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Abstract

Analysis of circulating cell-free DNA (cfDNA) data has opened new opportunities for characterizing
tumour mutational landscapes with many applications in genomic-driven oncology. We developed a
customized targeted cfDNA sequencing approach for breast cancer (BC) using unique molecular
identifiers (UMIs) for error correction. Our assay, spanning a 284.5 kb target region, is combined with
freely-available bioinformatics pipelines that provide ultra-sensitive detection of single nucleotide
variants (SNVs), and reliable identification of copy number variations (CNVs) directly from plasma
DNA. In a cohort of 35 BC patients, our approach detected actionable driver and clonal SNVs at low
(~0.5%) frequency levels in cfDNA that were concordant (83.3%) with sequencing of primary and/or
metastatic solid tumour sites. We also detected ERRB2 gene CNVs used for HER2 subtype
classification with 80% precision compared to immunohistochemistry. Further, we evaluated
fragmentation profiles of cfDNA in BC and observed distinct differences compared to data from
healthy individuals. Our results show that the developed assay addresses the majority of tumour
associated aberrations directly from plasma DNA, and thus may be used to elucidate genomic

alterations in liquid biopsy studies.
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Introduction
One of the key objectives in precision oncology is to deliver better cancer diagnosis and tailored

treatment. So far, analysis of tissue biopsy data is widely used to characterize tumour genomic
landscapes, and to identify actionable somatic alterations’?. However, tissues biopsies are invasive
with constraints on frequency of tissue sampling, and may not be representative of the entire tumour

load®.

As an alternative, recent studies have demonstrated the translational potentials of circulating cell-free
DNA (cfDNA), or circulating tumor DNA (ctDNA) in cancer patients, for improving cancer
management®*. Such liquid biopsy data measured directly from body fluids (e.g. plasma) can be used
to detect tumour somatic alterations, with the ability to provide early prognostication and/or better
molecular profiling of patients with cancer without the risk and discomfort of invasive biopsies®. For
example, estrogen receptor 1 (ESR1) mutation detected in the ctDNA of breast cancer (BC) patients
pre-treated with aromatase inhibitors correlates with inferior treatment outcome on exemestane, but
not on fulvestrant®’. PIK3CA mutation status based on ctDNA has also been demonstrated to predict
benefit from PI3K inhibitor therapy in BC®. In other cancer types such as lung, ctDNA testing for
EGFR mutation status has been approved by the Food and Drug Administration (FDA) to guide

selection of therapy.

Several genetic techniques including digital droplet PCR (ddPCR) and BEAMing have been
extensively applied to detect single nucleotide variations (SNVs) in cfDNA with very high precision
(e.g. detection of alleles at lower than 0.1% frequency), but the analysis is restricted only to a limited
number of genomic loci®. More recently, improvements in next generation sequencing (NGS) have
allowed screening of broader genomic regions and simultaneous monitoring of multiple tumour-
specific alterations in a single assay*'*'%. However, analyses of tumour NGS data from cfDNA is
challenging due to several biological reasons (e.g. low cfDNA abundance in the blood stream) and
other technical artifacts (e.g. error rates of NGS) that restrict the analytical sensitivity of tumour

detection in plasma DNA.

In this study, we evaluate our targeted cfDNA sequencing approach that uses molecular barcodes for
error correction. The developed assay spanning 77 genes (285.4 kb target region) is customized for
BC, with focus on the commonly altered genes in BC as well as those with potential actionability'®'.
To improve variant calling the developed assay is combined with freely available bioinformatics
pipelines (https://github.com/dkleftogi/cfDNA_AnalysisPipeline) that enable ultra-sensitive detection
of SNVs, accurate identification of copy number variations (CNVs) and evaluation of fragmentation

profiles in cfDNA. We applied the developed cfDNA assay to detect genomic alterations in a cohort
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of 35 BC patients, and assessed the concordance of mutation calls with matched solid tumour

sequencing.

Materials and Methods
Patient recruitment and sample collection

Patients were recruited at National Cancer Centre Singapore in a prospective observational study
approved by the Singhealth Centralised Institutional Review Board (2013/251/B and 2014/119/B)
where blood specimens were collected from patients with breast cancer from 2014 to 2016. Signed
informed consent was obtained from all patients. From this study, we selected 30 metastatic cases
with paired primary and\or metastatic specimens in addition to plasma taken prior to commencement
of a new line of palliative systemic therapy (all subtypes), plus 5 patients (3 stage lll, 2 stage Il) about
to commence neoadjuvant systemic therapy. For all patients recruited in the study buffy coat was

also available for sequencing.

Retrospective review of medical and pathology records was performed to collect clinicopathologic
details including patient demographics, tumour subtype via clinical testing, disease burden, and
serum CA-15.3 level where available. The determination of estrogen receptor (ER), progesterone
receptor (PR) and human epidermal growth factor receptor 2 (HER2) status by immunohistochemistry
in this study was based on the latest recommendations by the American Society of Clinical Oncology
and the College of American Pathologists''®. ER and/or PR positive tumours that were HER2
negative were classified as hormone receptor positive (HR+)HER2-. Tumours with null expression in
ER/PR and HER2 were classified as triple-negative breast cancer (TNBC) subtype. Tumours with
positive HER2 expression (regardless of ER/PR status) were classified as the HER2-positive subtype.
The demographic characteristics and clinical information for all patients included in the study are

presented in Table 1.

Plasma samples from healthy individuals were collected similarly, as part of a parallel study
(2012/733/B), where individuals were considered healthy if they were not cancer patients at time of

collection. Aliquots of 1-2 ml of plasma were used for this study.

Sample preparation and sequencing

Patient plasma was separated from whole blood within 6 hours of collection and subsequently frozen
at -80°C. Plasma DNA was extracted using the QiaAmp Circulating Nucleic Acids kit (Qiagen). DNA
was extracted from FFPE, frozen tissue and buffy coat samples using standard protocols. All DNA
libraries were prepared using the Kapa Hyper Prep Kit (Kapa Biosystems, now Roche) using library
adapters with a random 8-mer proximal to the library index site (IDT). Hybridization capture was done

using an IDT Xgen Custom Panel of 77 genes (Supplementary Table 1) and reagents as per
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manufacturer’s instructions. Sequencing was performed on an Illumina Hiseq4000 (2 x 150 paired).
Panel genes were chosen based on literature review for relevance and/or potential actionability in

breast and other cancers.

Processing of targeted sequencing cfDNA data

Raw sequencing data with unique molecular identifiers (UMIs) were demultiplexed using in-house
pipelines. FASTQ files from different lanes were aligned to hg38 reference genome using bwa-mem"’
(version 0.7.15), and merged to a single BAM file using GATK (version 4.1.1). UMI deduplication was
performed using fgbio package (version 0.8.1). Reads with the same UMI were grouped together
allowing one base mismatch between UMIs with minimum mapping quality 20. Consensus sequences
were generated using the “adjacency” function by discarding groups of reads with single members’®.
Quality statistics and on-target analysis of coverage was performed using samtools'® (version 1.3.1)

and bedtools? (version 2.18).

Bioinformatics pipeline for ultra-sensitive detection of SNVs in cfDNA
To identify SNVs in cfDNA we developed a bioinformatics pipeline that combines variant screening
using VarDict?' with in-silico identification of duplexes using duplexCaller'?. duplexCaller defines
duplexes as pairs of read families (i.e. with different UMIs) that are mapped to the same genomic
coordinates (start and stop) but with complementary sequencing orientation (i.e. one family in the
forward direction and the other family in reverse). Using high-depth sequencing data with UMlIs,
duplex configuration approximates double stranded DNA molecules and guarantees reduction of false
positive SNVs without sacrificing specificity’?. To assess the detection capabilities of the proposed
strategy in our cohort, we first performed a pilot analysis using data from healthy individuals. Under
the assumption that low VAF SNVs in healthy data are more likely to be false positives and/or reflect
problematic genomic positions, we performed manual inspection of variants below 2% VAF and found
that the selection of the following parameters:

a) minimum VAF=0.005,

b) minimum base quality=30,

c) minimum coverage=100,

d) minimum number of supporting reads=3,

e) minimum number of supporting reads in forward strand=1,

f)  minimum number of supporting reads in reverse strand=1,

g) number of duplexes=1,

h) minimum signal to noise ratio=20, and

i) mean position of reads supporting the variant greater than 15,
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eliminates the majority of low VAF predictions in healthy data without affecting the true positive rate
(i.e. variants at VAF > 10% are unaffected). For small deletions/indels we applied the same criteria
with more stringent values for minimum VAF=0.01, minimum coverage=200, minimum number of
supporting reads=6, signal to noise ratio=25, number of duplexes=2. We also filtered out recurrent
variants that fall into high discrepancy genomic regions (HDR) as described in Bernell et al.?? and

blacklisted these sites in further analyses.

Based on the aforementioned criteria we performed variant calling in cfDNA samples from BC
patients. To identify somatic variants in cfDNA samples, we required a) zero support of reads in the
matched normal (buffy coat) sample, with minimum coverage of at least 50 reads in the normal, and
b) that the variant be absent from databases of common polymorphisms eg. 1000 Genomes project
phase 3. Finally, the list of somatic variants per patient was annotated using Ensembl VEP 2, and
SNVs (including small indels/deletions) with MODERATE or HIGH impact were considered for further

analyses.

Processing and SNV calling of sequencing data from solid tumour sites

Targeted sequencing data from solid tumour sites were aligned to hg38 reference genome using bwa-
mem (version 0.7.15). Data from different lanes were merged using GATK version 4.1.1 and
duplicates were removed using GATK MarkDuplicates function. Quality statistics and on-target
analysis of coverage was performed using samtools (version 1.3.1) and bedtools (version 2.18)

(Supplementary Table 2).

To identify SNVs in solid tumour samples without UMIs, we applied a previously developed variant
calling pipeline®* that combines the Mutect2 variant caller® with Platypus®®. Mutect2 was first run with
default parameters on tumour and normal samples of every patient. Then, we used the VCF files
returned by Mutect2 as priors to Platypus with zero posterior probability, and jointly called variants.
To identify somatic variants in solid tumour samples, we required a) minimum coverage of 50 reads,
b) at least 2 reads supporting the variant, c) zero supporting reads in the matched normal sample
with minimum coverage of 50 reads, d) quality filtering flag returned by Platypus either ‘PASS’, ‘Q20’,
‘QD’, ‘alleleBias’ or ‘HapScore’, and e) absence from the list of common polymorphisms reported in

the 1000 genomes database.

Identification of Copy Number Variations (CNVs)
CNVs were called in ctDNA and solid tumour samples using CONTRA with the Null Distribution
Estimation (NDE) workflow?’ using a multimodal distribution instead of the unimodal distribution used

by default. We took the best fit between a bimodal and trimodal distribution as determined by the
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Akaike information criterion (AIC) estimator and fed the model parameters into the software’s

threshold cutoffs for CNV identification. All other parameters of CONTRA remained unchanged.

Estimation of cfDNA fragmentation profiles

We developed a bioinformatics pipeline to characterize fragment length profiles of cfDNA samples.
The pipeline takes as input BAM files deduplicated with UMIs and uses pysam libraries
(https://pysam.readthedocs.io/en/latest/index.html) to extract the fragment length values based on
the TLEN sam flag of all read pairs mapped to the target region. We considered read pairs with
minimum mapping quality 10, and excluded read pairs where mates were mapped to different
chromosomes. The observed data were binned and normalized by the total number of read pairs
sequenced in the sample. Following this procedure, we generated density profiles for all BC patients
and healthy individuals. All reads from all healthy individuals were pooled to generate a combined

fragment length profile that was used as a reference.

Code availability
The bioinformatics workflow described in this study can be downloaded from our GitHub repository

(https://github.com/dkleftogi/cfDNA_AnalysisPipeline) with an overview given in Supplementary

Figure 1. We provide a collection of scripts written in Python for UMI-aware BAM file deduplication,
mutation calling and fragment length analysis as well as a Conda virtual environment to resolve

dependencies with required packages.

Results
SNVs detected in cfDNA samples

We first determined the feasibility of the developed cfDNA sequencing approach to detect tumour-
specific alterations from cfDNA of patients with BC. Our assay combined with a customized
bioinformatics pipeline for variant calling provides sufficient sensitivity to detect tumour-associated
SNVs in 30 out of 35 samples with median VAF of 0.02 (Figure 1, Supplementary Table 3). Across
30 samples with detectable SNVs, a total of 98 variants were detected, with ~71% of them already
reported in existing databases (e.g. ClinVar and/or COSMIC). The increased number of existing
variants detected using the deployed cfDNA assay highlights the capability of identifying biologically
important mutations (i.e., cancer-related or associated to other human disorders) directly from cfDNA.
Among the 5 patients with no detectable tumour variants in cfDNA, 4 of them had low tumour burden

based on clinical and radiological information (Table 1, Figure 1).

Figure 1 summarizes known tumor suppressor or oncogenic genes such as TP53 (found mutated in
16/35 patients), PIK3CA (7/35), BRCA1 (4/35), NF1 (3/35), EGFR (3/35), ERBB2 (3/35) ,ATM (3/35)
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or RET (3/35) that were recurrently mutated in our cohort. Overall 18 out of 25 patients harbored more
than two mutated genes, likely associated with parallel cancer evolution, and/or resistance

mechanisms to combinatorial chemotherapy.

To investigate the translational potential of the identified variants in cfDNA we performed correlation
analysis using the cancer antigen 15-3 (CA15-3) tumour marker, which is frequently used in routine
clinical practice. We computed the median VAF of all patients in the cohort and stratified them based
on their tumour burden based on clinical and imaging reports. We found that patients with high volume
of disease (such as patients with widespread metastatic disease or in visceral crisis), harbor variants
in cfDNA at much higher VAF levels compared to tumours of low (clinical stage or oligometastatic
disease) and medium burden (burden of disease intermediate between high and low disease burden)
(Figure 2a, Wilcoxon rank sum test p value = 4.56e-04).We also found that patients with high levels
of the CA15-3 harbor mutations in cfDNA at higher VAF levels compared to tumours of normal CA15-

3 levels (Figure 2b, Wilcoxon rank sum test pvalue=0.02).

Concordance of cfDNA and sequencing of solid tumour sites

Out of the 30 metastatic BC cases, 28 patients had available sequencing from matched cfDNA,
primary tumour and metastatic sites. We utilized this subset of samples to assess the concordance
and discordance of variants detected in cfDNA. Our cfDNA assay detected 84 mutations across these
plasma samples. Coverage statistics, number of supporting reads and VAF for all variants detected
in cfDNA are shown in Supplementary Figure 2. Overall, we found discrepancies between the data
quality of cfDNA, primary and metastatic tumour sites attributed to differences in DNA material and
sequencing protocols applied in the study (i.e. ultra-deep sequencing for cfDNA with UMIs, and much

lower depth sequencing without UMIs for DNA from FFPE samples).

We restricted our analysis in 54 out of 84 positions that were “callable” in both solid tumour sites (i.e.
coverage of more than 50 reads in primary and metastatic samples). Using this set of 54 callable
positions we identified 25 (~46.3%) mutations that were concordant between cfDNA, primary and
metastatic samples, Figure 3 shows the VAF levels of all variants validated by sequencing in the
cohort. We also detected 12 mutations (~15% of positions tested) with VAF in cfDNA as low as 0.01,
but with higher VAF at the matched solid tumour sites. Such examples highlight the effectiveness of
the developed assay to monitor important cancer alterations directly from cfDNA, even when

mutation-bearing molecules are very rare in plasma.

Next, we relaxed the conditions and we analyzed the concordance of variants detected in cfDNA to
at least one of primary or metastatic samples. Using this approach we identified 45 (~83.3%) variants

that were concordant between cfDNA and one of the two solid tumour sites. Figure 3 shows that the
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maijority of concordant variants have higher VAF in metastatic sites, which is consistent with the
patient clinical progression at time of sampling. However, the results of this analysis should be
interpreted with caution, because while emergence of new variants in metastatic tumours is not
unexpected, we cannot completely rule out that the absence of variants in primary sites is due to

technical reasons, including inferior sample quality of FFPE-extracted DNA from solid tumour sites.

Then, we assessed SNVs called in solid tumour sites and not in cfDNA, for which there were only
seven variants. From them, two SNVs (genes PIK3CA and TP53) detected in patients with non-
metastatic disease, two SNVs (genes MAGI3 and EZHZ2) were detected in the primary tumour
samples of two patients, and three SNVs (genes APC, TP53 and MDM4) were detected in metastatic
samples of other patients. Five out of seven SNVs not detected in cfDNA had zero support of the
alternative alleles in cfDNA, except for two mutations (gene TP53 position Y236R with 13 reads, and
gene MDM4 position A42V with 29 reads) that had sufficient supporting reads, but they were not
supported by duplexes. Such cases might represent genuine false negatives of our variant calling

pipeline.

Together, our data show that cfDNA screening using the developed assay addresses the majority of

SNVs found by solid tumour sequencing, including in BC patients with low tumor burden.

ERBB2 CNV analysis and HER2 subtype classification in BC

In this subsection we investigate whether we could use the developed cfDNA assay to detect CNVs
in BC. We applied a customized version of the CONTRA algorithm to infer CNV profiles using the
reads generated by targeted hybrid capture cfDNA sequencing. We focused on the ERBB2 (HER?2)
oncogene to identify detectable amplifications that may be used for HER2 subtype classification. For
validation purposes, all patients in the cohort had previously undergone HER2 testing mainly via
immunohistochemistry, with fluorescent in-situ hybridization (FISH) testing performed for equivocal
immunohistochemical results. Fourteen of them were found to be HER2+, whereas 18 patients were
HR+HER2- and 3 were Triple-Negative (TNBC). Our cfDNA approach detected correctly 12 of HER2+
patients (ERBB2 amplified) and 18 of HER2- / TNBC patients, whereas it misclassified 5 patients.
From the misclassified cases, 3 patients were falsely predicted to be HER2+, and 2 patients were
falsely predicted to be HER2-, classification performance that could be translated to 80% positive
predictive value (Precision), 85.7% true positive rate (Sensitivity) and 85.7% true negative rate
(Specificity). Using the same algorithm we also generated ERBB2 CNV profiles using sequencing
data from primary and metastatic solid tumour sites (Figure 4). We note that the ERBB2 amplification
was also detected correctly in 10 out of 14 patients using data from matched metastatic tumour sites,

and in 7 out of 14 patients using data from primary tumour sites. In total, our findings using orthogonal
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sequencing and immunohistochemistry validate further the ability of our cfDNA assay to identify

ERBB2 CNVs in BC without prior knowledge of tumour sequencing.

cfDNA fragmentation profiles of BC patients

Recent analyses of the fragment sizes of cfDNA of patients with cancer, suggest altered

fragmentation profiles compared to healthy individuals 2. Here, we used our developed cfDNA assay

to characterize the fragment length profiles of 35 patients with BC and to explore its potential as a

biomarker for disease monitoring. For comparison purposes, we also analyzed 38 samples from 19

healthy individuals (two technical replicates with different library preparations) and compiled a

reference fragment length profile. Figure 5a shows the combined fragmentation profile of healthy

individuals, and Figure 5b shows different profiles of patients with BC. Our analysis detected many

differences in cfDNA profiles of patients with BC, whereas healthy profiles were much more similar to

each other (Figure 5¢ Wilcoxon rank sum test p-value= 6.7608e-12). Our data confirmed that the

median fragment length of cfDNA of patients with cancer is also different from healthy individuals

(Figure 5d, Wilcoxon ranksum test pvalue= 2.8000e-05). However, the differences between the

median fragment size of healthy individuals (overall median 167 bp) and fragment size of patients

with cancer (overall median 166 bp) were only few bases in size. More interestingly, we estimated

that the proportion of fragments below 150 bp is much higher in BC (Figure 5e, Wilcoxon ranksum

test p-value= 1.4060e-12) compared to the healthy reference. Our observations about the proportion

of fragments below 150 bp are in concordance with the results from other studies, using mainly low-

pass WGS samples from treatment naive or early stage patients

28,29

These results indicate that fragmentation profiles of cfDNA in BC integrate genomic and epigenomic

(i.e. nucleosome positioning) features that could serve as novel biomarkers in clinical settings. To

investigate this hypothesis in our cohort, we associated our findings with CA15-3 levels and tumour

burden, which was assessed as above. We found that patients with high tumour burden have a much

higher proportion of shorter fragments compared to patients with low or medium tumour burden

(Figure 2c¢, Wilcoxon ranksum test pvalue=1.33e-04). We also found that shorter fragments are also

proportionally higher in patients with elevated CA15.3 levels, compared to patients with normal CA15-

3 levels (Figure 2d, Wilcoxon ranksum test pvalue= 0.0088). Consequently, our findings based on

fragmentation profiles are in concordance with the results obtained from routine cancer biomarkers.

Then, we explored the potential of the fragment length analysis to monitor patients’ disease status.

We used the median VAF levels in cfDNA as a proxy to disease burden, and we measured the

deviation of the corresponding fragment length profiles to the healthy reference. We observed (Figure

6a) that the deviation of fragment length profiles of patients with BC, follows the VAF levels with high

correlation (Pearson’s correlation coefficient 0.792). This observation opens possibilities for the

10
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development of new biomarkers for better disease management that could complement variant

analysis based on VAFs.

Discussion

Several recent studies have demonstrated the ability of cfDNA sequencing to provide early

prognostication, better molecular profiling and monitoring of disease dynamics. We developed a new

error-corrected cfDNA sequencing approach customized for BC, in combination with publicly available

bioinformatics strategies for the identification of tumour-associated genomic alterations. The

developed NGS assay covers 77 known cancer-related genes (285.4 kb target region), providing the

opportunity to elucidate genomic alterations with significant clinical value without prior knowledge of

tissue sequencing.

Usage of UMIs for error correction, combined with SNV calling based on in-silico identified duplex

DNA molecules, allowed us to detect low VAF SNVs in ctDNA samples with reduced number of false

positives. In a proof-of-concept analysis using clinical data from 35 BC patients, the developed assay

detected SNVs in 30 out of 35 cfDNA samples with ~71% of variants already reported in known

databases. The majority of detected mutations in cfDNA were concordant with sequencing of solid

tumour sites. However, cfDNA sequencing identified more potential mutations, many with VAF below

1%, highlighting the ability of our assay to track rare mutations in plasma. This opens possibilities for

longitudinal monitoring of cancer-genomic alterations directly from plasma, without the increased risk

and cost of invasive needle biopsies.

The presence of SNVs called only in ctDNA, although not-validated using orthogonal approaches

(e.g. ddPCR), is consistent with tumour evolution hypotheses, where multiple low VAF clonal and

sub-clonal alterations may be the basis of resistance to several lines of chemotherapy. These sites

are usually not detectable in solid tumour sequencing due to lack of read depth. Importantly, our

approach for SNV detection does not rely on statistical modelling for background noise estimation

12,30

Such approaches require big cohorts of reference data (e.g. healthy) that are usually difficult to collect,

and may not be easily extended or generalized (e.g. if the panel size increases). In contrary our

approach relies on a number of adjustable post-filtering criteria, it is much simpler, faster and thus it

can serve as a paradigm for subsequent studies.

Our assay was also effective on the detection of CNVs in important oncogenes such as ERBB2 that

are equally important for understanding tumorigenesis and deciphering tumor progression

mechanisms. This opens opportunities for better tumor characterization, where sequential plasma

samples can be collected to portray more accurately CNVs and SNVs across time.

11
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Finally, our study reports on cfDNA fragmentation profiles in BC. Our data from 35 BC patients and
19 healthy individuals re-confirmed that cfDNA fragmentation profiles recapitulate genomic and
epigenomic features that are in principle, different. Interestingly, we found that in patients with BC the
deviation of cfDNA fragmentation profile from the healthy reference correlates well with the mutational
load measured by VAF in cfDNA. This observation opens new avenues for monitoring patients’
progression under treatment, and developing cancer biomarkers using cfDNA sequencing. Towards
this, future investigations are required to establish whether the determination of cfDNA fragmentation

profiles might provide prognostic value for patients with early stage BC.

However, similar to all other cfDNA sequencing studies, our approach has several limitations. First,
ultra-sensitive detection of cancer especially at early stage patients is not always viable®'. Low
abundance of cfDNA in plasma combined with increased errors of NGS might limit the applicability of
the developed assay. We note that although our assay uses barcoded libraries, multiple sources of
errors during library preparation and PCR amplification restrict the analytical sensitivity for SNV
detection. For this reason, in our analysis with BC data, we used a 0.5% minimum VAF cutoff, after
experimentation and manual inspection of healthy data without assessing our assay’s detection limits
using analytical approaches. This part of our pipeline, might be improved in future studies when more
control data (e.g. spike-in) become available. Nevertheless it is also possible that a few true variants
are not supported by duplexes. We observed two mutations found in solid tumour sites that were
filtered out in cfDNA samples due to absence of duplex support, indicating that there is room for

further fine-tuning of parameters, using a larger training cohort.

In addition, the developed targeted assay is less powerful on the detection of structural variants (e.g.
translocations or inversion) compared to whole exome or whole genome sequencing data. This is an
inherent limitation of selective sequencing and further work may be done in the development of more
accurate methods for CNV detection in targeted NGS data. Finally, the small cohort size and the
absence of serial specimens for comparisons, limit our ability to associate the findings of this study

with clinical outcome.

In conclusion, our data show that the developed assay combined with freely available bioinformatics
approaches addresses the majority of tumour associated aberrations that could complement routine
biomarkers (e.g., CA15.3 antigen) and other diagnostic tools in a minimally invasive liquid biopsy

setup.
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Table 1: Clinicopathologic characteristics of study cohort

Characteristic Number
(n=35)
Median age at study entry, in years 50 (36-75)
Ethnicity
Chinese 23 (65.7%)
Malay 9 (25.7%)
Indian 1(2.9%)
Others 2 (5.7%)
Subtype
HR+/HER2- 18 (51.4%)
HER2+ (regardless of HR) 14 (40.0%)
TNBC 3 (8.6%)
Stage
Il 2 (5.7%)
11 3 (8.6%)

IV (all relapsed after prior non-metastatic diagnosis)

30 (85.7%)

Number of prior systemic therapies (including non-
metastatic)

5 (14.3%)

0 30 (85.7%)
1 or more

Volume of Disease

Low 10 (28.6%)
Moderate 14 (40.0%)
High 11 (31.4%)
Serum CA-15.3 levels

Not raised 15 (42.9%)
Raised 18 (51.4%)

Not available

2 (5.7%)
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Figure 1. SNVs found in known cancer-related genes by cfDNA sequencing. 35 BC patients were
sequenced using the developed cfDNA assay. One sample had only sequencing of cfDNA and the primary site
available (orange), one with only cfDNA and the metastatic site (pink) and five were neoadjuvant samples
(grey). All others had cfDNA, primary and metastatic sites sequenced. Variants that are already in known
databases are outlined in red. Median cfDNA sequencing depth, CA15.3 level and assessed tumour burden is

also listed.
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Figure 2. Association between genomic alterations detected in cfDNA and clinical information. Our
analysis shows that the median VAF of SNVs detected in cfDNA as well as the proportion of shorter fragments
of cfDNA correlates well with tumour burden and serum CA15.3 marker. Shown are the median VAF levels
detected in cfDNA in patients with a) High and Low/Medium tumour burden, and High and Normal CA15.3
levels, as well as the proportion of cfDNA fragments below 150bp for patients with c¢) High and Low/Medium

tumour burden and d) High and Normal CA15.3 levels.
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Figure 3. Concordance of SNVs identified by cfDNA sequencing and by sequencing of solid tumour
sites. The a) cfDNA VAF, b) VAF in the primary site and c) VAF in the metastatic site are displayed for the 84
SNVs detected in cfDNA for patients with available sequencing for all of cfDNA, primary and metastatic tumour.
In a), the minimum VAF was set at 0.005. In b) and c), positions that did not achieve 50X coverage are marked
with X', while positions that did but nonetheless had 0 reads corresponding to the alternative allele are marked

with empty circles.
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Figure 4. Identification of ERBB2 gene CNVs. CNVs detected in ERBB2 (HER2) gene using sequencing data

from cfDNA, primary and metastatic solid tumour sites..
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Figure 5. Analysis of cfDNA fragmentation profiles in BC. a) Reference cfDNA fragmentation profile
complied using data (two technical replicates) from 19 healthy individuals. b) cfDNA fragmentation profiles of
35 patients with BC included in the study. c) cfDNA fragmentation profiles of 19 healthy individuals are highly
correlated to the reference profile, whereas cfDNA fragmentation profiles of 35 BC patients have much lower
correlation to the reference healthy profile. d) Median cfDNA fragment sizes in bp are shown for 19 healthy
individuals and 35 BC patients. €) The proportion of short cfDNA fragments (below 150bp) detected in 19

healthy individuals is much lower compared to the proportion of short fragments detected in 35 BC patients.
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Figure 6. Association between cfDNA fragmentation profiles and median VAF levels detected in cfDNA.
We show that the variation of cfDNA fragmentation profiles of patients with BC compared to the healthy
reference (measured as 1 - Pearsons correlation between the two profiles), correlates well (Pearson’s
correlation 0.793) with the median VAF levels of SNVs detected in cfDNA.
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Supplementary Material

Supplementary Table 1: Seventy seven genes incorporated in the developed cfDNA assay

CDH1
CDKN2A
HRAS
JAK2
JAK3
NF1
NOTCHA1
RB1
RET
SRC
STK11
ARID1A
ATR
AURKA
BRCA1
BRCA2

CDKN1B
DOT1L
ERBB3
ESR1
GATA3
JAK1
MAGI3
MDM2
MDM4
KMT2C
NOTCH4
TSC1
TSC2
ABL1
CSF1R
DDR2

EZH2
FLT3
GNA11
GNAQ
GNAS
HNF1A
IDH1
IDH2
KDR
MPL
NPM1
PTPN11
SMARCB1
SMO
VHL
BRAF

KRAS
NRAS
PIK3CA
PIK3R1
SMAD4
TP53
FBXW7
RNF43
APC
EGFR
ZNRF3
ATM
PTEN
CTNNB1
MLH1
ERBB2

ERBB4
FGFR1
FGFR2
MET
FGFR3
ALK
MAP2K1
MTOR
MAP2K4
MAP3K1
AKT1
PDGFRA
KIT
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Supplementary Table 2: Analysis of coverage for all cfDNA samples included in the study
cohort. In columns Q100, Q500, Q1000 and Q5000, we show the (%) fraction of positions in the
panel covered by at least 100,500,1000 and 5000 reads. We also show the average coverage levels

achieved across the panel.

Sample Q100 Q500 Q1000 Q5000 Average Coverage

BC002 0.997 0.993 0.985 0.735 8435.116
BC003 0.993 0.982 0.973 0.873 17588.294
BC013 0.997 0.991 0.985 0.875 11439.84
BC014 0.998 0.996 0.991 0.872 9515.894
BC017 0.997 0.991 0.983 0.766 9649.671
BC021 0.997 0.995 0.991 0.882 12111.742
BC026 0.998 0.995 0.988 0.782 7760.95
BC028 0.998 0.992 0.981 0.499 5029.446
BCO31 0.998 0.991 0.983 0.805 8535.852
BC033 0.998 0.994 0.985 0.709 6808.652
BC040 0.998 0.995 0.991 0.816 9318.8
BC042 0.998 0.995 0.99 0.778 7982.881
BC046 0.998 0.992 0.985 0.665 6429.41
BC0O50 0.995 0.989 0.976 0.654 7113.251
BC054 0.995 0.981 0.936 0.08 2962.157
BC056 0.998 0.996 0.991 0.9 10586.409
BC058 0.998 0.995 0.99 0.875 10792.978
BC062 0.998 0.995 0.991 0.852 9363.034
BC068 0.997 0.994 0.989 0.849 13211.192
BC072 0.998 0.996 0.993 0.917 11284.827
BC083 0.990 0.966 0.922 0.345 4230.603
BC089 0.998 0.995 0.989 0.795 8155.319
BC092 0.998 0.995 0.988 0.774 7522.669
BC094 0.996 0.991 0.985 0.858 13856.769
BC095 0.998 0.996 0.993 0.887 10334.369
BC098 0.997 0.987 0.962 0.167 3524.884
BC100 0.997 0.992 0.986 0.813 11319.171
BC102 0.998 0.996 0.993 0.852 10386.942
BC114 0.996 0.994 0.991 0.919 18671.416
BC116 0.997 0.994 0.99 0.912 15617.832
BC117 0.997 0.994 0.99 0.866 12560.4
CYK00017 0.997 0.993 0.984 0.781 9053.158
GJ00025 0.998 0.995 0.991 0.806 10359.782
NTT00018 0.998 0.996 0.992 0.882 10135.123
SB00005 0.997 0.996 0.992 0.927 12628.646
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Supplementary Figure 1. Flowchart of the developed bioinformatics pipeline.
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Supplementary Figure 2. Coverage levels, VAF levels and number of supporting reads of all
SNVs detected in cfDNA, primary sites and metastatic sites.
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