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Abstract

Cellular DNA barcoding has become a popular approach to study heterogeneity of cell
populations and to identify lineages with differential response to cellular stimuli.
However, there is a lack of reliable methods for statistical inference of differentially
responding lineages. Here, we used mixtures of DNA-barcoded cell pools to generate a
realistic benchmark read count dataset for modelling a range of outcomes of lineage-
tracing experiments. By accounting for the statistical properties intrinsic to the DNA
barcode read count data, we implemented an improved algorithm that provides a
significantly higher accuracy at detecting differentially responding lineages, compared
to current RNA-seq data analysis algorithms. Building on the reliable statistical
methodology, we illustrate how multidimensional phenotypic profiling (or high-
throughput ‘lineage phenomics’) enables one to deconvolute phenotypically distinct cell
subpopulations within a cancer cell line. The mixture control dataset and our analysis
results provide a systematic foundation for benchmarking and improving algorithms for
lineage-tracing experiments.

Introduction

Cellular DNA barcoding was originally developed to trace clonal growth dynamics in vivo
or in vitro2345. More recently, however, cellular DNA barcoding has been applied as an
effective means to detect clone-specific differences in the phenotypes other than growth,
including drug response®12 postsurgical recurrencel3, reprogramming capacityl415,
phenotypic plasticity!116, and metastatic potential®1’. Generally, cellular DNA barcoding
can be widely applied to quantify clone-specific differences in virtually any phenotype
for which a phenotype-based cell selection method exists. Moreover, emerging
methodologies seek to integrate lineage-tracing with single-cell technologies, such as
scRNA-seq!>18-21 or even isolate lineages carrying a barcode of interest for in-depth
cellular profiling22-24. These developments are expected to provide high-resolution
insights into the biology of heterogeneous cellular systems. However, to our knowledge,
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there has been no systematic efforts to benchmark the accuracy of clonal phenotype
quantification via DNA barcoding.

In a typical clone tracing experiment (Fig. 1A}, cells are infected with a short semi-
random DNA sequence - a “barcode” - after which the cells are expanded to achieve a
sufficient representation of individual clones. The barcoded cell population is then
divided into subsamples, typically “control” and “treatment” pools, where the control
pool determines a background barcode representation, whereas the treatment pool(s)
are subjected to a phenotype-based selection (e.g. drug treatment, immunophenotyping,
or xenografting). Finally, the barcode abundances are estimated within each pool with
next-generation sequencing (NGS). In the quantification phase, clone sizes are assumed
to be proportional to the barcode abundances, and accordingly, differentially
represented barcodes (DRBs) between the treatment pool(s) and control population
indicate clone-specific differences in the particular phenotype.

The detection of DRBs can statistically be considered as identification of differentially
represented sequencing tags from high-throughput count data, and RNA-seq data
analysis algorithms have been applied to this task’. However, we hypothesized that
barcode count data from lineage-tracing experiments may seriously violate the basic
assumptions of the RNA-seq analysis algorithms (i.e, that tagwise variance is
homogeneous and the read counts follow a negative binomial distribution). We
reasoned that the tagwise variance and the underlying distribution of the barcode read
counts depends on the sampling size (i.e,, the number of sampled cells from the
barcoded population). Sampling is an indispensable step in most lineage-tracing
experiments. For instance, selection pressure introduces a sampling bottleneck, which
reduces the number of cells in the sample proportionally to the degree of the pressure.
Such sample size reduction can be extremely high in some applications (e.g,
xenografting, high doses of a drug, or cell sorting for rare subpopulations). Therefore,
differences in the selection pressure may result in large a variance differences between
the samples, leading to biased performance of DRB detection with the RNA-seq analysis
algorithms, unless corrected for.

Here, we performed multiple independent clone-tracing experiments on cancer cell lines
to generate barcoded cell pools with non-overlapping sets of barcodes. We used these
cell pools to generate benchmarking barcode read count datasets for modelling of
various outcomes of lineage tracing experiments. By considering the statistical
characteristics of the benchmark data and those observed in published studies, we
compared the commonly-used RNA-seq analysis algorithms, DESeq?5 , DESeq226 , and
edgeR2728, Based on the benchmarking results, we developed DEBRA (DESeq-based
Barcode Representation Analysis) algorithm for more reliable clone-tracing through
improved DRB detection accuracy and a proper control for false discoveries in a wide
range of experimental conditions. Finally, we demonstrate how multidimensional
phenotypic profiling can be implemented on barcoded cancer cells to identify
phenotypically distinct cell subpopulations. These analysis results provide both


https://doi.org/10.1101/735266
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/735266; this version posted August 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

experimental and statistical insights into high-throughput lineage phenomics and
phenotype-based subpopulation inference as an extension of cellular DNA barcoding
applications.

Results

A gold-standard benchmark dataset for modelling response heterogeneity in
lineage tracing experiments

To systematically study the effect of sampling on DNA barcode count data, and the
applicability of the RNA-seq data analysis algorithms to the identification of
differentially responding lineages, we performed high-complexity cellular DNA
barcoding experiments on two cancer cell lines - OVCARS5 and Mia-PaCa-2. The cancer
cells were infected with lentiviral DNA barcoding library, carrying ~5 million unique
sequences at very low multiplicity of infection (<0.01 MOI) to label about 5x10* Mia-
PaCa-II cells and 10* OVCARS cells (see Methods). Each cell line was independently
transduced in two replicas, selected with antibiotic and expanded to produce two cell
pools with different sets of DNA barcodes (Pool#1 and Pool#2, see Fig. 1). For each cell
line, the barcoded cell pools were mixed in a 50/50 ratio and 18 subsamples of different
sizes were produced (Fig. 1B, Supplementary Table 1). This experimental setup
modelled a situation in which different degrees of selection pressure (e.g. different doses
of a drug) are applied to a sample with no lineage-specific differences in the response to
the condition (e.g. treatment). We called these samples null subsamples because no
barcode is expected to be differentially represented and, therefore, an accurate DRB
detection algorithm is supposed to accept the null hypothesis for all the barcodes. Such
null subsamples enabled us to study the effect of sampling size on the statistical
characteristics of barcode count data, and to estimate the false discovery rate of DRB
detection algorithms.

Furthermore, we generated 24 perturbed subsamples by changing the representation of
a subset of barcodes in the Pool#1/Pool#2 mixture by adding extra number of cells from
the barcoded cell Pool #1 (Fig. 1B, Supplementary Table 1). Perturbed subsamples model
the selection experiments on a cell population with various degrees of lineage-specific
responses to the selection pressure. By sequencing Pool#1 and Pool#2, we determined
the ground-truth for differential representation of the barcodes in the perturbed
subsamples, which allowed us to assess the accuracy of the DRB detection algorithms.
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Fig. 1 | An overview of the experimental setup for the benchmark dataset generation. a, A schematic
presentation of a typical lineage tracing experiment (see text for description). b, To generate the
benchmark barcode count datasets, we performed two independent high-complexity DNA-barcoding
experiments on Mia-PaCa-Il and OVCARS cell lines (see Methods for details). In each experiment, cells
were collected after selection and expansion step (Fig. 1A) to produce two cell pools (Pool#1 and Pool#2).
Cells in each pool were counted and mixed in a 50/50 ratio. The mixture was then subsampled in various
extents in two replicas to produce so-called null subsamples with different numbers of cells (20x103,
40x103, 80x103, 160x103, 330x103, 660x103) but with the same expected representation of each barcode
(i.e., modelling null hypothesis). Perturbed subsamples were generated by taking either 20, 40, 80 or 160
thousand cells from the Pool#1/Pool#2 mixture, and adding an indicated percentages of cells from the
Pool#1 (e.g for sample with 160x103 cells and perturbation degree of 35%, we added
160x103x0.35=56x103 cells from the Pool#1).

Sampling bottleneck affects statistical properties of the DNA-barcode count data
and DRB detection accuracy

To investigate the statistical characteristics of the benchmark barcode count data, we
first analyzed the mean-variance relationships for each pair of null subsamples. We
found a marked increase in the variance as the size of the subsample decreases in both
OVCARS5 and Mia-PaCa-2 cells (Fig. 2A, B; Supplementary Fig. 1A, B). We observed a
similar dependency in the data from a pancreatic cancer patient-derived xenograft
(PDX) model published by Seth et al.” (Fig. 2A, B), where the variance of the drug-treated
samples is much higher as compared to that of the non-treated controls. The observed
difference is likely due to the decrease in the total number of cells (sample size) in
response to the drug treatment. We next tested how well the barcode count data follows
a negative binomial (NB) distribution using the goodness-of-fit estimation for our
OVCARS5 and Mia-PaCa-2 null subsamples and the published pancreatic PDX samples”.
Notably, the NB model approximated poorly the barcode count data at low count region
both in the small-sized OVCARS null subsamples and in the PDX drug-treated samples
(Fig. 2C; Supplementary Fig. 1C). These properties of the barcode count data violate the
basic assumptions made in the RNA-seq data analysis algorithms, which may lead to
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their sub-optimal performance when applied to DRB detection in lineage tracing

experiments.
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Fig. 2 | Sampling size affects the statistical properties and accuracy of DRB detection. a, Mean-
variance plots for the benchmark OVCARS5 null subsamples and pancreatic cancer patient-derived
xenograft (PDX) samples’. Local variance was calculated by averaging a tagwise variance over the mean
counts using a 20 read-count window. b, Scatterplots of median-normalized read counts of OVCAR5 null
subsamples and pancreatic PDX samples’. ¢, Local goodness-of-fit testing for negative binomial
distribution where the distribution parameters were estimated using maximum likelihood estimator
(MLE). Two-sample Cramer-von-Mises test was used to compare the observed and simulated negative
binomial random variables. Statistical significance was determined using Monte-Carlo-bootstrap method,
where a small empirical p-value indicates strong deviation from the negative binomial distribution. d, The
proportion of differentially represented barcodes (DRBs) identified in the OVCARS5 null subsamples with
various versions of RNA-seq analysis algorithms. Two replicas of the null subsamples of indicated sizes (x-
axis) were tested for DRBs against a control group of 4 null subsamples (two Null-660 samples and two
Null-330 samples). The bars represent the average proportion of DRBs identified with the algorithms,
calculated over 3-fold bootstrap runs (mean of the 10 resamples with replacement) under the indicted
false discovery rates (FDRs). The version with unadjusted p-values is shown in Supplementary Fig. 1D for
comparison. LRT, likelihood ratio test; Wald, Wald test; QLF, quasi-likelihood F-test; and exact,
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implementation of exact test proposed by Robinson and Smyth2° as implemented in the original
algorithms.

To test the performance of the RNA-seq analysis algorithms for the identification of
DRBs, we applied the widely-used algorithms - DESeq, DESeq2 and edgeR - on the
OVCARS null subsamples. An accurate DRB detection method is expected to accept the
null hypothesis for all the barcodes (i.e., no barcode should be identified as differentially
represented), since the representation of the barcodes are equal across the null
subsamples. However, all the tested versions of the algorithms identified a significant
number of DRBs between the null subsamples of different sizes, with percentages of
DRBs reaching 50% at smaller sample sizes and higher FDR levels (Fig. 2D). We note
that all these detections are false positives, and all the algorithms had much higher type
[ error rates than those expected based on their empirical p-values (Supplementary Fig.
1D). DESeq performed better than the other algorithms, yet it identified more than 15%
false positives at sample size of 20x103 cells at a nominal FDR level of 0.25. Moreover,
the performance of DESeq decreased when implemented in other designs
(Supplementary Fig. 2A). With all the tested algorithms, the proportion of falsely-
detected DRBs increased when null-subsamples with larger differences in size and, hence
in variance, are compared. These analysis results show that the decrease in sample size
due to selection pressure or any other manipulation leading to cell loss may severely
compromise the accuracy of DRB detection with the standard RNA-seq analysis
algorithms.

Modified versions of DESeq and DESeq2 algorithms improve the accuracy of DRB
detection

We reasoned that the high observed rates of false discoveries is primarily due to the way
the RNA-seq analysis algorithms estimate the tagwise dispersions by sharing
information across sample groups with unequal variances (e.g. by fitting a negative
binomial generalized linear model). To address this issue, we modified the DESeq2 and
DESeq algorithms so that the tagwise dispersions are estimated using the replicas of the
treatment group only (see Methods). In both of the modified algorithms, we tested two
options for tagwise dispersion estimation - “trended” and “shrunken” (see Methods).
Due to the observed deviance from the NB model at low-count regions that renders
statistical tests based on the NB model inapplicable (Fig. 2C; Supplementary Fig. 1C), we
implemented a heuristic algorithm that uses the observed count data to estimate a
group-specific read count value (so-called 8 threshold, see Methods), above which the
read counts follow the NB model. The estimated 8 threshold was used as a lower bound
for the independent filtering step2630 (see Methods). Such an approach effectively
eliminates possible false discoveries originating from the read counts that do not follow
NB model, while taking advantage of the improved detection power provided by the
independent filtering algorithm?263°, We implemented the modified DESeq and DESeq2
algorithms into a method dubbed DEBRA (DESeq-based Barcode Representation
Analysis), which is available through the CRAN portal (in submission, the script and a
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workflow example are available through Github
https://github.com/YevhenAkimov/DEBRA).

To benchmark the modified algorithms, we first applied DEBRA to the OVCARS null
subsamples. The modified methods correctly accepted the null hypothesis for virtually
all the barcodes when the null subsamples were tested against each other (Fig. 3A),
hence demonstrating a greatly improved control for false discoveries compared to the
original algorithms. When the trended dispersion estimates were used, the proportion
of identified DRBs were within the range of 0 - 1.5x10-3, while the shrunken estimates
led to somewhat increased false positive DRB rate of up to 4x10-3.

To test the accuracy of the modified algorithms at detecting DRBs, we used the perturbed
subsamples to model experimental outcomes with varying proportions of enriched and
depleted lineages. The ground-truth for the differential barcode representation in the
perturbed subsamples was determined by assigning each barcode to the enriched or
depleted group according to its presence either in Pool#1 or Pool#2, as defined by
sequencing of the cell pools. The ground-truth information was used to generate
experimental results (read count tables), with varying enriched-to-depleted barcode
ratios (0.05, 0.15 and 0.5; 10 replicas for each size and perturbation degree; see
Supplementary Fig. 3 for details). We tested each modelled experimental outcome for
DRBs using the null subsamples as a control. The original algorithms showed again
relatively high rates of false positives in the low-sized samples with enriched-to-
depleted barcodes ratios of 0.05 and 0.15 (Fig. 3b). Notably, the rates of false positives
were higher than expected by the nominal FDR levels (Fig 3b, white circles), except for
the samples with enriched-to-depleted ratio of 0.5, where the percentage of false
positives dropped below the nominal FDR threshold with the original algorithms
(Supplementary Fig. 4). However, in the low-sized samples, the rate of false positives
detected by the original algorithms became very close to the results obtained when p-
values were randomly permuted over the barcodes (Supplementary Fig. 4). This
suggests that the empirical significance testing of the original algorithms cannot
properly control for the false positives when samples with high difference in variance
are being compared. In contrast, the false positive rates of the modified algorithms with
trended dispersion estimates never exceeded the nominal FDR threshold,
demonstrating an improved control for false discoveries when detecting DRBs in all the
tested conditions (Fig. 3B; Supplementary Fig. 4).

To systematically test their accuracy for DRB scoring, we further compared the
performance of the algorithms using partial area under precision-recall curve (pAUC) as
a summary performance metric (see Methods). In this analysis, the barcodes were
ranked by the unadjusted p-values from the algorithms, with low p-values indicating
high statistical confidence that the barcode was either enriched or depleted. We found
that the modified algorithms with trended dispersion estimates provided better barcode
scoring in virtually all the tested scenarios, further supporting its improved
performance (Fig. 3C). Among all the tested versions, the modified DESeq with trended
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dispersion estimates showed the most robust scoring across all the tested conditions
(Supplementary Figs. 5 and 6). When applied to the pancreatic PDX data?, the modified
algorithms with trended dispersion estimates identified again substantially less number
of DRBs under the same FDR threshold than the original algorithms (Fig. 3D).
Consistently with results from the benchmarking dataset, the difference in the number
of detected DRBs between the original and modified methods was larger for the higher-
variance sample (AZD6244; Fig. 3E)
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Fig. 3 | Comparison of the algorithms’ performance. Circles left to the algorithms’ names indicate the
modified algorithms. a, The percentage of DRBs identified by the modified algorithms in the OVCARS null
subsamples using the same design as in Fig. 2D. b, The performance of the original and modified
algorithms for detection enriched barcodes in the perturbed subsamples. Two replicas of the sample with
perturbation degree of 35%, indicated size (top) and enriched-to-depleted ratio (right) were tested
against four null subsamples (two Null-660 samples and two Null-330 samples). The bars represent the
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percentage of the barcodes detected as enriched DRBs (fold change > 0; FDR < 0.25) by the indicated
algorithm, with correctly detected barcodes marked in blue and incorrectly detected barcodes in red (see
Supplementary Fig. 4 for other perturbation degrees and enriched-to-depleted ratios). White circles mark
the percentage of barcodes corresponding to the nominal FDR level. ¢, The standardized partial area
under the precision-recall curve (pAUC) calculated within intervals of [0,1] and [0,0.25] for precision and
recall metrics, respectively. The panel shows the pAUC for perturbed subsamples of indicted size and
perturbation degree with enriched-to-depleted barcodes ratio of 0.5 (see Supplementary Fig.s 5 and 6 for
pAUCs and precision-recall curves for other sample sizes, perturbation degrees and enriched-to-depleted
barcodes ratios). For calculating the precision and recall metrics, we ranked the barcodes with unadjusted
p-values as classification scores, where the positive class was defined as correctly detected barcodes
(correctly assigned to either enriched or depleted group; see Methods for details). d, The proportion of
significant DRBs with FDR < 0.1 in the Seth et al. pancreatic PDX dataset?, as identified with the modified
and original algorithms. e, Log fold change vs log mean plots for the AZD6244 drug-treated samples
tested against untreated control” with the original DESeq and modified (trended) DESeq algorithms. Red
dots mark barcodes with FDR < 0.1.

Multidimensional phenotypic profiling of barcoded cells identify distinct cancer
cell subpopulations

To further widen the applicability of the lineage tracing technology, we introduce a
novel concept of DNA barcoding-based high-throughput lineage phenomics. In this
approach, multiple phenotypes are measured for each lineage in a population to produce
a multidimensional phenotypic profile for single-lineage analysis. To illustrate this
approach, we quantified multiple lineage-specific phenotypes for the barcoded OVCAR5
cell line (Fig 4A, Supplementary Fig. 7) by applying a number of independent
phenotypic assays that introduce differing selection pressure to barcoded OVCARS cells,
and then analyzed the lineage-specific responses using DEBRA. We first validated the
approach with measurements of lineage proliferation rate assessed by two independent
readouts, lineage-specific KI67 protein expression3! and the number of lineage
doublings. As expected, there was a positive correlation between lineage growth rates
and lineage KI67 staining (Fig. 4B, Supplementary Fig. 8A), suggesting the feasibility of
multidimensional lineage phenotyping via cellular DNA barcoding.

Similarly, we found that the proliferation rate of the OVCARS lineages correlated
positively with their efflux capacity and the ability of the lineages to attach to the
substrate in FBS-free conditions (Fig. 4C). We tested if these phenotypes show the same
association on the cell subpopulation level. Since the efflux and attachment assays were
non-destructive to cells, we isolated populations of EffluxHlGH | Effluxl®W and
AttachmentHIGH cells, and measured their growth rates. Consistently with the observed
correlation on the single-lineage level, the isolated Efflux"IiGH and AttachmentHIGH
subpopulations showed higher proliferation rates when compared to Efflux'°W and bulk
OVACRS cells, respectively (Fig. 4D). These results suggest that a correlation between
phenotypes identified at the level of individual lineages predicts phenotype-phenotype
relationships at the level of cell subpopulations.
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Fig. 4 | Validation of single-lineage phenotypic profiling approach. a, A schematic presentation of the
experimental workflow for barcoding-based high throughput multidimensional lineage phenomics
approach. Cells were barcoded and expanded to achieve reasonable representation of cells per barcode
(e.g. 500-1000). Next, the population was divided into multiple samples and selection pressure was
applied to each sample. Cells passing selection conditions were collected and used to prepare a NGS
library. In the present study, we measured lineage-specific fold changes in barcode representation in the
following assays: carboplatin response (7uM carboplatin for 3 days followed by 4 days regrowth),
autophagy measured by autolysosomes load (FACS)32, ALDH activity (FACS), activity of efflux pumps
(FACS), proliferation (7 days), 12 hours attachment assay in FBS-free media (attached and non-attached
cells were collected), and KI67 staining (FACS sorting). b, Scatterplot of fold change in the barcode
representation after 7 days growth versus fold change in representation between KI67HIGH population and
control. Each point represents a lineage with color indicating the local density of points. Displayed are
only lineages with counts larger than 70. R, Pearson correlation coefficient. ¢, Scatterplot of barcode
fraction fold changes after attachment in FBS-free condition and 7 days growth (left), or upon sorting by
efficacy of fluorescent dye efflux and 7 days of growth (right), as described in Methods. d, The average
doubling time of the phenotypic cell subpopulations separated by their attachment to substrate in FBS-
free conditions (left; 6 replicas for each group) or sorted by their efficacy to efflux fluorescent dye (right; 3
replicas for effluxHIGH and 6 replicas for effluxLoW). P-values are from Wilcoxon test.

Finally, we used the t-SNE dimensionality reduction algorithm3? to deconvolute cell
subpopulations based on single-lineage phenotypes measured in OVCARS cells. The t-
SNE projection enabled us to identify 4 clusters of lineages with distinct phenotypic
characteristics (Fig. 5A-C). Interestingly, two of the identified clusters displayed
carboplatin resistance phenotype (Fig. 5, clusters 2 and 4). Cells from cluster 2 (~8% of
the population) exhibited an increased efflux capacity which is known to mediate the
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carboplatin resistance3435, Cells from cluster 4 (about 1.5% of the population) displayed
slower proliferation rates, increased ALDH activity, higher autolysosomes load, and
resistance to carboplatin (Fig. 5A-C). Such a phenotypic signature is typically attributed
to cancer cells with stem-like characteristics36-404142. Within the largest cluster of
lineages (cluster 1), sensitivity to carboplatin showed a moderate correlation with
proliferation rate (Supplementary Fig. 8B). The high-throughput phenotyping of the
barcoded lineages suggests that the OVCARS5 cell resistance to carboplatin could emerge
through various mechanisms mediated by different cell subpopulations. Together, these
data suggests that the high-throughput lineage phenomics approach via DNA barcoding
enable one to infer phenotypically distinct cell subpopulations, even within a cell line.
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Fig. 5 | Phenotypic state clustering of single-lineages identifies cancer cell subpopulations. a, t-SNE
projection of the OVCARS single-lineage phenotypic profiles, where each point represents a lineage
colored according to the manually gated clusters. The lineages with read counts of more than 75 were
used for the statistical analysis. b, t-SNE projection of the OVCARS single-lineage phenotypic profiles. The
lineages are color-coded according to the manifestation of the phenotype, calculated as log; ratio of
barcode fractions between (1) positively and negatively selected populations after ALDH, attachment,
efflux capacity or autophagy assays; (2) treated and untreated samples for carboplatin treatment assay, or
(3) day 8 and day 1 time points for proliferation assay. ¢, The distribution of log; fold changes in barcode
representations upon selection for the indicated phenotypes. *, p<0.05; ** p<0.01; *** p<0.001; ****,
p<0.0001; ns, non-significant, based on Wilcoxon test.

Discussion
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Lineage tracing via DNA barcoding is a promising method for the studies of
intrapopulational heterogeneity of cellular systems. The method is already well-
established for tracing growth dynamics of single lineages, but the recent publications
suggest a much wider scope of the method’s applicability®15. However, there is a current
lack of standardized and reliable frameworks for experimental execution and statistical
analysis of the clone-tracing experiments. Towards this end, we implemented a modified
algorithm (DEBRA) for reliable detection of DRBs, and demonstrated through systematic
benchmarking against the state-of-the-art RNA-seq data analysis algorithms that DEBRA
improves the accuracy of detection of differentially responding lineages by accounting
for the statistical properties intrinsic to the DNA barcode read count data. The mixture
control dataset and our analysis results provide a systematic foundation for
benchmarking and improving future algorithms for DNA barcoding data.

Our results showed that samples from lineage tracing experiments exhibit several
differences, compared to the RNA sequencing samples, which may compromise the
accuracy of DRB identification with the RNA-seq analysis algorithms. In lineage tracing
experiments, the number of individual barcodes is close to the total number of cells,
which results in around 10° times less of individual sequencing tags as compared to an
RNA-seq sample produced from the same number of cells. Hence, we reasoned that any
decrease in the cell numbers associated with treatment procedures could impose a
sampling error on barcode representation in a manner dependent on the degree of the
sample size reduction. Our results support this notion, as we observed strong
dependency between sample variance and sample size (Fig. 2). It is also tempting to
speculate that the observed deviance from negative binomial model at low counts region
is caused by large values of sampling error for barcodes with low copy number.
Although we prepared the sequencing libraries right after subsampling, we expect that
the variation imposed by the sampling bottleneck is preserved also when the samples
are allowed to regrow, something that may have happened in the Seth et al
experiments’. We note that increasing the cell expansion times to achieve higher lineage
abundances is not a straightforward solution for the sampling error issue. In fact, the
expansion time is an indispensable experimental parameter of a lineage tracing
experiment, as lineage phenotypes are subject to change as a result of phenotypic
plasticity?43. Cellular plasticity may dilute phenotypes determined by non-genetic
factors (e.g. epigenetics). Hence, limiting the expansion times is expected to improve
quantification of single-lineage phenotypes. Therefore, there is a critical need for
accurate detection of DRBs especially in samples with low lineage abundances, using
DEBRA or similar algorithmic solutions.

To benchmark the performance of the original and modified algorithms for DRB
identification, we simulated lineage tracing experiments with rather challenging
scenarios. In the benchmarking mixture cell pool experiments, we used a relatively low
number of cells per barcode together with low effects sizes (perturbation degrees of 18,
27 and 35%). These experimental setups are not merely simulated scenarios, in fact
many applications of lineage tracing are carried out in the context of a very narrow
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sample size bottlenecks (e.g. exposure to high doses of drug, xenografting, or cell
sorting for rare subpopulations). The DEBRA algorithm was able to both prevent an
excess of false discoveries, as assessed with the null and perturbed subsamples, as well
as improve the accuracy of DRB classification, compared to the original algorithms, as
evaluated with precision-recall analysis (Fig. 3).

We found that DESeq with trended dispersion estimates outperformed the other
modified versions, and this is the default option in the DEBRA R-package. The R-package
also provides the user with a functionality to choose between two dispersion estimation
algorithms - “shrinkage” and “trended” - as the former may be useful in certain
experimental setups, e.g., in experiments where the sampling is followed by an extended
regrowth. The “trended” method assumes a strict relationship between means and
dispersions, whereas the “shrinkage” uses dispersions as estimated by the DESeq2
algorithm. DESeq2 shrinks tagwise dispersion estimates towards dispersion trend using
an empirical Bayes approach while allowing for dispersion outliers?6. In RNA-seq
experiments, this helps to deal with genes whose dispersions do not strictly depend on
the mean and, therefore, cannot be approximated merely by the dispersion trend. The
dispersion outliers are typically attributed to either technical or biological factors.
However, it is not clear whether these effects arise also in the lineage tracing
experiments. Further studies are needed to better understand the relative benefits of
the different dispersion estimation methods in various experimental setups.

Finally, we introduced a DNA barcoding-based lineage phenomics approach, which links
multiple phenotypes to lineages in a high-throughput manner (Fig. 4 and Fig. 5). We
expect this approach to expedite the inference of cellular subpopulations with distinct
phenotypic properties, finding associations between multiple phenotypes and to
improve the quantification resolution when analysing intrapopulational phenotypic
heterogeneity. The obtained information on the single-lineage phenotypic state could be
further integrated with single-cell technologies. For instance, applications of integrated
lineage phenomics and single-cell genotyping approaches, such as scRNAseq or
scATACseq**+%7, could promote the discovery of genetic and non-genetic determinants
of intrapopulation phenotypic heterogeneity in tumours.

The DEBRA approach could also become useful in the analysis of positive selection
CRISPR screens, where the selection pressure is applied to the screening pool (cells
expressing Cas9 and sgRNA library), and the representation of sgRNAs in treatment pool
is compared to the background distribution. Similar to the DNA barcodes, the sgRNAs
may undergo significant representation bottleneck depending on the degree of the
selection pressure. Therefore, appropriate control for the variance differences between
control and treatment samples, as implemented in DEBRA, may be required for accurate
inference of the differentially represented sgRNAs.

Online Methods
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Generation of the lentiviral plasmid barcode library

Semi-random single-stranded DNA template (Barc.LGMU6.templ; Supplementary Data
3) from Merck (SigmaAldrich) was used in the work. The oligonucleotide was amplified
with BarcLGMU6.aarl.ampl.F and Barc.LGMUé6.aarl.ampl.R primers (Supplementary
Data 3), using SuperFI DNA polymerase (Thermo, catalog number 12351010) to include
cloning overhangs compatible with Golden Gate cloning. Five microliters of the reaction
was transferred to a new 50 pl PCR reaction with an excess of Barc.LGMU6.aarl.ampl.F
and Barc.LGMU6.aarl.ampl.R primers (Supplementary Data 3). The reaction was run one
cycle (2 min at 98°C denaturation, 5 min 72°C annealing/elongation) to produce dsDNA
barcodes with no mismatches. The barcode cassette was purified with AMPure XP SPRI
beads (Beckman Coulter; catalog number A63880). The barcode cassette was then
cloned into previously generated B-GLI-Barcoding plasmid?? (see Supplementary Fig. 9
for the plasmid map and Supplementary Data 3 for the DNA sequence; the vector will be
deposited to Addgene with publication of the paper??) by the Golden Gate assembly
method#® (see Supplementary Table 2 for reaction composition and cycling conditions).
In order to reduce contamination with uncut B-GLI-Barcoding plasmid, an extra 2 ul of
the Aarl enzyme was added to the reaction after the Golden Gate cycling, followed by
incubation at 37°C for 16 h. The cloning reaction was purified with magnetic beads
(Beckman Coulter; catalog number A63880) and incubated with Plasmid-Safe™ DNase
(Lucigen, catalog number E3101K), according to the manufacturer’s instructions. The
reaction was again magnetic beads-purified and transformed into electrocompetent
Lucigen Endura™ E. coli (Lucigen; catalog number 60242-2) using Bio-Rad MicroPulser
Electroporator (catalog number #1652100) with program EC1 following the
manufacturer's instructions. The reaction was plated onto 5 x 15 cm LB-agar plates with
100 pg/ml ampicillin. After incubation for 16 h at 32°C, bacteria were collected and
plasmid DNA was extracted with NucleoBond® Xtra Midi kit (MACHEREY-NAGEL;
catalog number 740410.50). The efficiency of transformation and approximate number
of the unique barcodes in the library was assessed by plating 1/10000 of the reaction
onto 15 cm LB-agar plate with 100 pug/ml ampicillin and counting colonies after
overnight incubation at 37°C.

High complexity DNA barcoding experiments

OVCARS5 and Mia-PaCa-2 cells were seeded at a density of 2x10* cells/cm? and 1x10°
cells/cm?, respectively, both in 6-well plates. Cells were incubated overnight with
lentiviral barcoding library carrying ~5x10¢ unique barcodes in a presence of 8 mg/ml
polybrene. The amount of added virus was selected to achieve a multiplicity of infection
(MOI) of ~0.01. Cells were selected for 7 days in the presence of 150 pug/ml hygromycin.
Cells were kept at a density of at least 1x10% cells/cm? to improve viability during
selection and expansion.

NGS library preparation and sequencing.
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NucleoSpin® Tissue kit (MACHEREY-NAGEL) was used to isolate genomic DNA
according to manufacturer’s instructions. Barcodes were amplified from genomic DNA
with P5.seq-B-GLLv1l and P7.seq-B-GLLv1l primers using OneTag® DNA Polymerase
(NEB; catalog number M0480). Reactions were purified using NucleoSpin® Gel and PCR
Clean-up kit (MACHEREY-NAGEL). Then, purified amplicons were amplified with
primers, [llumina_indX_F and [llumina_indX_R (where X indicates the index sequence),
to add Illumina adapters and indexes for sample multiplexing. This round of PCRs was
performed using NEBNext® Ultra™ II Q5® Master Mix (NEB, catalog number M0544).
Samples were purified using AMPure XP beads (Beckman Coulter; catalog number
A63880). Next generation sequencing library was sequenced with HiSeq 2500 Illumina
sequencer using 100 bp paired-end protocol (with 10% PhiX DNA spike-in). To improve
cluster calling, we increased sequence diversity by using a 15 bp random sequence
stagger in the P5.seq-B-GLIL.v1 primer.

Barcode retrieval from NGS data

We used the previously developed?? custom Python script for retrieving original
barcode counts from FASTQ files.

Running DESeq, DESeq2 and edgeR

Dispersion estimation in DESeq?> and DESeq2252¢ algorithms was implemented using
fitType="local” parameter, as the “parametric” fit option resulted in frequent errors,
possibly due to the statistical properties of the barcode count data. Furthermore, we
used method="per-condition” setting in DESeq algorithm. The in-built independent
filtering option was switched off in DESeq2. The edgeR algorithm was run with its
default parameters?28.

DEBRA implementation aspects

The 8 threshold. The DEBRA algorithm identifies a threshold B - a lower count limit
for an independent filtering step above which it is assumed that the read counts follow a
negative binomial distribution. This threshold is used for removing results for barcodes
with read counts not following negative binomial model and, hence, possibly incorrectly
classified as differentially represented. To find a suitable 8 for a given data, the DEBRA
algorithm samples read count data using a window of N barcodes ordered by their mean
count values (Supplementary Fig. 10). For each sampling step, the algorithm estimates
the parameters of the negative binomial (NB) distribution - dispersion (a) and mean
(m). DEBRA uses these parameters to generate NB random variables X~NB(m,a) of the
same size as the sampled data to calculate theoretical (expected) and empirical two-
sample Kolmogorov-Smirnov (KS) test statistics for each sampling window. The KS
empirical test statistic was calculated between the sampled values and X~NB(m,a)
random variables, whilst the theoretical KS statistics is calculated between two
X~NB(m,a) random variables (see Supplementary Fig. 11A for examples). The
threshold was estimated by searching for the value of the mean read count at which the
overlapping area between the empirical and theoretical density functions of the KS test
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statistic is close to the maximum overlap for the given data sample. For the estimation,
both the theoretical and empirical test statistics are modelled as a Gamma-distributed
random variables (see Supplementary Fig. 12) for each window of size N (here, 30 KS
test statistics values on the mean ordered data). The overlap area was calculated
separately for each window, and then combined from multiple windows by fitting a
sigmoid function of mean read counts (see Supplementary Fig. 11B for examples of
fitting the null subsamples) with 4 parameters (using drc:drm() function with
fct=LL.4() parameter. If the sigmoid curve is ascending and the minimum overlap value
is less than 0.25, then 8 threshold is estimated as the mean count at which the sigmoid-
fitted overlap takes the value of 0.8 of the maximum (see Supplementary Table 3 for full
8 threshold estimation rules).

Dispersion estimation and inference of differentially represented barcodes.
Tagwise dispersions were calculated separately for each condition. We created a
DESeqgDataSet object, where we pass only the condition-specific columns and calculate
the dispersion using DESeq?2::estimateDispersions() function using the intercept model
(design = ~1) and fitType="local” parameter. The trended dispersion estimates were
derived from a local dispersion trend function as fitted with DESeq2 (parametrization
first proposed in DEXSeq#?). For calculation, the fitted model were extracted from
DESeqgDataSet object and used to calculate the tagwise dispersions for the base mean
values. The shrunken estimates were extracted from DESeqDataSet object with
DESeq2::dispersions() function. The dispersions for barcodes with counts less than 8 in
the test samples were set to the maximum value of the calculated tagwise dispersions to
reduce false positives from the barcodes not following NB model if the 3 thresholding
step is not used. In the next step, the dispersions were passed to the DESeqDataSet
(DESeq2) or CountDataSet (DESeq) object, containing full read count dataset (control
and condition columns) that are required for inference of DRBs. This object was used to
test the barcodes for differential representation with either nbinomWaldTest() or
nbinomLRT() tests for DESeq2 implementation or with nbinomTest() for DESeq.
Parameter independentFiltering was set to “FALSE” when calling results() function of
DESeq?2.

Independent filtering. We applied the independent filtering procedure263° as a
separate function, which uses DESeq2, DEseq or edgeR result table as an input. The
filtering algorithm uses the genefilter:filtered_p function to find the number of null
hypothesis rejections at a user-specified FDR cutoff (default parameter is set to 0.2) for
the quantiles of the filter statistics (mean read counts). The search algorithm identifies
the quantile threshold value that maximizes the total number of rejections in the
quantile range of [B,1], where B is the previously estimated threshold for the given data.
For the search, the number of rejections is fit as a function of the quantile threshold
using a smoothing spline (R function smooth.spline), which enables finding the quantile
value that corresponds to the maximum number of rejections. User can also set the f8
threshold value other than the one estimated by the algorithm (see the @ threshold
section).
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Barcode classification and precision-recall curves

A barcode is considered to be differentially represented if the Benjamini and Hochberg
procedure-controlled FDR is less than a predefined threshold (here, 0.05, 0.10 and 0.25
were tested). If the count fold change between the treatment and control groups is less
than one, then the barcode is considered to be depleted, otherwise it is classified as
enriched. Ground truth for the barcode representation in the perturbed subsamples was
obtained by sequencing the barcode pools (Pool#1 and Pool#2; see Fig. 1B), which were
used to produce the perturbed subsamples. For the ground truth assignments, a barcode
is considered enriched if its read Pool#1 to Pool#2 counts ratio is more than 10; if the
ratio is less than 0.1, then the barcode is considered depleted. False positive is defined as
a barcode identified by the algorithm as enriched DRB, but which is non-enriched
according to the ground truth.

Precision-recall curves were constructed using the “precrec” R-package®®. For
calculations, the positive class was defined as a barcode correctly assigned by the
algorithm to the group it belongs to (enriched or depleted), while the negative class was
defined as a wrongly assigned barcode. We used the unadjusted p-values for the class
assignment by the algorithms, i.e., ranking the barcodes against the ground-truth, with
low p-values indicating high statistical confidence that the barcode belongs to the
positive class (i.e., assigned to either enriched or depleted groups by the algorithm). To
calculate the precision-recall metrics for simulated experiments with low enriched-to-
depleted barcodes ratios (0.05, 0.15), we used only barcodes with positive fold change
values to assess the algorithms’ performance specifically for the enriched barcodes.

t-SNE algorithm

t-SNE33 was run using Rtsne::Rtsne R function>! with perplexity parameter of 30 and
1500 iterations. Lineages with read counts > 75 were selected for the analysis.

OVCARS single-lineage phenotypic profiling

Barcoded OVCARS cells were grown to reach an average representation of ~4000 cells
per barcode. After that, the pool of cells (5x107) was divided and cryopreserved in 5
batches as a TO pool. One batch was taken for subsequent phenotypic profiling
experiments as outlined in Supplementary Fig. 7.

Immunostaining. Cells were trypsinized, washed and resuspended in PBS. Then the
cells were fixed and permeabilized with cold 96% ethanol for 30 min on ice, pelleted in a
swinging rotor centrifuge at 1000xg for 15 min, rehydrated for 30 min in PBS, washed 2
times in 10 ml of PBS, and blocked in PBS with 0.5% BSA for 1 h at room temperature.
The staining was done overnight at 4 C in PBS/BSA. Rabbit anti-Ki67 antibody
(ab16667, Abcam) was used at 1.5 pg/ml. Following 3 washes with PBS with 0.5%BSA,
the cells were stained with secondary goat-anti-rabbit conjugated with Alexa555 at
1/500 for 30 min at room temperature, washed three times and resuspended in PBS for
subsequent sorting.
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FACS. All the sorting experiments were carried out using SONY SH800Z Sorter at
Biomedicum Helsinki FACS Core Facility and the data analysis was performed using
Sony Cell Sorter software.

ALDH activity assay. The cells in the log phase of growth were trypsinized,
resuspended in medium, the concentration of cells was adjusted to 2x10°/ml. The ALDH
activity was measured using Aldefluor assay (StemCell Technologies, catalog number
01700) according to the manufacturer’s protocol. Cells from the upper and lower
quantiles of the Aldefluor fluorescence intensity range were sorted as ALDH"gh and
ALDH!*¥ populations, respectively.

Efflux assay. Cells were trypsinized, resuspended in medium, and the concentration of
cells was adjusted to 2x10¢/ml. The cells were incubated with CDy1 fluorescent dye
diluted 1/1000 (Active Motif, catalog number 895) for 30 min at 37 C in a water bath in
the presence or absence of the ABC pumps inhibitors tariquidar (1 uM) and probenecid
(50 uM). Then the cells were washed three times in ice-cold PBS and resuspended in
medium with or without the drugs. Control cells in medium with efflux inhibitors were
left on ice for 2 h, while the test samples were incubated at 37 C for 2 h to allow the
efflux of the dye. After 3 washes, the cells were resuspended in PBS, and sorted by the
fluorescence intensity in the FL3 (PE-Texas Red) channel. The gating of the efflux-
positive cells was set based on the fluorescence intensity of the efflux-inhibited control.

Autophagy assay. The autophagy was analyzed by the ratiometric FACS measurement
of the amount of Acridine Orange-stained autolysosomes as described previously 32.
Overnight-starved cells were used as a control for the induction of the autolysosomes
formation. 4x105 cells with high autolysosomes load and 10 cells with low
autolysosomes load were sorted by FACS for subsequent gDNA extraction.

Proliferation assays. For quantification of the cell lineage proliferation rate, the
barcoded OVCARS cells were propagated in RPMI-1640 medium for 7 passages. Samples
for barcode representation analysis were collected at days 0, 5, 8, 11, 14, 18, 25, 29.For
the analysis of proliferation rate in validation experiments (Fig. 4D), the cells were
plated at 2x10* per well in 12-well plates (Costar), and imaged every 4 h in an IncuCyte
HD live cell analysis system (Sartorius) until the cell confluence of all wells reached
100%. The confluence values during the logarithmic growth phase were used to
estimate the population doubling time using the formula H/Log(Ce/Ci), where H is
elapsed time in hours, Cr is final confluence, C; is initial confluence.

Attachment assay. OVCARS cells in the log phase of growth were starved for 16 h in
serum-free RPMI supplemented with 2 mM L-glutamine. Upon starvation, the cells were
trypsinized, washed in serum-free medium and counted using a Countess II device
(Invitrogen). 5 millions of live cells were plated in serum-free medium to 15 cm cell
culture dishes and allowed to attach for 12 h. Upon incubation, the non-adherent cells
were collected for gDNA extraction by centrifugation at 500xg for 5 min. For the
validation experiments, non-adherent cells were collected and replated, and both
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adherent and non-adherent cells were allowed to recover in serum-supplemented
medium for 24 h prior to the evaluation of their proliferation rate.

Availability of the codes and data. The scripts and a workflow example of the DEBRA
implementation are publicly available at Github
https://github.com/YevhenAkimov/DEBRA. All the data from the benchmarking and
OVCARS5 phenotyping experiments are available in Supplementary Data 1, 2 and 4.
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