

1 Carbonic anhydrase VII regulates dendritic spine morphology and density via actin filament bundling
2
3 Enni Bertling^{1,2*}, Peter Blaesee^{3,4*}, Patricia Seja^{1,4*}, Elena Kremneva⁵, Gergana Gateva⁵, Mari A. Virtanen^{4,6}, Milla
4 Summanen^{1,4}, Inkeri Spoljaric^{1,4}, Michael Blaesee⁷, Ville Paavilainen⁵, Laszlo Vutskits⁶, Kai Kaila^{1,4}, Pirta
5 Hotulainen^{1,2#} and Eva Ruusuvuori^{1,4#}
6

7 ¹Neuroscience Center, HiLIFE, University of Helsinki, Finland

8 ²Minerva Institute for Medical Research, Biomedicum Helsinki 2U, 00290 HELSINKI, Finland

9 ³Institute of Physiology I, Westfälische Wilhelms-Universität Münster, D-48149, Münster, Germany

10 ⁴Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Finland

11 ⁵Institute of Biotechnology, Helsinki, Finland

12 ⁶University of Geneva, Switzerland

13 ⁷Friedhofstr. 4, 85609 Dornach-Aschheim, Germany

14

15

16 *equal contribution of 1st authors

17 #equal contribution of last authors (communication with Editors via ER)

18

19 Running title: CAVII modulates actin dynamics

20

21

22

23

24 Abstract

25

26 Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO₂,
27 intracellular carbonic anhydrase (CA_i) isoforms CAII and CAVII contribute to neuronal pH buffering and
28 dynamics. The presence of two highly active isoforms suggests that they form spatially distinct CA_i pools
29 enabling subcellular modulation of pH. Here we show that CAVII, unlike CAII, is localized to the
30 filamentous actin network, and its overexpression induces formation of thick actin bundles and
31 membrane protrusions in fibroblasts. In neurons, CAVII is enriched in dendritic spines, and its over-
32 expression causes aberrant spine morphology. We identified amino acids unique to CAVII that are
33 required for direct actin interactions, promoting actin filament bundling and spine targeting. Lack of
34 CAVII in neocortical neurons leads to reduced spine density and increased proportion of small spines.
35 Thus, our work demonstrates highly distinct subcellular expression patterns of CAII and CAVII, and a
36 novel, structural role of CAVII.

37

38 Key words: actin cytoskeleton, carbonic anhydrase, dendritic spines, intracellular pH, multifunctional
39 protein, neurons

40

41 Introduction

42 Protons (H^+ ions) have a strong modulatory effect on diverse cellular functions ranging from cell division (Roos &
43 Boron 1981, Busa & Nuccitelli 1984) to directed cell movement (Patel & Barber, 2005; Van Duijn and Inouye,
44 1991). Within the central nervous system (CNS) neuronal excitability and signal transduction respond strongly to
45 changes in intra- or extracellular pH (pH_i and pH_o , respectively) due to the numerous, proton-sensitive molecular
46 targets which include e.g. voltage- and ligand-gated ion channels (Traynelis and Cull-Candy, 1990; Pasternack et
47 al., 1996; Tombaugh and Somjen, 1996; Duprat et al., 1997; Waldmann et al., 1997), gap junctions (Spray et al.,
48 1981) and transmitter release (Sinning et al., 2011; Bocker et al., 2018). Although plasmalemmal acid-base
49 transporters maintain neuronal pH_i close to 7.1 – 7.2 (Ruffin et al., 2014), deviations from this steady state level
50 occur constantly. A particularly intriguing aspect in neuronal pH dynamics is that electrical activity can evoke
51 intrinsic pH transients, which are either suppressed or enhanced by CA, depending on whether they are
52 generated by transmembrane fluxes of H^+ or HCO_3^-/CO_2 fluxes, respectively (Taira et al., 1993; Voipio et al., 1995;
53 Kaila and Chesler, 1998; Chesler, 2003; Sinning and Hubner, 2013).

54

55 The kinetics of neuronal pH_i changes depend both on the rate of plasmalemmal transporter function, and on the
56 total intracellular buffering capacity $\beta_t = \beta_i + \beta_{CO_2}$. The intrinsic buffering power (β_i) is mainly attributable to the
57 titratable side chains of proteins. Hence, the presence of the highly mobile CO_2/HCO_3^- buffer system has, in
58 addition to buffering (β_{CO_2}), an important role in enhancing diffusion of acid-base species within the cytoplasm
59 (Voipio, 1998; Geers and Gros, 2000). The ability of the β_{CO_2} system to operate rapidly is dictated by the presence
60 of intracellular carbonic anhydrase activity (CA_i) which accelerates the (de)hydration of CO_2 to HCO_3^- (Maren,
61 1967). The catalytically active cytosolic CA isoforms (I, II, III, VII and XIII) are expressed in a cell-type specific
62 manner. Neurons in the mature rodent hippocampus express two highly active CA_i isoforms, CAII and CAVII
63 (Ruusuvuori et al., 2004; Ruusuvuori et al., 2013). In the central nervous system (CNS), CAVII localizes exclusively
64 to neurons, and its expression starts at postnatal day (P) 10 - 12 in rodent hippocampal CA1 neurons (Ruusuvuori

65 et al., 2004; Ruusuvuori et al., 2013). Notably, the catalytic product of the $\text{CO}_2/\text{HCO}_3^-$ buffer system, HCO_3^- , acts
66 as a major carrier of current in GABA_A receptor-mediated signaling (Kaila and Voipio, 1987), and the CAVII-driven
67 replenishment of intraneuronal HCO_3^- is a required for the development of paradoxical GABAergic excitation and
68 network synchronization under conditions of prolonged activation of interneurons (Kaila et al., 1997; Ruusuvuori
69 et al., 2004). After the expression of the housekeeping CAII isoform which commences in hippocampal pyramidal
70 cells at around P20, both isoforms work in parallel to catalyze the intraneuronal CO_2 (de)hydration (Ruusuvuori
71 et al., 2013).

72

73 The co-expression of CAII and CAVII in neurons might point to distinct subcellular expression patterns of the two
74 isoforms, based on specific interaction partners. While CA_is have not been reported to directly bind to
75 cytoskeletal proteins, CAII has been reported to interact with membrane proteins. In cardiac ventricular
76 myocytes, extramitochondrial CA_i activity-rich domains that facilitate CO_2 movements (Schroeder et al., 2013)
77 are generated by the interaction of CAII with the mitochondrial membrane and by the membrane-bound CAs
78 localized to the sarcoplasmic reticulum (see also Wetzel et al., 2002; Scheibe et al., 2006). In erythrocytes, CAII
79 interaction with the plasma membrane occurs possibly via binding to an integral membrane protein, the anion
80 exchanger 1 (Vince and Reithmeier, 1998). Several other acid-base transporters have been proposed to act as
81 structural and/or functional CAII interaction partners in expression studies (Sterling et al., 2001; Becker and
82 Deitmer, 2007; Casey et al., 2009; Krishnan et al., 2015) (but see Boron, 2010). The formation of such CA
83 complexes could conceivably allow generation of spatially distinct CA_i pools, which in neurons would gain further
84 importance given their highly complex cellular architecture (Dong et al., 2015). Neurons face constant, spatially
85 localized transmembrane fluxes of acid-base equivalents that are bound to cause local pH_i fluctuations, a detailed
86 understanding of CA_i distribution is of great importance.

87

88 Here we show that, in contrast to CAII, CAVII is highly compartmentalized within neurons and that it has, in
89 addition to its catalytic function, a role in F-actin dynamics. Specifically, we demonstrate that the distinct
90 subcellular localization of CAVII is due to direct interactions with filamentous actin (F-actin). Further, we identify
91 a novel role of CAVII in modulation of actin bundling that is not dependent on its catalytic activity. In neurons,
92 CAVII is enriched in the actin-dense dendritic spines and CAVII depletion increases overall spine density, with a
93 shift to smaller spine heads. These results show that neuronal CAVII has tightly linked functions in both cellular
94 ion-homeostasis and cytoskeleton structure.

95

96 Results

97

98 CAVII binds to and bundles F-actin

99 To study the subcellular localization of CAII and CAVII we co-expressed EGFP-CAII and dsRed-CAVII fusion proteins
100 in cultured NIH3T3 fibroblasts. The two isoforms showed strikingly different localization patterns. CAVII localized
101 to cytosolic filamentous structures, whereas CAII was distributed homogenously throughout the cytoplasm and
102 nucleus (Figure 1A). This difference prompted us to test whether CAVII co-localized with F-actin. Experiments, in
103 which we expressed EGFP, EGFP-CAII or EGFP-CAVII in fibroblasts and stained F-actin with phalloidin-594 after
104 fixation, showed no overlap of EGFP or EGFP-CAII with F-actin (Figure 1B-C). In contrast, EGFP-CAVII strongly co-
105 localized with F-actin (Figure 1D). An exception to this were the outer edges of lamellipodia, in which EGFP-CAVII
106 was not present (Figure 1-figure supplement 1). High levels of CA VII overexpression also caused marked changes
107 in cellular morphology including the formation of thick, curving cytosolic stress fibers as well as filopodia-like
108 plasmalemmal protrusions (Figure 1E). To compare the co-localization of the expressed CA proteins with F-actin
109 in a quantitative manner, we measured the fluorescence intensities of EGFP and phalloidin-594 from cross
110 sections through cells. These data, together with the correlation coefficients presented below in Figure 5,
111 demonstrate that EGFP-CAVII, but not EGFP-CAII, co-localizes strongly with F-actin (Figure 1F-H).

112

113 Next, we examined if the observed co-localization was based on a direct interaction between CAVII and F-actin.
114 For these experiments, we used purified recombinant mouse CAVII protein (mCAVII), produced in the
115 CHOEBNALT85 cell line. In an actin pull-down assay, mCAVII co-sedimented with F-actin, demonstrating a direct
116 interaction between the two proteins (Figure 2A and Figure 2-figure supplement 1A). Interestingly, pH
117 modulated this interaction: at pH 6.5, mCAVII bound F-actin with higher affinity than at pH 7.4 (Figure 2A and
118 Figure 2-figure supplement 1A). CAII did not bind F-actin at either pH (Figure 2-figure supplement 1B,C).

119 As CAVII-expressing fibroblasts often showed abnormally thick actin structures, we set out to test if CAVII
120 modulates actin bundling. To this end, we used an *in vitro* actin bundling assay in the absence and presence of
121 1.12 μ M mCAVII (Figure 2B and Figure 2, Videos 1 and 2). Both actin filament length and fluorescence intensity
122 of their cross section increased over time significantly in the presence of mCAVII when compared to the vehicle
123 control ($P < 0.001$ for both length and intensity) (Figure 2C) indicating that CAVII had a profound effect on three-
124 dimensional actin structures.

125 The ability of CAVII to increase bundling by crosslinking actin filaments implies a bivalent binding mechanism that
126 conventional actin cross-linkers, such as α -actinin and fimbrin, most often achieve through homodimerization
127 (Puius et al., 1998). We analyzed the oligomeric status of mCAVII expressed as a secreted construct with
128 analytical size exclusion chromatography and multi-angle light scattering (SEC-MALLS) (Figure 2-figure
129 supplement 2). Majority of the protein is monomeric at the tested 33 μ M concentration (estimated molecular
130 mass of approximately 35-42 kDa), matching quite well with the theoretical size of monomeric CAVII (30.5 kDa).
131 A molecular weight of approximately 53-75 kDa was determined for a minor peak eluting at an earlier time point,
132 which corresponds to a putative CAVII dimer.

133 Based on the above results, we tested if CAVII-mediated actin bundling stabilizes actin filaments. This was done
134 by exposing transfected cells to latrunculin B which sequesters free actin monomers and can thus be used as a
135 robust method to quantify the rate of actin filament depolymerization (Figure 3). The experiments showed that
136 in control cells, expressing dsRed, actin filaments depolymerized within a few minutes (Figure 3A). In contrast,
137 over 60 % of the dsRed-CAVII expressing cells had visible F-actin structures even after 30 minutes of latrunculin
138 B treatment (Figure 3B).

139 These data demonstrate that CAVII directly binds to and bundles F-actin, and that CAVII over-expression stabilizes
140 existing actin filaments.

141

142 The CAVII surface motif DDERIH is crucial for actin binding
143 As no previously known actin-binding domains (Paavilainen et al., 2004; Lee and Dominguez, 2010) are present
144 in CAVII, we sought to identify which CAVII sequence features contribute to actin binding. We first analyzed
145 publicly available CAII and CAVII protein structures (Eriksson et al., 1988; Di Fiore et al., 2010) to identify potential
146 actin-interaction surfaces. These comparisons revealed a structural motif at the CAVII protein surface that clearly
147 differs from CAII (Figure 4). The amino acids 101-105, 113, 115 and 237-242 are widely distributed in the primary
148 sequence of CAVII, but form a continuous “ridge” at the protein surface (Figure 4A,B). Superimposing the CAVII
149 α -helix 6 on the twinfilin-C/G-actin structure (Paavilainen et al., 2007) suggested that CAVII α -helix 6 including
150 the amino acids 237-242 could also be a putative interaction site (Figure 4C). Arginine (R223) located to α -helix
151 6 has a positive charge that is reversed in CAII. Thus, we hypothesized that this amino acid might have a role in
152 CAVII/actin interaction. The alignment of the protein sequences of CAII and CAVII confirmed that these amino
153 acids are not conserved between the two isoforms (Figure 4D). In addition, a sequence comparison with the
154 human cytosolic CA isoforms revealed that these motifs are unique to CAVII (Figure 4-figure supplement 1).
155 To explore the putative CAVII-actin binding domains, we generated a set of CAVII mutants in which subsets of
156 the amino acids mentioned above were replaced with the corresponding amino acid sequences of CAII
157 (Figure 4E). The mutants were expressed in NIH3T3 cells as EGFP fusion proteins and their subcellular distribution
158 and co-localization with F-actin were examined after staining cells with phalloidin-594 (Figure 5A-C and Figure 5-
159 figure supplement 1). When amino acids forming the “ridge” (101-105, 113, 115 and 237-242) were replaced
160 with the corresponding amino acids of CAII (EGFP-CAVII-mutant1; see Figure 4D,E), the strict co-localization with
161 F-actin was abolished and the construct did not induce detectable changes in the actin structure or cell
162 morphology (Figure 5A). To characterize the interaction motif in more detail, we separately mutated the amino
163 acids 101-105 (KKHDV; EGFP-CAVII-mutant2) or 237-242 (DDERIH; EGFP-CAVII-mutant3). The localization of
164 EGFP-CAVII-mutant2, with only the KKHDV motif replaced by the corresponding CAII sequence, was unchanged,
165 when compared to EGFP-CAVII. EGFP-CAVII-mutant2 co-localized strongly with F-actin (Figure 5B), and the over-

166 expression phenotype with thick, curving cytosolic actin bundles and plasmalemmal protrusions (Figure 5-figure
167 supplement 1A) was similar to that seen with EGFP-CAVII. Interestingly, replacement of the DDERIH motif alone
168 (EGFP-CAVII-mutant3) reduced the co-localization with F-actin, and expression of the mutant did not visibly
169 affect cellular actin structures (Figure 5C). We compared the co-localization of the different EGFP-tagged variants
170 with phalloidin-594 by plotting the fluorescence intensities per pixel against each other (shown in right-most
171 panels in Figures 5A-C and Figure 5-figure supplement 1E-G) and calculating Pearson's correlation coefficient
172 (Figure 5D,E). Comparison of the scatter plots from individual cells revealed that, firstly, F-actin had a strong
173 positive correlation coefficient with CAVII, but not with CAII. Secondly, the correlation coefficients of EGFP-CAVII-
174 mutant1 and EGFP-CAVII-mutant3, but not that of EGFP-CAVII-mutant2, were reduced when compared to CAVII
175 (Figure 5E). This indicates that the DDERIH motif forms an important part of the CAVII/actin interaction site.
176 Despite the changes seen with EGFP-CAVII-mutant1 and EGFP-CAVII-mutant3, an analogue mutant of CAII,
177 containing all mutations of EGFP-CAVII-mutant1 in a reversed manner (EGFP-CAII-revCAVII, see Figure 4E),
178 maintained the diffuse cytosolic localization pattern seen with CAII (Figure 5-figure supplement 1B,E).
179 When the positively charged arginine 223, which we hypothesized to play a role in CAVII-actin binding, was
180 mutated to a negatively charged glutamic acid (EGFP-CAVII-R223E), co-localization with F-actin was not affected
181 (Figure 5E and Figure 5-figure supplement 1C,F), but the generation of thick cytosolic actin bundles and
182 plasmalemmal protrusions was reduced. Finally, to examine whether CAVII catalytic activity affects actin co-
183 localization, we expressed a functionally inactive mutant, EGFP-CAVII-H96/98C (Kiefer and Fierke, 1994), in
184 NIH3T3 cells. This mutant retained its co-localization with actin (Figure 5E and Figure 5-figure supplement 1D,G),
185 suggesting that enzymatic activity is dispensable for the interaction with actin. The different impact of the various
186 constructs on actin cytoskeleton morphology did not seem to correlate with overall construct expression levels
187 (Figure 5-figure supplement 2). EGFP-CAVII-R223E, for example, had comparable actin co-localization and
188 expression levels to EGFP-CAVII, but did not induce thick actin bundles.

189 Together, these comparisons provide compelling evidence for structural motifs consisting of widely spread
190 amino acids within the primary structure of CAVII and containing the DDERIH sequence as the CAVII/actin binding
191 site.

192

193 CAVII localizes to dendritic spines and its overexpression disrupts spine morphology

194 We next moved on to study the subcellular localization of CAII and CAVII in rat hippocampal neurons by co-
195 expressing dsRed-CAVII and EGFP-CAII in neuronal cultures. While EGFP-CAII homogenously distributed along
196 the somato-dendritic axis, dsRed-CAVII was prominent in the actin-rich spines (Figure 6A). Co-expression of
197 mCherry-actin and EGFP-CAII further confirmed that CAII, similar to EGFP alone, localizes diffusely to dendrites
198 and spines and causes no apparent changes in the structure of dendritic spines (Figure 6-figure supplement 1A,B).

199 In contrast, the EGFP-CAVII distribution overlapped with that of mCherry-actin and, in line with the CAVII-
200 dependent modulation of actin structures detected in fibroblasts, it had a marked effect on spine morphology:
201 CAVII-expressing neurons had a high proportion of aberrant spines, i.e. thick, filopodia-like dendritic protrusions
202 with no clear spine head (Figure 6-figure supplement 1C). The effects of EGFP, EGFP-CAII and EGFP-CAVII on spine
203 density and structure in cultured neurons are summarized in Figure 6-figure supplement 1I.

204 Of the mutant proteins, EGFP-CAVII-mutant2 co-localized with mCherry-actin and caused a similar change in
205 spine morphology as CAVII (Figure 6-figure supplement 1D). When the DDERIH motif was mutated individually
206 (EGFP-CAVII-mutant3), or together with the other amino acids forming the ridge (EGFP-CAVII-mutant1), the
207 subcellular distribution of the fusion proteins was homogenous along dendrites and dendritic spines, and
208 expression of these constructs had no obvious effect on the spine morphology (Figure 6-figure supplement 1E,F).

209 EGFP-CAVII-R223E and EGFP-CAVII-H96/98C, both of which co-localized with F-actin in fibroblasts, showed
210 strongly overlapping localization with mCherry-actin in dendritic spines (Figure 6-figure supplement 1G,H).

211

212 Finally, to study the localization of CAVII and CAII in neurons *in vivo*, we expressed EGFP-CAVII or EGFP-CAII in
213 cortical layer 2/3 pyramidal neurons using *in utero* electroporation and examined transfected neurons in fixed
214 slices from P40 mice. We saw that, compared to EGFP-CAII (Figure 6B), EGFP-CAVII localized strongly to dendritic
215 spines and induced the formation of abnormal, filopodia-like dendritic protrusions (Figure 6C,D) which is in line
216 with the observations made in cultured neurons.

217

218 Genetic deletion of CAVII changes cortical layer 2/3 pyramidal neuron spine density and morphology *in vivo*
219 The spine-targeted expression of CAVII and its interaction with the actin cytoskeleton raised the question
220 whether genetic deletion has an effect on dendritic spines. For this, we did electrophysiological recordings and
221 structural analysis of neurons using CAVII knockout (CAVII KO) and wild type (WT) mice (Ruusuvuori et al., 2013).
222 Since spines are the major site for excitatory synaptic input, we measured miniature excitatory postsynaptic
223 currents (mEPSCs) from WT and CAVII KO somatosensory cortex layer 2/3 pyramidal neurons (Figure 7A). Neither
224 mEPSC amplitude (14.93 ± 1.16 pA vs. 14.71 ± 1.10 pA, $P = 0.90$) nor frequency (5.37 ± 1.62 Hz vs. 6.70 ± 2.24 Hz,
225 $P = 0.63$) differed between the genotypes ($n = 7$ WT and $n = 4$ CAVII KO neurons from five WT and four CAVII KO
226 mice). Structural analysis was done from Lucifer Yellow (LY) labeled somatosensory cortex layer 2/3 pyramidal
227 neurons from P34 - P37 WT and CAVII KO mice (Figure 7B) as described earlier (Fiumelli et al., 2013). Interestingly,
228 genetic ablation of CAVII significantly changed dendritic architecture *in vivo* (Figure 7C). In CAVII KO neurons
229 (8279 spines analyzed from 28 neurons/four animals) spine density on the second order apical and basal
230 dendritic shafts increased by 38 ± 16 % and by 42 ± 16 % ($P < 0.001$), respectively, in comparison to the WT
231 neurons (8730 spines from 30 neurons/two animals). The change in spine density was due to a specific increase
232 in immature-type of spines with small spine heads. The average spine head diameter in CAVII KO neurons was
233 0.37 ± 0.01 μ m (421 spines from 15 neurons) and in WT neurons 0.48 ± 0.01 μ m (467 spines from 15 neurons).
234 Compared to WT, the distribution was shifted significantly towards smaller spine heads in the CAVII KO neurons
235 ($W = 134540$, $P < 0.001$, Wilcoxon rank sum test) (Figure 7D).

236 Discussion

237

238 The two cytosolic CA isoforms present in mature rodent central neurons are both catalytically highly active
239 (Earnhardt et al., 1998) and have a high sequence and structural similarity (Di Fiore et al., 2010). Here we show
240 that, despite these similarities, CAVII has unique characteristics, profiling it as a novel, multifunctional protein
241 within the CNS. We demonstrate a prominent difference in the subcellular localization of the isoforms, which is
242 based on a pH-dependent interaction of CAVII and actin. In neurons, CAVII is enriched in the actin-dense dendritic
243 spines and affects the actin cytoskeleton thus altering both dendritic spine morphology and density.

244

245 The subcellular distribution of CAVII is dictated by its interaction with F-actin
246 In cultured fibroblasts, expression of dsRed- and EGFP-fusion constructs of CAVII and CAII revealed a mutually
247 exclusive subcellular localization. CAVII is present in the immediate vicinity of actin filaments, in contrast to the
248 diffuse cytoplasmic localization of CAII. In hippocampal neuronal cultures, as well as in cortical neurons
249 transfected *in vivo*, CAVII shows a preferential spine-targeted localization, whereas CAII distributed evenly in the
250 cytosol over the somato-dendritic axis. The diffuse cytoplasmic distribution of CAII is well in line with previous
251 localization results from non-erythroid cells (Wang et al., 2002; Stridh et al., 2012; Al-Samir et al., 2013) and fits
252 with the idea that this ubiquitous and high-activity isoform serves a housekeeping role in cytosolic pH buffering.
253 Homogenously distributed, soluble CA can efficiently dissipate cytosolic acid-base gradients (Voipio, 1998;
254 Stewart et al., 1999; Boron, 2010). Interestingly, a recent study on cardiac myocytes shows that the majority of
255 nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers (Hulikova and Swietach, 2015),
256 motivating further work on the localization of CAII and its possible role in pH-dependent regulation of
257 transcription (Bumke et al., 2003; Neri and Supuran, 2011).

258

259 Our main finding is that the subcellular distribution of CAVII is dictated by its binding to actin, in particular to F-
260 actin, which is a novel property with regard to all cytosolic CAs studied to date. Furthermore, CAVII interacts only
261 with a specific subset of actin filaments. EGFP-CAVII strongly co-localized with F-actin in fibroblast stress-fibers
262 and neuronal dendritic spines, but the edges of the highly dynamic fibroblast lamellipodia, consisting mainly of
263 branched actin, were largely devoid of CAVII. Given the key role of CAs in the modulation of pH, a particularly
264 interesting finding is that the CAVII–actin interaction is pH-sensitive and enhanced at acidic pH (6.5 vs. 7.4).
265 Compared with the actions of the previously known pH-sensitive actin binding proteins (see below), CAVII could
266 thus counteract gelsolin-dependent severing of F-actin, which takes place upon acidification (Lagarrigue et al.,
267 2003). Together with our latrunculin data these results indicate that CAVII could stabilize actin structures when
268 the intracellular compartment is acidified, which occurs under various pathophysiological conditions such as
269 stroke (Pavlov et al., 2013) and epilepsy (Siesjö et al., 1993). Furthermore, an increase in neuronal activity
270 subjects brain cells to surges of lactate produced by the glycolytic pathway (see Yellen, 2018). Within neurons,
271 CAVII is ideally located to facilitate H⁺-coupled lactate (Halestrap, 2013) efflux across the neuronal plasma
272 membrane (Yellen, 2018).

273

274 CAVII not only binds to F-actin but it also increases actin bundling *in vitro*. Our bundling assay was done in the
275 nominal absence of CO₂/HCO₃⁻ indicating that the CAVII-dependent enhancement of bundling is not dependent
276 on the catalytic activity of CAVII. This is well in line with our result that the enzymatically inactive H96/98C CAVII
277 mutant maintains its co-localization with F-actin. Notably, the enzymatic activity of CAVII is much more sensitive
278 to the concentration of chloride than that of CAII (Vullo et al., 2006). It is therefore possible that in highly
279 compartmentalized structures subjected to large ionic fluctuations, such as dendritic spines (Rose et al., 1999;
280 Brini et al., 2017), CAVII's catalytic activity is compromised while its interaction with actin is maintained. The
281 presence of neuronal CAII in spines would thus contribute to CO₂/HCO₃⁻ based buffering even when the ionic
282 milieu is transiently changed.

283

284 Our time-lapse imaging experiments visualizes the CAVII-dependent change in actin dynamics (SI Videos 1 and
285 2). The rapid assembly/disassembly of actin filaments seen under control conditions was suppressed in the
286 presence of CAVII and the generated actin-bundles were thicker and more stable. Based on the SEC-MALLS
287 results, CAVII-dependent bundling may be achieved, at least partly, through CAVII homodimerization. In the
288 intracellular milieu, even a small proportion of free dimers might be enough if actin acts as a sink for the CAVII
289 dimers thereby shifting the dimerization process to the right.

290

291 CAVII-actin interaction induces morphological changes

292 The changes detected in the actin cytoskeleton of CAVII-expressing cells are consistent with the biochemical
293 assay data and show that CAVII modulates higher-order actin structures in the cytoplasm. Fibroblasts transfected
294 with CAVII generate numerous filopodia-like protrusions projecting from the cell surface, and have thick,
295 sometimes curving, cytosolic stress fibers. In neurons overexpressing CAVII, both in cell cultures and *in vivo*,
296 dendritic spines eventually lose their morphological diversity (categorized as thin, stubby, and mushroom spines
297 according to (Bourne and Harris, 2008; Hotulainen and Hoogenraad, 2010)) and turn into thick protrusions, which
298 lack a clear spine head. Similar filopodia structures sprout even from the neuronal cell body. These phenotypic
299 characteristics closely resemble those seen with the brain-specific actin-bundling protein drebrin-A in fibroblasts
300 (Shirao et al., 1994) and in cultured neurons (Hayashi and Shirao, 1999; Mizui et al., 2005). The disturbed spine
301 morphology shows that the actin network normally forming these structures is modified to more rigid actin
302 bundles. Together with the biochemical bundling assay results, the CAVII overexpression phenotype suggests
303 that CAVII has a stabilizing effect on F-actin. We tested this hypothesis in experiments where fibroblasts were
304 exposed to the actin polymerization inhibitor latrunculin B. Compared to control cells, fibroblasts expressing
305 CAVII maintained F-actin structures significantly longer, confirming a direct stabilizing effect of CAVII.

306

307 Identification of the CAVII – actin interaction site

308 When Montgomery et al. (1991) first identified the human CAVII, they recognized several poorly conserved
309 regions that were predicted to “*be located towards the surface of the protein*”. Our work shows that one of these
310 regions, residues 232 – 248 encoded by exon 7, is critically involved in CAVII-actin interaction. When we replaced
311 amino acids 237 – 242 (DDERIH) with corresponding amino acids from CAII either alone (EGFP-CAVII-mutant3)
312 or together with additional mutations (amino acids 101-105, 113 and 115; EGFP-CAVII-mutant1), co-localization
313 of F-actin and the mutated EGFP-CAVII proteins decreased compared to EGFP-CAVII. Replacing the corresponding
314 sequence of CAII by the CAVII amino acids forming the ridge (101-105, 113, 115 and 237-242) was not sufficient
315 to induce an actin-binding phenotype of CAII, pointing to a complex three-dimensional structure of the actin-
316 binding site. The catalytically inactive CAVII-H96/98C mutant and CAVII with the point mutation R223E, disrupting
317 the positive charge at the CAV II α -helix-6 (α G), still bound actin, but formation of thick cytosolic actin bundles
318 was suppressed.

319

320 Genetic deletion of CAVII changes spine density and morphology

321 Since ectopic expression of CAVII had such a prominent effect on spine morphology, we examined how deletion
322 of CAVII affects dendritic spines *in vivo*. The increase in spine density, together with the shift to smaller spine
323 head size in CAVII KO mouse cortical neurons, demonstrates that endogenous CAVII serves a structural role in
324 dendritic spines. As our quantification in these experiments is based solely on the head diameter (Bourne and
325 Harris, 2008), we cannot address how the proportion of filopodia and thin spines changes. However, it is well
326 established that spines with small spine heads i) are short-lived and dynamic structures (Holtmaat et al., 2005);
327 ii) are more abundant in early development and iii) make only occasional contacts with presynaptic terminals
328 (Berry and Nedivi, 2017). It is thus not surprising that the detected increase in small spines (spine heads < 0.3
329 μ m) in CAVII KO cortical neurons did not alter the basic pre- or postsynaptic properties, measured as the
330 frequency and amplitude of mEPSCs, respectively. It is tempting to suggest that the overproduction of small

331 spines, actively searching for presynaptic partners, renders CAVII KO neurons in “a more juvenile” morphological
332 state. Previous *in vivo* studies have demonstrated that there are pools of spines with different turn-over rates
333 and these pools change over the postnatal development and differ greatly between brain areas even in mature
334 animals (Holtmaat et al., 2005; Attardo et al., 2015; Pfeiffer et al., 2018). Hence, it would be intriguing to examine
335 if the observed difference in CAVII KO and WT spine architecture is age- and/or area specific, and to see if the
336 absence of CAVII is reflected as increased motility or turnover of the thin, immature-like spines.

337

338 So far, a structural role has not been reported for any of the CA_is, although studies on CA-related protein VIII KO
339 mice have shown that deletion of this catalytically inactive isoform causes abnormalities in parallel fiber and
340 Purkinje cell synapses (Hirasawa et al., 2007). The combined role of CAVII in ion-regulatory and morphogenic
341 function reported here, bears much resemblance to that described for the K-Cl cotransporter (KCC2) that
342 promotes spine development by a transport-independent interaction with the cytoskeleton (Kaila et al., 2014a).
343 Furthermore, both of these ion-regulatory proteins are involved in the qualitative and quantitative change of
344 GABAergic transmission during brain development (Ruusuvuori et al., 2010; Kaila et al., 2014b). In mature
345 neurons, upon intense GABA_A receptor activation, synergistic activity of K-Cl transport and CA activity is able to
346 render GABAergic signalling excitatory and even pro-convulsant (Kaila et al., 1997; Ruusuvuori et al., 2004;
347 Viitanen et al., 2010; Avoli and de Curtis, 2011).

348

349 The pH sensitivity of actin polymerization and depolymerization in spines is intriguing. Diering and colleagues
350 (2011) reported an NHE5-dependent increase in spine pH, developing over tens of minutes after chemical long-
351 term potentiation induction in cultured rat hippocampal neurons. Rapid, depolarization-induced acid transients
352 in dendrites have been detected in Purkinje cells (Willoughby and Schwiening, 2002). However, the influence of
353 effects of this kind on spines remains to be explored in more detail. Notably, the effect of pH on actin
354 polymerization and depolymerization is dictated by several factors. Actin self-assembly *in vitro* is enhanced by

355 protons (Wang et al., 1989; Heath et al., 2013) but in the intracellular milieu the pH-sensitivity of actin-binding
356 proteins, such as cofilin and gelsolin, bring additional players to F-actin dynamics (Yonezawa et al., 1985; Azuma
357 et al., 1998; Frantz et al., 2008). Nevertheless, actin-associated, spine-targeted CAVII expression is an exciting
358 observation as synaptic activity is known to evoke long-term structural changes in spine size and morphology
359 (Sala and Segal, 2014), as well as large transient changes in ionic concentrations within the spine (Rose et al.,
360 1999; Brini et al., 2017). The present study shows that CAVII is optimally localized not only to separately
361 modulate, but also to provide a link between F-actin dynamics and activity-dependent pH transients, within
362 spines, thereby identifying a novel mechanism of morphofunctional plasticity.

363

364 Materials and Methods

365 *Animal experiment ethics* All experiments involving animals were conducted in accordance with the European
366 Directive 2010/63/EU, and were approved by the National Animal Ethics Committee of Finland or the Local
367 Animal Ethics Committee, University of Helsinki.

368

369 *Neuronal primary cultures, fibroblast cultures and transfections* Hippocampal neuronal cultures were prepared
370 as described previously (Bertling et al., 2012). Briefly, the hippocampi of embryonal day 17 Wistar rat fetuses of
371 either sex were dissected, the meninges were removed, and the cells were dissociated with 0.05 % papain and
372 mechanical trituration. The cells were plated at a density of 100,000 cells/coverslip (diameter 13 mm), coated
373 with Poly-L-Lysine (0.1 mg/ml; Sigma), in neurobasal medium (Gibco) supplemented with B-27 (Invitrogen), L-
374 glutamine (Invitrogen), and penicillin-streptomycin (Lonza). Transient transfections were performed after 13
375 days *in vitro* (DIV) using Lipofectamine 2000 (Invitrogen), as described earlier (Hotulainen et al., 2009). Prior to
376 all experiments, we confirmed that cultures formed a dense network of neurons, ensuring the availability of a
377 proper synaptic network. The neurons were imaged after fixation with 4 % paraformaldehyde (PFA). Fibroblasts
378 were maintained in DMEM supplemented with 10 % fetal bovine serum (Hyclone), 2mM L-glutamine (Invitrogen)
379 and penicillin-streptomycin (Lonza). Cells were transfected with Superfect (Qiagen) or Turbofect (Thermo
380 Scientific)-transfection reagent according to manufacturer's instructions for 24 h and either imaged live or after
381 fixation with 4 % PFA.

382 *Plasmid constructs* pEGFP-N1 (EGFP) and mCherry-C1 (mCherry) plasmids were purchased from Clontech
383 Laboratories, Inc. Human GFP-β-actin (Dopie et al. E544-E552) and mCherry-β-actin plasmids were gifts from
384 Maria Vartiainen (University of Helsinki, Finland) and Martin Bähler (University of Münster, Germany),
385 respectively. Constructs containing full-length C4II and C4VII (human isoform 1) coding sequences were obtained
386 from Imagenes (human C4II and human C4VII including start and stop codon; OCAAo5051H1054 and
387 OCAAo5051E0588, respectively) and GeneCopoeia (human C4II without stop codon and mouse C4VII including

388 start and stop). Constructs encoding CAVII-R223E and CAVII-H96/98C were generated using site-directed
389 mutagenesis (Phusion high fidelity PCR, ThermoFisher) and the correct sequence of PCR amplified sequences
390 was confirmed by full-length sequencing of both strands (DNA Sequencing and Genomics Laboratory, Institute
391 of Biotechnology, Helsinki). More complex mutants containing multiple nucleotide exchanges were commercially
392 synthesized (GenScript). All coding sequences were either available as Gateway entry vectors or subcloned into
393 pDONR or pENTR vectors using the Gateway technology (LifeTechnologies). Expression constructs encoding N-
394 or C-terminal fusion proteins of CAII or CAVII and various reporter proteins (EGFP, dsRed, mCherry) were
395 generated using the Gateway technology and appropriate destination vectors. To allow for stable expression in
396 cell cultures and neurons *in vivo*, all destination vectors contained the CMV/chicken beta-actin gene (CAG)
397 promoter (Niwa et al., 1991). The pCAG-EGFP plasmid was a gift from Connie Cepko (Addgene plasmid # 11150)
398 and served as a control (Matsuda and Cepko, 2004).

399

400 *Expression level quantification in NIH3T3 cells* NIH3T3 cells were seeded on 24-well plates with Poly-L-Lysine-
401 coated coverslips at a density of 60,000 cells/well, and on 6-well plates at a density of 300,000 cells/well. The
402 following day, the cells were transfected with the CAVII/II-EGFP constructs using Turbofect transfection reagent
403 (Thermo Scientific) according to the manufacturer's instructions. For immunofluorescence, the cells were fixed
404 24 h after transfection with 4 % PFA for 30 min, and stained with DAPI (1:10,000 for 2 min) (Fig. S4A). For Western
405 blotting, the cells were washed once with ice-cold phosphate buffered saline (PBS) and collected in 150 μ l
406 radioimmunoprecipitation assay (RIPA) buffer supplemented with protease inhibitors (cOmplete, Roche) 24
407 hours after transfections. 10 μ g of the lysates were separated by SDS-PAGE and blots were probed with a 1:2,000
408 dilution of mouse anti-GFP antibody (Clontech), followed by 1:5000 anti-mouse Starbright Blue 700 (Bio-Rad)
409 (Fig. S4B) and 1:5000 anti-actin-rhodamine (Bio-Rad) as a loading control. The blots were imaged with ChemiDoc
410 MP (Bio-Rad). Quantification was done with ImageJ, and expression levels of the constructs were shown relative
411 to the WT EGFP-CAVII expression level, which was set at one.

412 *Actin filament staining with phalloidin in fibroblasts* Fibroblasts were permeabilized with 0.1 % tritonX-100 in
413 PBS. Filamentous actin was visualized with Alexa fluor 488- or Alexa fluor 594 -phalloidin (for 30 min, Invitrogen,
414 Molecular probes).

415 *Actin filament visualization in cultured neurons* Neuronal cultures were co-transfected with a mCherry-actin
416 and EGFP-CAII/CAVII constructs on DIV13 and fixed with 4 % PFA (30 min) 24 h after transfection

417 *Imaging* Fixed NIH3T3 fibroblasts were imaged under epifluorescence illumination using an upright Axio
418 Imager.M2 microscope equipped with a 63x 1.4NA objective and with an Apotome 2 structured illumination
419 slider (all from Zeiss). Images were acquired with a black and white CMOS camera (Hamamatsu ORCA Flash 4.0
420 V2) and ZEN 2 software (Zeiss). For quantification of co-localization of the EGFP-tagged proteins with 594-
421 Phalloidin in fibroblasts we analyzed the pixel intensities along a virtual line across the cell, excluding the nucleus
422 (ImageJ, <http://imagej.nih.gov/ij>). The placing of the line was done using the "actin channel" and the
423 experimenter was blinded to the transfections. We plotted the pixel intensities of both channels against each
424 other and calculated the Pearson's correlation coefficient (GraphPad Prism 7). The dendritic spines of cultured
425 hippocampal neurons were imaged using a Zeiss LSM 710 upright confocal microscope (63x 1.3NA objective) or
426 an Axio Imager.M2 microscope (63x 1.4NA objective, Apotome 2 structured illumination slider). Image files were
427 processed with ZEN 2012 (Carl Zeiss Microscopy GmbH), ImageJ 1.46r and Photoshop CS4 (Adobe).

428 *SEC-MALLS* The size-exclusion chromatography-coupled multi-angle static laser light scattering (SEC-MALLS) was
429 used for characterisation of the oligomerization and monodispersity of CAVII essentially as described in (Karki et
430 al., 2018). The measurements were done at 0.5 ml/min over an S-200 Superdex 10/300 column (GE Healthcare)
431 in 1x PBS with a HPLC system (Shimadzu) and a MiniDAWN TREOS light scattering detector, and Optilab rEX
432 refractive index detector (Wyatt Technology Corp.). Data were then analysed with ASTRA 6 software (Wyatt
433 Technology Corp.). CAVII protein was analysed at 33 μ M concentration in 50–100 μ l volume.

434 *Spine analysis* For analysis of spine density and morphology in fixed rat cell cultures, serial image files
435 corresponding to z-stacks of 20–30 optical sections per dendritic segment were taken. Only healthy looking cells

436 (no beading of dendrites or other signs of decreased wealth) with spines were imaged and included to analysis.
437 NeuronStudio, a software package specifically designed for spine detection and analysis (Rodriguez et al., 2008)
438 was used to analyze spine density. The detailed analysis of spine classes was performed as described in (Bertling
439 et al., 2012). Classification of spines was done by using rules defined by (Rodriguez et al., 2008) and verified
440 manually. For the plot, spines were divided to three groups: spines with head (Neurostudio: mushroom and
441 stubby), filopodia/thin spines (Neurostudio: thin) and spines with abnormal morphology (Neurostudio: other),
442 latter including all spines with branches, long thick protrusions or otherwise morphology not classified in any
443 common spine classes. The mean value (+ SEM) of separate images is shown.

444 *Latrunculin B assay* For the Latrunculin B assay fibroblasts were transfected with dsRed or dsRed-CAVII 24 h prior
445 to treatment with 5 μ M Latrunculin B in DMSO. Cells were fixed after 0, 2, 5, 10, and 30 minutes of Latrunculin
446 B treatment and stained with phalloidin-488. Control cells were treated with DMSO for 60 min and stained with
447 phalloidin-488. We made three independent replicates of such experiments. A hundred transfected cells from
448 each time point from each experiment were categorized either as "normal", "some shape/F-actin left" or "round"
449 (example cells for the three categories are depicted in Figure 3A,B, upper panels).

450
451 *CAVII biochemistry: pull down assay, measure of enzymatic activity, bundling (In vitro TIRF) assay* Actin co-
452 sedimentation assay was carried out in 20 mM Hepes pH 7.4/6.5, in the presence of 0.2 mM DTT. Mouse CAVII
453 (produced as a secreted protein with a C-terminal His-tag in the CHOEBNALT85 cell line) was stored in PBS but
454 the buffer was changed to Hepes (pH 7.4/6.5) before the experiment. Lyophilized powder of CAII (Sigma) was
455 reconstituted in MilliQ and diluted in Hepes-buffer pH 7.4/6.5 to 33 μ M. ZnCl₂ (1 μ M) was added to CAVII/CAII
456 one hour before incubation with actin. β/γ -G-actin (0, 1, 5, 10 and 15 μ M) was pre-polymerized in Hepes-buffer
457 pH 7.4/6.5 by addition of 1/10 of 10x-initiation mixture (1 M KCl, 10 mM EGTA, 50 mM MgCl₂, 2.5 mM ATP and
458 20 mM Hepes pH 7.4/6.5) for 30 min at room temperature. CAVII or CAII (1 μ M) was added to polymerized actin,
459 gently mixed and incubated for another 30 min at room temperature. Actin filaments were sedimented by

460 centrifugation for 30 minutes at 20S°C in a Beckman Optima MAX Ultracentrifuge at 353,160 × g in a TLA100
461 rotor. Equal proportions of supernatants and pellets were run on 13.5 % SDS-polyacrylamide gels, which were
462 stained with Coomassie Blue. The intensities of β/γ -actin and CAVII/CAII bands were quantified with QuantityOne
463 program (Bio-Rad), analyzed and plotted as CAVII/CAII bound to actin (μ M, CAVII/CAII in pellet) against actin.
464 The mCAVII-actin co-sedimentation assay was repeated three times for each pH value and averaged curves were
465 presented (\pm SEM).

466 *In vitro* TIRF imaging was performed as previously described (Suarez et al., 2011) but the muscle actin was
467 substituted with non-muscle actin (Cytoskeleton), prepared according to the manufacturer's instructions, and
468 non-muscle Rhodamine actin (Cytoskeleton) was used for labeling the filaments. A mixture of 0.5 μ M unlabeled
469 and 0.05 μ M Rhodamine labelled non-muscle actin was polymerized in the presence of 1.12 μ M mCAVII or with
470 an identical volume of PBS as a control in the nominal absence of $\text{CO}_2/\text{HCO}_3^-$ (three independent repeats for both
471 treatments). Images were captured with Nikon Eclipse Ti-E N-STORM microscope, equipped with Andor iXon+
472 885 EMCCD camera and 100x Apo TIRF oil objective (NA 1.49), a 150 mW 561 nm laser line was used for
473 visualization of Rhodamine actin. Actin filament polymerization was followed (images every 10 sec) until the
474 imaging field was full with filaments (typically around 30 - 40 min). Bundling was quantified by measuring the
475 mean relative fluorescence intensity of a cross-section for an individual filament ($n = 10 - 11$ filaments per repeat,
476 ImageJ) and actin fiber length ($n = 3 - 4$ per repeat) at three time points (0, 5, and 23 minutes). The data was
477 analyzed using a general mixed model with time as a within unit factor and the presence of CAVII as a between
478 unit factor, experiment repeats were included as a covariate.

479

480 *In utero electroporation and slice preparation* The following modifications to the rat IUE protocol described in
481 (Fiumelli et al., 2013) were applied for mice. Timed-pregnant ICR mice with E14.5 embryos were given Temgesic
482 (0.05-0.1 mg/kg, s.c.) and anesthetized with isoflurane (4.2 % induction, 2.5 % during surgery). All embryos were
483 injected with 1.25 μ l plasmid DNA solution (3-4 μ g/ μ l EGFP-CAVII or EGFP-CAII construct in 0.9 % NaCl and 0.1 %

484 Fast Green). Electroporation was done with 5 mm diameter circular electrodes (Sonidel Limited) with five pulses
485 (40 - 45 V, 50 ms duration at 100 ms intervals), delivered with a square-wave generator (CUY21vivo SC, Sonidel
486 Limited). Detection of EGFP-CAII and EGFP-CAVII was done on 50 μ m coronal cryosections from fixed brains (P40
487 mice were transcardially perfused under terminal anesthesia with 4 % PFA, over-night postfixation in 4 % PFA)
488 with a Zeiss LSM 710 upright confocal microscope.

489

490 *Cortical layer 2/3 spine analysis and mEPSC recordings*

491 *Post Hoc iontophoretic injection of Lucifer Yellow* Male WT and CAVII KO mice were terminally anesthetized at
492 P34 - P37 by an intraperitoneal injection of pentobarbital (100 mg/kg) and perfused transcardially first with
493 saline, followed by 4 % PFA and 0.125 % glutaraldehyde solution (pH 7.4). Brains were removed and postfixed
494 for 2 h in 4 % PFA. Coronal sections of 200 μ m thickness were cut on a vibratome in ice-cold PBS (pH 7.4). Coronal
495 sections were pre-stained for 10 min with methylene blue, which allows the visualization of neuronal somata,
496 mounted into an injection chamber, and placed on the fixed stage of a Zeiss microscope equipped with a
497 micromanipulator. Layer 2/3 pyramidal neurons were loaded iontophoretically with a 0.4 % Lucifer yellow
498 solution (Sigma-Aldrich, St. Louis, MO) using sharp micropipettes and a negative current of 70 nA until the
499 dendrites were fluorescing brightly. For each animal, neurons were labelled from 2-3 slices.

500 *Immunohistochemistry* The Lucifer Yellow injected slices were preincubated for 1 h in a PBS solution containing
501 sucrose (5 %), bovine serum albumin (2 %), Triton X-100 (1 %) and sodium azide (0.1 %), followed by 48 h at room
502 temperature with the anti-LY antibody (rabbit IgG, Cat.No. A5750, Invitrogen, Carlsbad, CA; 1:4,000 dilution).
503 Slices were then rinsed in PBS solution and incubated for an additional 24 h with Alexa conjugated secondary
504 antibodies (Invitrogen; 1:1,000). After mounting the slices were coverslipped using Immumount (Thermo
505 Scientific, Pittsburgh, PA), and stored at +4 °C until analysis.

506 *Confocal Laser Scanning Microscopy and Image Analysis* Second order dendrites were imaged for spine analysis
507 using LSM700 confocal microscope and 63 \times oil-immersion objective. Spine analysis was performed on acquired

508 stacks of images using a homemade plug-in written for OsiriX software (Pixmeo, Geneva, Switzerland). This plug-
509 in allows precise spine quantification, individual tagging, and measurement in 3D by scrolling through the z-axis.
510 We defined spines as structures emerging from the dendrites that were longer than 0.4 μm and for which we
511 could distinguish an enlargement at the tip (spine head). Spines head diameters were measured at their largest
512 width in xy-axis on the z-image corresponding to the central axis of the spine head. The difference in spine head
513 width distribution between WT and CAVII KO mice was analyzed using a Wilcoxon rank sum test with continuity
514 correction. Note that for illustration purposes, images presented in figures are maximum intensity projections of
515 z stacks with volume rendering, further treated with a Gaussian blur filter.
516 *mEPSC recordings and analysis* Male CAVII KO and WT mouse (P30 - P40) were anesthetized with halothane and
517 decapitated. Acute coronal brain slices (400 μm) were cut using Campden vibratome (Campden Instruments
518 7000 SMZ-2) in ice cold (<4°C) cutting solution containing (in mM) 87 NaCl, 2.5 KCl, 0.5 CaCl₂, 25 NaHCO₃, 1.25
519 NaH₂PO₄, 7 MgCl₂ and 50 sucrose, equilibrated with 95 % O₂ and 95 % CO₂ to pH 7.4. Before starting experiments
520 the slices were let to recover for one hour at +34°C in standard solution containing (mM): 124 NaCl, 3 KCl, 2
521 CaCl₂, 25 NaHCO₃, 1.1 NaH₂PO₄, 1.3 MgSO₄ and 10 D-glucose, (300 \pm 5 mOsm). Whole-cell voltage-clamp
522 recordings from layer 2/3 somatosensory cortex pyramidal neurons were obtained with a HEKA EPC-10 amplifier
523 with 20 kHz sampling interval and 4 kHz low-pass filter. Slices were perfused with standard solution (see above,
524 perfusion 3.5 ml/min) and all measurements were done in the presence of 100 μM picrotoxin and 0.5 μM TTX.
525 Temperature in the recording chamber was 32 \pm 1°C. The cells were clamped to -65 mV. Borosilicate patch pipette
526 resistances ranged from 3 - 5.5 M Ω when filled with a pipette solution containing (mM) 140 CsMs, 2 MgCl₂, 10
527 HEPES liquid junction potential of 13 mV was taken into account). Only cells with a resting membrane potential
528 below -55 mV and stable holding current were included in the analysis. Series resistance was compensated and
529 recordings with unstable series resistance (change > 30 %) were excluded from the analysis. The person who did
530 and analyzed the mEPSC experiments was blind to the genotype. Events were manually detected with
531 minianalysis software (synaptosoft) after 1000 Hz low-pass filtering and with threshold set to 4x RMS noise.

532

533 Acknowledgements

534 We wish to acknowledge Alexander Alafuzoff for his indispensable help with statistical analysis; Merle Kampura
535 for her expertise in performing *in utero* electroporation and handling cell cultures; Mikko Liljeström and the
536 Biomedicum Imaging Unit (BIU), Helsinki, for kind help and technical assistance with the *in vitro* TIRF imaging
537 experiments. The use of the INSTRUCT-HiLIFE protein crystallization core facility, University of Helsinki, member
538 of Biocenter Finland and Instruct-FI is gratefully acknowledged for assistance in the SEC-MALLS experiments.

539

540 Author contributions

541 PB, KK, PH and ER conceptualized the study. PB, MB and VP designed constructs. EB, PB, PS, MS, VP, LV, KK, PH
542 and ER designed the experiments. EB, PB, PS, EK, GG, MV, MS, IS and VP collected data. EB, PS, EK, GG, MV, MS,
543 IS, VP and LV analyzed data. PB, KK, PS, VP and PH reviewed and edited the paper. ER wrote the paper.

544

545 Funding

546 This work was supported by grants from the Academy of Finland (to K.K. SA 294375, SA 319237 and SA 276576,
547 to P.H. SA 266351, and to V.O.P SA 289737 and SA 314672), the Jane and Aatos Erkko Foundation (to K.K.), the
548 University of Helsinki (to P.H. the three-year research grant) and the Sigrid Juselius Foundation (to V.O.P).

549

550 Figure legends

551

552 Figure 1. Subcellular localization of CAVII and CAII in fibroblasts. (A) NIH3T3 fibroblasts co-expressing dsRed-
553 CAVII and EGFP-CAII ($n = 4$ independent replicates). Co-localization of EGFP and the two CA isoforms with
554 filamentous actin studied in fibroblasts expressing (B) EGFP, (C) EGFP-CAII, or (D, E) EGFP-CAVII and stained with
555 phalloidin-594 to visualize F-actin ($n = 2, 7$ and 9 independent replicates, respectively). Magnification of the area
556 marked with the yellow rectangle in D shows co-localization of EGFP-CAVII with F-actin. (E) EGFP-CAVII caused a
557 prominent overexpression phenotype with thick and curvy cytosolic actin bundles (arrow) and plasmalemmal
558 protrusions (arrow head). (F-H) The normalized fluorescence emission intensity profiles for F-actin (red line) and
559 (F) EGFP, (G) EGFP-CAII, or (H) EGFP-CAVII (black line). For the plots, pixel intensities were measured through the
560 cross-section of the cell indicated by the yellow line in panels B-D. Scale bar in A-E 20 μ m.

561

562 Figure 1 - figure supplement 1. CAVII co-localizes with selective actin filaments. EGFP-CAVII co-localizes with
563 subcellular F-actin structures (visualized with Phalloidin-594) except at the very edges of fibroblast lamellipodia.
564 Scale bar 20 μ m.

565

566 Figure 2. CAVII binds to filamentous actin and increases actin bundling. (A) Quantification of actin co-
567 sedimentation assay shows that CAVII binds to F-actin. The binding is enhanced at more acidic pH (6.5 vs. 7.4)
568 ($n = 3$ independent replicates at each actin concentration). (B) Fluorescence time-lapse images of F-actin
569 bundling in an *in vitro* bundling assay. A mixture of unlabeled and Rhodamine labelled non-muscle actin was
570 polymerized in the absence (PBS control, upper panel) or presence of mCAVII (lower panel). Numbers in images
571 indicate the time after the onset of the experiment (0, 5 and 23 min). Scale bar 10 μ m. (C) Quantification of the
572 mean increase in filament length ($n = 10$ filaments at each time point) and relative fluorescence intensity ($n = 30$
573 - 31) in the absence and presence of mCAVII (1.12 μ M). The data were analyzed using a general mixed model

574 with time as a within unit factor and the presence of CAVII as a between unit factor. $n = 3$ independent
575 repetitions, experiment repeats were included as a covariate and were non-significant. Data are presented as
576 mean \pm SD

577

578 Figure 2 –figure supplement 1. CAVII, but not CAII, co-localizes and directly interacts with F-actin. Actin co-
579 sedimentation assay was carried out at five different concentrations of β/γ -actin and with 1 μ M (A) CAVII or (B)
580 CAII at two different pH (7.4 or 6.5). After centrifugation, the supernatant (S) and pellet (P) fractions were
581 separated and resolved by SDS-PAGE. Staining the gels with Coomassie Blue showed that CAVII co-sedimented
582 in the pellets with actin, whereas CAII was found only in the supernatant fraction. CAVII; three repetitions and
583 CAII; one repetition at each of the four actin concentrations/pH. (C) Analysis of the CAII gels confirmed that the
584 isoform does not interact with actin at either pH tested.

585

586 Figure 2 –figure supplement 2. Purified recombinant CAVII exists as a mixture of monomers and dimers. CAVII
587 analytical gel filtration analysis. CAVII was run on Superdex 200 10/300 gel filtration column in TBS at 0.5 ml/min,
588 at protein concentration of 33 μ M. The experiment was carried out once and SEC-MALLS data were analyzed
589 using with ASTRA 6 software (Wyatt Technology Corp.) as described in Folta-Stogniew and Williams (1999). A
590 major peak at approximately 12 ml volume eluted and based on multi-angle light scattering had molecular weight
591 of *ca.* 38.5 kDa, matching relatively well with theoretical molecular weight of the monomer (30.5). The molecular
592 weight determined for the minor peak (66.6 kDa) eluting at approximately 10 ml corresponds roughly to a CAVII
593 dimer.

594

595 Figure 2 - Source Data 1 The file shows the values for CAVII and CAII bound to actin (μ M, CAVII/CAII in pellet)
596 against actin. These data were used for the quantitative analyses shown in Figure 2A and Figure 2 – figure

597 supplement 1C. The intensity values of β/γ -actin and CAII/CAVII bands were quantified with QuantityOne
598 program (Bio-Rad). All experiments were included in the analysis.

599

600 Figure 2 - Source Data 2 The measured actin fiber lengths ($n = 3 - 4$ filaments per repeat) and the mean relative
601 fluorescence intensity values of cross-sections for individual filaments ($n = 10 - 11$ filaments per repeat, ImageJ)
602 that were used to quantify bundling presented in Figure 2C. The analyzed filaments were chosen randomly and
603 all experiments were included in the analysis.

604

605 Figure 3. CAVII over-expressing NIH3T3 are resistant to the latrunculin B treatment. NIH3T3 cells transfected
606 with dsRed (A) or dsRed-CAVII (B) were incubated in growth medium with 5 μ M Latrunculin B for 0, 2, 5, 10, or
607 30 minutes, or in an equal amount of DMSO for 60 minutes. Analyses of experiments show that in cells
608 transfected with dsRed-CAVII F-actin structures collapse more slowly than in the dsRed-transfected ones. For the
609 analysis, cells were categorized to three groups as "normal", "some shape/F-actin left" and "round". The higher
610 panel shows example images of the cells in all three categories for (A) dsRed- or (B) dsRed-CAVII transfected cells
611 (actin visualized with Phalloidin-488). A hundred cells per each time point from each experiment were counted
612 and categorized. Scale bar 50 μ m

613

614 Figure 3 - Source Data 1 Source files for WT and CAVII over expressing cells. Excel file contains the counted cells,
615 divided to different categories based the F-actin staining. Averages from the three experiments is shown in Figure
616 3. Inclusion criteria: all cells expressing dsRed (control) or dsRed-CAVII. We did not exclude any outliers.

617

618 Figure 4. Structure and sequence comparison of CAVII and CAII. (A) Three-dimensional representation of the
619 CAVII structure. The amino acids 101-105, 113, 115 and 237-242 form a ridge at the protein surface (highlighted
620 in yellow). R223 is located close the ridge. The blue spherical structure in the 180° view (right panel) depicts the

621 inhibitor 6-ethoxy-1,3-benzothiazole-2-sulfonamide bound to the active site. (B) Overlay of CAII and CAVII three-
622 dimensional structure illustrating structural differences at the protein surface. Note the prominent position of
623 R223 in CAVII. The main chain, side chains of selected residues, and zinc ion are shown as ribbon, sticks, and
624 sphere representation, respectively. Carbon atoms of CAII and CAVII are colored green and orange, respectively.
625 The side chains of Asp237, Glu239, and Arg240 (labeled with *) of CAVII are not defined by the electron density
626 and thus omitted from the published PDB file (3MDZ). (C) Superimposing the CAVII α -helix-6 (CAVII in blue, areas
627 where mutations1-3 are located in yellow, and the putative actin interactin CAVII helix in red) on the Twf-C/G-
628 actin structure (grey) shows a sterically compatible structure. (D) Sequence alignment of human CAVII and CAII
629 protein sequences generated using the Clustal O (1.2.1) multiple sequence alignment. Residues forming a ridge
630 at the CAVII protein surface in the CAVII 3D structure are highlighted in the CAVII sequence (bold/underlined).
631 R223 is marked in turquoise and H96 and H98 (mutated to gain a catalytically loss-of-function mutant) are
632 highlighted in green. (E) Schematic representation of four mutants with a full (mutant1) or partial (mutant2 and
633 mutanteplacement of the amino acids encoding the ridge in CAVII by the corresponding CAII sequence. In the
634 reversed mutant (CAII-revCAVII) the amino acids replaced in mutant1 were introduced to CAII. Panels A and B
635 were prepared using PyMOL (PyMOL The PyMOL Molecular Graphics System, Version 1.4.1 Schrödinger, LLC.).
636
637 Figure 4 – figure supplement 1. The identified actin interaction sites are unique to CAVII among human
638 cytosolic CA's. Sequence alignment of the catalytically active (CA I, CAII, CAIII, CA VA, CA VB, CAVII, and CA XIII)
639 and catalytically inactive (CAVIII and CA X) human cytosolic CA protein sequences generated using the Clustal O
640 (1.2.1) multiple sequence alignment. The amino acids that were characterized as part of a putative actin binding
641 site of CAVII (highlighted in red) are not conserved in the other cytosolic CA isoforms (highlighted in gray). An
642 asterisk below the aligned sequences indicates fully conserved residues, a colon indicates residues with strongly
643 similar properties (scoring > 0.5 in the Gonnet PAM 250 matrix) and a period indicates residues with weakly
644 similar properties (scoring \leq 0.5 in the Gonnet PAM 250 matrix).

645

646 Figure 5. Subcellular localization of the chimeric CAVII constructs in fibroblasts. (A-C) NIH3T3 fibroblasts
647 expressing EGFP-CAVII-mutant1 (A), EGFP-CAVII-mutant2 (B), and EGFP-CAVII-mutant3 (C). F-actin is visualized
648 with Phalloidin-594. In the right-most panel of (A-C) are the normalized fluorescence intensity profiles of the
649 mutated CAVII EGFP signal (black) and actin (red) and the yellow line in left-most panels indicates the cross-
650 section from which the pixel intensities were measured. Scale bars 20 μ m. (D) Analysis of the mutated CAVII and
651 F-actin co-localization in cultured fibroblasts. Scatterplots of fluorescent intensities per pixel (EGFP vs. Phalloidin-
652 594) along a cross section through a representative cell. Pearson's correlation coefficient (r) for the analyzed cell
653 is given in each panel. (E) Pearson's correlation coefficient values calculated for the depicted constructs and
654 compared to CAVII. F-actin had a strong positive correlation coefficient with EGFP-CAVII ($r = 0.91 \pm 0.02, n = 23$
655 cells). Neither EGFP alone ($r = 0.01 \pm 0.04, n = 24$) nor EGFP-CAII ($r = 0.13 \pm 0.05, n = 38$) co-localized with F-actin
656 ($P < 0.001$ for both constructs, when compared to CAVII). From the five mutated CAVII constructs, EGFP-CAVII-
657 mutant1 ($r = 0.56 \pm 0.04, P < 0.001, n = 29$) and EGFP-CAVII-mutant3 ($r = 0.72 \pm 0.03, P = 0.001, n = 21$) co-localized
658 less with F-actin actin when compared to CAVII. The co-localization of the other three mutated CAVII constructs,
659 EGFP-CAVII-mutant2 ($r = 0.92 \pm 0.02, P = 0.9996, n = 18$), EGFP-CAVII-R223E ($r = 0.85 \pm 0.02, P = 0.82, n = 21$) and
660 EGFP-CAVII-H96/98C ($r = 0.79 \pm 0.04, P = 0.14, n = 14$) did not differ significantly from that of CAVII. Data are
661 shown as mean \pm SEM, statistical comparison against CAVII was done with one-way ANOVA and Dunnett's
662 multiple comparison test.

663

664 Figure 5 – figure supplement 1. Subcellular localization of the chimeric CA fusion proteins EGFP-CAVII-mutant2,
665 EGFP-CAII-revCAVII, EGFP-CAVII-R223E and EGFP-CAVII-H96/98C in fibroblasts. (A) Transfection with EGFP-
666 CAVII-mutant2 modified cellular F-actin structures in a similar manner than CAVII. (B) Introduction of KKHDV and
667 DDERIH motifs to CAII (EGFP-CAII-revCAVII) did not affect the diffuse cytosolic localization of the isoform II. (C)
668 EGFP-CAVII-R223E and (D) the catalytical loss-of-function mutant EGFP-CAVII-H96/98C co-localized with F-actin.

669 F-actin is visualized with Phalloidin-594 in A - D. The normalized fluorescence emission intensity profiles of (E)
670 EGFP-CAII-revCAVII (F) EGFP-CAVII-R223E, and (G) EGFP-CAVII-H96/98C (black lines) and F-actin (red line). The
671 yellow line in B – D indicates the cross-section of the cell from which the pixel intensities were measured. Analysis
672 of co-localization is shown in lower panels of E - G. Representative single-cell pixel intensities of EGFP and
673 phalloidin-594 channels were plotted against each other and the Pearson's correlation coefficient value (r) was
674 calculated. $n = 3-4$ independent transfections/construct. Scale bars in A – D is 20 μm .

675

676 Figure 5 – figure supplement 2. Expression levels of the different EGFP fusion proteins in fibroblasts (A)
677 Representative images of NIH3T3 cells transfected with the EGFP-tagged CA constructs. Cells were fixed 24 hours
678 after transfection and nuclei were stained with DAPI. $n = 2 - 3$ independent transfections for each construct. Scale
679 bar 20 μm . (B) A representative Western blot showing the expression levels of EGFP-CA fusion proteins in 10 μg
680 of lysate collected 24 hours after transfection. The EGFP-tagged CA fusion proteins are visible at approximately
681 60 kDa, and the β -actin loading control is visible at 42 kDa. (C) Quantification of the fusion proteins expression
682 levels in NIH3T3 cells. Expression level of EGFP-CAVII was set at 1 for each Western blot. $n = 5$ independent
683 transfections for all fusion proteins except for CAVII-mutant2, for which $n = 4$. Transfections efficacy of different
684 fusion proteins did not differ significantly from each other (one-way ANOVA with Dunnett's multiple comparisons
685 test).

686

687 Figure 5 – Source Data 1/This spreadsheet contains Pearson's correlation coefficients calculated for EGFP-tagged
688 CA constructs vs. F-actin for all analyzed NIH3T3 fibroblasts in Figure 5D and E. Each individual experiment
689 consists of 1-4 transfected wells. The person who analyzed the co-localization and calculated Pearson's
690 coefficient values was blind to the transfection.

691

692 Figure 5 – Source Data 2/ The quantified expression levels of the different WT and mutant CA's in NIH3T3
693 fibroblasts. Averages from the five experiments is shown in Figure 5-figure supplement 2. The CA-EGFP band
694 area was quantified (using Image J) as a percentage of the CAVII WT-EGFP band, which was set at 1 on each blot.
695 The actin band area was quantified as a percentage of the actin band on the CAVII WT-EGFP lane, which was set
696 at 1 on each blot. Finally, the relative density for each band was calculated by dividing the band density for CA-
697 EGFP by the band area for actin on the same lane. One lane (mutant2 on 18.1.2019) was excluded because of a
698 mistake in the cell transfection: the actin band was normal but there was no EGFP band on the lane.

699

700 Figure 6. Localization of CAII and CAVII in neurons. (A) Isoform-specific subcellular localization shown in cultured
701 hippocampal neurons (DIV14) co-expressing dsRed-CAVII (*left*) and EGFP-CAII (*middle*). Representative confocal
702 images of precocious *in vivo* expression of (B) EGFP-CAII and (C) EGFP-CAVII in P40 mouse cortical layer 2/3
703 pyramidal neurons. Neurons were transfected at E14.5 with EGFP-CAII or EGFP-CAVII using *in utero*
704 electroporation and images were taken from fixed slices. Right panels in B and C show higher magnification of
705 the primary apical dendrite marked with a box. (D) The expression of EGFP-CAVII disrupted the normal spine
706 morphology and induced the formation of thick, filopodia-like protrusions. $n = 5$ independent repeats for
707 cultured neurons and two animals/construct *in vivo*. Scale bar in (A) 5 μ m; (B and C): 5 μ m, insets in B, C and
708 panel D: 25 μ m

709

710 Figure 6 – figure supplement 1. Localization of WT and chimeric CA EGFP-fusion proteins along the dendritic
711 shaft and in spines in cultured hippocampal neurons. (A) Control experiments with neurons co-expressing
712 mCherry-actin and EGFP. (B) Neuron transfected with mCherry-actin and EGFP-CAII. Compared to the spine-
713 targeted mCherry-actin, CAII localizes more diffusely along dendritic shafts and spines. Both (C) EGFP-CAVII and
714 (D) EGFP-CAVII-mutant2 show a highly overlapping localization with mCherry-actin and disruption of dendritic
715 spine morphology. Spines were replaced by thick, filopodia-like dendritic protrusions, which lack spine heads.

716 The loss-of-function constructs (E) EGFP-CAVII-mutant3 and (F) EGFP-CAVII-mutant1 are more homogenously
717 present in both dendrites and spines. (G) EGFP-CAVII-R223E and (H) the catalytically inactive EGFP-CAVII-R223
718 98C showed overlapping localization with mCherry-actin. Scale bar 5 μ m (A – C, G – H), 10 μ m (D – F).

719

720 Figure 6 – figure supplement 2. EGFP-CAVII expression disrupted normal spine morphology in cultured neurons
721 EGFP-CAVII expression disrupted normal spine morphology in cultured neurons: control, only mCherry-actin:
722 spines with head 0.34 ± 0.04 , thin spines/filopodia 0.21 ± 0.02 , abnormal spines 0.00 ± 0.00 , total 0.54 ± 0.05
723 spines/ μ m; $n = 10$ cells, 509 spines, 973 μ m analyzed dendrite; EGFP-CAII: spines with head 0.35 ± 0.04 , thin
724 spines/filopodia 0.17 ± 0.02 , abnormal spines 0.00 ± 0.00 , total 0.53 ± 0.06 spines/ μ m; $n = 10$ cells, 535 spines,
725 992 μ m analyzed dendrite; EGFP-CAVII: spines with head 0.05 ± 0.02 , thin spines /filopodia 0.10 ± 0.02 , abnormal
726 spines 0.34 ± 0.03 , total 0.49 ± 0.05 spines/ μ m; $n = 10$ cells, 493 spines, 10256 μ m dendrite. Analyzed cells were
727 pooled from two independent experiments. Data are presented as mean + SEM.

728

729 Figure 6- Source Data 1 Source files for spine analysis of cultured neurons expressing only mCherry-actin, or
730 mCherry-actin with EGFP-CAII or EGFP-CAVII. Excel file contains the calculated spine densities for each analyzed
731 cell used for the quantitative analyses shown in Figure 6–figure supplement 2. Inclusion criteria: all healthy,
732 pyramidal neuron looking cells expressing moderate amount of mCherry and co-expressed EGFP-construct. We
733 did not exclude any outliers.

734

735 Figure 7. Layer 2/3 cortical pyramidal neurons in CAVII KO mice have high dendritic spine density and smaller
736 spines but mEPSC frequency and amplitude are not affected (A) Comparison of mEPSCs in cortical layer 2/3
737 pyramidal neurons from P30 – P40 WT and CAVII KO mice. Sample traces of mEPSC recordings from WT and
738 CAVII KO neurons, low-pas filtered at 1 kHz (left). The data are summarized in the bar diagrams (right). mEPSC
739 frequency ($P = 0.63$) and amplitude ($P = 0.90$) were not significantly different between CAVII KO and WT neurons

740 ($n = 4$ and 7 neurons, respectively, Student's independent samples t -test). (B) Representative confocal images of
741 apical dendrites from Lucifer Yellow injected cortical layer 2/3 pyramidal neurons from WT and CAVII KO mice.
742 The dendritic spine density and spine head size were examined in fixed slice preparations from P34 - P37 mice.
743 Scale bar 2 μ m. (C) Summary of the spine density analysis done from the Lucifer Yellow injected neurons. A total
744 of 8279 spines were analyzed from the CAVII KO mice ($n = 4$ animals), and 8730 spines from the WT control mice
745 ($n = 2$ animals). Number of analyzed cells is indicated in brackets in the bar diagram. Mann-Whitney test and
746 Student's t -test with Welch-correction were used for statistical analysis for apical and basal dendrites,
747 respectively. (D) The spine head width distribution, measured from 467 spines from 15 WT cells and 421 spines
748 from 15 CAVII KO cells, differed significantly between the genotypes (Wilcoxon rank sum test with continuity
749 correction, $W = 134540$, $P < 0.001$). Data in B and C are given as mean + SEM.

750

751 Figure 7- Source Data 1/Source files for WT and CAVII KO spine analysis These Excel file contains the calculated
752 spine densities and spine head size distribution used for the quantitative analyses shown in Figure 7 B and C.
753 Inclusion criteria: Layer 2/3 pyramidal neurons in the somatosensory cortex with Lucifer Yellow (LY) -filled
754 dendritic tree. Exclusion criteria: LY-filled neurons outside layer 2/3 and neurons where LY-injections failed
755 (leading to partially filled dendritic arbor). We did not exclude any outliers. All data were counted and the person
756 who analyzed spine density/spine head size was blind to the genotype.

757

758 Rich Media Files

759 Figure 2, Videos 1 and 2. Actin polymerization, visualized with Rhodamine, in the absence (video 1) and
760 presence of CAVII (video 2). Time-lapse images were taken every 10 s. The total duration of both videos is 23
761 min and they are displayed at a rate of seven frames/second.

762

763

764 References

765

766 Al-Samir, S., S. Papadopoulos, R.J. Scheibe, J.D. Meissner, J.P. Cartron, W.S. Sly, S.L. Alper, G. Gros, and V.

767 Endeward. 2013. Activity and distribution of intracellular carbonic anhydrase II and their effects on the

768 transport activity of anion exchanger AE1/SLC4A1. *J Physiol.* 591:4963-4982.

769 Attardo, A., J.E. Fitzgerald, and M.J. Schnitzer. 2015. Impermanence of dendritic spines in live adult CA1

770 hippocampus. *Nature.* 523:592-596.

771 Avoli, M., and M. de Curtis. 2011. GABAergic synchronization in the limbic system and its role in the generation

772 of epileptiform activity. *Prog Neurobiol.* 95:104-132.

773 Azuma, T., W. Witke, T.P. Stossel, J.H. Hartwig, and D.J. Kwiatkowski. 1998. Gelsolin is a downstream effector of

774 rac for fibroblast motility. *EMBO J.* 17:1362-1370.

775 Becker, H.M., and J.W. Deitmer. 2007. Carbonic anhydrase II increases the activity of the human electrogenic

776 Na⁺/HCO₃⁻ cotransporter. *Journal of Biological Chemistry.* 282:13508-13521.

777 Berry, K.P., and E. Nedivi. 2017. Spine Dynamics: Are They All the Same? *Neuron.* 96:43-55.

778 Bertling, E., A. Ludwig, M. Koskinen, and P. Hotulainen. 2012. Methods for three-dimensional analysis of

779 dendritic spine dynamics. *Methods Enzymol.* 506:391-406.

780 Bocker, H.T., T. Heinrich, L. Liebmann, J.C. Hennings, E. Seemann, M. Gerth, I. Jakovcevski, J. Preobraschenski,

781 M.M. Kessels, M. Westermann, D. Isbrandt, R. Jahn, B. Qualmann, and C.A. Hubner. 2018. The Na⁺/H⁺

782 Exchanger Nhe1 Modulates Network Excitability via GABA Release. *Cereb Cortex.*

783 Boron, W.F. 2010. Evaluating the role of carbonic anhydrases in the transport of HCO₃⁻-related species.

784 *Biochim Biophys Acta.* 1804:410-421.

785 Bourne, J.N., and K.M. Harris. 2008. Balancing structure and function at hippocampal dendritic spines. *Annu.*

786 *Rev. Neurosci.* 31:47-67.

787 Brini, M., E. Carafoli, and T. Cali. 2017. The plasma membrane calcium pumps: focus on the role in
788 (neuro)pathology. *Biochem Biophys Res Commun.* 483:1116-1124.

789 Bumke, M.A., D. Neri, and G. Elia. 2003. Modulation of gene expression by extracellular pH variations in human
790 fibroblasts: a transcriptomic and proteomic study. *Proteomics.* 3:675-688.

791 Casey, J.R., W.S. Sly, G.N. Shah, and B.V. Alvarez. 2009. Bicarbonate homeostasis in excitable tissues: role of
792 AE3 Cl-/HCO3- exchanger and carbonic anhydrase XIV interaction. *Am J Physiol Cell Physiol.* 297:C1091-
793 1102.

794 Chesler, M. 2003. Regulation and modulation of pH in the brain. *Physiological Reviews.* 83:1183-1221.

795 Di Fiore, A., E. Truppo, C.T. Supuran, V. Alterio, N. Dathan, F. Bootorabi, S. Parkkila, S.M. Monti, and S.G. De.
796 2010. Crystal structure of the C183S/C217S mutant of human CA VII in complex with acetazolamide.
797 *Bioorg. Med. Chem. Lett.* 20:5023-5026.

798 Diering, G.H., F. Mills, S.X. Bamji, and M. Numata. 2011. Regulation of dendritic spine growth through activity-
799 dependent recruitment of the brain-enriched Na(+)/H(+) exchanger NHE5. *Mol. Biol. Cell.* 22:2246-
800 2257.

801 Dong, X., K. Shen, and H.E. Bulow. 2015. Intrinsic and extrinsic mechanisms of dendritic morphogenesis. *Annu
802 Rev Physiol.* 77:271-300.

803 Duprat, F., F. Lesage, M. Fink, R. Reyes, C. Heurteaux, and M. Lazdunski. 1997. TASK, a human background K+
804 channel to sense external pH variations near physiological pH. *EMBO Journal.* 16:5464-5471.

805 Earnhardt, J.N., M.Z. Qian, C.K. Tu, M.M. Lakkis, N.C.H. Bergenhem, P.J. Laipis, R.E. Tashian, and D.N. Silverman.
806 1998. The catalytic properties of murine carbonic anhydrase VII. *Biochemistry.* 37:10837-10845.

807 Eriksson, A.E., T.A. Jones, and A. Liljas. 1988. Refined structure of human carbonic anhydrase II at 2.0 Å
808 resolution. Vol. 4. 274-282.

809 Fiumelli, H., A. Briner, M. Puskarjov, P. Blaeser, B.J. Belem, A.G. Dayer, K. Kaila, J.L. Martin, and L. Vutskits.
810 2013. An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic
811 spinogenesis in vivo. *Cereb. Cortex.* 23:378-388.
812 Folta-Stogniew, E., and K.R. Williams. 1999. Determination of molecular masses of proteins in solution:
813 Implementation of an HPLC size exclusion chromatography and laser light scattering service in a core
814 laboratory. *J Biomol Tech.* 10:51-63.
815 Frantz, C., G. Barreiro, L. Dominguez, X. Chen, R. Eddy, J. Condeelis, M.J. Kelly, M.P. Jacobson, and D.L. Barber.
816 2008. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. *J. Cell*
817 *Biol.* 183:865-879.
818 Geers, C., and G. Gros. 2000. Carbon dioxide transport and carbonic anhydrase in blood and muscle. *Physiol*
819 *Rev.* 80:681-715.
820 Halestrap, A.P. 2013. The SLC16 gene family - structure, role and regulation in health and disease. *Mol Aspects*
821 *Med.* 34:337-349.
822 Hayashi, K., and T. Shirao. 1999. Change in the shape of dendritic spines caused by overexpression of drebrin in
823 cultured cortical neurons. *J Neurosci.* 19:3918-3925.
824 Heath, G.R., B.R. Johnson, P.D. Olmsted, S.D. Connell, and S.D. Evans. 2013. Actin assembly at model-supported
825 lipid bilayers. *Biophys. J.* 105:2355-2365.
826 Hirasawa, M., X. Xu, R.B. Trask, T.P. Maddatu, B.A. Johnson, J.K. Naggert, P.M. Nishina, and A. Ikeda. 2007.
827 Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory
828 synaptic function in the cerebellum. *Mol. Cell Neurosci.* 35:161-170.
829 Holtmaat, A.J., J.T. Trachtenberg, L. Wilbrecht, G.M. Shepherd, X. Zhang, G.W. Knott, and K. Svoboda. 2005.
830 Transient and persistent dendritic spines in the neocortex in vivo. *Neuron.* 45:279-291.
831 Hotulainen, P., and C.C. Hoogenraad. 2010. Actin in dendritic spines: connecting dynamics to function. *J. Cell*
832 *Biol.* 189:619-629.

833 Hotulainen, P., O. Llano, S. Smirnov, K. Tanhuanpaa, J. Faix, C. Rivera, and P. Lappalainen. 2009. Defining
834 mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. *J.*
835 *Cell Biol.* 185:323-339.

836 Hulikova, A., and P. Swietach. 2015. Nuclear proton dynamics and interactions with calcium signaling. *J. Mol.*
837 *Cell Cardiol.*

838 Kaila, K., and M. Chesler. 1998. Activity-Evoked Changes in Extracellular pH. *In* pH and Brain Function. K. Kaila
839 and B.R. Ransom, editors. Wiley-Liss, Inc. 309-337.

840 Kaila, K., K. Lamsa, S. Smirnov, T. Taira, and J. Voipio. 1997. Long-lasting GABA-mediated depolarization evoked
841 by high- frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a
842 network-driven, bicarbonate-dependent K⁺ transient. *Journal of Neuroscience*. 17:7662-7672.

843 Kaila, K., T.J. Price, J.A. Payne, M. Puskarjov, and J. Voipio. 2014a. Cation-chloride cotransporters in neuronal
844 development, plasticity and disease. *Nat. Rev. Neurosci.* 15:637-654.

845 Kaila, K., E. Ruusuvuori, P. Seja, J. Voipio, and M. Puskarjov. 2014b. GABA actions and ionic plasticity in epilepsy.
846 *Curr. Opin. Neurobiol.* 26:34-41.

847 Kaila, K., and J. Voipio. 1987. Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate
848 conductance. *Nature*. 330:163-165.

849 Karki, S., P. Paudel, C. Sele, A.V. Shkumatov, and T. Kajander. 2018. The structure of SALM5 suggests a dimeric
850 assembly for the presynaptic RPTP ligand recognition. *Protein Eng Des Sel.* 31:147-157.

851 Kiefer, L.L., and C.A. Fierke. 1994. Functional characterization of human carbonic anhydrase II variants with
852 altered zinc binding sites. *Biochemistry*. 33:15233-15240.

853 Krishnan, D., L. Liu, S.A. Wiebe, J.R. Casey, E. Cordat, and R.T. Alexander. 2015. Carbonic anhydrase II binds to
854 and increases the activity of the epithelial sodium-proton exchanger, NHE3. *Am. J. Physiol Renal*
855 *Physiol.* 309:F383-F392.

856 Lagarrigue, E., D. Ternent, S.K. Maciver, A. Fattoum, Y. Benyamin, and C. Roustan. 2003. The activation of
857 gelsolin by low pH: the calcium latch is sensitive to calcium but not pH. *Eur J Biochem*. 270:4105-4112.

858 Lee, S.H., and R. Dominguez. 2010. Regulation of actin cytoskeleton dynamics in cells. *Mol. Cells*. 29:311-325.

859 Maren, T.H. 1967. Carbonic anhydrase: chemistry, physiology, and inhibition. *Physiological Reviews*. 47:595-
860 781.

861 Matsuda, T., and C.L. Cepko. 2004. Electroporation and RNA interference in the rodent retina in vivo and in
862 vitro. *Proc. Natl. Acad. Sci. U. S. A.* 101:16-22.

863 Mizui, T., H. Takahashi, Y. Sekino, and T. Shirao. 2005. Overexpression of drebrin A in immature neurons
864 induces the accumulation of F-actin and PSD-95 into dendritic filopodia, and the formation of large
865 abnormal protrusions. *Mol. Cell Neurosci*. 30:149-157.

866 Montgomery, J.C., P.J. Venta, R.L. Eddy, Y.S. Fukushima, T.B. Shows, and R.E. Tashian. 1991. Characterization of
867 the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome
868 16. *Genomics*. 11:835-848.

869 Neri, D., and C.T. Supuran. 2011. Interfering with pH regulation in tumours as a therapeutic strategy. *Nat. Rev.*
870 *Drug Discov.* 10:767-777.

871 Niwa, H., K. Yamamura, and J. Miyazaki. 1991. Efficient selection for high-expression transfectants with a novel
872 eukaryotic vector. *Gene*. 108:193-199.

873 Paavilainen, V.O., E. Bertling, S. Falck, and P. Lappalainen. 2004. Regulation of cytoskeletal dynamics by actin-
874 monomer-binding proteins. *Trends Cell Biol*. 14:386-394.

875 Paavilainen, V.O., M. Hellman, E. Helfer, M. Bovellan, A. Annila, M.F. Carlier, P. Permi, and P. Lappalainen.
876 2007. Structural basis and evolutionary origin of actin filament capping by twinfilin. *Proc Natl Acad Sci*
877 *U S A*. 104:3113-3118.

878 Pasternack, M., S. Smirnov, and K. Kaila. 1996. Proton modulation of functionally distinct GABA_A receptors in
879 acutely isolated pyramidal neurons of rat hippocampus. *Neuropharmacology*. 35:1279-1288.

880 Pavlov, I., K. Kaila, D.M. Kullmann, and R. Miles. 2013. Cortical inhibition, pH and cell excitability in epilepsy:
881 what are optimal targets for antiepileptic interventions? *J. Physiol.* 591:765-774.

882 Pfeiffer, T., S. Poll, S. Bancelin, J. Angibaud, V.K. Inavalli, K. Keppler, M. Mittag, M. Fuhrmann, and U.V. Nagerl.
883 2018. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo.
884 *Elife.* 7.

885 Puius, Y.A., N.M. Mahoney, and S.C. Almo. 1998. The modular structure of actin-regulatory proteins. *Curr Opin*
886 *Cell Biol.* 10:23-34.

887 Rodriguez, A., D.B. Ehlenberger, D.L. Dickstein, P.R. Hof, and S.L. Wearne. 2008. Automated three-dimensional
888 detection and shape classification of dendritic spines from fluorescence microscopy images. *PLoS One.*
889 3:e1997.

890 Rose, C.R., Y. Kovalchuk, J. Eilers, and A. Konnerth. 1999. Two-photon Na⁺ imaging in spines and fine dendrites
891 of central neurons. *Pflugers Archiv : European Journal of Physiology.* 439:201-207.

892 Ruffin, V.A., A.I. Salameh, W.F. Boron, and M.D. Parker. 2014. Intracellular pH regulation by acid-base
893 transporters in mammalian neurons. *Front Physiol.* 5:43.

894 Ruusuvuori, E., A.K. Huebner, I. Kirilkin, A. Yukin, P. Blaesse, M.M. Helmy, H.J. Kang, M. Muayed, J.C. Hennings,
895 J. Voipio, N. Sestan, C.A. Hubner, and K. Kaila. 2013. Neuronal carbonic anhydrase VII provides
896 GABAergic excitatory drive to exacerbate febrile seizures. *EMBO J.*

897 Ruusuvuori, E., I. Kirilkin, N. Pandya, and K. Kaila. 2010. Spontaneous Network Events Driven by Depolarizing
898 GABA Action in Neonatal Hippocampal Slices are Not Attributable to Deficient Mitochondrial Energy
899 Metabolism. *Journal of Neuroscience.* 30:15638-15642.

900 Ruusuvuori, E., H. Li, K. Huttu, J.M. Palva, S. Smirnov, C. Rivera, K. Kaila, and J. Voipio. 2004. Carbonic anhydrase
901 isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of
902 hippocampal CA1 pyramidal cells. *Journal of Neuroscience.* 24:2699-2707.

903 Sala, C., and M. Segal. 2014. Dendritic spines: the locus of structural and functional plasticity. *Physiol Rev.*
904 94:141-188.

905 Scheibe, R.J., G. Gros, S. Parkkila, A. Waheed, J.H. Grubb, G.N. Shah, W.S. Sly, and P. Wetzel. 2006. Expression
906 of membrane-bound carbonic anhydrases IV, IX, and XIV in the mouse heart. *J. Histochem. Cytochem.*
907 54:1379-1391.

908 Schroeder, M.A., M.A. Ali, A. Hulikova, C.T. Supuran, K. Clarke, R.D. Vaughan-Jones, D.J. Tyler, and P. Swietach.
909 2013. Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics.
910 *Proc. Natl. Acad. Sci. U. S. A.* 110:E958-E967.

911 Shirao, T., K. Hayashi, R. Ishikawa, K. Isa, H. Asada, K. Ikeda, and K. Uyemura. 1994. Formation of thick, curving
912 bundles of actin by drebrin A expressed in fibroblasts. *Exp. Cell Res.* 215:145-153.

913 Siesjö, B.K., K. Katsura, P. Mellergård, A. Ekholm, J. Lundgren, and M.L. Smith. 1993. Acidosis-related brain
914 damage. *Progress in Brain Research.* 96:23-48.

915 Sinning, A., and C.A. Hubner. 2013. Minireview: pH and synaptic transmission. *FEBS Lett.* 587:1923-1928.

916 Sinning, A., L. Liebmann, A. Kougoumtzes, M. Westermann, C. Bruehl, and C.A. Hubner. 2011. Synaptic
917 Glutamate Release Is Modulated by the Na⁺-Driven Cl⁻/HCO₃⁻ Exchanger Slc4a8. *Journal of*
918 *Neuroscience.* 31:7300-7311.

919 Spray, D.C., A.L. Harris, and M.V.L. Bennet. 1981. Gap junctional conductance is a simple and sensitive function
920 of intracellular pH. *Science.* 211:712-715.

921 Sterling, D., R.A.F. Reithmeier, and J.R. Casey. 2001. A transport metabolon. Functional interaction of carbonic
922 anhydrase II and chloride/bicarbonate exchangers. *Journal of Biological Chemistry.* 276:47886-47894.

923 Stewart, A.K., C.A. Boyd, and R.D. Vaughan-Jones. 1999. A novel role for carbonic anhydrase: cytoplasmic pH
924 gradient dissipation in mouse small intestinal enterocytes. *Journal of Physiology.* 516 (Pt 1):209-217.

925 Stridh, M.H., M.D. Alt, S. Wittmann, H. Heidtmann, M. Aggarwal, B. Riederer, U. Seidler, G. Wennemuth, R.

926 McKenna, J.W. Deitmer, and H.M. Becker. 2012. Lactate flux in astrocytes is enhanced by a non-

927 catalytic action of carbonic anhydrase II. *J. Physiol.* 590:2333-2351.

928 Suarez, C., J. Roland, R. Boujemaa-Paterski, H. Kang, B.R. McCullough, A.C. Reymann, C. Guerin, J.L. Martiel,

929 E.M. De la Cruz, and L. Blanchoin. 2011. Cofilin tunes the nucleotide state of actin filaments and severs

930 at bare and decorated segment boundaries. *Curr Biol.* 21:862-868.

931 Taira, T., S. Smirnov, J. Voipio, and K. Kaila. 1993. Intrinsic proton modulation of excitatory transmission in rat

932 hippocampal slices. *NeuroReport.* 4:93-96.

933 Tombaugh, G.C., and G.G. Somjen. 1996. Effects of extracellular pH on voltage-gated Na⁺, K⁺ and Ca²⁺ currents

934 in isolated rat CA1 neurons. *Journal of Physiology.* 493 (Pt 3):719-732.

935 Traynelis, S.F., and S.G. Cull-Candy. 1990. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar

936 neurons. *Nature.* 345:347-350.

937 Waldmann, R., G. Champigny, F. Bassilana, C. Heurteaux, and M. Lazdunski. 1997. A proton-gated cation

938 channel involved in acid-sensing. *Nature.* 386:173-177.

939 Wang, F., R.V. Sampogna, and B.R. Ware. 1989. pH dependence of actin self-assembly. *Biophys. J.* 55:293-298.

940 Wang, W.G., S.R. Bradley, and G.B. Richerson. 2002. Quantification of the response of rat medullary raphe

941 neurones to independent changes in pH(O) and P-CO₂. *Journal of Physiology.* 540:951-970.

942 Wetzel, P., T. Kleinke, S. Papadopoulos, and G. Gros. 2002. Inhibition of muscle carbonic anhydrase slows the

943 Ca(2+) transient in rat skeletal muscle fibers. *Am. J. Physiol Cell Physiol.* 283:C1242-C1253.

944 Viitanen, T., E. Ruusuvuori, K. Kaila, and J. Voipio. 2010. The KCl -cotransporter KCC2 promotes GABAergic

945 excitation in the mature rat hippocampus. *Journal of Physiology.* 588:1527-1540.

946 Willoughby, D., and C.J. Schwiening. 2002. Electrically evoked dendritic pH transients in rat cerebellar Purkinje

947 cells. *Journal of Physiology-London.* 544:487-499.

948 Vince, J.W., and R.A.F. Reithmeier. 1998. Carbonic anhydrase II binds to the carboxyl terminus of human band
949 3, the erythrocyte Cl-/HCO₃- exchanger. *Journal of Biological Chemistry*. 273:28430-28437.

950 Voipio, J. 1998. Diffusion and buffering aspects of H⁺, HCO₃⁻, and CO₂ movements in brain tissue. In pH and
951 brain function. K. Kaila and B.R. Ransom, editors. Wiley-Liss. 45-66.

952 Voipio, J., P. Paalasmaa, T. Taira, and K. Kaila. 1995. Pharmacological characterization of extracellular pH
953 transients evoked by selective synaptic and exogenous activation of AMPA, NMDA, and GABA_A
954 receptors in the rat hippocampal slice. *Journal of Neurophysiology*. 74:633-642.

955 Vullo, D., E. Ruusuvuori, K. Kaila, A. Scozzafava, and C.T. Supuran. 2006. Carbonic anhydrase inhibitors:
956 inhibition of the cytosolic human isozyme VII with anions. *Bioorg Med Chem Lett*. 16:3139-3143.

957 Yellen, G. 2018. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal
958 metabolism. *J Cell Biol*. 217:2235-2246.

959 Yonezawa, N., E. Nishida, and H. Sakai. 1985. pH control of actin polymerization by cofilin. *J. Biol. Chem.*
960 260:14410-14412.

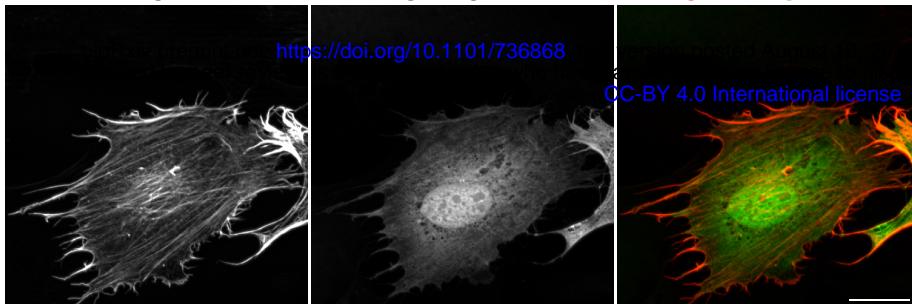
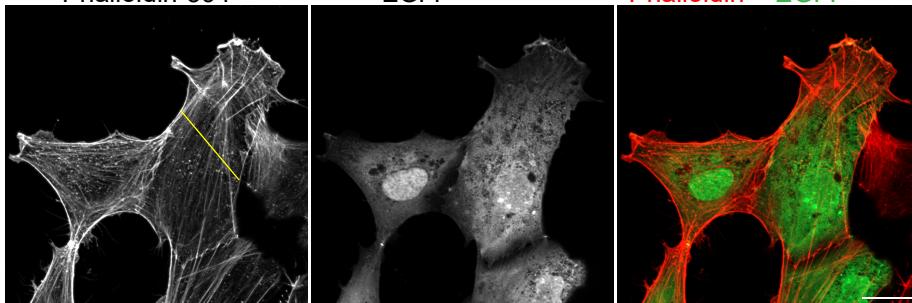

961

Figure 1 Bertling, Blaesse, Seja et al.

A dsRed-CAVII

EGFP-CAII

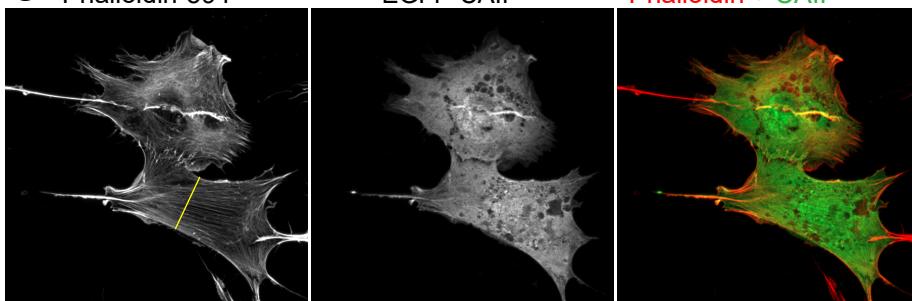
CAVII + CAII


<https://doi.org/10.1101/736868>

bioRxiv preprint doi: <https://doi.org/10.1101/736868>; this version posted August 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

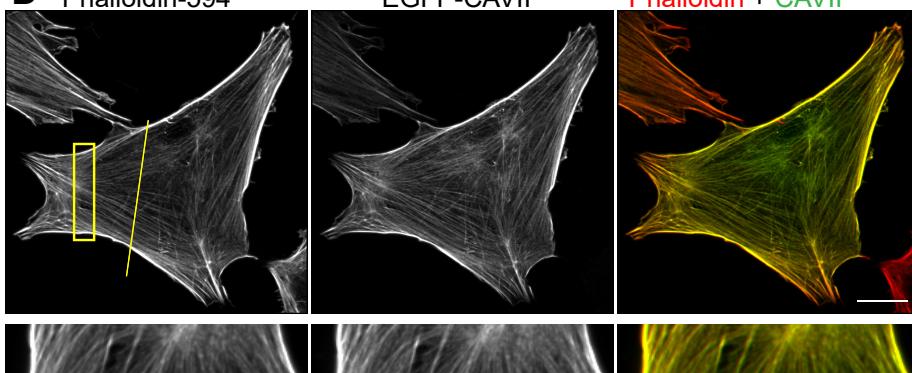
B Phalloidin-594

EGFP


Phalloidin + EGFP

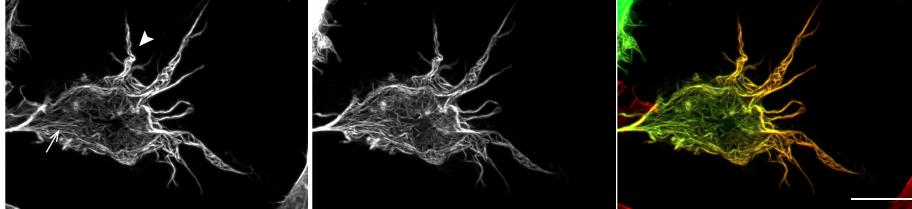
C Phalloidin-594

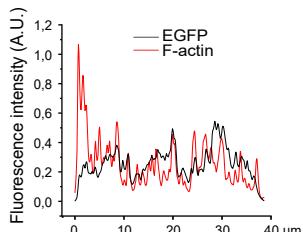
EGFP-CAII


Phalloidin + CAII

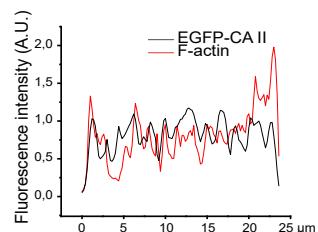
D Phalloidin-594

EGFP-CAVII


Phalloidin + CAVII


E Phalloidin-594

EGFP-CAVII


Phalloidin + CAVII

F

G

H

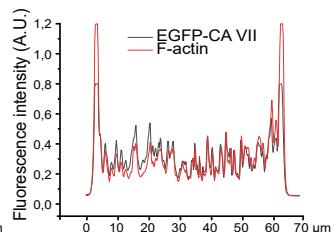


Figure 1 - figure supplement 1 Bertling, Blaesse, Seja et al.

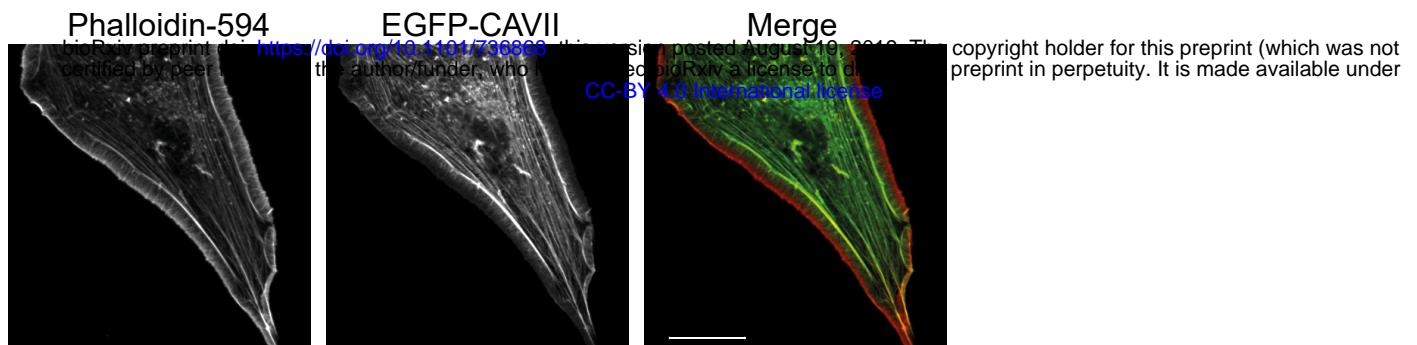


Figure 2. Bertling, Blaesse, Seja et al.

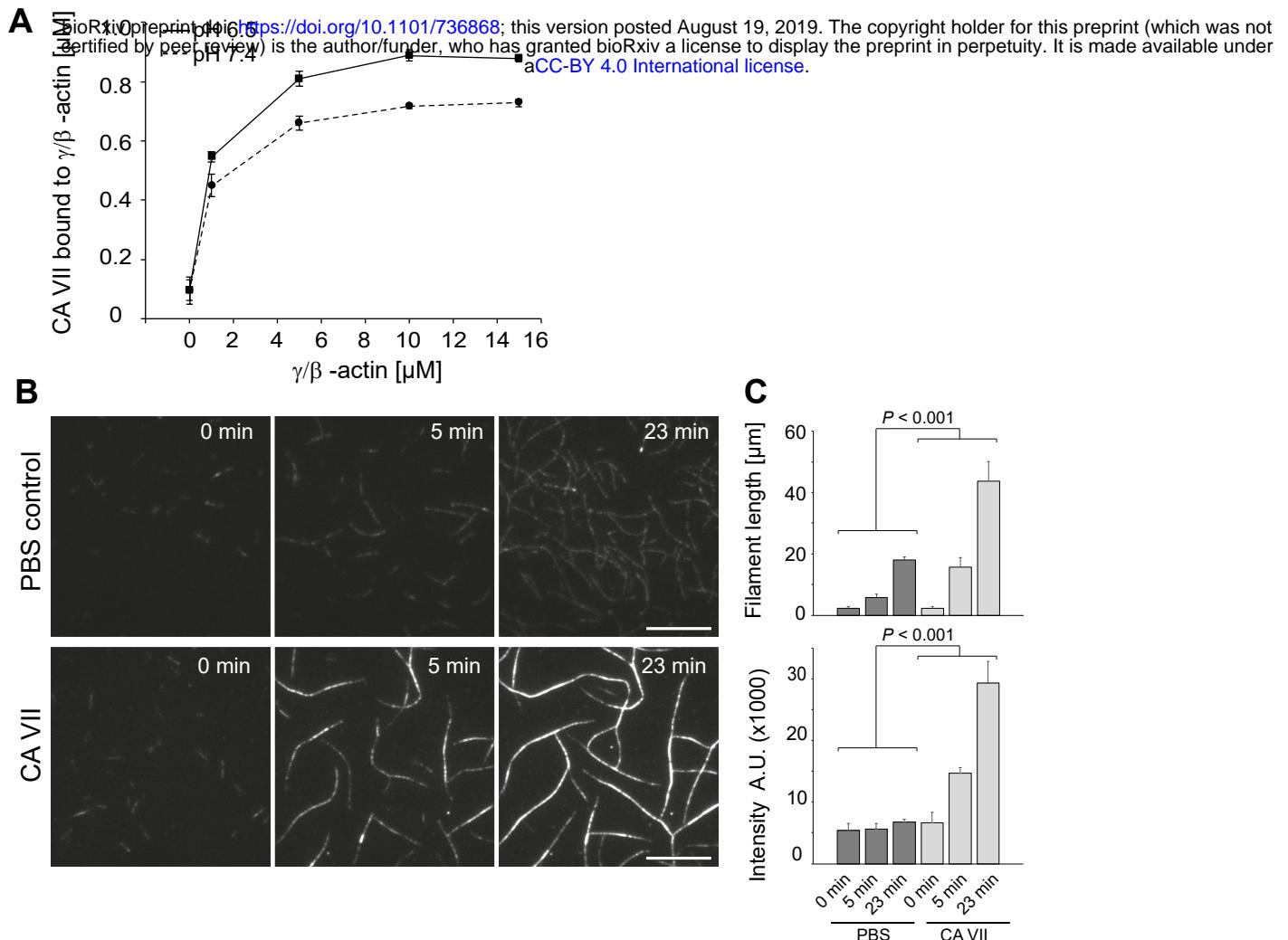


Figure 2 - figure supplement 1 Bertling, Blaesse, Seja et al.

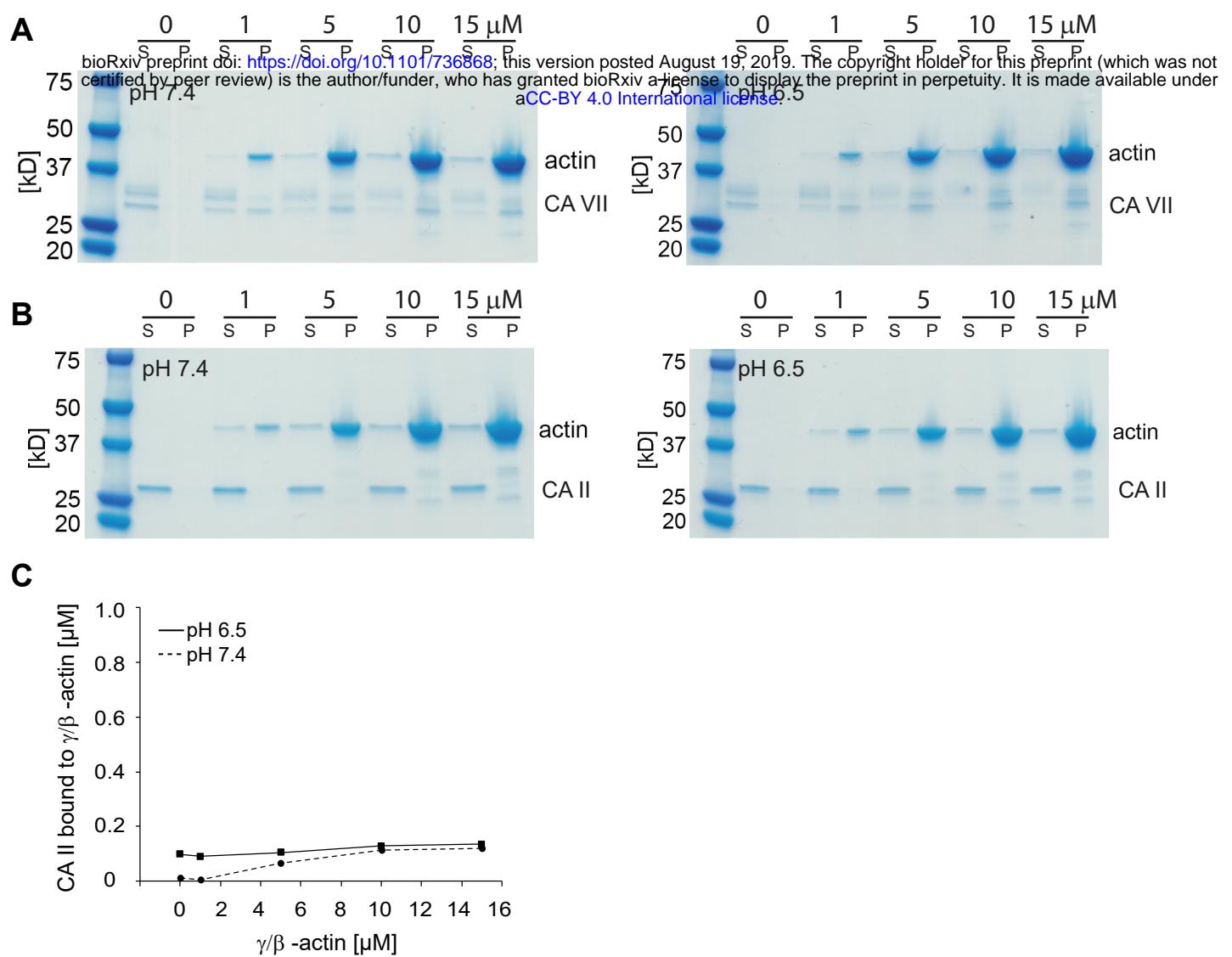


Figure 2 - figure supplement 2 Bertling, Blaesse, Seja et al.

bioRxiv preprint doi: <https://doi.org/10.1101/736868>; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

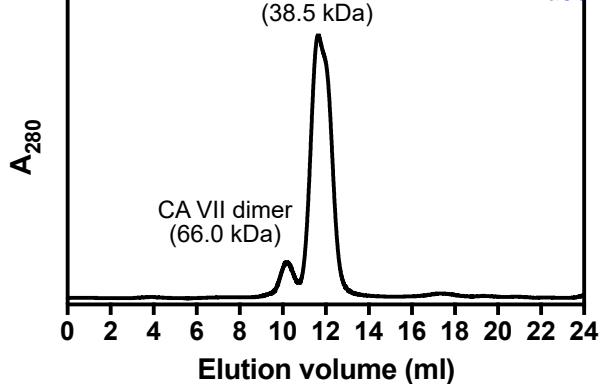
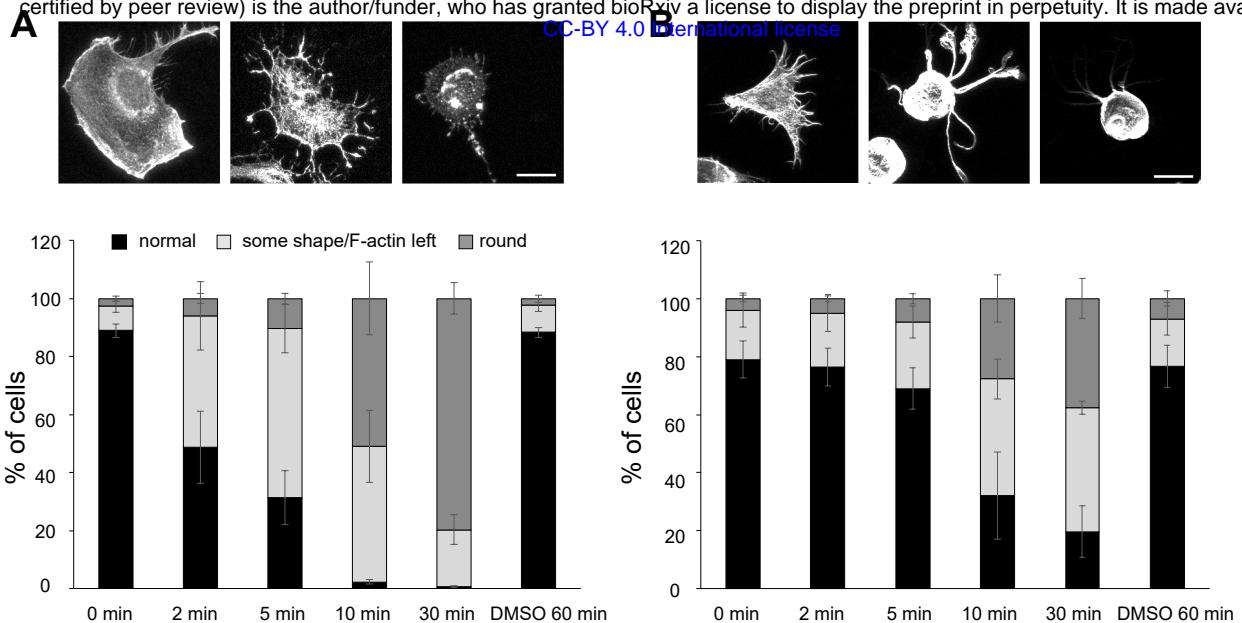
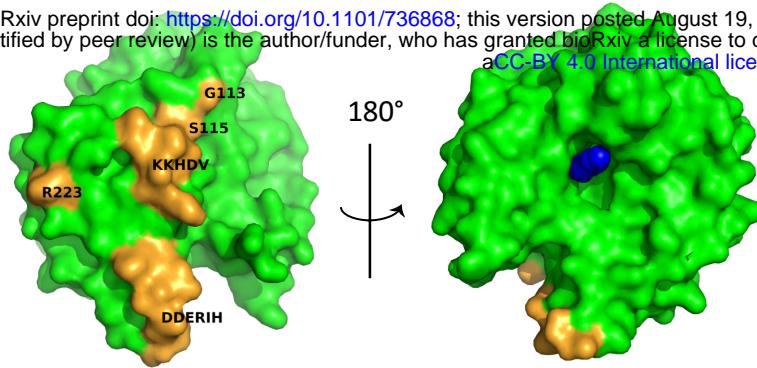
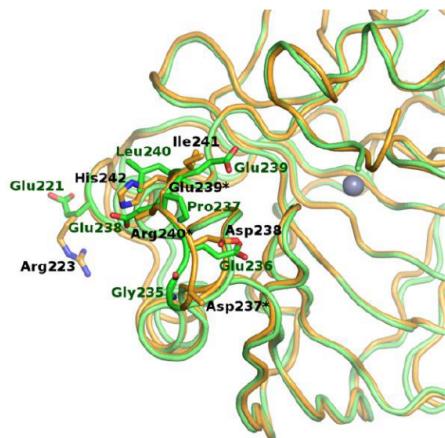


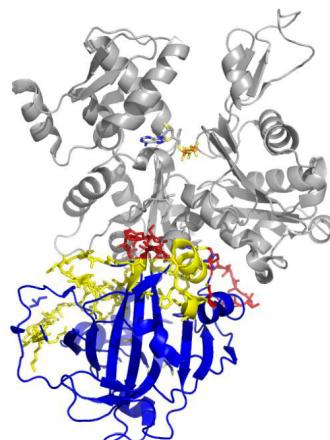
Figure 3. Bertling, Blaesse, Seja et al.

bioRxiv preprint doi: <https://doi.org/10.1101/736868>; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Figure 4. Bertling, Blaesse, Seja et al.

A


bioRxiv preprint doi: <https://doi.org/10.1101/736868>; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

C

D **hCA II** --MSHHWGYKHNPGEHWHKDFPIAKGERQSPVDidTHTAKYDPSLKPLSVSYDQATSLR **58**
hCA VII MTGHHWGYGQDDGPSHWHKLYPIAQGDRQSPINIISSQAVYSPSLQPLELSYEACMSLS **60**

hCA II ILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKYAAEL **118**
hCA VII ITNNNGHSVQVDFNDSDDRTVVTGGPLEGPYRLKQFH**F**HWGKKHDVGSEHTVDGKSFPSel **120**

hCA II HLVHWNT-KYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTN **177**
hCA VII HLVHWNAAKKYSTFGEAASAPDGLAVGVFLETGDEHPSMNR LTDALYMFVRFKGTKAQFSC **180**

hCA II FDPRGLLPESLDYWTYPGSLTTPPLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPE **237**
hCA VII FNPKCLLPASRHYWTYPGSLTTPPLSESVTWIVLREPICISERQMGKFRSLLFTSEDDER **240**

hCA II ELMVDNWRPAQPLKNRQIKASFK- **260**
hCA VII IHMVNNFRPPQPLKGRVVKASFRA **264**

E

CA VII	101	KKHDV	105	...	113	GKS	115	...	237	DDERIH	242
CA VII-mutant1		SLDGQ				KKK				GEPEEL	
CA VII-mutant2		SLDGQ				GKS				DDERIH	
CA VII-mutant3		KKHDV				GKS				GEPEEL	
CA II-revCAVII	99	KKHDV	103	...	111	GKS	113	...	234	DDERIH	239

Figure 4 - figure supplement 1 Bertling, Blaesse, Seja et al.

CAI	MASPDWGYDDK-----N	12
CAI	bioRxiv preprint doi: https://doi.org/10.1101/736868 ; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.	11
CAIII	MAKEWCYASH-----N	
CAVA	MLGRNTWKTSAFSFLVEQMWAFLWSRSMR-----PGRWCSQRSCAWQTSNN-----T	47
CAVB	MVVMNSLRVILQASPGKLLWRKFQIPRFM-----PARPCSLYTCYKTRNR-----A	47
CAVII	-----MTGHHGWGYGQD-----D	13
CAVIII	-----ADLSFIE-----DTVAFPEKE-----EDEEEEEEGVEWGYEEG-----	33
CAX	-----MEIVWEVLFLLQANFIVCISAQQNSPKIHEGWWAYKEVQGSFVP	45
CAXIII	-----MSRLSWGYREH-----N	12
	----- . .	
CAI	GPEQWSKLY----PIANGNNQSPVDIKTSETKHDTSLKPISVS--YNPATAKEIINVGHS	66
CAII	GPEHWHKDF----PIAKGERQSPVDidTHTAKYDPSLKPISVS--YDQATSLRILNNGHA	65
CAIII	GPDHWHELF----PNAKGENQSPVVELHTKDIRHDPQLQWPWSVS--YDGGSAKTIILNNGKT	65
CAVA	LHPLWTPV-----SVPGGTRQSPINIQWRDSVYDPQLKPLRVS--YEAASCLYIWNTGYL	101
CAVB	LHPLWESVD----LVPGGDRQSPINIRWRDSVYDPGLKPLTIS--YDPATCLHVWNNGYS	101
CAVII	GPSHWHKLY----PIAQGDRQSPINIISSQAVYSPSLQPLELS--YEACMSLSITNNGHS	67
CAVIII	--VEWGLVF----PDANGEYQSPINLNSREARYDPSLLDVRSLSPNYVVCRDCEVNDGHT	87
CAX	VPSFWGLVNSAWNLCVGKQRQSPVNIETSHMIFDPFLTPLRINTGGR-KVSGTMYNTGRH	104
CAXIII	GPIHWKEFF----PIADGDQQSPIEIKTKEVKYDSSLRPLSIK--YDPSSAKIISNSGHS	66
	* * * * : . . * : . . : . : * * : .	
CAI	FHVNFEVDNDRSVLKGPFSD--SYRLFQFHFHWG-----STNEHGSEHTVDGVKYSIELHVAHW	124
CAII	FNVEFDDSDQDKAVLKGPFSD--TYRLIQFHFHWG-----SLDGQGSEHTVDKKYAAELHLVHW	123
CAIII	CRVVFDDTYDRSMLRGGPLPG--PYRLRQFHLHWGSSDDHGSEHTVDGVKYAAELHLVHW	123
CAVA	FQVEFDDATEASGIGGGPLEN--HYRLKQFHFHWGAVNEGGSEHTVDGHAYPAELHLVHW	159
CAVB	FLVEFEDSTDKSVIKGGPLEH--NYRLKQFHFHWGAIADWSEHTVDGKSCFPAELHLVHW	159
CAVII	VQVDFNDSDDRTVVTGGPLEG--PYRLKQFHFHWGKKHDVGSEHTVDGKSFPSSELHLVHW	125
CAVIII	IQVILK---SKSVLSGGPLPQGHEFELYEVRFHWGRENQRGSEHTVNFKAFPMELHLIHW	144
CAX	VSLRLD-KEHLVNISGGPMTY--SHRLEEIRLHFGSEDSQGSEHLLNGQAFSGEVQLIHY	161
CAXIII	FNVDFDDTENKSVLRGGPLTG--SYRLRQVHLHWGSADDHGSEHIVDGVSYAAELHVWVHW	124
	: . . : * * : . . * : : * : . . : * * : : * : : * : .	
CAI	NSAKYSSLAEEASKADGLAVIGVLMKVGEANPKL-QKV--LDALQAIKTKGKRAPFTNFD	181
CAII	NT-KYGDFGKAVQQPDGLAVLGIFLKVGSAKPG--QKV--VDVLDSIKTKGKSADFTNFD	179
CAIII	NP-KYNTFKEALKQRDGIAVIGIFLKIGHENGF-QIF--LDALDKIKTKGKEAPFTKFD	179
CAVA	NSVKYQNYKEAVVGENGLAVIGVFLKLGAAHQTL-QRL--VDILPEIKHKDARAAMRPFD	216
CAVB	NAVRFENFDAALEENGLAVIGVFLKLGKHHKEL-QKL--VDTLPSIKHKDALVEFGSFD	216
CAVII	NAKKYSTFGEASAAPDGLAVGVFLETGDEHPSM-NRL--TDALYMRVFKGKTAQFSCFN	182
CAVIII	NSTLFGSIDEAVGKPHGIAIIALFVQIGKEHVG--KAV--TEILQDIQYKGKSKTIPCFN	201
CAX	NHELYTNVTEAAKSPNGLVVVSIFIKVSDSSNPFNRLNRLDTITRITYKNDAYLLOGLN	221
CAXIII	NSDKYPSFVEAAHEPDGLAVLGFLQIGEPNSQL-QKI--TDTLDISIKEKGKQTRFTNFD	181
	* : . * . * : : * : : . : : . : : : * . : : * : .	
CAI	PSLLLPS--SLDFWTYPGSLTHPPLYESVTWICKEISVSSEQLAQFRSLLSNVEGDNA	239
CAII	PRGLLPE--SLDYWTYPGSLTPPLLECVTWIVLKEPISVSSEQVLFKFRKLNFGEGEPE	237
CAIII	PSCLFPA--CRDYWTYQGSFTTPCEECIVWLLLKEPMVTSSDQMAKLRSSLLSSAENEPP	237
CAVA	PSLLLPT--CWDYWTYAGSLTPPLTESVTWIIQKEPVEVAPSQSAFRTLLFSEGEKE	274
CAVB	PSCLMPT--CPDYWTYSGSLTPPLSESVDIQQKPVVEVDHQLEQFRFTLLFSEGEKE	274
CAVII	PKCLLPA--SRHYWTYPGSLTPPLSESVDIQLREPICISERQMGKFRSLLFTSEDDER	240
CAVIII	PNTLLPDPLLRDYWVYEGSLTIPPCSEGVTWILFRYPLTISQLQIEFRRRLRTHVKGAE	261
CAX	IEELYPE--TSSFITYDGSMTIIPPCYETASWIMMNKPVYITRMQMHSRLLLSQNQPSQIF	279
CAXIII	LLSLLPP--SWDYWTYPGSLTVPPLESVTWIVLQKPINISSQQLAKFRSLLCTAEGEAA	239
	* * : . * * : * * * : * : . : : * : : * : .	
CAI	-----VPMQHNNRPTQPLKGRTVRASF-----	261
CAII	-----ELMVDNWRPAQPLKRNQIKASF-----	260
CAIII	-----VPLVSNWRPQPINNRVVRASF-----	260
CAVA	-----KMMVNNYRPLQPLMNRKVWASFQATNEGTRS-----	305
CAVB	-----KRMVDNFRPLQPLMNRTVRSSFRHDYVLNVQAKPKPATSQATP-----	317
CAVII	-----IMVNNFRPPQPLKGRVKASFRA-----	264
CAVIII	VEGCDGILGDNFRPTQPLSDRVIRAAFQ-----	289
CAX	-----LSMSDNFRPVQPLNNRCIRTNINFSLQGKDCPNNRAQKLQYRVNEWLLK	328
CAXIII	-----AFLVSNHRPPQPLKGRVKASF-----	262
	: * * * : . * : : :	

Figure 5. Bertling, Blaesse, Seja et al.

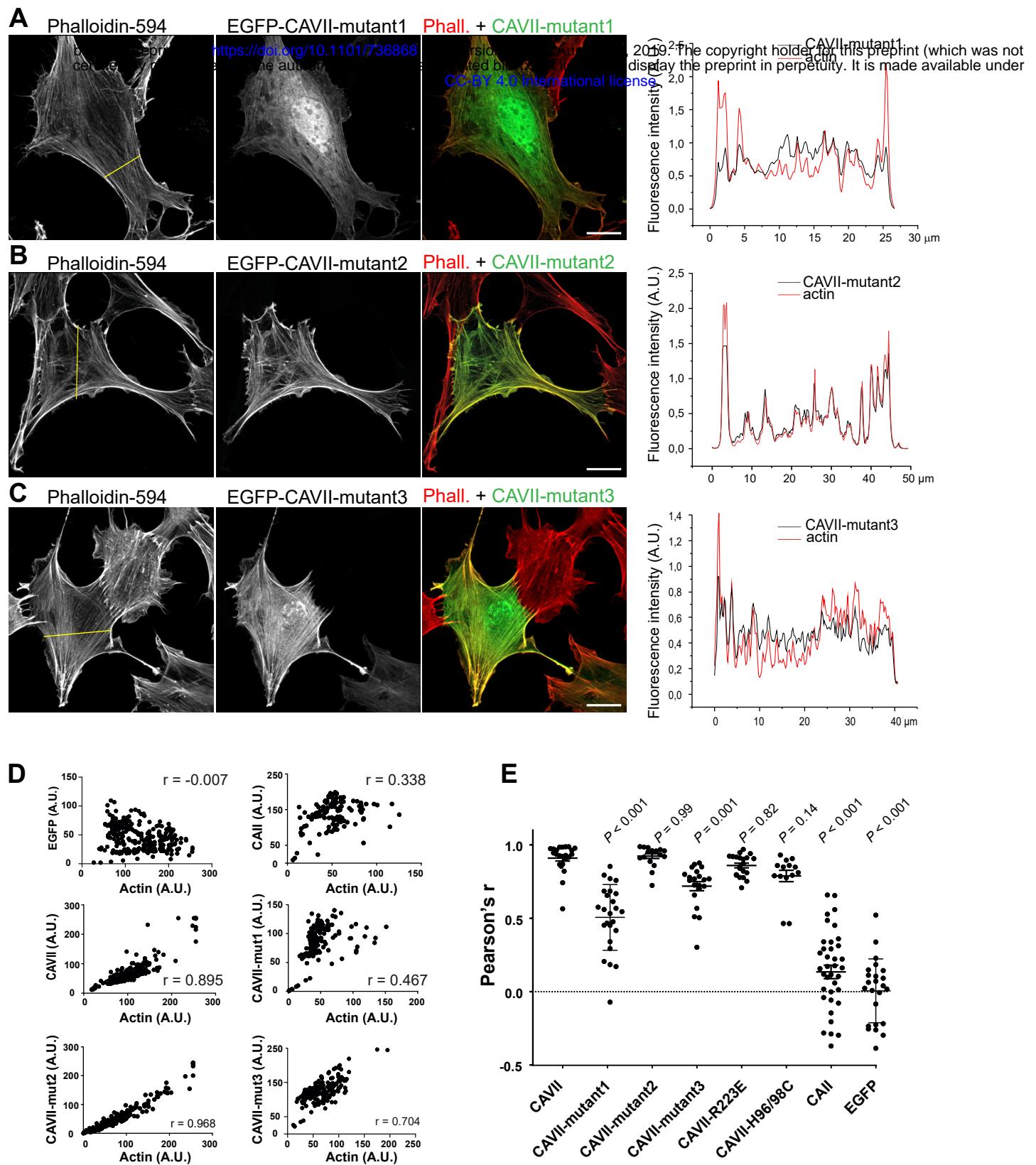


Figure 5 - figure supplement 1 Bertling, Blaesse, Seja et al.

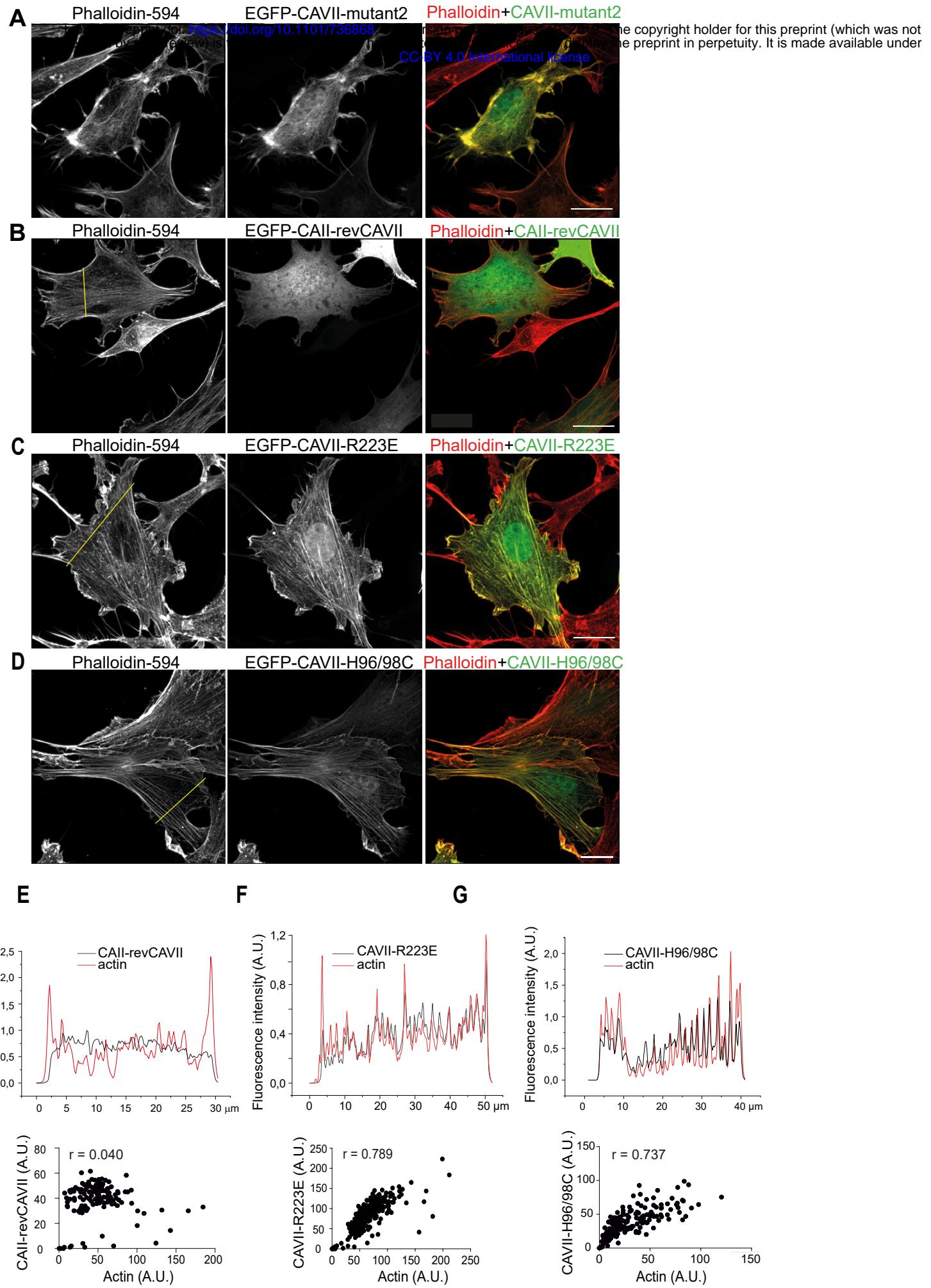


Figure 5 - figure supplement 2 Bertling, Blaesee, Seja et al.

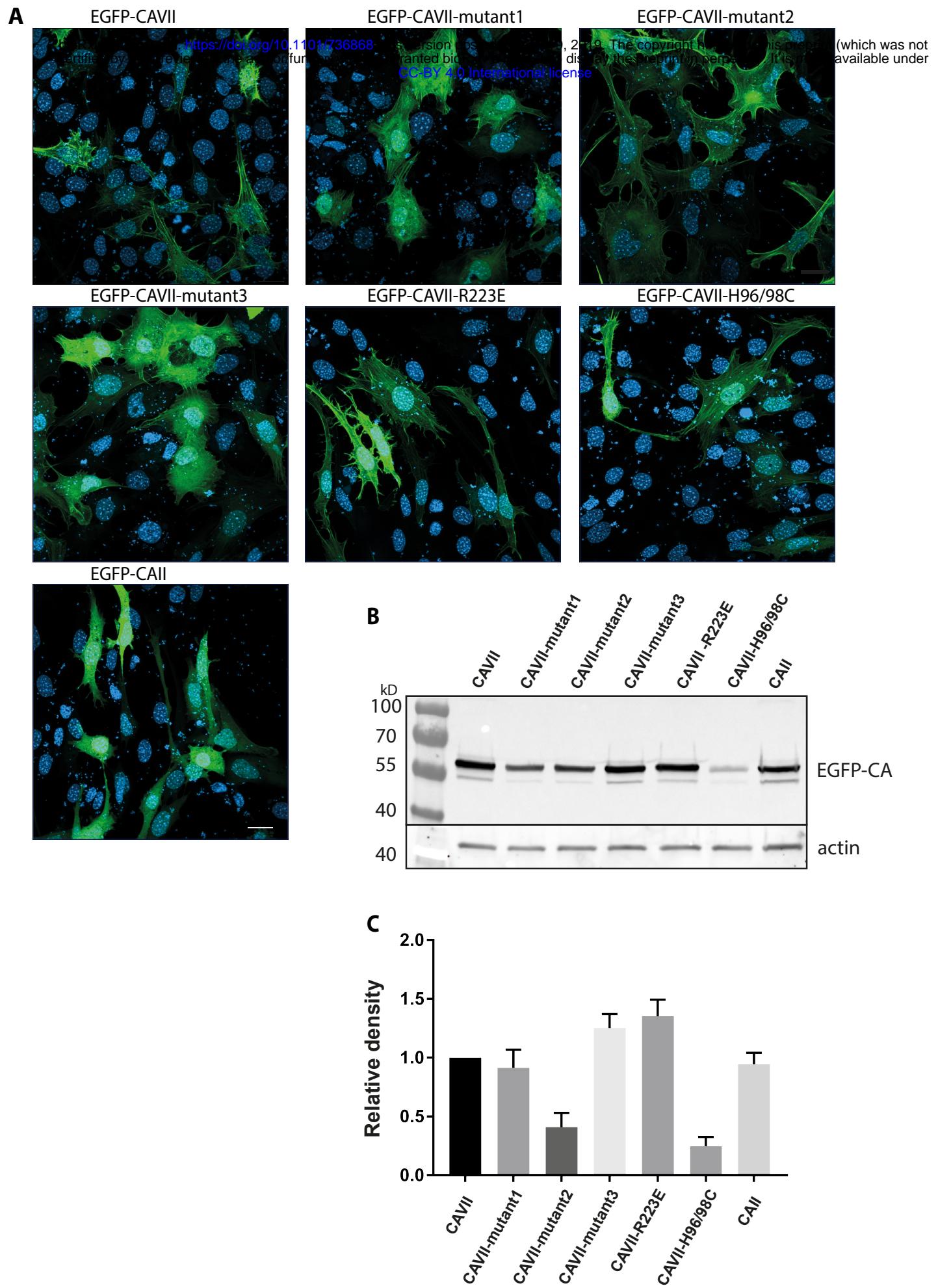


Figure 6. Bertling, Blaesse, Seja et al.

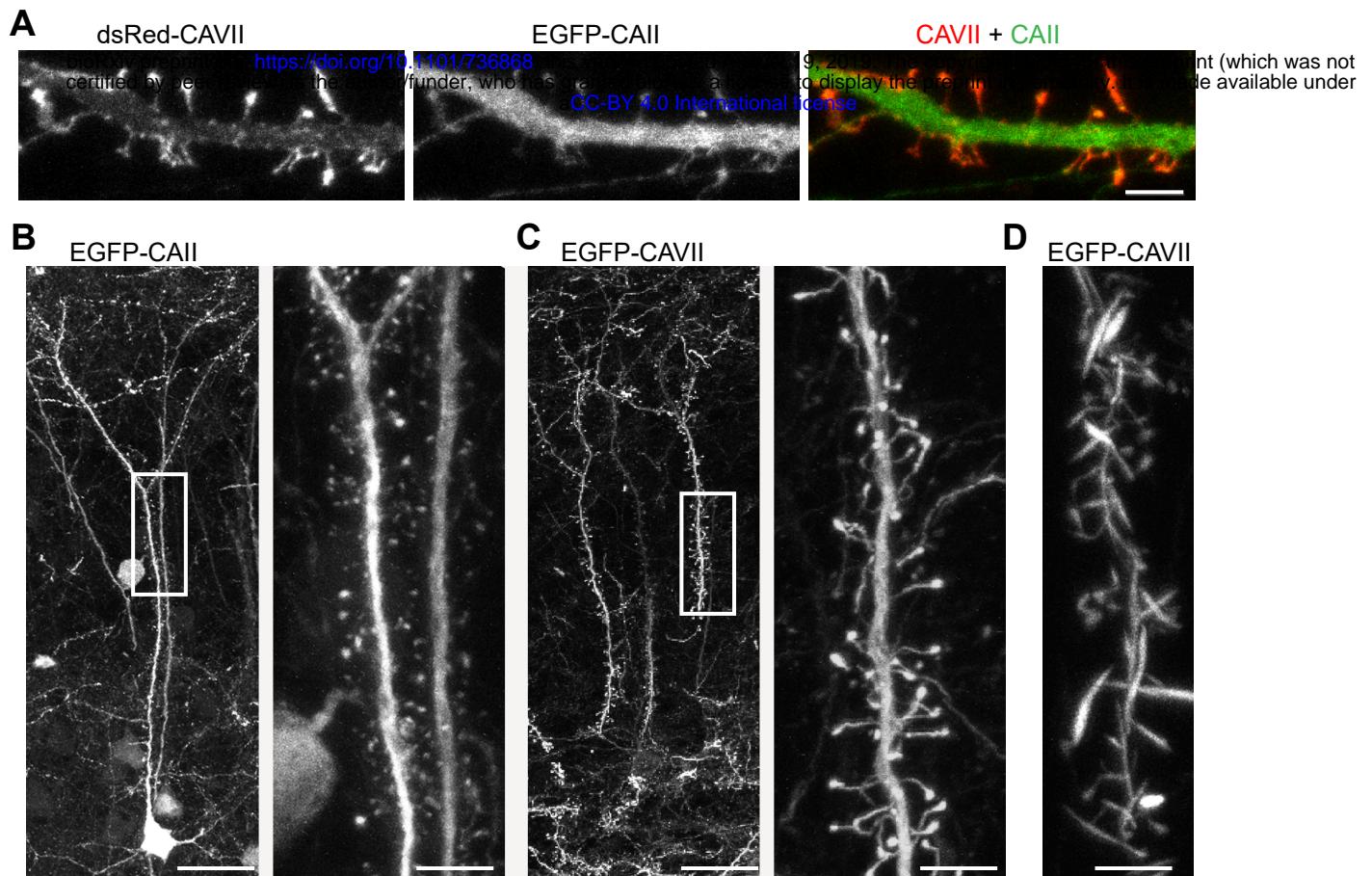


Figure 6 - figure supplement 1 Bertling, Blaesse, Seja et al.

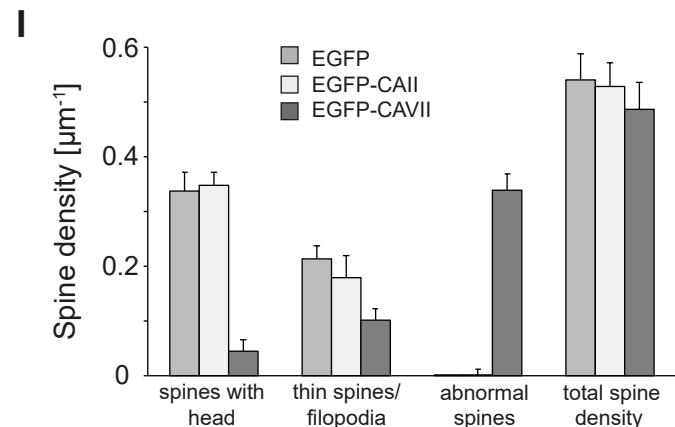
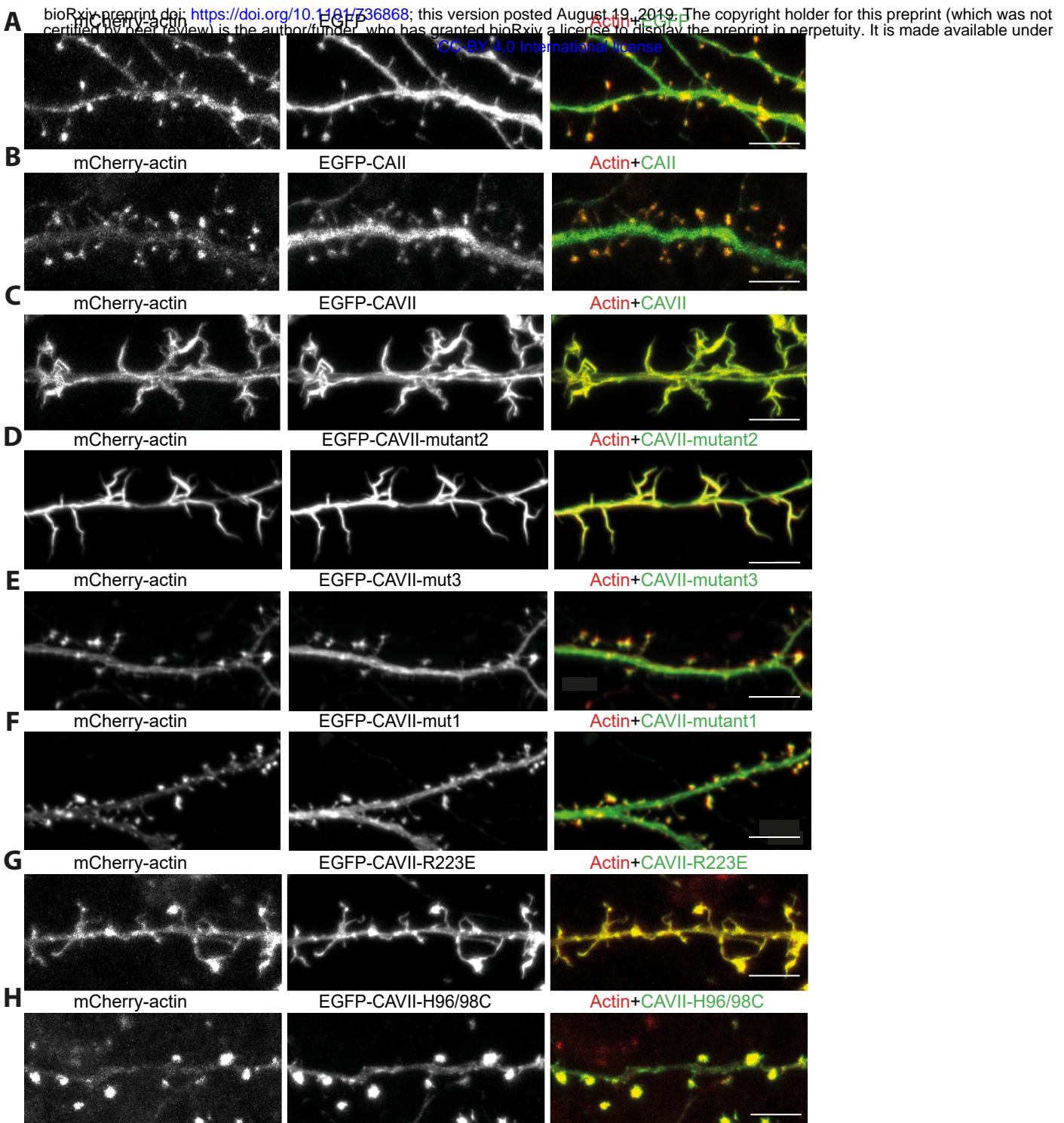
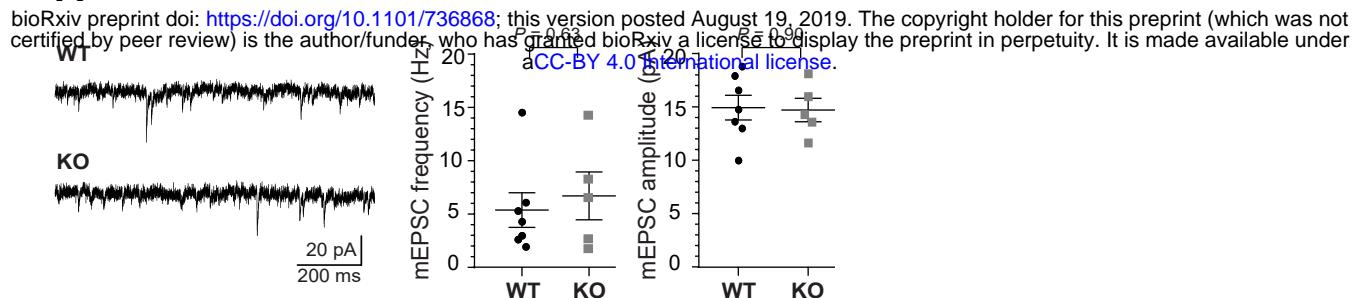
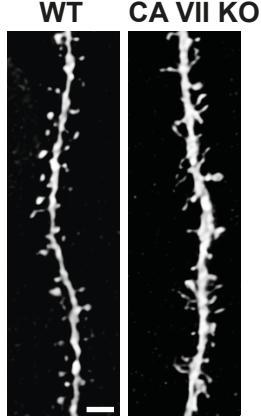
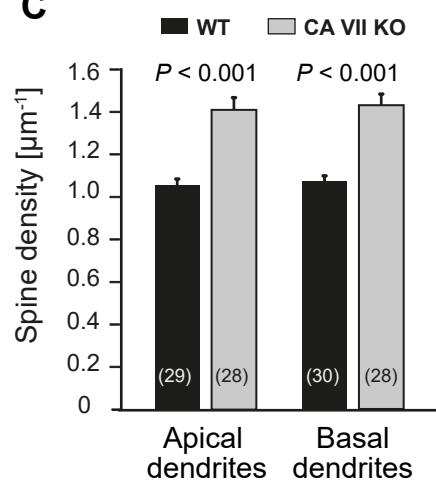
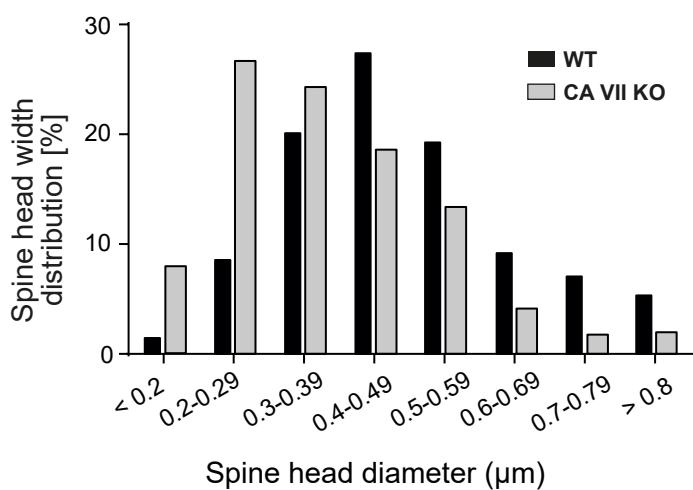





Figure 7. Bertling, Blaesse, Seja et al.


A


B

C

D

