every 10-20 s. at random times to avoid startle prediction.
673 The startle could be preceded by a gap (0, 1, 2, 3, 5, 7, 10, 25 or 50 ms long) which ended 50 ms
674 before the startle (Figure 6A). Gaps and startle had on/off ramps of 1 ms. The session started
675 with 10 startle-only pulses, followed by gap preceded startle presentations (10 startle presentation
676 per gap type). The experiment ended with five startle-only pulses, to assess habituation. The
677 complete presentation of 105 trials had a duration of approximately 30 min.

678

679 *Gap-PPI* analysis was done as described before⁶⁷, with mild modifications. The magnitude of the
680 acoustic startle reflex (ASR) was measured as the maximal vertical force (peak-to-peak voltage
681 output) exerted on the piezo element in a 500 ms window starting with the onset of the startle
682 noise. Baseline activity (2 times the root mean square of the voltage trace in a 500 ms window
683 before the startle noise) was subtracted. Startle and baseline amplitude were measured in
684 arbitrary voltage units provided by the piezo measurement. Noisy trials (3 times the standard
685 deviation of the root mean square of a 500 ms window before gap presentation) were discarded
686 from the analysis. The percentage of pre-pulse inhibition for each gap and mouse was calculated
687 following:

688 **Equation 2**

$$689 \quad PPI(\%) = 100 \frac{ASR - ASRx}{ASR}$$

690 Where ASR is the startle response elicited at 0 ms gap, and ASRx is the startle response elicited
691 per gap played. The data were fitted with a generalized logistic function:

692 **Equation 3**

$$693 \quad f = -\frac{a}{2} + \frac{a}{1 + \exp(b + c * x)}$$

694 Recordings with a fit coefficient (R^2) below 0.6 were excluded from the analysis.

695

696 The gap detection threshold was considered as the value of the fitted curve that elicited
697 50% of the maximal inhibition achieved per mouse. A second normalization was then made to the
698 longest gap (50 ms) presumed to elicit the maximum value of inhibition (100%). For the statistical
699 comparisons of the gap-detection threshold and amplitude of startle, parametric or non-parametric
700 t-test were used. A 2-way ANOVA was performed for the comparison of the inhibition of the ASR
701 along the different gap lengths.

702 **AudioBox**

703 The AudioBox system was used to test behavioral gap-detection. The AudioBox (NewBehavior,
704 TSE systems) is an automated system for behavioral acoustic conditioning ^{69–72}. This system is
705 designed to minimize the interference from the experimenter and provides a spatially and socially
706 enriched environment in which female mice live in group (up to 10 mice) for several days. The
707 setup consisted of a home-cage, where animals had food *ad-libitum*, and a corner within a sound-
708 attenuated box, where they could access water also *ad-libitum* (Figure S7E). A speaker was over
709 the corner (22TAF/G, Seas Prestige). Animals carried a transponder (implanted under
710 anesthesia, see ⁷²) that was detected by an antenna at the entrance of the corner. Time spent in
711 the corner, number of nose-pokes and sound played were detected through sensors in the corner.
712

713 For these experiments, *Mbp*^{neo/neo} mice were chosen over *Mbp*^{shl/shl} because of their normal life
714 span and lack of motor impairments. Three experiment replications were pooled together. A final
715 number of 7 control animals (Wt) and 13 mutant animals (*Mbp*^{neo/neo}) that were 6-14 weeks old at
716 the start of the experiment were used.

717 Behavioral testing occurred in the corner. Each time a mouse entered the corner a “visit” started,
718 and a sound was played for the duration of the visit. The training paradigm, summarized in Figure
719 S7F, consisted of 3 phases. During the habituation (one day doors opened, and 3-9 days doors
720 closed), the safe sound (continuous BBN) was played in all visits. In this phase, animals could
721 nose-poke and get access to water. During the conditioning phase ‘conditioned’ visits were
722 introduced (Figure 6D and S7F). In safe visits, as before, the animal could make a nose-poke and
723 get water. Animals that did not nose-poke in more than 60% of safe visits were immediately
724 excluded from the behavioral experiment. This was the case for 11 out of a total of 18 Wt and 7
725 out of 20 *Mbp*^{neo/neo} tested. In conditioned visits (pseudo-randomly distributed according to
726 probabilities as in Figure S7F), however, a conditioned sound (BBN interrupted by 50 ms silent
727 gaps every 500 ms) was played, and a nose-poke triggered an air-puff, and no opening of the
728 doors. Mice had to learn to not nose-poke in visits in which silent gaps interrupted the sound.
729 Typically, this occurred 1-2 days after introduction of the conditioned visits. The percentage of
730 conditioned sound presentation was increased stepwise 5% every 2 days. After the conditioning
731 phase, the gap testing phase began. Every 4 days two new visit types were introduced, each with
732 BBN sounds interrupted, like the conditioned sounds, by gaps, which varied in length with visit
733 type (Figure 6D and S7F). During this phase 70% of visits were safe, 20% conditioned and 10%
734 conditioned gaps. A total of 15 gaps were tested with lengths between 1 and 45 ms.

735 The new sounds were chosen in pairs in a semi-random fashion, such that the more difficult gaps
736 (gaps below 5 ms) were presented in the same block of days as gaps longer than 5 ms. A
737 minimum of four days with each pair of sounds was allowed before starting a new gap testing.

738

739 The percentage of avoidance was quantified as the number of visits without nose-pokes for each
740 sound played, only considering the first two days of training for each sound. The number of visits
741 was compared to ensure equivalent sound exposure. The data from visits with gaps between 2
742 and 15 ms duration were used for statistical comparison.

743

744 **Analysis generalities**

745 Analyses and figure outputs were always performed in a Matlab environment. All confidence
746 intervals correspond to $\alpha=0.05$. Significance corresponds to ^{n.s.} $p>0.05$, $*p\leq 0.05$, $**p\leq 0.01$,
747 $***p\leq 0.001$, $****p\leq 0.0001$. Statistical analysis was parametric or non-parametric according to the
748 Shapiro-Wilcoxon normality test.

749

750 Paired comparisons were done using t-test or ranksum and post-hoc multiple comparisons
751 were performed using 2-way ANOVA or Kruskal-Wallis.

752

753 **Acknowledgements**

754 The authors would like to thank Gerhard Hoch for the ABR amplifier and for technical support;
755 Gudrun Fricke-Bode, Annette Fahrenholz, Saskia Heibeck, Uschi Müller, and Swati Subramanian
756 for help with molecular and histological methods; Cornelia Casper for help with animal care; Chi
757 Chen for assistance with the behavioral setups; Alexander Dieter for programming support; Jan
758 Ficner for Figure 7 design; and Pierre Magistretti for providing MCT1 heterozygous mice. Funding
759 was granted by the Max Planck Society and the cooperation program CONACyT-DAAD for S.M.
760 (scholarship 381831), and an ERC Advanced Grant (K.A.N.). M.M. was funded through, K.A.N.
761 and W.M. were supported by the Cluster of Excellence and DFG Research Center Nanoscale
762 Microscopy and Molecular Physiology of the Brain.

763

764 **Author contributions**

765 Conceptualization, L.dH. and S.M.; electron microscopy images, T.R. and W.M.; ABR recordings
766 of *Mbp^{neo/neo}*, N.S.; ABR recordings, *in vivo* electrophysiology, and behavior, S.M.; *in vivo*
767 electrophysiology for SSA, L.d.H.; generation, cellular and molecular characterization of the
768 *Mbp^{neo/neo}* model, W.M., and M.M.; AIS stainings and quantification, I.T., A.B., and M.K.; ON
769 recordings, S.M., and A.T.; maintenance of MCT1 mice, K.K.; data analysis, S.M., and L.dH.; data
770 curation, S.M.; writing-original draft, S.M., L.dH., and K.A.N; revision-editing, all authors; funding
771 acquisition, S.M., L.dH., and K.A.N; project supervision, L.dH., and K.A.N.

772

773 **Declaration of interests**

774 The authors declare no competing interests.

775 **References**

- 776 1. Nave, K.-A. & Werner, H. B. Myelination of the nervous system: mechanisms and functions. *Annu. Rev. Cell Dev. Biol.* **30**, 503–533 (2014).
- 778 2. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. *Nature* **485**, 517–521 (2012).
- 780 3. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. *Nature* **487**, 443–448 (2012).
- 782 4. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. *Neuron* **91**, 119–132 (2016).
- 784 5. Trevisiol, A. et al. Monitoring ATP dynamics in electrically active white matter tracts. *Elife* **6**, (2017).
- 785 6. Nave, K.-A. & Ehrenreich, H. Myelination and oligodendrocyte functions in psychiatric diseases. *JAMA Psychiatry* **71**, 582–584 (2014).
- 787 7. Peters, A. The effects of normal aging on myelinated nerve fibers in monkey central nervous system. *Front. Neuroanat.* **3**, 11 (2009).
- 789 8. Peters, A., Sethares, C. & Killiany, R. J. Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. *J. Comp. Neurol.* **435**, 241–248 (2001).
- 791 9. Stange-Marten, A. et al. Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem. *Proc. Natl. Acad. Sci. USA* **114**, E4851–E4858 (2017).
- 794 10. Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. *Science* **344**, 319–324 (2014).
- 796 11. Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. *Science* **363**, (2019).
- 798 12. Stedehouder, J., Brizee, D., Shpak, G. & Kushner, S. A. Activity-Dependent Myelination of Parvalbumin Interneurons Mediated by Axonal Morphological Plasticity. *J. Neurosci.* **38**, 3631–3642 (2018).
- 801 13. Micheva, K. D. et al. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. *Elife* **5**, (2016).
- 803 14. Zonouzi, M. & Berger, D. Individual Oligodendrocytes Show Bias for Inhibitory Axons in the Neocortex.
- 805 15. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. *Proc. Natl. Acad. Sci. USA* **93**, 9887–9892 (1996).
- 807 16. Yamazaki, Y. et al. Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. *Neuron Glia Biol.* **3**, 325–334 (2007).

810 17. Gibson, E. M. et al. *Neuronal activity promotes oligodendrogenesis and adaptive myelination in the*
811 *mammalian brain.* *Science* **344**, 1252304 (2014).

812 18. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. *Neuronal activity biases axon*
813 *selection for myelination in vivo.* *Nat. Neurosci.* **18**, 683–689 (2015).

814 19. Mensch, S. et al. *Synaptic vesicle release regulates myelin sheath number of individual*
815 *oligodendrocytes in vivo.* *Nat. Neurosci.* **18**, 628–630 (2015).

816 20. Seidl, A. H., Rubel, E. W. & Barría, A. *Differential conduction velocity regulation in ipsilateral and*
817 *contralateral collaterals innervating brainstem coincidence detector neurons.* *J. Neurosci.* **34**,
818 4914–4919 (2014).

819 21. Seidl, A. H. & Rubel, E. W. *Systematic and differential myelination of axon collaterals in the*
820 *mammalian auditory brainstem.* *Glia* **64**, 487–494 (2016).

821 22. Leuzzi, V. et al. *Ataxia, deafness, leukodystrophy: inherited disorder of the white matter in three*
822 *related patients.* *Neurology* **54**, 2325–2328 (2000).

823 23. Furst, M. & Levine, R. A. *Hearing disorders in multiple sclerosis.* *Handb Clin Neurol* **129**, 649–665
824 (2015).

825 24. Papakonstantinou, A., Strelcyk, O. & Dau, T. *Relations between perceptual measures of temporal*
826 *processing, auditory-evoked brainstem responses and speech intelligibility in noise.* *Hear. Res.*
827 **280**, 30–37 (2011).

828 25. Shah, S. N. & Salamy, A. *Auditory-evoked far-field potentials in myelin deficient mutant quaking*
829 *mice.* *Neuroscience* **5**, 2321–2323 (1980).

830 26. Naito, R., Murofushi, T., Mizutani, M. & Kaga, K. *Auditory brainstem responses,*
831 *electrocochleograms, and cochlear microphonics in the myelin deficient mutant hamster “bt”.* *Hear.*
832 *Res.* **136**, 44–48 (1999).

833 27. Ito, T., Tokuriki, M., Shibamori, Y., Saito, T. & Nojyo, Y. *Cochlear nerve demyelination causes*
834 *prolongation of wave I latency in ABR of the myelin deficient (md) rat.* *Hear. Res.* **191**, 119–124
835 (2004).

836 28. Kim, J. H., Renden, R. & von Gersdorff, H. *Dysmyelination of auditory afferent axons increases the*
837 *jitter of action potential timing during high-frequency firing.* *J. Neurosci.* **33**, 9402–9407 (2013).

838 29. Roncagliolo, M., Benítez, J. & Eguibar, J. R. *Progressive deterioration of central components of*
839 *auditory brainstem responses during postnatal development of the myelin mutant taiep rat.* *Audiol*
840 *Neurootol* **5**, 267–275 (2000).

841 30. Carpinelli, M. R. et al. *A new mouse model of Canavan leukodystrophy displays hearing*
842 *impairment due to central nervous system dysmyelination.* *Dis. Model. Mech.* (2014).
843 doi:10.1242/dmm.014605

844 31. Kanzaki, J., Mikoshiba, K. & Tsukada, Y. *Auditory brain stem response in neuropathological mutant*
845 *mice (shiverer and reeler).* *ORL. J. Otorhinolaryngol. Relat. Spec.* **47**, 294–298 (1985).

846 32. Roach, A., Boylan, K., Horvath, S., Prusiner, S. B. & Hood, L. E. Characterization of cloned cDNA
847 representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice. *Cell*
848 **34**, 799–806 (1983).

849 33. Boggs, J. M. Myelin basic protein: a multifunctional protein. *Cell Mol. Life Sci.* **63**, 1945–1961
850 (2006).

851 34. Nawaz, S. et al. Actin filament turnover drives leading edge growth during myelin sheath formation
852 in the central nervous system. *Dev. Cell* **34**, 139–151 (2015).

853 35. Rosenbluth, J. Central myelin in the mouse mutant shiverer. *J. Comp. Neurol.* **194**, 639–648
854 (1980).

855 36. Poggi, G. et al. Cortical network dysfunction caused by a subtle defect of myelination. *Glia* **64**,
856 2025–2040 (2016).

857 37. Readhead, C. et al. Expression of a myelin basic protein gene in transgenic shiverer mice:
858 correction of the dysmyelinating phenotype. *Cell* **48**, 703–712 (1987).

859 38. Shine, H. D., Readhead, C., Popko, B., Hood, L. & Sidman, R. L. Morphometric analysis of normal,
860 mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. *J.*
861 *Neurochem.* **58**, 342–349 (1992).

862 39. Miller, D. J., Lackey, E. P., Hackett, T. A. & Kaas, J. H. Development of myelination and cholinergic
863 innervation in the central auditory system of a prosimian primate (*Otolemur garnetti*). *J. Comp.*
864 *Neurol.* **521**, 3804–3816 (2013).

865 40. Wang, J. et al. Myelination of the postnatal mouse cochlear nerve at the peripheral-central nervous
866 system transitional zone. *Front. Pediatr.* **1**, 43 (2013).

867 41. Bakay, W. M. H., Anderson, L. A., Garcia-Lazaro, J. A., McAlpine, D. & Schaette, R. Hidden
868 hearing loss selectively impairs neural adaptation to loud sound environments. *Nat. Commun.* **9**,
869 4298 (2018).

870 42. Buran, B. N. et al. Onset coding is degraded in auditory nerve fibers from mutant mice lacking
871 synaptic ribbons. *J. Neurosci.* **30**, 7587–7597 (2010).

872 43. Moser, T. & Starr, A. Auditory neuropathy--neural and synaptic mechanisms. *Nat. Rev. Neurol.* **12**,
873 135–149 (2016).

874 44. Sergeyenko, Y., Lall, K., Liberman, M. C. & Kujawa, S. G. Age-related cochlear synaptopathy: an
875 early-onset contributor to auditory functional decline. *J. Neurosci.* **33**, 13686–13694 (2013).

876 45. Strenzke, N. et al. Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin
877 *Ile515Thr* mutants. *EMBO J.* **35**, 2519–2535 (2016).

878 46. Wan, G. & Corfas, G. Transient auditory nerve demyelination as a new mechanism for hidden
879 hearing loss. *Nat. Commun.* **8**, 14487 (2017).

880 47. Hamada, M. S. & Kole, M. H. P. Myelin loss and axonal ion channel adaptations associated with
881 gray matter neuronal hyperexcitability. *J. Neurosci.* **35**, 7272–7286 (2015).

882 48. *Kuba, H., Oichi, Y. & Ohmori, H. Presynaptic activity regulates Na(+) channel distribution at the*
883 *axon initial segment. Nature* **465**, 1075–1078 (2010).

884 49. *Susuki, K. & Kuba, H. Activity-dependent regulation of excitable axonal domains. J Physiol Sci* **66**,
885 99–104 (2016).

886 50. *Wu, G. K., Arbuckle, R., Liu, B.-H., Tao, H. W. & Zhang, L. I. Lateral sharpening of cortical*
887 *frequency tuning by approximately balanced inhibition. Neuron* **58**, 132–143 (2008).

888 51. *Khouri, L. & Nelken, I. Detecting the unexpected. Curr. Opin. Neurobiol.* **35**, 142–147 (2015).

889 52. *Ayala, Y. A. & Malmierca, M. S. Stimulus-specific adaptation and deviance detection in the inferior*
890 *colliculus. Front. Neural Circuits* **6**, 89 (2012).

891 53. *Pérez-González, D. & Malmierca, M. S. Adaptation in the auditory system: an overview. Front*
892 *Integr Neurosci* **8**, 19 (2014).

893 54. *Anderson, L. A. & Linden, J. F. Mind the gap: two dissociable mechanisms of temporal processing*
894 *in the auditory system. J. Neurosci.* **36**, 1977–1995 (2016).

895 55. *Harris, K. C., Wilson, S., Eckert, M. A. & Dubno, J. R. Human evoked cortical activity to silent gaps*
896 *in noise: effects of age, attention, and cortical processing speed. Ear Hear.* **33**, 330–339 (2012).

897 56. *Fournier, P. & Hébert, S. Gap detection deficits in humans with tinnitus as assessed with the*
898 *acoustic startle paradigm: does tinnitus fill in the gap? Hear. Res.* **295**, 16–23 (2013).

899 57. *Joris, P. X., Schreiner, C. E. & Rees, A. Neural processing of amplitude-modulated sounds.*
900 *Physiol. Rev.* **84**, 541–577 (2004).

901 58. *Sinha, K., Karimi-Abdolrezaee, S., Velumian, A. A. & Fehlings, M. G. Functional changes in*
902 *genetically dysmyelinated spinal cord axons of shiverer mice: role of juxtaparanodal Kv1 family K⁺*
903 *channels. J. Neurophysiol.* **95**, 1683–1695 (2006).

904 59. *Battefeld, A., Tran, B. T., Gavrilis, J., Cooper, E. C. & Kole, M. H. P. Heteromeric Kv7.2/7.3*
905 *channels differentially regulate action potential initiation and conduction in neocortical myelinated*
906 *axons. J. Neurosci.* **34**, 3719–3732 (2014).

907 60. *Stys, P. K., Ransom, B. R. & Waxman, S. G. Compound action potential of nerve recorded by*
908 *suction electrode: a theoretical and experimental analysis. Brain Res.* **546**, 18–32 (1991).

909 61. *Shinn, J. B., Chermak, G. D. & Musiek, F. E. GIN (Gaps-In-Noise) Performance in the Pediatric*
910 *Population. J Am Acad Audiol* **20**, 229–238 (2009).

911 62. *Clark, M. G., Sherman, G. F., Bimonte, H. A. & Fitch, R. H. Perceptual auditory gap detection*
912 *deficits in male BXSB mice with cerebrocortical ectopias. Neuroreport* **11**, 693–696 (2000).

913 63. *Dehmel, S., Eisinger, D. & Shore, S. E. Gap prepulse inhibition and auditory brainstem-evoked*
914 *potentials as objective measures for tinnitus in guinea pigs. Front. Syst. Neurosci.* **6**, 42 (2012).

915 64. *Friedman, J. T., Peiffer, A. M., Clark, M. G., Benasich, A. A. & Fitch, R. H. Age and experience-*
916 *related improvements in gap detection in the rat. Brain Res. Dev. Brain Res.* **152**, 83–91 (2004).

917 65. Moreno-Paublete, R., Canlon, B. & Cederroth, C. R. *Differential Neural Responses Underlying the*
918 *Inhibition of the Startle Response by Pre-Pulses or Gaps in Mice*. *Front. Cell Neurosci.* **11**, 19
919 (2017).

920 66. Koch, M. *The neurobiology of startle*. *Prog. Neurobiol.* **59**, 107–128 (1999).

921 67. Popelář, J. et al. *The absence of brain-specific link protein Bral2 in perineuronal nets hampers*
922 *auditory temporal resolution and neural adaptation in mice*. *Physiol. Res.* **66**, 867–880 (2017).

923 68. Walton, J. P., Frisina, R. D., Ison, J. R. & O'Neill, W. E. *Neural correlates of behavioral gap*
924 *detection in the inferior colliculus of the young CBA mouse*. *J. Comp. Physiol. A* **181**, 161–176
925 (1997).

926 69. de Hoz, L. & Nelken, I. *Frequency tuning in the behaving mouse: different bandwidths for*
927 *discrimination and generalization*. *PLoS One* **9**, e91676 (2014).

928 70. de Hoz, L. et al. *Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound*
929 *Frequency Discrimination Learning*. *Cereb. Cortex* **28**, 1645–1655 (2018).

930 71. Brzózka, M. M., Rossner, M. J. & de Hoz, L. *Tcf4 transgenic female mice display delayed*
931 *adaptation in an auditory latent inhibition paradigm*. *Eur Arch Psychiatry Clin Neurosci* **266**, 505–
932 512 (2016).

933 72. Cruces-Solís, H. et al. *Auditory midbrain coding of statistical learning that results from*
934 *discontinuous sensory stimulation*. *PLoS Biol.* **16**, e2005114 (2018).

935 73. Chen, C., Krueger-Burg, D. & de Hoz, L. *Wide sensory filters underlie performance in memory-*
936 *based discriminationand generalization*. *PLoS One* (2019).

937 74. Clarkson, C., Antunes, F. M. & Rubio, M. E. *Conductive Hearing Loss Has Long-Lasting Structural*
938 *and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in*
939 *the Cochlear Nucleus*. *J. Neurosci.* **36**, 10214–10227 (2016).

940 75. Lasiene, J., Matsui, A., Sawa, Y., Wong, F. & Horner, P. J. *Age-related myelin dynamics revealed*
941 *by increased oligodendrogenesis and short internodes*. *Aging Cell* **8**, 201–213 (2009).

942 76. Sinclair, J. L. et al. *Sound-Evoked Activity Influences Myelination of Brainstem Axons in the*
943 *Trapezoid Body*. *J. Neurosci.* **37**, 8239–8255 (2017).

944 77. Xing, Y. et al. *Age-related changes of myelin basic protein in mouse and human auditory nerve*.
945 *PLoS One* **7**, e34500 (2012).

946 78. Chiappa, K. H., Harrison, J. L., Brooks, E. B. & Young, R. R. *Brainstem auditory evoked responses*
947 *in 200 patients with multiple sclerosis*. *Ann. Neurol.* **7**, 135–143 (1980).

948 79. Amaral, M. I. R. do & Colella-Santos, M. F. *Temporal resolution: performance of school-aged*
949 *children in the GIN - Gaps-in-noise test*. *Braz J Otorhinolaryngol* **76**, 745–752 (2010).

950 80. Delgutte, B. & Kiang, N. Y. S. *Speech coding in the auditory nerve: IV. Sounds with consonant-like*
951 *dynamic characteristics*. *J. Acoust. Soc. Am.* **75**, 897–907 (1984).

952 81. Sinex, D. G., McDonald, L. P. & Mott, J. B. *Neural correlates of nonmonotonic temporal acuity for*
953 *voice onset time*. *J. Acoust. Soc. Am.* **90**, 2441–2449 (1991).

954 82. Noebels, J. L., Marcom, P. K. & Jalilian-Tehrani, M. H. Sodium channel density in hypomyelinated
955 brain increased by myelin basic protein gene deletion. *Nature* **352**, 431–434 (1991).

956 83. Westenbroek, R. E., Noebels, J. L. & Catterall, W. A. Elevated expression of type II Na⁺ channels
957 in hypomyelinated axons of shiverer mouse brain. *J. Neurosci.* **12**, 2259–2267 (1992).

958 84. Boiko, T. et al. Compact myelin dictates the differential targeting of two sodium channel isoforms in
959 the same axon. *Neuron* **30**, 91–104 (2001).

960 85. Van Wart, A. & Matthews, G. Expression of sodium channels Nav1.2 and Nav1.6 during postnatal
961 development of the retina. *Neurosci. Lett.* **403**, 315–317 (2006).

962 86. Van Wart, A. & Matthews, G. Impaired firing and cell-specific compensation in neurons lacking
963 nav1.6 sodium channels. *J. Neurosci.* **26**, 7172–7180 (2006).

964 87. Rasband, M. N., Trimmer, J. S., Peles, E., Levinson, S. R. & Shrager, P. K⁺ channel distribution
965 and clustering in developing and hypomyelinated axons of the optic nerve. *J Neurocytol* **28**, 319–
966 331 (1999).

967 88. Wang, H., Allen, M. L., Grigg, J. J., Noebels, J. L. & Tempel, B. L. Hypomyelination alters K⁺
968 channel expression in mouse mutants shiverer and Trembler. *Neuron* **15**, 1337–1347 (1995).

969 89. Stathopoulos, P., Alexopoulos, H. & Dalakas, M. C. Autoimmune antigenic targets at the node of
970 Ranvier in demyelinating disorders. *Nat. Rev. Neurol.* **11**, 143–156 (2015).

971 90. Battefield, A., Klooster, J. & Kole, M. H. P. Myelinating satellite oligodendrocytes are integrated in a
972 glial syncytium constraining neuronal high-frequency activity. *Nat. Commun.* **7**, 11298 (2016).

973 91. Jensen, H. B., Ravnborg, M., Dalgas, U. & Stenager, E. 4-Aminopyridine for symptomatic treatment
974 of multiple sclerosis: a systematic review. *Ther Adv Neurol Disord* **7**, 97–113 (2014).

975 92. Trapp, B. D. & Stys, P. K. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple
976 sclerosis. *Lancet Neurol.* **8**, 280–291 (2009).

977 93. Shailer, M. J. & Moore, B. C. Gap detection as a function of frequency, bandwidth, and level. *J.*
978 *Acoust. Soc. Am.* **74**, 467–473 (1983).

979 94. Leitner, D. S. et al. Parameters affecting gap detection in the rat. *Percept. Psychophys.* **54**, 395–
980 405 (1993).

981 95. Weible, A. P., Liu, C., Niell, C. M. & Wehr, M. Auditory cortex is required for fear potentiation of gap
982 detection. *J. Neurosci.* **34**, 15437–15445 (2014).

983 96. Weible, A. P. et al. Perceptual gap detection is mediated by gap termination responses in auditory
984 cortex. *Curr. Biol.* **24**, 1447–1455 (2014).

985 97. Hoover, E., Pasquesi, L. & Souza, P. Comparison of clinical and traditional gap detection tests. *J*
986 *Am Acad Audiol* **26**, 540–546 (2015).

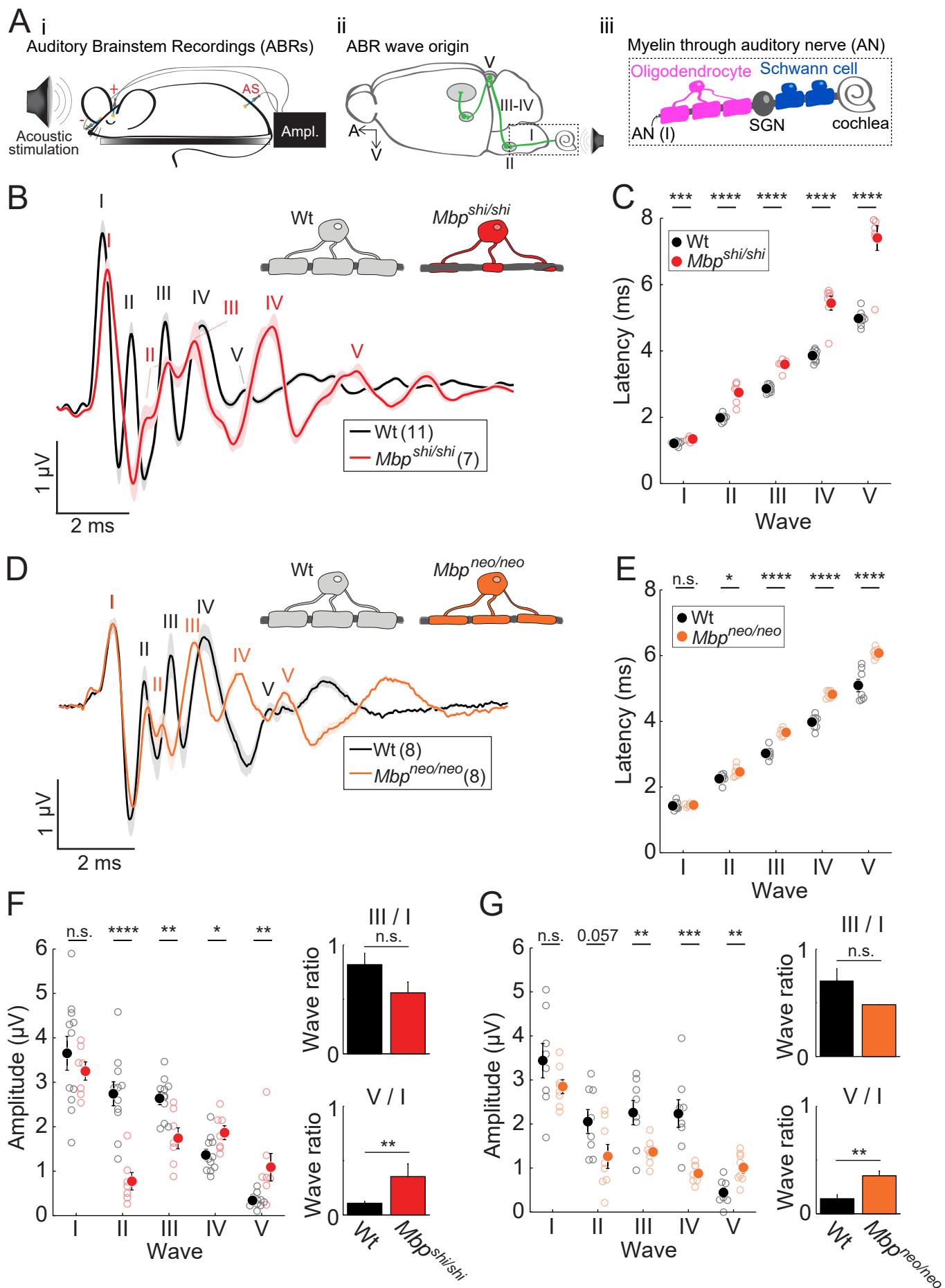
987 98. Phillips, D. P. Auditory gap detection, perceptual channels, and temporal resolution in speech
988 perception. *J Am Acad Audiol* **10**, 343–354 (1999).

989 99. *Moshitch, D., Las, L., Ulanovsky, N., Bar-Yosef, O. & Nelken, I. Responses of neurons in primary*
990 *auditory cortex (A1) to pure tones in the halothane-anesthetized cat. J. Neurophysiol. **95**, 3756–*
991 *3769 (2006).*

992 100. *Monje, M. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. **41**, 61–76 (2018).*

993 101. *Werner, H. B. et al. A critical role for the cholesterol-associated proteolipids PLP and M6B in*
994 *myelination of the central nervous system. Glia **61**, 567–586 (2013).*

995 102. *Jung, S. et al. Disruption of adaptor protein 2 μ (AP-2 μ) in cochlear hair cells impairs vesicle*
996 *reloading of synaptic release sites and hearing. EMBO J. **34**, 2686–2702 (2015).*


997 103. *Weil, M.-T., Ruhwedel, T., Meschkat, M., Sadowski, B. & Möbius, W. Transmission electron*
998 *microscopy of oligodendrocytes and myelin. Methods Mol. Biol. **1936**, 343–375 (2019).*

999 104. *Hackett, T. A., Barkat, T. R., O'Brien, B. M. J., Hensch, T. K. & Polley, D. B. Linking topography to*
1000 *tonotopy in the mouse auditory thalamocortical circuit. J. Neurosci. **31**, 2983–2995 (2011).*

1001 105. *Ashida, G., Wagner, H. & Carr, C. E. in Analysis of parallel spike trains (eds. Grün, S. & Rotter, S.)*
1002 *59–74 (Springer US, 2010). doi:10.1007/978-1-4419-5675-0_4*

1003

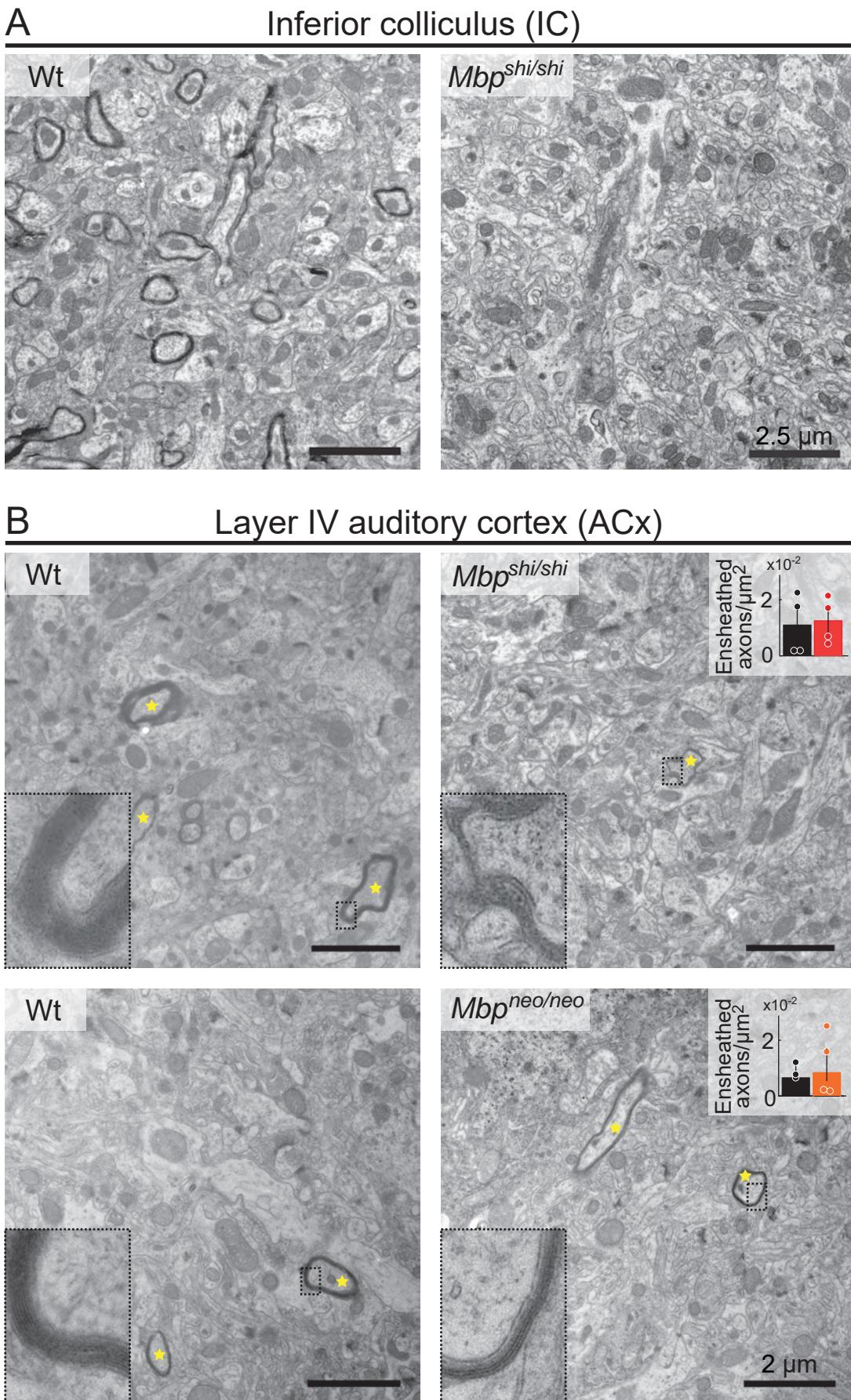

Figure 1

Figure 1. Central dysmyelination causes evoked-response delays and gain changes.

A) Left (i): Schematic of auditory brainstem (ABR) scalp recordings in mice. Middle (ii): structures in the auditory circuit contributing to ABRs (I to V). Right (iii): scheme of peripheral (around the spiral ganglion neurons, SGN) and central myelination of auditory nerve (AN). **B)** Group mean traces in control (black; n=11; 7 *Mbp*^{+/+} and 4 *Mbp*^{sh1/sh1}) without significant differences in ABR measurements (80 dB), see table in Figure S2D) and *Mbp*^{sh1/sh1} (red; n=7) mice. Each one of the 5 peaks (I–V) can be attributed to activity at a different station along the auditory brainstem (see schematic in Aii). Responses in *Mbp*^{sh1/sh1} mice were delayed at all auditory stations. Wave II appears divided and merged with wave III. **C)** The quantification of the peak latencies reveals a progressively larger difference in latency from wave I (p=0.001) to wave V (p<0.0001 for waves II–V). **D)** Same as A) but for *Mbp*^{neo/neo} mice (orange; n = 8) and Wt (black; n=8). Wave II appears divided. **E)** Latency quantification again showed progressively larger latency differences from wave I to wave V (p=0.74, p=0.013, p<0.0001, p<0.0001, p=0.0001; waves I–V, respectively). **F)** Wave amplitude quantification. In *Mbp*^{sh1/sh1} mice (red), waves II and III amplitudes were reduced, while those of waves IV and V were increased (p=0.44, p<0.0001, p=0.0031, p=0.022, p=0.008; waves I to V respectively), suggesting a compensatory central gain increase. Auditory gain was quantified by the amplitude ratio in waves III/I (upper right graph), which was comparable across groups (p=0.085), and waves V/I (lower right graph), which was significantly increased in mutants (p=0.006). **G)** Same as E but for *Mbp*^{neo/neo} mice. As in *Mbp*^{sh1/sh1} mice, amplitude changes were seen at the central level (p=0.18, p=0.057, p=0.009, p=0.0008, p=0.003; waves I to V respectively). An increase in central gain was observed in *Mbp*^{neo/neo} for wave V (lower right graph; p=0.009) but no changes in the gain of wave III (upper right graph; p=0.083). All graphs depict the mean and S.E.M. (error bar or a shaded area).

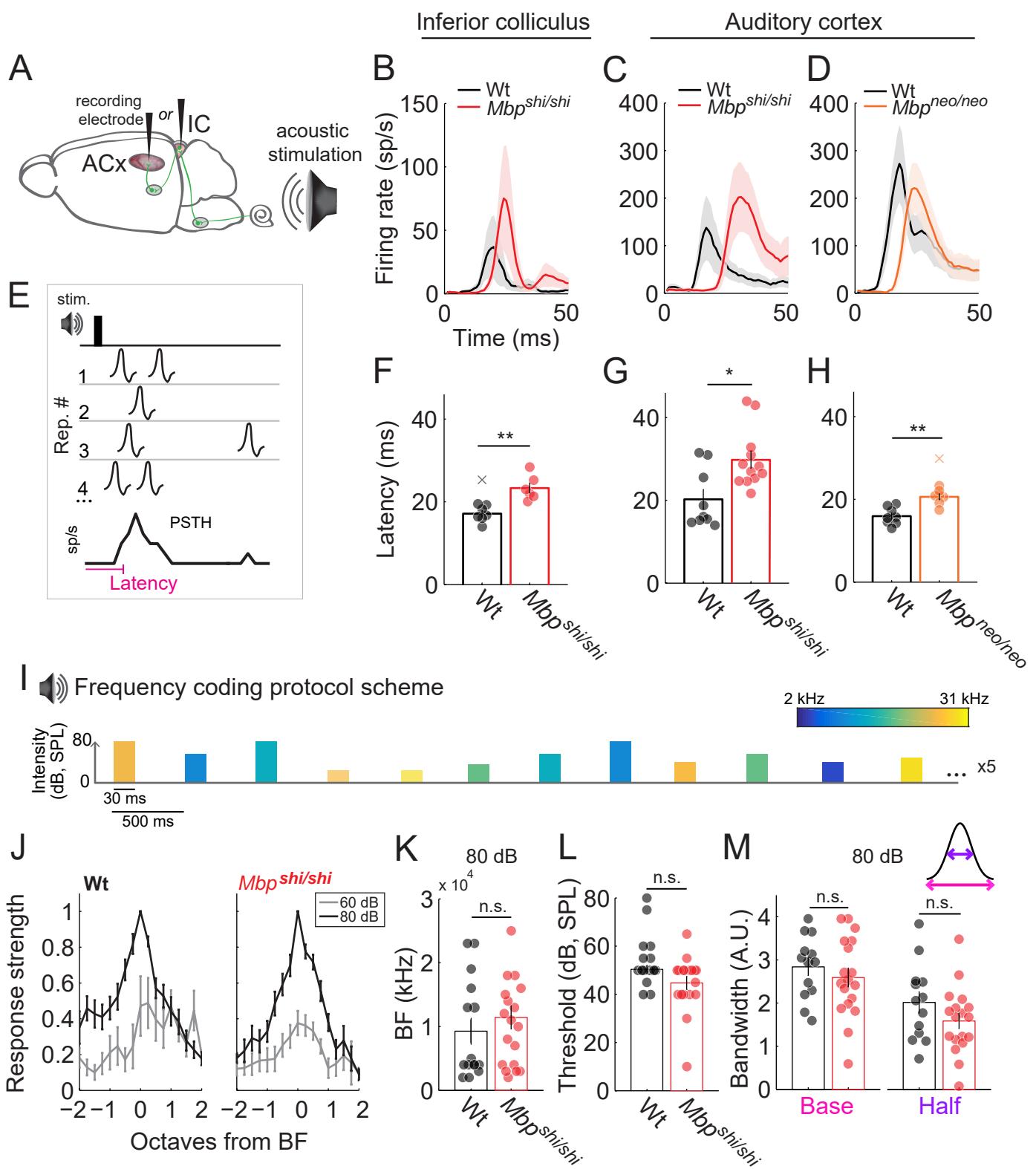

Figure 2

Figure 2. Ensheathment profiles along the auditory system in normal and dysmyelinated models.

A) Electron microscopy images of the inferior colliculus of a Wt mouse (left panel) showing sparse compact myelin, and an *Mbp^{shi/shi}* mouse (right panel), lacking electro-dense compact myelin. **B)** Electron microscopy images of the auditory cortex of Wt and *Mbp^{shi/shi}* (upper panel) and Wt and *Mbp^{neo/neo}* mouse (lower panel). Ensheathed axons in the ACx are marked with yellow asterisks. Insets show details of the myelin sheath of axons from the respective image. *Mbp^{shi/shi}* axons (upper right) show lack of compact myelin, while *Mbp^{neo/neo}* axons (lower right) show thinner compact myelin than Wts. Inset plots show the quantification of the number of ensheathed axons (compact or not compact myelin) per area in *Mbp^{shi/shi}* (left, red, n=4), *Mbp^{neo/neo}* (right, orange, n=4), and their respective Wts (black, n=3-4). There was no difference between Wt and either mutant model (p=0.83 and p=0.73 for *Mbp^{shi/shi}* and *Mbp^{neo/neo}* respectively). Bar graphs show the mean of all animals quantified (10-15 images per mouse). Scale bars: 2.5 μ m (A), 2 μ m (B).

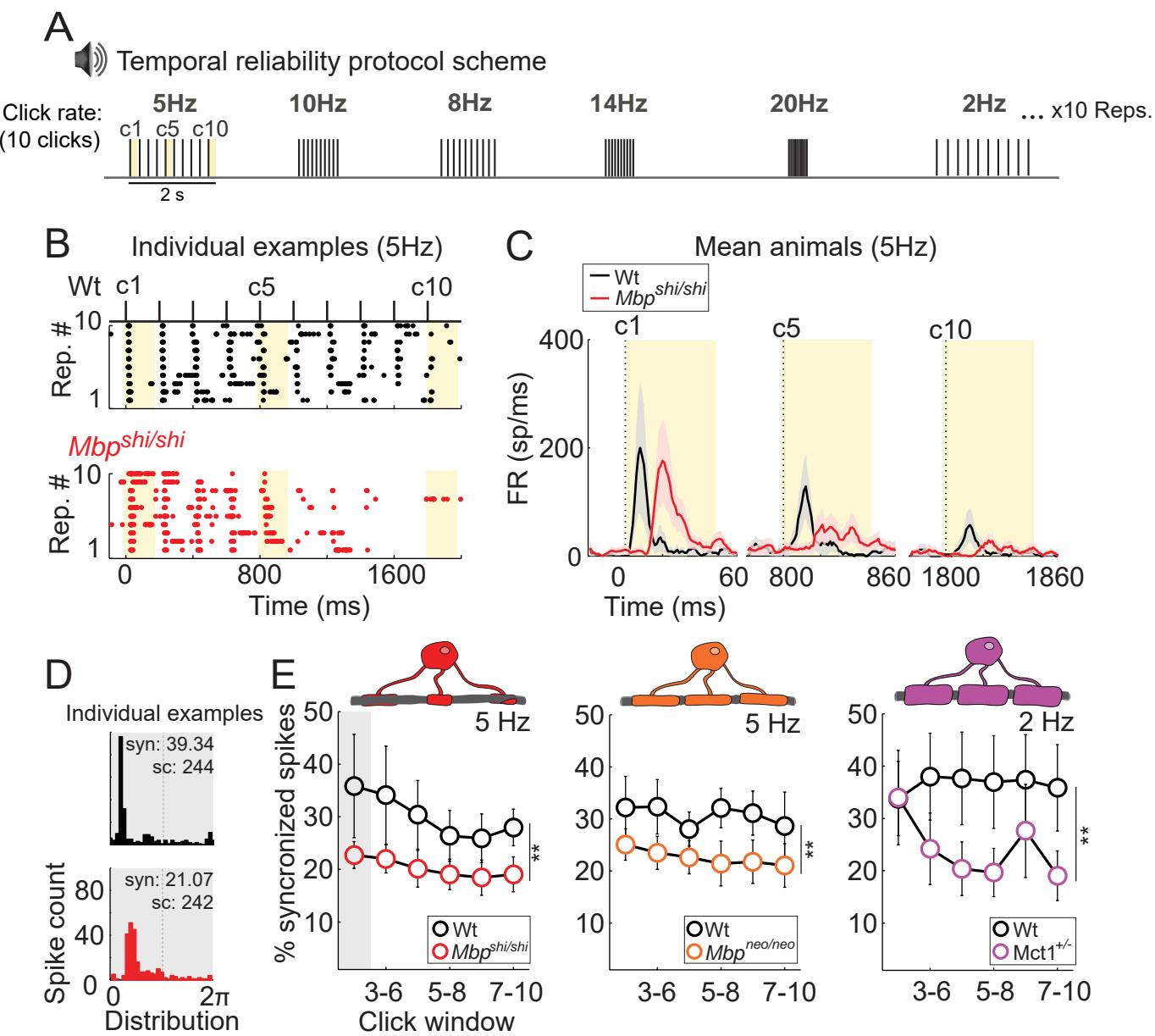

Figure 3

Figure 3. Responses to single sound-stimuli in IC and ACx of dysmyelinated models are abnormal only in latency.

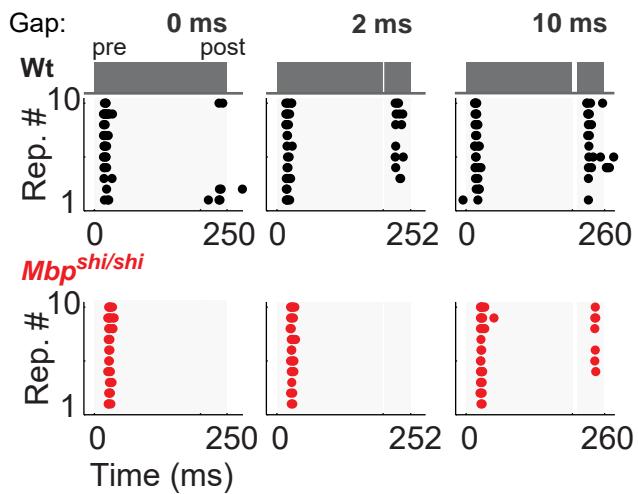
A) Schematic brain depicting auditory areas (ACx and IC) where multi-unit recordings took place. **B)** Peri-stimulus time histogram (PSTH) of responses to a click sound recorded in the IC for Wt (black; n=6-8) and *Mbp^{shi/shi}* (red; n=6-8) mice aligned at time of click presentation (0 ms). Responses of *Mbp^{shi/shi}* are delayed with respect to Wt. **C)** Same as B) but for ACx recordings. A stronger delay in *Mbp^{shi/shi}* (red; n=12-13) compared to Wt (black; n=7-10) is observed in this case. **D)** Same as C) but for *Mbp^{neo/neo}* mice (orange; n=7-8) and corresponding Wt (black; n=8). A smaller shift in latency in the ACx of *Mbp^{neo/neo}* is observed, compared to *Mbp^{shi/shi}* mice. **E)** Scheme of latency measurement: time at which the PSTH, sum of spikes across 10 trials in 1 ms time windows, surpassed 1.5 times the baseline activity. A significant latency increase is seen in *Mbp^{shi/shi}* animals compared to Wt. **F)** in the IC (p=0.0012) and **G)** in the ACx (p=0.023). **H)** *Mbp^{neo/neo}* mice also showed a significant increase in response latency in the ACx (p=0.0012). **I)** Schematic of the tone sweep protocol used to test tuning. A series of 24, 30 ms long, tones (2-31 kHz) were played at different intensities. 10 repetitions (Rep.) of each tone-intensity combination were presented in a random order. **J-M)** Basic tuning properties are not affected with dysmyelination. n=13 recordings of 10 wild type mice. n=18 recordings of 15 *Mbp^{shi/shi}* mice. **J)** Normalized tuning curves for wild type (left) and *Mbp^{shi/shi}* mice show response selectivity in octaves from best frequency (BF) at 60 (gray) and 80 dB (black). **K)** Recordings from comparable rostro-caudal locations yielded comparable BFs at 80 dB (p=0.51) in wild type and *Mbp^{shi/shi}* mice indicating no major change in tonotopic map. **L)** Auditory cortical thresholds were similar between groups (p=0.11). **M)** Bandwidth of tuning was also similar between groups (p=0.56 and p=0.21 for base and half bandwidth respectively).

Figure 4

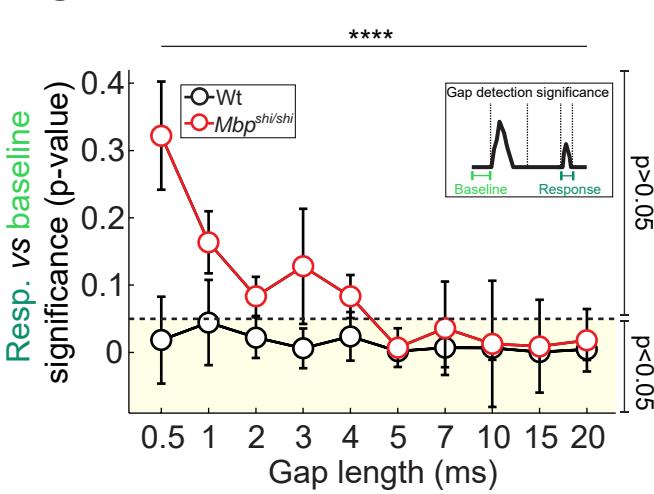
Figure 4. Temporal reliability is affected in mice with either dysmyelination or a reduction in axo-glial metabolic support.

A) Schematic of the click rate-tracing protocol used to test temporal reliability. Blocks of 10 clicks are played at different rates in random order. Each rate is repeated 10 times. Analysis in C) focuses on click 1, 5 and 10 (c1, c5 and c10). **B)** Example raster plot of ACx responses (each dot represents 1 spike) to 10 clicks at 5 Hz across the 10 stimulus repetitions in a Wt (upper, black) and an *Mbp^{shl/shl}* mouse (lower, red). *Mbp^{shl/shl}* animals show a steeper decay on spiking activity across clicks compared to Wt. **C)** Mean PSTH of responses to click 1, 5 and 10, at 5 Hz for Wt (black; n=10) and *Mbp^{shl/shl}* (red; n=13) animals. The thick line shows the mean of all recorded animals and the shaded area depicts the S.E.M. Click time is indicated by dashed lines. While responses to the first click are similar in amplitude in Wt and *Mbp^{shl/shl}* animals (with the expected delay in *Mbp^{shl/shl}*), a strong reduction of response strength is seen in *Mbp^{shl/shl}* mice with increasing clicks. **D)** Individual examples of spike synchrony plots for Wt (top) and *Mbp^{shl/shl}* (bottom) were taken from the first click window (clicks 2-5, depicted by a gray square in E). **E)** Quantification of spike synchrony in sliding windows of 4 clicks (clicks 2-5, 3-6, 4-7, 5-8, 6-9 and 7-10). Onset responses of click 1 were not used. Leftmost: significant reduction in spike synchrony between *Mbp^{shl/shl}* mice (red, n=6-9) and Wt (black, n= 3-6 mice) at 5 Hz (p=0.0021). Middle: significant reduction also seen between *Mbp^{neo/neo}* mice (orange, n=5-8 mice), and Wt (black, n=3-8 mice) at 5 Hz (p=0.0014). Right: significant difference between MCT1^{+/−} mice (purple, n=5-6 mice), and Wt (black, n=8 mice) at 2 Hz (p=0.011).

Figure 5


A

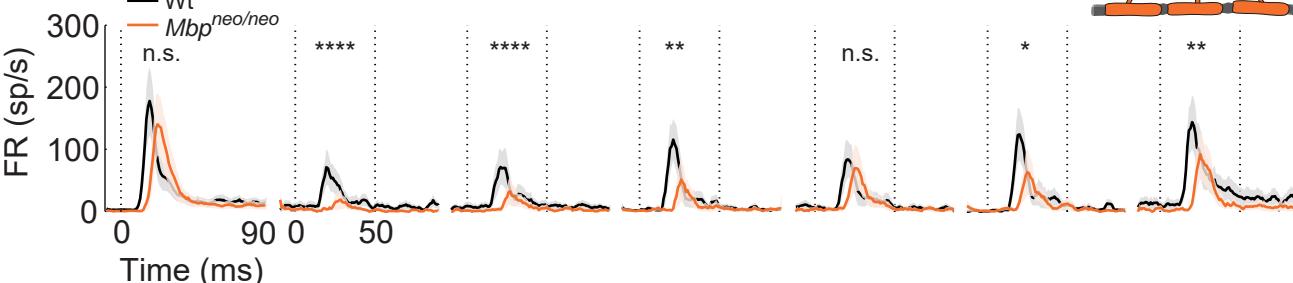
Temporal acuity protocol scheme



B

Individual examples

C


D

pre post

E

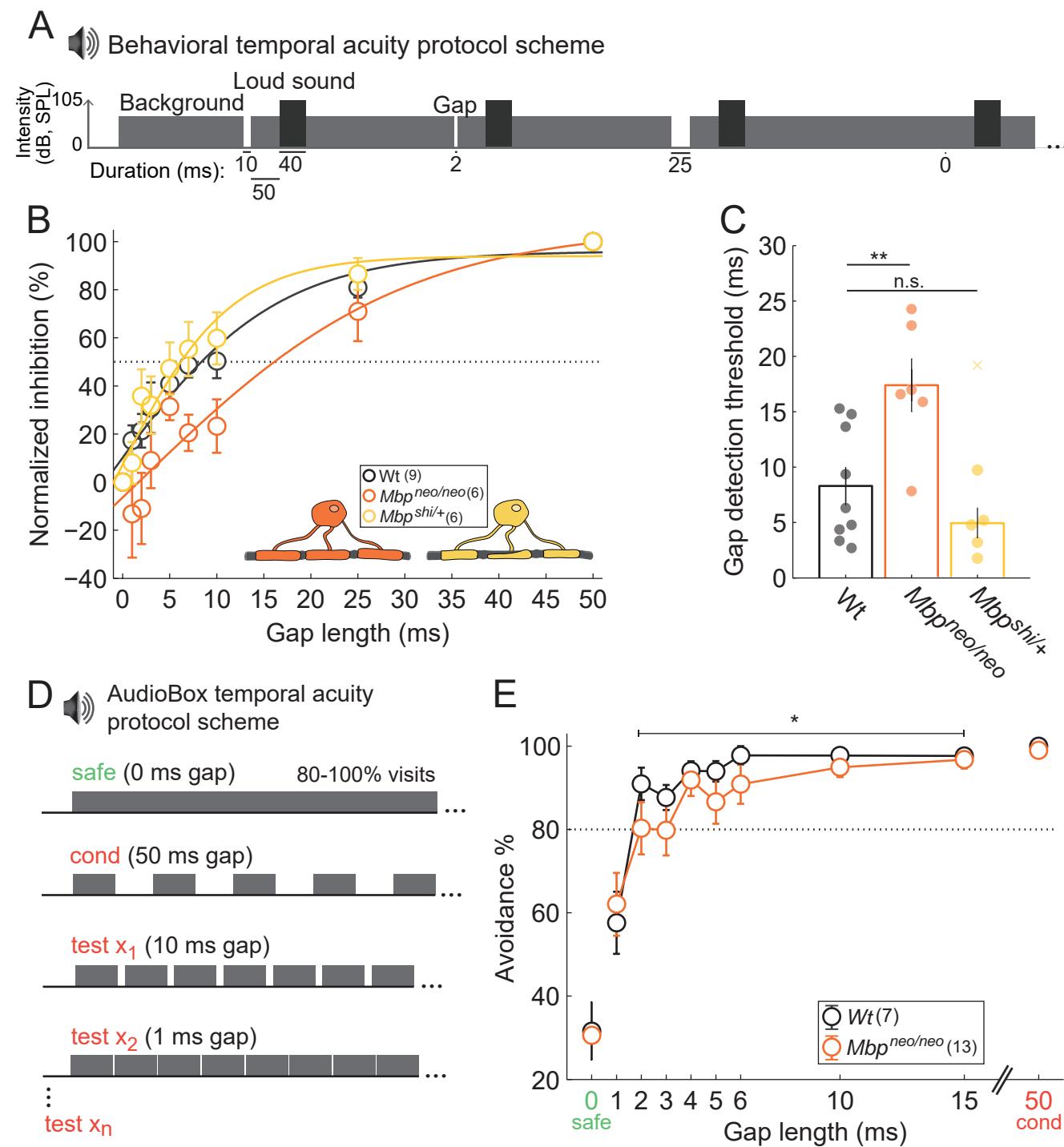

pre post

Figure 5. Cortical temporal acuity is impaired with CNS dysmyelination.

A) Schematic of the gap-detection protocol used to test temporal acuity. A 200 ms long broad-band noise (BBN) pulse (pre) was followed by a silent gap and a second 50ms long BBN pulse (post). Gap lengths ranged from 0-50 ms. Each pre-gap-post sequence was repeated 10 times for every gap length. **B)** Individual example of ACx spikes (dots) evoked during sound presentation (gray patches) and gaps of 0 ms (left), 2 ms (center), and 10 ms (right) length in a Wt (upper, black) and a *Mbp^{shi/shi}* (lower, red) mouse during 10 stimulus repetitions (y axis) per gap length. **C)** Quantification of gap-detection significance (median statistical difference (p-value) between the baseline and the post-gap response per recording; see diagram above). A significant effect of gap-length between groups ($p<0.0001$), demonstrates that the gap detection rate in *Mbp^{shi/shi}* ($n=14-20$ recordings from 14 mice) is lower than for Wt ($n=12-15$ recordings from 12 animals) for the shorter gaps. Error bars: standard error of the median. Dotted line: threshold at 0.05. Yellow shadow: significant gap-detection. **D)** Average PSTH across animals for Wt (black; $n=12$) and *Mbp^{shi/shi}* (red; $n=14$) with S.E.M. as shaded area. Left to right: pre-gap responses followed by post-gap responses for 0.5 to 5 ms gaps. Significant effect of group was seen for all post-gap responses but not for pre-gap responses ($p=0.46$, $p<0.0001$, $p<0.0001$, $p=0.0002$, $p=0.0014$, $p=0.006$; pre-gap and 0.5 to 5 ms post-gap respectively). **E)** Same as in D) but for *Mbp^{neo/neo}* (orange; $n=8$) mice and their respective Wt (black; $n=7$). Significant effect of group was seen for most post-gap responses but not for pre-gap responses ($p=0.60$, $p<0.0001$, $p<0.0001$, $p=0.0015$, $p=0.19$, $p=0.01$, $p=0.003$; pre-gap and 0.5 to 5 ms post-gap respectively). In D) and E), dotted vertical lines at time 0 ms depict the start of the sound, and at time 50 ms the end of the post BBN.

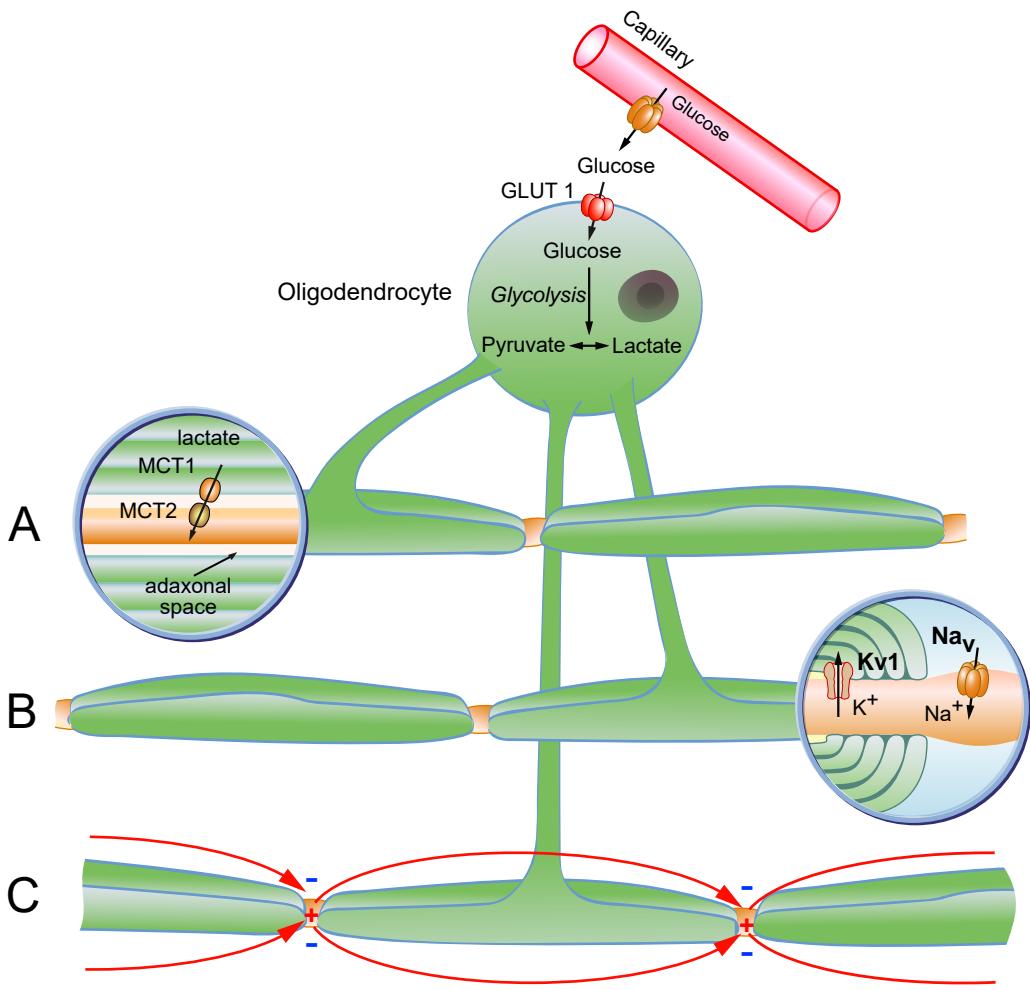

Figure 6

Figure 6. Behavioral temporal acuity is impaired by CNS dysmyelination.

A) Schematic of the auditory startle reflex (ASR) sound protocol. Constant background broad-band noise (BBN; 70 dB) interrupted by a startle noise at random times (105 dB; 40 ms), occasionally preceded by a silent gap of varying length. All gaps presented were followed by 50 ms background sound before the startle appearance. Each gap-startle combination was repeated 10 times. **B)** The percentage of ASR inhibition elicited by the different gaps showed a strong relationship between the gap length and the startle inhibition. *Mbp^{neo/neo}* but not *Mbp^{sh/+}* mice (with a 50% reduction in *Mbp*) showed impaired inhibition of the ASR. Dotted line: threshold at 50% inhibition used for statistical analysis in C. **C)** Gap detection threshold is increased in *Mbp^{neo/neo}* mice ($p=0.0048$), but not *Mbp^{sh/+}* ($p=0.36$; outlier depicted with a cross), compared to Wt animals. **D)** Schematic of sounds used in the Audiobox paradigm. Safe visits to corner were accompanied by the safe sound (0 ms gap embedded in continuous BBN, ~70 dB), and water was available. Conditioned visits were accompanied by the conditioned sound (cond; BBN with 50 ms gaps) water was not available and air-puff was delivered upon nose-poke. Once animals discriminated safe and conditioned, test visits with test sounds (gaps > 0 ms and <50 ms) were introduced. Water was available in these visits. **E)** Quantification of avoidance behavior (proportion of visits without nose-pokes) revealed a reduction ($p=0.030$) in *Mbp^{neo/neo}* animals (orange; $n=13$) for gaps >1 ms compared to Wt (black; $n=7$) confirming a behavioral deficit in temporal acuity in a naturalistic environment. All graphs show the mean per group. Error bars depict the S.E.M.

Figure 7

Figure 7. Role of oligodendrocytes in information processing extends beyond conduction velocity regulation to energy support of axons and excitability of axon initial segment and nodal.

Schematic of oligodendrocyte and compact myelin (green) wrapping around 3 axons (brown) **A)** Glycolytic oligodendrocytes can support axons via the transport of glycolytic end products, such as lactate or pyruvate. **B)** The maintenance of axonal-exitable domains through clustering of ion channels depends on myelin compaction. **C)** Myelin is essential for the formation of axonal excitable domains and contributes to the speeding up of action potential conduction.