
A Fast and Memory-Efficient Implementation of the Transfer
Bootstrap?

Sarah Lutteropp1, Alexey M. Kozlov1, and Alexandros Stamatakis1,2

1 Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg
69118, Germany

2 Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76128, Germany

Abstract. Recently, Lemoine et al. suggested the Transfer Bootstrap Expectation (TBE)
branch support metric as an alternative to classical phylogenetic bootstrap support met-
ric on taxon-rich datasets. However, the original TBE implementation in the booster tool
is compute- and memory-intensive. Therefore, we developed a fast and memory-efficient
TBE implementation. We improved upon the original algorithm described by Lemoine
et al. by introducing multiple algorithmic and technical optimizations. On empirical as
well as on random tree sets with varying taxon counts, our implementation is up to 480
times faster than booster. Furthermore, it only requires memory that is linear in the
number of taxa, which leads to 10× - 40× memory savings compared to booster. Our
implementation has been partially integrated into pll-modules and RAxML-NG and is avail-
able under the GNU Affero General Public License v3.0 at https://github.com/ddarriba/
pll-modules and https://github.com/amkozlov/raxml-ng. The parallelized version that also
computes additional TBE-related statistics is available in pll-modules and RAxML-NG forks
at: https://github.com/lutteropp/pll-modules/tree/tbe and https://github.com/lutteropp/
raxml-ng/tree/tbe.

Keywords: Bioinformatics · Phylogenetics · Transfer Bootstrap.

1 Introduction

The Felsenstein bootstrap (FBP) [2] procedure is widely used to assess the robustness of phyloge-
nies. The FBP draws columns from the multiple sequence alignment (MSA) with replacement 100
or more times (for a discussion of the appropriate number of replicates see Pattengale et al. [9]) to
generate MSA replicates. Then, for each MSA replicate a corresponding bootstrap (BS) replicate
tree is inferred.

Each branch in a phylogenetic tree induces a bipartition (also called split) of the set of tips
into two subsets. The smaller of these two sets is referred to as the ’light side’ of the bipartition,
whereas the larger set is called the ’heavy side’. In case both sets are of equal size, the ’light side’
is chosen arbitrarily.

Subsequently, the bootstrap support value of a branch in the reference tree (e.g., the best-
known ML tree on the original MSA) is computed by counting how many BS replicate trees
contain the same branch (or respective bipartition/split), and dividing this count by the total
number of BS trees. In the classical FBP approach, only bipartitions that match exactly are
counted. Conversely, the Transfer Bootstrap Expectation (TBE) metric [6] also takes into account
all ’similar’ bipartitions in the BS replicate trees. The contribution of such similar bipartitions is
weighted by their similarity to the respective reference bipartition.

The computation of TBE support is based on the so-called transfer distance. The transfer
distance δ(b, b∗) between a branch b in the reference tree and a branch b∗ in a BS replicate is the
minimum number of taxa that need to be moved to transform the bipartition induced by b into
the bipartition induced by b∗.

? Supported by the Klaus Tschira Foundation.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://github.com/ddarriba/pll-modules
https://github.com/ddarriba/pll-modules
https://github.com/amkozlov/raxml-ng
https://github.com/lutteropp/pll-modules/tree/tbe
https://github.com/lutteropp/raxml-ng/tree/tbe
https://github.com/lutteropp/raxml-ng/tree/tbe
https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

2 S. Lutteropp et al.

The transfer index φ(b, T ∗) is defined as the minimum transfer distance between a branch b in
the reference tree and the branches in the BS replicate tree T ∗:

φ(b, T ∗) = min
b∗∈T∗

δ(b, b∗).

Given a reference tree and a set of BS replicate trees, Lemoine et al. define the TBE(b) of a
branch b in the reference tree as follows:

TBE(b) = 1− φ(b, T ∗)

p− 1
,

where φ(b, T ∗) is the average transfer index over all BS replicates and p is the number of taxa on
the ’light’ side of the bipartition induced by b.

2 Implementation

We implemented the transfer bootstrap computation as part of the pll-modules library. The
pll-modules library offers high-level modules for the low-level phylogenetic likelihood library
libpll [3], e.g., to perform model parameter optimization, tree moves, MSA validation etc.. Be-
sides likelihood computations, libpll and pll-modules libraries provide highly efficient tree op-
erations such as NEWICK parsing/writing, conducting tree traversals, and manipulating biparti-
tions. Hence, using pll-modules allowed us to leverage these routines for our TBE implementation,
and to facilitate integration into third-party programs as well as into our RAxML-NG [5] software.

Initially, in RAxML-NG v0.7, we had implemented a naïve TBE computation method which
relied on calculating distances between the reference bipartition and all BS tree bipartitions.
Despite having a higher theoretical run time complexity of O(n2∗m) in comparison to O(n∗m) [6]
(where n is the number of taxa and m is the number of BS trees), this implementation was faster
than booster in practice (see Figure 1). However, it scaled poorly to large numbers of taxa.
Therefore, we designed and integrated a more efficient implementation into RAxML-NG v0.8.1 and
later versions which we describe in the following.

As in [6], we encode each bipartition as a bit vector.
We compute the transfer index φ(b, T ∗) via a post-order traversal as described in [6]. However,

we first test if two bipartitions are identical prior to computing the transfer distance, by hashing
the bipartitions. We also stop the traversal of T ∗ early if the lowest possible transfer distance
(which is p− 1) has already been encountered.

The booster tool parallelizes the computation across BS trees. Our implementation uses
OpenMP to parallelize computations within each BS tree, as we parallelize over branches in the
reference tree for each BS tree. This approach is more fine-grained than the approach followed by
booster.

Our per-branch-parallelization has the following advantages (+) and disadvantages (-) com-
pared to the per-tree-parallelization approach used in booster:

– (+) less additional memory is required (as only one tree is processed at a time)
– (+) better expected performance in terms of parallel efficiency for high numbers of taxa and

low numbers of BS trees
– (-) worse expected performance for low numbers of taxa and high numbers of BS trees

However, as we show in Section 3, our sequential implementation can already process extremely
large datasets in but a few minutes.

Our implementation can also print additional per-taxon and per-branch statistics (-r and -c
options in booster), and these are also computed more efficiently than in booster (see Section 2.4).

At present, the OpenMP parallelization and the computation of those additional statistics are
not part of the production release of RAxML-NG. Our extended version is available in a separate
repository at https://github.com/lutteropp/raxml-ng/tree/tbe.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://github.com/lutteropp/raxml-ng/tree/tbe
https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

A Fast and Memory-Efficient Implementation of the Transfer Bootstrap 3

2.1 Naïve O(n2 ∗ m) algorithm (used in RAxML-NG v0.7)

The transfer distance δ(b, b∗) between two bipartitions b and b∗ can be naïvely computed in linear
time via two Hamming distance computations and one minimum operation: For each bipartition,
we assign the value 0 to the taxa on one side of the bipartition and the value 1 to the remaining
taxa. Then, the transfer distance between b and b∗ is the smaller of the two hamming distances
between the bit-vectors induced by b and b∗ and between b̄ and b∗, where in b̄ the zeros and ones
are swapped.

Using this approach, computing the transfer index φ(b, T ∗) requires O(n2) time. Algorithm 1
shows the computation of transfer BS support using our naïve approach.

Algorithm 1: Naïve O(n2 ∗m) Algorithm for computing transfer bootstrap support.
Input: The reference tree T , a set of bootstrap trees
Output: The transfer BS values for all branches b ∈ T

1 Algorithm computeTransferBS():
2 Arbitrarily root T
3 m← number of branches in T
4 totalSupport← Array of zeros, of size m
5 for each bootstrap tree T∗ do
6 S ← hash each bipartition in T∗

7 for each branch b∗ ∈ T∗ do
8 bs_light[b∗]← bitvComputeLightside(b∗) /* Size of the “light” side of the bipartition induced

by b∗, computed with the help of performing a popcount operation on b∗ */
9

10 end
11 for each branch b in the reference tree do
12 p← bitvComputeLightside(b) /* Size of the “light” side of the bipartition induced by b,

computed with the help of performing a popcount operation on b */
13 min_hdist← p− 1
14 if b ∈ S then
15 support[b]← 1.0
16 else
17 b_inv ← bvInvert(b) /* Switch zeros and ones */
18
19 for each branch b∗ ∈ T∗ do
20 if |bs_light[b∗]− p| > min_hdist and |n− bs_light[b∗] + p| > min_hdist then
21 continue
22 end

/* The function minHdistLbound(b1, b2,M) returns the hamming distance hamm(b1, b2)
between b1 and b2, or M if hamm(b1, b2) ≥M */

23 hdist← minHdistLbound(b, b∗,min_hdist)
24 hdist_inv ← minHdistLbound(b_inv, b∗,min_hdist)
25 min_hdist← min{min_hdist, hdist, hdist_inv}
26 end
27 support[b]← 1.0− min_hdist

p

28 totalSupport[b]← totalSupport[b] + support[b]

29 end
30 end
31 for each branch b ∈ T do
32 totalSupport[b]← totalSupport[b]

number of BS trees
33 end
34 return totalSupport

2.2 Improved O(n ∗ m) algorithm (used in RAxML-NG v0.8.1 and later)

Let n be the number of taxa in the reference tree. We assume that the m BS trees share the
same set of taxa as the reference tree. Lemoine et al. describe the following O(n) algorithm for
computing the transfer index φ(b, T ∗) for a branch b ∈ T and a BS tree T ∗:

– Let p be the size of the “light side“ of the bipartition induced by b. We assign the value 0 to
each taxon on the light side of b, and the value 1 to each taxon on the heavy side of b.

– Apply the same taxon-value-assignments to the taxa in T ∗.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

4 S. Lutteropp et al.

– Perform a post-order traversal of T ∗, counting the number of ones #ones_subtree in every
subtree rooted at a branch b∗ ∈ T ∗.

– Besides #ones_subtree, we also know the following values:
• #zeros_subtree = n−#ones_subtree
• #zeros_total = p
• #ones_total = n− p

For making the bipartitions b and b∗ identical, we need to either
• move all zeros inside the subtree and all ones outside, or
• move all ones inside the subtree and all zeros outside.

Hence, the transfer distance δ(b, b∗) can be computed as follows:

δ(b, b∗) = min

{
#zeros_total −#zeros_subtree+ #ones_subtree,
#ones_total −#ones_subtree+ #zeros_subtree

We compute the transfer distance δ(b, b∗) in O(1) during the post-order traversal, using the formula
given above. The transfer index φ(b, T ∗) is the minimum of the computed transfer distances.

For computing TBE support over m BS trees, the overall worst-case complexity of this algo-
rithm is O(n ∗m).

Comparison to the algorithm implemented in booster After inspecting the source code, we realized
that booster does not implement the algorithm described by Lemoine et al. [6], but instead the
algorithm described by Brehelin et al. [1]. However, the algorithm by Brehelin et al. requires
quadratic instead of linear memory.

2.3 Preprocessing and Speed Improvements

In order to reduce the total number of operations, we preprocess both, the reference tree, and
the BS trees. We arbitrarily root the trees at an inner node to have a direction for the post-order
traversals needed for computing the transfer index.

Algorithm 2 shows the computation of TBE support using the improved approach, together
with our preprocessing and early-stop improvements explained in the following.

Preprocessing the Reference Tree For each branch b in the reference tree, we precompute the
size p of its “light side” via a post-order traversal. Following the description from Lemoine et al.,
during the transfer distance computation we will assign the value 0 to all taxa on the “light side” of
the split induced by b and 1 to the remaining taxa. To conduct this efficiently, in the preprocessing
step, we note for each branch whether the value 0 will be assigned to the taxa within the subtree
or the taxa outside the subtree. We also store the index of the leftmost and the index of the
rightmost taxon in the subtree. Thereby, we ensure beforehand that the taxa are indexed by 0 to
n − 1 from the left of the tree to the right of the tree. This enables us to efficiently initialize the
array which keeps track of the number of ones in the subtrees.

Hence, for each node v in the reference tree T , we store:

– The indices of the leftmost and rightmost node in the subtree Tv rooted at v.
– The size of the “light side” p, which is min{|Tv|, n− |Tv|}.
– A boolean flag whether the taxa in Tv are all 0 or all 1 in the bipartition induced by the

incoming edge of v.

Preprocessing the Bootstrap Trees As already mentioned, we process the BS trees one after
another. Since the subtree sizes in a BS tree do not change for different reference bipartition
queries, we precompute the subtree sizes once via a post-order traversal of the BS tree. For each
node v∗ in a BS tree T ∗, we thus store the size |T ∗v | of the subtree T ∗v rooted at v∗. Moreover, we
hash the bipartitions induced by the BS tree branches, such that we can skip the O(n) transfer
index computation for each reference tree bipartition that is also present in the BS tree.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

A Fast and Memory-Efficient Implementation of the Transfer Bootstrap 5

Early-Stop We can easily detect whether a split b from the reference tree is present in a BS tree T ∗
via our hashing. In this case, the transfer index φ(b, T ∗) equals zero. If the “light side” p of b equals
2 and b is not present in T ∗, the transfer index φ(b, T ∗) equals 1 (because φ(b, T ∗) ≤ p − 1 [6]).
Thus, we do not need to run the O(n) post-order traversal in this case. We also know that we have
already found the minimum transfer distance to b during the post-order traversal, if we encounter
a branch b∗ ∈ T ∗ for which δ(b, b∗) = 1 (because we checked for an exact match before).

2.4 Computing Additional Information

The booster tool can generate additional TBE-related statistics that might help the user to
identify potential problems with his dataset, such as rogue taxa.

This additional statistics include:

– An optional array A, storing the taxon transfer index for each taxon. Only BS splits that are
“close enough“ and reference splits that are “balanced enough” are considered (see below).

– An optional table B, storing the percentage of BS trees in which taxon i had to be moved
between the closest BS split to the reference split j. Only BS splits that are “close enough“
and reference splits that are “balanced enough” are considered (see below).

– An optional tree R, which is a branch-labeled copy of the reference tree, showing branch
identifier, depth (the size of the “light side“ of the induced split), as well as average transfer
distance for each branch.

A split b∗ ∈ T ∗ is considered closest to a split b ∈ T , if δ(b, b∗) = φ(b, T ∗). Note that there can be
multiple closest splits for a split b. However, we ensure that we only use one of the possible closest
splits for each reference split b for calculating the statistics. Let p be the size of the “light side” of
b. Given the user-specified parameter d ∈ [0, 1], a closest split b∗ is considered “close enough” to b
if and only if φ(b,T∗)

p−1 ≤ d and b is considered “balanced enough” if and only if p ≥ d 1d + 1e. The
default value for d is 0.3.

The array entry A[i] is defined as

A[i] :=
∑
T∗

∑
bj
Number of times taxon i had to be moved in an encountered closest split b∗ ∈ T ∗ to bj

Number of encountered closest splits in T ∗

The table entry B[j][i] corresponds to taxon i and reference split bj . It is defined as

B[j][i] :=

∑
T∗ Number of times taxon i had to be moved in an encountered closest split b∗ ∈ T ∗ to bj

Number of BS trees ∗Number of reference splits

The array A and table B are based on the computation of “species-to-move“ between two
bipartitions b and b∗. The “species-to-move“ are a smallest set of taxa that need to be moved to
the other side of b in order to transform b into b∗. In case there are multiple such smallest sets, we
(as well as booster) arbitrarily select one of them for computing the statistics above.

In the booster tool, this is computed in linear time by comparing the binary assignment of
each taxon.

Our implementation computes “species-to-move“ faster by performing an incomplete pre-order
traversal, reusing the “number of ones in subtree“ values which we already computed during the
post-order traversal when searching for the minimum transfer distance. We only descend into a
subtree when there is a taxon which needs to be moved in that subtree. Algorithm 3 shows our
computation of “species-to-move“ via an incomplete pre-order traversal.

3 Results

We compared runtime performance and memory consumption between our improved implementa-
tion (partially integrated into RAxML-NG v0.8.1 and later), the naïve implementation previously

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

6 S. Lutteropp et al.

Algorithm 2: Improved O(n ∗m) Algorithm (used in RAxML-NG v0.8.1 and later)
Input: The reference tree T , a set of bootstrap trees
Output: The transfer BS values for all branches b ∈ T

1 Algorithm computeTransferBS():
2 Arbitrarily root T
3 refInfo ← Precompute size of “light side” p, whether taxa in subtree are assigned to one or zero, index of

leftmost taxon in subtree, and index of rightmost taxon in subtree for each branch b ∈ T via a post-order
traversal of T . The taxa in a subtree are assigned to zero, if and only if the number of taxa in the subtree is
less or equal to n

2 .
4 m← number of branches in T
5 totalSupport← Array of zeros, of size m
6 for each bootstrap tree T∗ do
7 Arbitrarily root T∗

8 S ← hash each bipartition in T∗

9 for each branch b in the reference tree do
10 if b ∈ S then
11 support[b]← 1.0
12 else if refInfo[b].p == 2 then
13 support[b]← 0.0
14 else
15 support[b]← 1.0− minDist(refInfo[b],T)

refInfo[b].p−1

16 totalSupport[b]← totalSupport[b] + support[b]

17 end
18 end
19 for each branch b ∈ T do
20 totalSupport[b]← totalSupport[b]

number of BS trees
21 end
22 return totalSupport

23
Input: refInfo[b], the BS tree T∗

Output: The minimum transfer distance between b and T∗

24 Procedure minDist():
25 d← refInfo[b].p− 1
26 m← number of branches in T∗

27 countOnesSubtree← array of zeros of size m /* (will be reused for multiple queries, but not
re-initialized - we ensure that branches leading to tips are indexed by the first n indices) */

28
29 for i← 0 to refInfo[b].leftLeafIdx− 1 do
30 countOnesSubtree[i]←!refInfo[b].onesInSubtree
31 end
32 for i← refInfo[b].leftLeafIdx to refInfo[b].rightLeafIdx do
33 countOnesSubtree[i]← refInfo[b].onesInSubtree
34 end
35 for i← refInfo[b].rightLeafIdx+ 1 to m− 1 do
36 countOnesSubtree[i]←!refInfo[b].onesInSubtree
37 end
38 for each branch b∗ ∈ T∗ in a postorder traversal of T∗, excluding the branches leading to tips do
39 countOnesSubtree[b∗]← countOnesSubtree[b∗.left] + countOnesSubtree[b∗.right]
40 countZerosSubtree← b∗.subtreeSize− countOnesSubtree[b∗]
41 actDist = refInfo[b].p− countZerosSubtree+ countOnesSubtree[b∗]
42 if actDist > n

2 then
43 actDist← n− actDist
44 end
45 if actDist < d then
46 d← actDist
47 if d == 1 then
48 return d
49 end
50 end
51 end
52 return d

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

A Fast and Memory-Efficient Implementation of the Transfer Bootstrap 7

Algorithm 3: Pre-order traversal to compute “species-to-move” (not integrated yet into the
official RAxML-NG repository).

Input: The count_ones_subtree array filled in minDist(), the size of the “light side” p of the query branch b
from the reference tree, the bs tree T∗, a closest bs branch b∗ ∈ T∗ such that φ(b, T∗) = δ(b, b∗), the
subtree root r∗s ∈ T

∗ corresponding to b∗, the transfer index φ(b, b∗), the number of taxa n
Output: The taxa that need to be moved in order to transform the split induced by b into the split induced by b∗

1 Algorithm species_to_move():
2 n_subtree← b∗.subtreeSize
3 ones_subtree← count_ones_subtree[T∗.root().index]
4 zeros_subtree← n_subtree− ones_subtree
5 ones_total← n− p
6 zeros_total← p

/* move ones into subtree, zeros outside subtree? */
7 ops_ones_in_subtree← (n_subtree− ones_subtree) + (n− n_subtree)− (zeros_total− zeros_subtree)

/* move zeros into subtree, ones outside subtree? */
8 ops_zeros_in_subtree← (n_subtree− zeros_subtree) + (n− n_subtree)− (ones_total− ones_subtree)
9 if ops_zeros_in_subtree <= ops_ones_in_subtree then

10 want_ones_outside← True
11 else
12 want_ones_outside← False
13 species← species_to_move_recursive(T∗, count_ones_in_subtree, r∗s , T

∗.root, want_ones_outside)
14 return species

15
Input: The count_ones_subtree array filled in minDist(), the size of the “light side” p of the query branch b from

the reference tree, the bs tree T∗, a closest bs branch b∗ ∈ T∗ such that φ(b, T∗) = δ(b, b∗), the transfer
index φ(b, b∗), the number of taxa n, the currently processed node curr_node ∈ T∗, want_ones_now

Output: The array containing the species that need to be moved in order to transform b into b∗
16 Procedure species_to_move_recursive():
17 if curr_node.isLeaf() then
18 if (want_ones_now and count_ones_subtree[curr_node] == 0) or (!want_ones_now and

count_ones_subtree[curr_node] == 1) then
19 species.add(curr_node)
20 end
21 end
22 if curr_node == r∗s then

/* We are now entering the subtree belonging to b∗ */
23 want_ones_now ←!want_ones_now
24 end
25 if (want_ones_now and count_ones_in_subtree[curr_node] == curr_node.subtreeSize) or

(!want_ones_now and count_ones_in_subtree[curr_node] == 0) then
26 return species

/* we do not need to go further down this subtree. */
27 else
28 species.addAll(species_to_move_recursive(T∗, count_ones_in_subtree, r∗s , currNode.leftChild, want_ones_now))

29 species.addAll(species_to_move_recursive(T∗, count_ones_in_subtree, r∗s , currNode.rightChild, want_ones_now))

30 return species

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

8 S. Lutteropp et al.

used in RAxML-NG v0.7, and booster. Two other popular phylogenetic inference tools also offer
TBE computations: PhyML [4] and IQ-Tree [8]. IQ-Tree internally uses booster for this task, and
PhyML can not compute TBE support for user-specified tree sets. Therefore, we excluded IQ-Tree
and PhyML from our evaluation.

Note that, Truszkowski et al. [10] are simultaneously and independently working on an im-
proved algorithm for TBE computations with a lower theoretical run time complexity. The re-
spective prototype implementation is 237 times faster (pers. comm.) than the original booster
implementation on the dataset C. On this dataset, our implementation is 258 times faster and
requires 21 times less memory than booster.

We measured runtimes and memory consumption on a machine with two Xeon Gold 6148
(Skylake-SP) CPUs and 768GB RAM. Table 1 lists the empirical datasets we used for evalua-
tion including the average normalized RF distance (nRF) among the BS trees. The nRF shows
how similar the BS trees are: e.g., for completely random trees, nRF is close to 1.0. Dataset C is
taken from the original TBE study [6]. Datasets A and B were derived from unpublished studies,
thus in our supplementary data we anonymized taxon names for these datasets. Datasets D and E
were derived from two large 16S rRNA databases, the Living Tree Project v123 (https://www.arb-
silva.de/projects/living-tree/) and greengenes (http://greengenes.secondgenome.com/), respectively.
Since we lack empirical BS trees for these datasets, we used randomly generated trees instead.
The datasets are available at https://doi.org/10.6084/m9.figshare.9692402.

Dataset # Taxa # BS reps avg. nRF Ref.
A_2311 2,311 300 0.47 (unpublished)
B_6582 6,582 100 0.04 (unpublished)
C_9147 9,147 100 0.86 [6]
D_31479_rand 31,749 100 0.48 [11]
E_203418_rand 203,418 10 1.00 [7]

Table 1. Characteristics of the datasets used for evaluation: number of taxa, number of BS replicates,
and average normalized RF distance (nRF) among BS trees.

We used the following tools and tool versions in our performance evaluation:

– booster (commit 91fb005 in https://github.com/evolbioinfo/booster/tree/master)
– RAxML-NG naïve (commit a4a8f8d in https://github.com/amkozlov/raxml-ng/tree/master)
– RAxML-NG improved (commit 757e9be in https://github.com/lutteropp/raxml-ng/tree/tbe)

For each dataset, we measured runtime and memory usage via the command /usr/bin/time -v.
We averaged the values for Elapsed (wall clock) time and Maximum resident set size over
3 runs.

Our experimental results show that RAxML-NG improved is several orders of magnitude faster
than both, booster, and RAxML-NG naïve on all datasets, while both RAxML-NG implementations
use considerably less memory than booster (see Figures 1 and 2). Despite following different par-
allelization schemes, both booster and RAxML-NG improved scale poorly on more than 10 cores
(see Figures 3 and 5). However, booster shows a drastic increase in required memory whith the
number of cores (Figure 4), which is not the case with RAxML-NG improved (Figure 6). When
computing additional information, both, runtime, and memory usage of RAxML-NG improved in-
crease notably, while this is not the case with booster (see Figures 7 and 8). In all versions tested,
RAxML-NG improved showed better runtime performance than RAxML-NG naïve and booster. Re-
garding memory usage, both RAxML-NG versions required several orders of magnitude less memory
than booster.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.6084/m9.figshare.9692402
https://github.com/evolbioinfo/booster/tree/master
https://github.com/amkozlov/raxml-ng/tree/master
https://github.com/lutteropp/raxml-ng/tree/tbe
https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

A Fast and Memory-Efficient Implementation of the Transfer Bootstrap 9

●

●

●
●

●

10−3

10−2

10−1

100

101

102

103

104

105

106

A_2311 B_6582 C_9147 D_31749_rand E_203418_rand
Dataset

A
ve

ra
ge

 ti
m

e
pe

r
B

S
 tr

ee
 in

 s
ec

on
ds

Program

●

booster

raxml_improved

raxml_naive

Single−threaded, without extra information

Average runtime per BS tree in seconds

Fig. 1. Average runtime per BS tree in seconds, without computing additional information. All tools were
executed sequentially. Note the logarithmic scale on the y-axis. On the E_203418_rand dataset, booster
went out of memory. We can see on this plot that RAxML-NG improved is several orders of magnitude faster
than booster and RAxML-NG naïve. The slowest tool across all tested datasets is booster.

4 Conclusions

We developed and made available a substantially faster and more memory-efficient Transfer Boot-
strap implementation, which allows to calculate TBE support metrics on extremely taxon-rich
phylogenies, without constituting a computational limitation. For example, on dataset D with
31, 749 taxa and 100 BS replicates using a single thread, our implementation RAxML-NG improved
computed TBE support values in under two minutes, while RAxML-NG naïve and booster required
458 minutes and 916 minutes, respectively.

5 Future Work

Instead of selecting only one possibility for determining “species-to-move“ to transform one bipar-
tition into another, one could average over all possible minimal sets of taxa when computing the
additional statistics. As most entries in the extra table B are zero, memory usage could be further
reduced by using a sparse matrix representation and changing the output format to only print
nonzero cells. Our parallelization could be improved by also parallelizing across BS trees or using
MPI to orchestrate transfer bootstrap computations onto multiple cluster nodes.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

10 S. Lutteropp et al.

●

●
●

●

●

104

105

106

107

108

A_2311 B_6582 C_9147 D_31749_rand E_203418_rand
Dataset

A
ve

ra
ge

 m
em

 u
sa

ge
 in

 k
ilo

by
te

Program

●

booster

raxml_improved

raxml_naive

Single−threaded, without extra information

Average mem usage in kilobyte

Fig. 2. Average total memory usage in kilobytes, without computing additional information. All tools were
executed sequentially. Note the logarithmic scale on the y-axis. On the E_203418_rand dataset, booster
went out of memory. We can see on this plot that RAxML-NG improved and RAxML-NG naïve require several
orders of magnitude less memory than booster across all tested datasets. The memory usage of RAxML-NG
improved and RAxML-NG naïve is nearly identical.

Acknowledgement

We thank Frédéric Lemoine (the author of the booster tool) for the helpful discussions and for
his valuable feedback on this manuscript. Part of this work was funded by the Klaus Tschira
foundation.

References

1. Brehelin, L., Gascuel, O., Martin, O.: Using repeated measurements to validate hierarchical gene
clusters. Bioinformatics 24(5), 682–688 (2008)

2. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4),
783–791 (1985)

3. Flouri, T., Izquierdo-Carrasco, F., Darriba, D., Aberer, A.J., Nguyen, L.T., Minh, B., Von Haeseler,
A., Stamatakis, A.: The phylogenetic likelihood library. Systematic biology 64(2), 356–362 (2014)

4. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New algorithms
and methods to estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0.
Systematic biology 59(3), 307–321 (2010)

5. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., Stamatakis, A.: RAxML-NG: a fast, scalable
and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics (05 2019).
https://doi.org/10.1093/bioinformatics/btz305, https://doi.org/10.1093/bioinformatics/btz305

6. Lemoine, F., Entfellner, J.B.D., Wilkinson, E., Correia, D., Felipe, M.D., Oliveira, T.d., Gascuel, O.:
Renewing felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556(7702), 452 (2018)

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

A Fast and Memory-Efficient Implementation of the Transfer Bootstrap 11

●

● ● ●

10−2

10−1

100

101

102

103

104

 1 10 20 40
Threads

A
ve

ra
ge

 ti
m

e
pe

r
B

S
 tr

ee
 in

 s
ec

on
ds

Dataset

●

A_2311

B_6582

C_9147

D_31749_rand

Multi−threaded, without extra information

Average runtime per BS tree in seconds with booster

Fig. 3. Average runtime per BS tree in seconds for all datasets with booster, without computing extra
information. Note the logarithmic scale on the y-axis. On the D_31749_rand dataset with 40 threads,
booster went out of memory. We can see that booster does not scale well on more than 10 cores.

7. McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen,
G.L., Knight, R., Hugenholtz, P.: An improved Greengenes taxonomy with explicit ranks for eco-
logical and evolutionary analyses of bacteria and archaea. The ISME journal 6, 610–8 (2012).
https://doi.org/10.1038/ismej.2011.139

8. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q.: Iq-tree: a fast and effective stochastic
algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution 32(1),
268–274 (2014)

9. Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R., Moret, B.M., Stamatakis, A.: How many boot-
strap replicates are necessary? Journal of Computational Biology 17(3), 337–354 (2010)

10. Truszkowski, J.M., Gascuel, O., Swenson, K.: Rapidly computing the phylogenetic transfer in-
dex. bioRxiv (2019). https://doi.org/10.1101/743948, https://www.biorxiv.org/content/early/2019/
08/22/743948

11. Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn,
D.J., O’Meara, B.C., Moles, A.T., Reich, P.B., et al.: Three keys to the radiation of angiosperms into
freezing environments. Nature 506(7486), 89 (2014)

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1101/743948
https://www.biorxiv.org/content/early/2019/08/22/743948
https://www.biorxiv.org/content/early/2019/08/22/743948
https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

12 S. Lutteropp et al.

●

●

●

●

105

106

107

108

109

 1 10 20 40
Threads

A
ve

ra
ge

 m
em

 u
sa

ge
 in

 k
ilo

by
te

Dataset

●

A_2311

B_6582

C_9147

D_31749_rand

Multi−threaded, without extra information

Average mem usage in kilobyte with booster

Fig. 4. Total memory usage in kilobytes for all datasets with booster, without computing extra informa-
tion. Note the logarithmic scale on the y-axis. On the D_31749_rand dataset with 40 threads, booster
went out of memory. We can see that the memory consumption of booster rises substantially with the
number of core.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

A Fast and Memory-Efficient Implementation of the Transfer Bootstrap 13

●
● ● ●

●

● ● ●

10−3

10−2

10−1

100

101

102

103

 1 10 20 40
Threads

A
ve

ra
ge

 ti
m

e
pe

r
B

S
 tr

ee
 in

 s
ec

on
ds

Dataset

●

●

A_2311

B_6582

C_9147

D_31749_rand

E_203418_rand

Multi−threaded, without extra information

Average runtime per BS tree in seconds with RAxML−NG improved

Fig. 5. Average runtime per BS tree in seconds for all datasets with RAxML-NG improved, without computing
extra information. Note the logarithmic scale on the y-axis. We can see that RAxML-NG improved does not
scale well with more than 10 threads.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

14 S. Lutteropp et al.

● ● ● ●

● ● ● ●

104

105

106

107

108

 1 10 20 40
Threads

A
ve

ra
ge

 m
em

 u
sa

ge
 in

 k
ilo

by
te

Dataset

●

●

A_2311

B_6582

C_9147

D_31749_rand

E_203418_rand

Multi−threaded, without extra information

Average mem usage in kilobyte with RAxML−NG improved

Fig. 6. Total memory usage in kilobytes for all datasets with RAxML-NG improved, without computing
extra information. Note the logarithmic scale on the y-axis. We can see that the memory consumption of
RAxML-NG improved is not strongly affected by the number of cores.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

A Fast and Memory-Efficient Implementation of the Transfer Bootstrap 15

●

●
● ●

●

● ● ●

10−2

10−1

100

101

102

 1 10 20 40
Threads

A
ve

ra
ge

 ti
m

e
pe

r
B

S
 tr

ee
 in

 s
ec

on
ds

Program

●

●

booster

raxml_improved

Variant

●

extra

normal

On C_9147 dataset, multi−threaded, both variants

Average runtime per BS tree in seconds with RAxML−NG improved and booster

Fig. 7. Average runtime per BS tree in seconds for dataset C with RAxML-NG improved and booster,
with and without computing extra information. Note the logarithmic scale on the y-axis. We can see that
both tools do not scale well with more than 10 threads and that RAxML-NG improved is several orders
of magnitude faster than booster. Moreover, we can see that the runtimes of booster with and without
extra information are nearly the same, whereas RAxML-NG improved shows an increase in total runtime
when computing extra information.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

16 S. Lutteropp et al.

●

●

●

●

● ● ● ●

104

105

106

107

108

 1 10 20 40
Threads

A
ve

ra
ge

 m
em

 u
sa

ge
 in

 k
ilo

by
te

Program

●

●

booster

raxml_improved

Variant

●

extra

normal

On C_9147 dataset, multi−threaded, both variants

Average mem usage in kilobyte with RAxML−NG improved and booster

Fig. 8. Average total memory usage for dataset C with RAxML-NG improved and booster, with and without
computing extra information. Note the logarithmic scale on the y-axis. We can see that booster uses several
orders of magnitudes more memory than RAxML-NG improved. Moreover, we can see that the memory
requirements of booster with and without extra information are nearly the same, whereas RAxML-NG
improved requires more memory when computing extra information.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/734848doi: bioRxiv preprint

https://doi.org/10.1101/734848
http://creativecommons.org/licenses/by-nc/4.0/

	A Fast and Memory-Efficient Implementation of the Transfer Bootstrap

