

1 **Selection on mutators is not frequency-dependent.**

2
3 Yevgeniy Raynes and Daniel M. Weinreich

4
5 Center for Computational Molecular Biology, and Department of Ecology and Evolutionary
6 Biology, Brown University, Providence, Rhode Island 02906, USA

7
8 **Abstract**

9 The evolutionary fate of mutator mutations – i.e., genetic variants that raise the genome-wide
10 mutation rate – in asexual populations is often described as being frequency (or number)
11 dependent. This common intuition suggests that mutators can invade a population by
12 hitchhiking with a sweeping beneficial mutation, but only when sufficiently frequent to produce
13 such a mutation before non-mutators do. Here, we use stochastic, agent-based simulations to
14 show that neither the strength nor the sign of selection on mutators depend on their initial
15 frequency, and while the overall probability of hitchhiking increases predictably with frequency,
16 the per-capita probability of fixation remains unchanged.

17

18 **Main text**

19 Mutator alleles have been found at considerable frequencies in populations of infectious and
20 commensal bacteria [1-3], viruses [4], and pathogenic fungi [5-7]. Mutators are also believed to
21 be widespread in many cancers [8, 9], and have been repeatedly observed to overtake
22 microbial populations during laboratory evolution experiments [10-17]. Yet, unlike directly
23 beneficial mutations that are favored by natural selection because they increase an organism's
24 reproductive success (i.e. its fitness), mutator mutations generally do not appear to be
25 inherently advantageous [16] (except potentially in some viruses [18, 19]). Instead, mutators
26 experience indirect selection, mediated by persistent statistical associations with fitness-
27 affecting mutations elsewhere in the genome. As a result, mutators may invade an adapting
28 population by hitchhiking [20] with new beneficial mutations even when they have no effect on
29 fitness of their own [21].

30 Common intuition suggests that whether or not mutators can successfully hitchhike to fixation
31 depends on the initial prevalence of mutator alleles in a population - most commonly referred
32 to as frequency or number dependence [16, 21]. This view holds that to replace the resident
33 non-mutators, mutators must generate a beneficial mutation that escapes genetic drift and
34 sweeps to fixation before their non-mutator competitors do. Accordingly, it has been proposed
35 that mutators may be expected to invade (i.e. are favored by selection) only when already
36 present in sufficient numbers to produce the successful beneficial mutation first, and lose their
37 advantage (i.e. are disfavored by selection) when too rare to do so [16, 21].

38 This frequency-dependent interpretation of mutator success has found empirical support in
39 studies of mutator hitchhiking in laboratory microbial populations. Most famously, in a series of
40 pioneering experiments, Lin Chao and colleagues showed that mutator strains of the bacterium
41 *E. coli* could supplant otherwise isogenic non-mutator strains by hitchhiking with beneficial
42 mutations when initialized above a critical threshold frequency but would decline when
43 initialized below it [22, 23]. Since then, a similar pattern has been recapitulated in several other
44 studies in *E. coli* and *S. cerevisiae* yeast [24-27].

45 Here, we demonstrate that, contrary to this widespread intuition, selection on mutators is
46 independent of frequency. To do so, we use individual-based, stochastic computer simulations
47 of asexual populations that mimic microbial evolution experiments under generally-accepted
48 parameter values [28]. Fig. 1A shows mutator frequency dynamics in randomly chosen
49 simulations initialized across four log-orders of starting frequency, x_0 , which recapitulate
50 experimental observations of the critical frequency threshold for hitchhiking (i.e. in [22, 23]).
51 Individual realizations started below an apparent threshold frequency all end in mutator loss,
52 while simulations started above end in fixation (Fig. 1A).

53 Critically, fixation of an allele in a finite population is a probabilistic process influenced both by
54 selection and random genetic drift, and even beneficial mutations will frequently be lost by
55 chance alone. As such, whether an allele is truly favored or disfavored by selection can only be
56 ascertained by evaluating its expected behavior averaged across many replicate, independent
57 realizations. Indeed, if we consider the expected mutator frequency averaged across many
58 replicate simulations, the threshold-frequency effect disappears (Fig. 1B). Instead, the average
59 mutator frequency ultimately rises above the starting frequency at all x_0 , suggesting that
60 mutators are, in fact, favored by selection in these populations regardless of starting frequency.
61 [For more on why mutators are favored in large populations such as these see [28], and the
62 significance of the transient decline in frequency seen in Fig. 1B will be explored in a
63 forthcoming publication.]

64 To confirm that selection on mutators is independent of starting frequency, we measured the
65 fixation probability of a mutator allele, $P_{fix}(x_0)$, at each initial frequency, x_0 simulated in Fig. 1.
66 Given the stochasticity of the fixation process (and following others [28-30]), we compare
67 $P_{fix}(x_0)$ to the probability of fixation of a neutral allele, given by x_0 . If a mutator is favored, we
68 expect it to fare better than neutral (i.e. $P_{fix}(x_0) > x_0$), and worse than neutral (i.e. $P_{fix}(x_0) <$
69 x_0) if disfavored. As Fig. 2 shows, $P_{fix}(x_0)$ exceeds the fixation probability of a neutral allele for
70 all x_0 , as anticipated in Fig. 1B and confirming that the sign of selection on mutators does not
71 depend on starting frequency.

72 Furthermore, while $P_{fix}(x_0)$ of a mutator increases with x_0 , it does so exactly as expected for a
73 frequency-independent mutation. Under frequency-independent selection $P_{fix}(x_0)$ is simply
74 the probability that at least one of the $x_0 N$ alleles reaches fixation (where N is the population
75 size). By definition of frequency-independent selection, the per-capita fixation probability is a
76 constant, written, $P_{fix}(x_0 = 1/N)$. Correspondingly, $P_{fix}(x_0)$ for any x_0 can be calculated as

77
$$P_{fix}(x_0) = 1 - (1 - P_{fix}(x_0 = 1/N))^{x_0 N}. \quad [1]$$

78 As the orange line in Fig. 2 shows, $P_{fix}(x_0)$ calculated with Eq. 1 is indistinguishable from
79 $P_{fix}(x_0)$ observed in simulations, confirming that the per-capita fixation probability is
80 independent of x_0 and equal to $P_{fix}(x_0 = 1/N)$ at any x_0 .

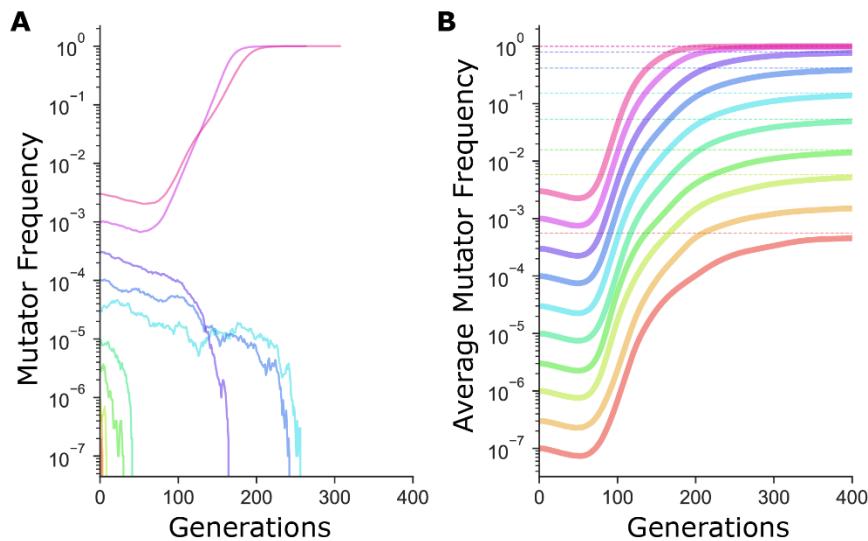
81 Why then do mutators in experimental populations appear destined to go extinct when initially
82 rare (Fig. 1A and [22, 23])? Consider that the per-capita fixation probability of a mutator is
83 relatively low – in our simulations operating under realistic parameter values $P_{fix}(x_0 = 1/N) =$
84 5.6×10^{-4} . Thus even when mutators are favored, most experimental replicates with rare
85 mutators are expected to end in mutator extinction, and only those started at frequencies
86 higher than roughly $1/[NP_{fix}(x_0 = 1/N)]$ are expected to end mostly with mutator fixation.
87 Therefore, considering only a single or even a few realizations (as in Fig 1A) would, most likely,
88 result in observing only the most expected outcome for each x_0 . Such limited sampling across a
89 broad range of starting frequencies explains the sharp transition between fixation at high
90 frequencies and loss at lower ones even when selection is frequency-independent [see also
91 Discussion in [31]].

92 In fact, the critical frequency-dependent transition observed in Fig. 1A is not unique to
93 mutators. Recall that $P_{fix}(x_0)$ of any mutation not under frequency-dependent selection,
94 nevertheless, increases with starting frequency, x_0 (Eq. 1). For example, even for a directly
95 beneficial mutation, the probability of fixation from low frequencies is relatively low (Fig. 3A
96 Inset). Correspondingly, Fig. 3A illustrates how single realizations of the dynamics of a directly
97 beneficial mutation again exhibit a threshold-like switch from fixation to loss. In contrast,
98 expected frequency dynamics averaged across many realizations confirm that beneficial
99 mutations are favored by selection independent of starting frequency (Fig. 3B). Indeed, only for
100 mutations under truly frequency-dependent selection do both the individual realizations (Fig.
101 3C) and the expected dynamics across many realizations (Fig. 3D) exhibit a frequency-
102 dependent transition.

103 In summary, our results demonstrate that neither the strength nor the sign of selection on
104 mutators depend on initial frequency or number. Instead, we show that in populations favoring
105 higher mutation rates, mutators consistently fare better than the neutral expectation (Fig. 1
106 and Fig. 2) regardless of starting frequency. Most importantly, the per-capita probability of
107 fixation remains unchanged with frequency. We conclude that the frequency threshold
108 observed in earlier experiments is, therefore, an artifact of limited experimental sampling
109 rather than a frequency-dependent change in selective effect.

110

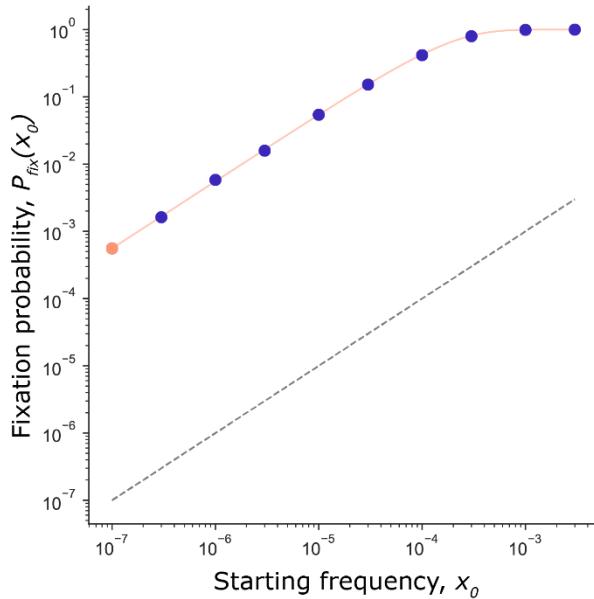
111 **Methods**


112 Individual-based, stochastic simulations employed here have been previously described [28]. In
113 brief, we consider haploid asexual populations of constant size, N , evolving in discrete, non-
114 overlapping generations according to the Wright-Fisher model [33]. Populations are composed
115 of genetic lineages - subpopulations of individuals with the same genotype. A genotype is
116 modeled as an array of 99 fitness-affecting loci and 1 mutation rate modifier locus, which in a
117 mutator state raises the genomic mutation rate m -fold. Beneficial mutations at the fitness loci
118 increase fitness by a constant effect s_{ben} , while deleterious mutations decrease fitness by a
119 constant effect s_{del} . We assume additive fitness effects and so calculate fitness of a lineage with
120 x beneficial and y deleterious mutations as $w_{xy} = 1 + xs_{ben} - ys_{del}$. Simulations start with the
121 mutator allele at a frequency of x_0 and continue until it either fixes or is lost from a population.
122 Every generation the size of each lineage i is randomly sampled from a multinomial distribution
123 with expectation $N \cdot f_i \cdot (w_i / \bar{w})$, where f_i is the frequency of the lineage in the previous
124 generation, w_i is the lineage's fitness, and \bar{w} is the average fitness of the population ($\bar{w} =$
125 $\sum f_i \cdot w_i$). Upon reproduction, each lineage acquires a random number of fitness-affecting
126 mutations M , drawn from a Poisson distribution with mean equal to the product of its size and
127 its total per-individual mutation rate, $(U_{ben} + U_{del})$, where U_{ben} and U_{del} are the deleterious
128 and beneficial mutation rates respectively. The number of beneficial and deleterious mutations
129 is then drawn from a binomial distribution with $n=M$ and $P = U_{ben} / (U_{ben} + U_{del})$ and new
130 mutations are assigned to randomly chosen non-mutated fitness loci.

131 **Acknowledgements**

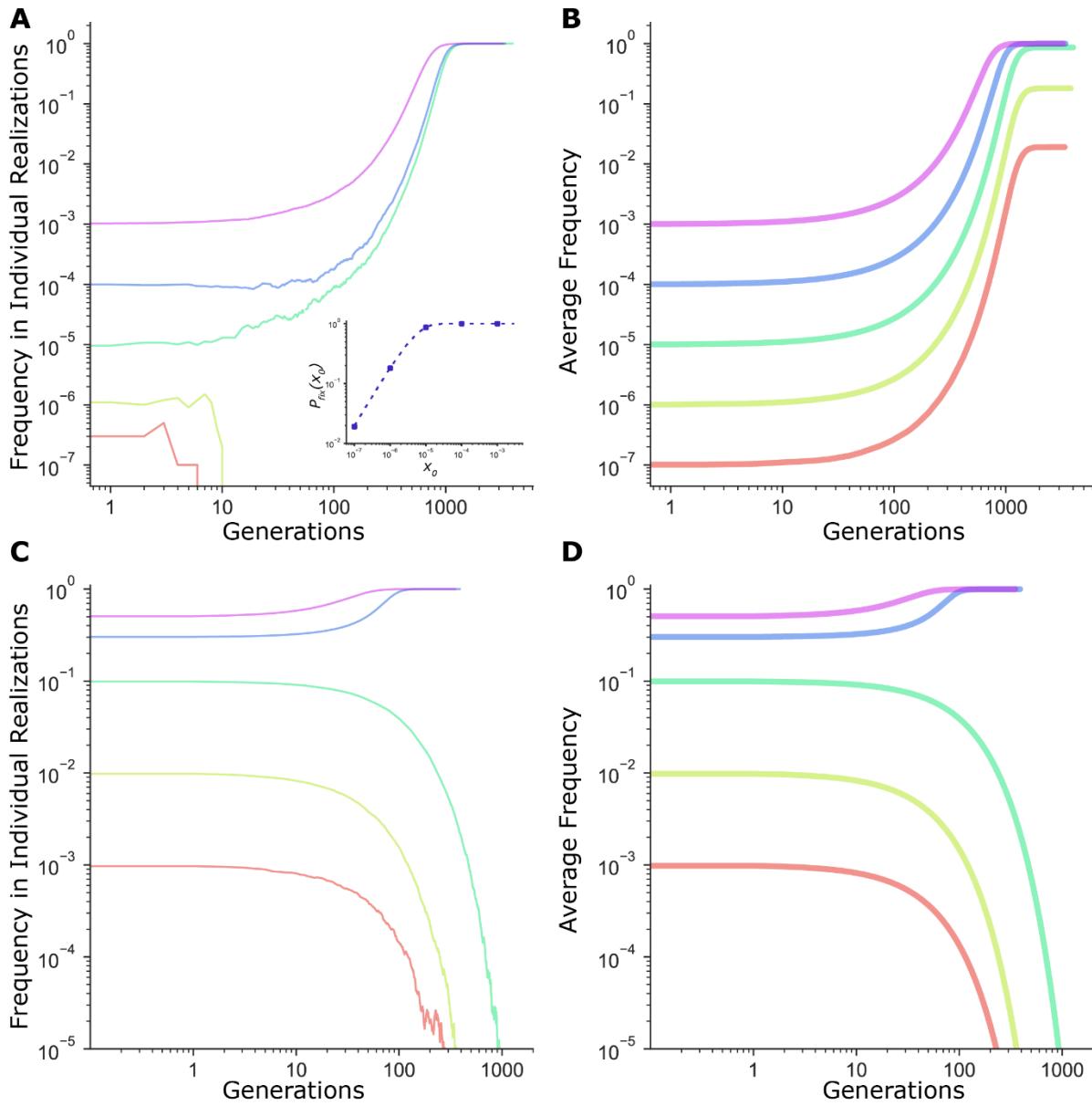
132 We thank Paul Sniegowski and Benjamin Galeota-Sprung for comments on the manuscript.
133 Simulations were performed on the computing cluster of the Computer Science Department at
134 Brown University. The work was supported by National Science Foundation Grant DEB-
135 1556300.

136


137

138

139 **Figure 1: The sharp transition between fixation and loss in mutator dynamics at different**
140 **starting frequencies is due to limited sampling. A)** In simulations, mutator trajectories in
141 individual realizations initiated at different starting frequencies recapitulate the experimental
142 observation of the frequency-threshold for mutator hitchhiking. Parameter values used are
143 typical of microbial experimental populations [28]: $N = 10^7$, $U_{del} = 10^{-4}$, $U_{ben} = 10^{-6}$, $s_{ben} = 0.1$, $s_{del} =$
144 -0.1. Mutators mutate 100x faster than non-mutators. **B)** Average mutator trajectories across
145 realizations do not show evidence of the frequency-threshold. On average, mutators increase in
146 frequency at all x_0 , showing that selection favors mutators independent of frequency. Average
147 mutator frequency always eventually reaches the expected $P_{fix}(x_0)$ (dashed horizontal lines)
148 calculated in Fig 2. Mutator frequencies averaged across 10^6 simulation runs at $x_0 = 10^{-7}$ and $x_0 =$
149 3×10^{-7} , and across 10^5 simulation runs for all other starting frequencies.


150

151

152 **Figure 2: Mutator fixation probability is not frequency-dependent.** Fixation
153 probability, $P_{fix}(x_0)$, of a mutator initiated at frequency x_0 (circles: orange for $x_0 = 1/N$,
154 purple for $x_0 > 1/N$). Data from simulations in Fig. 1. $P_{fix}(x_0)$ scales with but never crosses
155 the fixation probability of a neutral mutation (x_0 ; black dashed line). Thus, mutators are
156 favored at all starting frequencies. The expected fixation probability $P_{fix}(x_0)$ (solid orange line),
157 calculated from the fixation probability of a single mutator, $P_{fix}(x_0 = 1/N) = 5.6 \times 10^{-4}$ (orange
158 point) using Eq. 1 is indistinguishable from the $P_{fix}(x_0)$ observed in simulations, demonstrating
159 that the per-capita fixation probability at every frequency is independent of x_0 and equal to
160 $P_{fix}(x_0 = 1/N)$.

161

162

163 **Figure 3: Frequency threshold in dynamics of fitness-affecting mutations.** **A)** Individual
 164 realizations of a simulation initiated with a directly beneficial mutation of size $s_{ben} = 0.01$ at a
 165 starting frequency x_0 . Population size, $N = 10^7$. **Inset:** Fixation probability of a beneficial
 166 mutation of size $s_{ben} = 0.01$ at $N = 10^7$. Dashed line is given by $P_{fix}^{ben}(x_0) = \frac{1-e^{-2s_{ben}Nx_0}}{1-e^{-2s_{ben}N}}$ [34],
 167 while circles are values of $P_{fix}^{ben}(x_0)$ measured in simulations (averaged across 10^5 runs). **B)**
 168 Average frequency trajectories of a beneficial mutation of size $s_{ben} = 0.01$ in **A** averaged across
 169 all 10^5 runs of simulation. **C)** Individual realizations of a simulation initiated with a mutation
 170 under frequency dependent selection, with the selection coefficient $s(x) = b + mx$, where x is
 171 the frequency, $b = -0.02$, $m = 0.1$, and $N = 10^7$. **D)** Average frequency trajectories of the

172 frequency-dependent mutation in **C** averaged across all 10^5 runs of simulation. All panels are on
173 a log-log scale for clarity.

174

175 1. Matic, I., et al., *Highly variable mutation rates in commensal and pathogenic Escherichia coli*.
176 *Science*, 1997. **277**(5333): p. 1833-1834.

177 2. LeClerc, J.E., et al., *High mutation frequencies among Escherichia coli and Salmonella pathogens*.
178 *Science*, 1996. **274**(5290): p. 1208-1211.

179 3. Oliver, A., et al., *High frequency of hypermutable *Pseudomonas aeruginosa* in cystic fibrosis lung*
180 *infection*. *Science*, 2000. **288**(5469): p. 1251.

181 4. Suarez, P., J. Valcarcel, and J. Ortín, *Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants*. *J. Virol.*, 1992. **66**(4): p. 2491-2494.

182 5. Healey, K.R., et al., *Prevalent mutator genotype identified in fungal pathogen *Candida glabrata* promotes multi-drug resistance*. *Nature Communications*, 2016. **7**: p. 11128.

183 6. Billmyre, R.B., S.A. Clancey, and J. Heitman, *Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in *Cryptococcus deuterogattii**. *eLife*, 2017. **6**: p. e28802.

184 7. Boyce, K.J., et al., *Mismatch Repair of DNA Replication Errors Contributes to Microevolution in the Pathogenic Fungus *Cryptococcus neoformans**. *mBio*, 2017. **8**(3): p. e00595-17.

185 8. Loeb, L.A., *Human cancers express mutator phenotypes: origin, consequences and targeting*. *Nat Rev Cancer*, 2011. **11**(6): p. 450-457.

186 9. Lengauer, C., K.W. Kinzler, and B. Vogelstein, *Genetic instability in colorectal cancers*. *Nature*, 1997. **386**(6625): p. 623-627.

187 10. Sniegowski, P.D., P.J. Gerrish, and R.E. Lenski, *Evolution of high mutation rates in experimental populations of *E. coli**. *Nature*, 1997. **387**(6634): p. 703-5.

188 11. Shaver, A.C., et al., *Fitness evolution and the rise of mutator alleles in experimental *Escherichia coli* populations*. *Genetics*, 2002. **162**(2): p. 557-66.

189 12. Barrick, J.E., et al., *Genome evolution and adaptation in a long-term experiment with *Escherichia coli**. *Nature*, 2009. **461**(7268): p. 1243-7.

190 13. Notley-McRobb, L., S. Seeto, and T. Ferenci, *Enrichment and elimination of mutY mutators in *Escherichia coli* populations*. *Genetics*, 2002. **162**(3): p. 1055-1062.

191 14. Pal, C., et al., *Coevolution with viruses drives the evolution of bacterial mutation rates*. *Nature*, 2007. **450**(7172): p. 1079-1081.

192 15. Mao, E., et al., *Proliferation of mutators in a cell population*. *J. Bacteriol.*, 1997. **179**(2): p. 417-422.

193 16. Raynes, Y. and P.D. Sniegowski, *Experimental evolution and the dynamics of genomic mutation rate modifiers*. *Heredity (Edinb)*, 2014. **113**(5): p. 375-80.

194 17. Voordeckers, K., et al., *Adaptation to High Ethanol Reveals Complex Evolutionary Pathways*. *PLOS Genetics*, 2015. **11**(11): p. e1005635.

195 18. Furio, V., A. Moya, and R. Sanjuán, *The cost of replication fidelity in an RNA virus*. *Proceedings of the National Academy of Sciences*, 2005. **102**(29): p. 10233-10237.

196 19. Furio, V., A. Moya, and R. Sanjuán, *The cost of replication fidelity in human immunodeficiency virus type 1*. *Proceedings of the Royal Society B: Biological Sciences*, 2007. **274**(1607): p. 225-230.

197 20. Maynard Smith, J. and J. Haigh, *The hitch-hiking effect of a favorable gene*. *Genetical Research*, 1974. **23**: p. 23-25.

198 21. Sniegowski, P.D., et al., *The evolution of mutation rates: separating causes from consequences*. *Bioessays*, 2000. **22**(12): p. 1057-66.

199 22. Chao, L. and E.C. Cox, *Competition between high and low mutating strains of *Escherichia coli**. *Evolution*, 1983. **37**(1): p. 125-134.

200 23. Chao, L., et al., *Transposable elements as mutator genes in evolution*. *Nature*, 1983. **303**(5918): p. 633-635.

222 24. Thompson, D.A., M.M. Desai, and A.W. Murray, *Ploidy controls the success of mutators and*
223 *nature of mutations during budding yeast evolution*. *Curr Biol*, 2006. **16**(16): p. 1581-90.

224 25. Gentile, C.F., et al., *Competition between high- and higher-mutating strains of Escherichia coli*.
225 *Biol Lett*, 2011. **7**(3): p. 422-4.

226 26. de Visser, J.A. and D.E. Rozen, *Clonal interference and the periodic selection of new beneficial*
227 *mutations in Escherichia coli*. *Genetics*, 2006. **172**(4): p. 2093-100.

228 27. Le Chat, L., M. Fons, and F. Taddei, *Escherichia coli mutators: selection criteria and migration*
229 *effect*. *Microbiology*, 2006. **152**(1): p. 67-73.

230 28. Raynes, Y., et al., *Sign of selection on mutation rate modifiers depends on population size*. *Proc*
231 *Natl Acad Sci U S A*, 2018. **115**(13): p. 3422-3427.

232 29. Wylie, C.S., et al., *The fixation probability of rare mutators in finite asexual populations*.
233 *Genetics*, 2009. **181**(4): p. 1595-1612.

234 30. Good, B.H. and M.M. Desai, *Evolution of Mutation Rates in Rapidly Adapting Asexual*
235 *Populations*. *Genetics*, 2016. **204**(3): p. 1249-1266.

236 31. Tanaka, M.M., C.T. Bergstrom, and B.R. Levin, *The evolution of mutator genes in bacterial*
237 *populations: the roles of environmental change and timing*. *Genetics*, 2003. **164**(3): p. 843-854.

238 32. Andre, J.B. and B. Godelle, *The evolution of mutation rate in finite asexual populations*. *Genetics*,
239 2006. **172**(1): p. 611-626.

240 33. Ewens, W., *Mathematical Population Genetics*. 2004, New York: Springer.

241 34. Kimura, M., *On The Probability Of Fixation Of Mutant Genes In A Population*. *Genetics*, 1962. **47**:
242 p. 713-719.

243

244

245

246

247