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• Proteome reduction with minimal genetic intervention as design principle 24 

• Regulatory and proteomic data integration to identify transcription factor activated 25 

proteome  26 

• Deletion of the TF combination that reduces the greater proteomic load 27 

• Regulatory interventions are highly specific 28 

• Designed strains show less burden, improved protein and violacein production 29 
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Abstract 33 

Engineering resource allocation in biological systems for synthetic biology applications is an 34 

ongoing challenge. Wild type organisms allocate abundant cellular resources for ensuring 35 

survival in changing environments, reducing the productivity of engineered functions. Here 36 

we present a novel approach for engineering the resource allocation of Escherichia coli by 37 

rationally modifying the transcriptional regulatory network of the bacterium. Our method 38 

(ReProMin) identifies the minimal set of genetic interventions that maximise the savings in 39 

cell resources that would normally be used to express non-essential genes. To this end we 40 

categorize Transcription Factors (TFs) according to the essentiality of the genes they 41 

regulate and we use available proteomic data to rank them based on its proteomic balance, 42 

defined as the net proteomic charge they release. Using a combinatorial approach, we 43 

design the removal of TFs that maximise the release of the proteomic charge and we 44 

validate the model predictions experimentally. Expression profiling of the resulting strain 45 

shows that our designed regulatory interventions are highly specific. We show that our 46 

resulting engineered strain containing only three mutations, theoretically releasing 0.5% of 47 

their proteome, has higher proteome budget and show increased production yield of a 48 

molecule of interest obtained from a recombinant metabolic pathway. This approach shows 49 

that combining whole-cell proteomic and regulatory data is an effective way of optimizing 50 

strains in a predictable way using conventional molecular methods. 51 

Importance 52 

Biological regulatory mechanisms are complex and occur in hierarchical layers such as 53 

transcription, translation and post-translational mechanisms. We foresee the use of 54 

regulatory mechanism as a control layer that will aid in the design of cellular phenotypes. 55 

Our ability to engineer biological systems will be dependent on the understanding of how 56 

cells sense and respond to their environment at a system level. Few studies have tackled 57 

this issue and none of them in a rational way. By developing a workflow of engineering 58 

resource allocation based on our current knowledge of E. coli’s regulatory network, we 59 

pursue the objective of minimizing cell proteome using a minimal genetic intervention 60 

principle. We developed a method to rationally design a set of genetic interventions that 61 

reduce the hedging proteome allocation. Using available datasets of a model bacterium we 62 

were able to reallocate parts of the unused proteome in laboratory conditions to the 63 

production of an engineered task. We show that we are able to reduce the unused proteome 64 

(theoretically 0.5%) with only three regulatory mutations designed in a rational way, which 65 
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results in strains with increased capabilities for recombinant expression of pathways of 66 

interest.   67 
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Introduction 68 

 69 

The removal of accessory non-essential functions is one of the strategies used to engineer 70 

microbial phenotypes. This approach relies on the assumption that cellular resources for 71 

gene expression are limited and, therefore, by removing unneeded genes in a certain 72 

environment, the cell is capable of allocating resources to other functions (e.g. expression 73 

of recombinant genes). These minimization approaches are mostly done by reducing 74 

genome size and gene number including performing random deletions1,2, however, the 75 

precise way in which the resource allocation takes place after the genetic intervention is not 76 

considered. 77 

Organisms respond to the environment by cellular signalling encoded in regulatory 78 

networks3. The intricacy of the lifestyle of an organism is generally translated into signalling 79 

complexity4. Biological regulatory networks are robust5 and evolvable6 to cope with 80 

environmental and lifestyle perturbations, however this robustness involves intrinsic trade-81 

offs, such as resource allocation strategies. It has been shown that cellular states are 82 

naturally “primed” for typical upcoming changes. Bacteria anticipate to fluctuations in the 83 

environment7,8, draining resources from functions that are mostly performed in relatively 84 

stable conditions. The expression of anticipation functions, also called hedging functions, is 85 

encoded in the regulatory network and it has a proteomic cost9. Genome scale models along 86 

with experimental data sets enable the calculation of the minimal theoretical proteome 87 

needed to sustain growth in a defined condition10. Therefore, comparing minimal theoretical 88 

proteomes with measured proteomes reveal the costs of the hedging proteome allocation. 89 

Proteome econometric approaches can facilitate the engineering of cellular states or 90 

phenotypes aimed at displaying an engineered function. Recent studies have focused in the 91 

host-construct interactions for increasing predictability of synthetic constructs11–13. In 92 

addition to these approaches, the rational design of the host used for expression following 93 

econometric models can be adopted to improve the performance of synthetic constructs, 94 

including production phenotypes for molecules of added value. Among other benefits, 95 

streamlined organisms obtained this way are less likely to develop undesired emerging 96 

behaviours11. 97 

In this work we develop a new top- down cell engineering strategy for Escherichia coli using 98 

the Transcriptional Regulatory Network (TRN) as a control layer for proteome allocation. By 99 

combining high-throughput proteomic information, regulatory network interactions and gene 100 

essentiality observations, we develop a method capable of finding the minimal set of genetic 101 
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interventions required to divert the resources invested in superfluous hedging into increased 102 

biosynthetic potential. The resulting strain exhibits an increased availability of cellular 103 

resources to express engineered functions.  104 
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Results 105 

Combining gene essentiality and TRN analysis identifies dispensable TFs for 106 

proteome reduction in a defined condition 107 

The genome scale model of Metabolism and gene Expression (ME model) computes the 108 

minimal theoretical proteome and allows calculating the cost of expressing hedging 109 

functions. It can be used to simulate different scenarios of expression of the hedging 110 

proteome (as unused protein fraction coefficient, see methods)14. These simulations allow 111 

us to calculate the costs and the benefits of different interventions, e.g. by modulating the 112 

expression of the hedging proteome, expressed in terms of growth, the size of both essential 113 

and recombinant proteome sectors (Supp. fig. 1).  114 

We build on ME-models to design strains containing the minimal genetic interventions that 115 

reduce the greatest amount of proteomic resources not required to grow in a specific 116 

condition. Our method uses Transcription Factors (TFs) as the key dials controlling the 117 

allocation of the hedging proteome in a pre-defined specific environment. We begin by 118 

establishing batch growth in minimal media (M9) supplemented with glucose as the sole 119 

carbon source as the defined environment for the first case of this study. Then, by compiling 120 

experimental and genome-scale model generated essential gene sets, we generated a list 121 

of essential genes for growth in this specific environment (Figure 1A, Supp. Table 1, see 122 

methods). Once the case specific gene essentiality is defined, we analysed the TF-gene 123 

interactions compiled in RegulonDB 15. After determining gene essentiality and TF-gene 124 

regulatory interactions, we analyse the sub-network of interactions of each TF (Figure 1B) 125 

looking for dispensable TFs, defined as those that do not activate the expression of any 126 

essential gene.  According to our analysis, 156 from the 200 TFs contained in the regulatory 127 

network can be eliminated (Figure 1C). Since our goal is to reduce the hedging proteome, 128 

out of the 156 dispensable TFs we select as candidates for non-essential function reduction 129 

those 34 TF´s with at least one unique (meaning it is not activated by any other TF) positive 130 

regulated gene (Supp. Table 2) (See methods); this gives the certainty of silencing at least 131 

one gene. 132 
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 133 

 134 

Figure 1 Gene essentiality and transcriptional regulatory network analysis in the pre-defined 135 

condition. A) Essentiality profile of E. coli genome under selected growth condition. The essential 136 

fraction of the genome is divided into core (always needed) and conditional (M9-glucose needed). B) 137 

Graphical representation of the sub-network of interactions considered for the classification of the 138 

TFs; grey squares represent essential TFs, light green squares dispensable TFs, green squares 139 

candidate TFs, dark blue circles essential genes, light blue circles dispensable genes and arrows 140 

positive interactions. C) Essentiality profile of the TFs contained in RegulonDB. Total E. coli genes 141 

according to Ecocyc16. 142 

 143 

Integration of proteomic data and the TF-Gene regulatory network  144 

We determine the proteome associated to each non-essential TF in our network integrating 145 

a quantitative proteomic data set17, that provides protein copy number per cell under 22 146 

different growth conditions with 95% of proteome coverage (by mass). Here we define two 147 

emerging properties derived from the quantitative proteomics data integration: the Proteomic 148 

Load of a gene (PL) in fg of protein per cell (Figure 2A) and the Proteomic Balance (PB) of a 149 

TF resulting from the summation of the PL of the genes that would result silenced or activated 150 

by the elimination of a TF (Figure 2B). PB is conceptually important to rank the TFs according 151 

to the size of the proteome they control, since it takes into account the net addition of protein 152 

mass (in fg of protein/cell) liberated when removing a TF. A graphic representation of the 34 153 

candidate TF subnetwork illustrating the PL all the possible targets to affect is shown in 154 

Figure 4A. 155 

 156 
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 157 

 158 

Figure 2 Emerging properties from proteomics data integration. A) Proteomic load of a gene 159 

(PL), this property is defined as the molecular weight of the protein (MWp) multiplied by the number of 160 

copies per cell (Ccell) divided by Avogadro's number (NA) (6.022×108 fg equivalent), the more 161 

expressed the gene is, the more proteomic load it generates. B) Proteomic Balance of a TF (PB) 162 

which is defined as the sum of the PL of the silenced genes minus the sum of the PL of the induced 163 

genes. C) Schematic of a simple case of shared regulation in which removing both TFs silences all 164 

genes but this is not the case when the TFs are silenced individually. 165 

 166 

Computational search of minimal TF eliminations for the release of the maximal 167 

hedging proteome  168 

Even though E. coli is one of the most studied organisms and its TRN has been widely 169 

investigated, only half of its genes have regulatory information (RegulonDB). In order to 170 

prevent detrimental effects on gene expression due to our incomplete knowledge of the 171 

regulatory network, we searched the smallest combination of TFs that liberate the greatest 172 

amount of resources. We observed that many TFs have shared target genes (Figure 2C), in 173 

fact, many of them are part of a simplified version of a Dense Overlapping Regulon (DOR) 174 

network motif18, meaning that a particular combination of TFs is needed in order to “fully” 175 

silence these targets.  Due to the size of the landscape of potential phenotypes resulting 176 

from the combinatorial TFs deletions, we developed a computational tool to assist with the 177 

design of mutant strains. We called our tool ReProMin (Regulation based Proteome 178 

Minimization). ReProMin tool uses the previously described TF-Gene interaction network; 179 

quantitative proteomic data and a list of candidate non-essential TF to find the n-combination 180 

of mutations that silences the higher proteomic load (see methods).  181 

In order to test our method (ReProMin), we first performed calculations using data from the 182 

glucose minimal media condition on which we defined gene and TF essentiality. Calculations 183 
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were made considering two cases, the Shared Target (ST) case: considering all non-184 

essential TFs with positive PB (132 TF), which takes into account some TFs with no unique 185 

regulated genes. And the Unique Target (UT) case: considering candidate TFs with positive 186 

PB (20 TF). Our computational tool was able to solve up to triple TF combinations for ST 187 

case and up to 20 TF combinations for UT case (Figure 3A and B). 188 

For the ST case, calculations revealed that the elimination of all the non-essential TFs 189 

theoretically would liberate up to 1.06% of total proteome. However, up to 0.53% of total 190 

proteome can be released by removing a top combination of three TFs. For the UT case, 191 

the elimination of all 20 candidate TFs would liberate up to 0.72% of the proteome, and our 192 

simulations show that there is not a significant improvement in resource release after the 193 

elimination of 8 TFs.  194 

We tested the accuracy of ReProMin predictions in other conditions for which proteomic 195 

data is available, such as growth on galactose and acetate minimal media. In this case we 196 

used the rich media essentiality gene set (see methods) and for the environment specific 197 

genes we performed essentiality simulations with a genome scale metabolic model in the 198 

corresponding growth condition (see methods). As a result, we obtained 164 and 166 non-199 

essential TFs for galactose and acetate respectively and found that most of the identified 200 

TFs are shared among the three evaluated (glucose, galactose, acetate minimal media) 201 

meaning that they are all non-essential for minimal media growth with those carbon sources 202 

(Supp. fig. 2). In both cases we identified 23 candidate TFs that belong to the UT case and 203 

have a positive PB. Proteome liberation calculations were made using these subsets of 204 

candidate TFs. Our predictions show that we can release 0.88% and 0.81% of the total 205 

proteome in galactose and acetate, respectively, with the deletion of all these TFs (Figure 206 

3C and D). 207 
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 208 

 209 

Figure 3 Proteome liberation calculations using ReProMin. A) Potential optimization landscape 210 

corresponding to the ST case; the solved region is shown in blue while the unsolved region in red, 211 

PYC mutant location in the landscape is shown with a green circle. Solved optimization landscape for 212 

UT case in B) glucose, PFC mutant location in the landscape is shown with a green circle, C) 213 

galactose and D) acetate. 214 

 215 

Generation of combinatorial strains  216 

Based on our ReProMin predictions, two triple knockout strains were generated, for the ST 217 

case:  PYC (ΔphoB - phosphate scavenging system, ΔyedW - unknown gene, ΔcusR - 218 

copper efflux system) with a PB of 1.3 fg representing 0.53% of the total proteome in glucose 219 

(Figure 3A), is a particular case of shared regulation where most of the target genes are 220 

only silenced by the deletion of all the three TFs together (a graphical representation of its 221 

TF-gene network is presented in Figure 4B).  For the UT case:  PFC (ΔphoB - phosphate 222 

scavenging system, ΔflhC - flagella master regulator, ΔcueR- copper efflux system) with a 223 

PB of 1.08 fg representing 0.44% of the total proteome in glucose (Figure 3B), has a higher 224 
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grade of confidence in the design than PYC due to simpler regulatory subnetwork (Figure 225 

4C). We also generated a strain, using an intuitive approach, in which we eliminated three 226 

TFs that regulate non-growth related functions. The resulting strain is called FOG (ΔfliA - 227 

flagella sigma factor, ΔoxyR - oxidative stress master regulator, ΔgadE - acid resistance 228 

regulator). The FOG strain was not generated by our design pipeline; therefore the 229 

regulatory interventions may affect some important functions and it was used as a control to 230 

compare to our designed strains. 231 

 232 

 233 

Figure 4 TF-Gene network and PL representation. A) Subnetwork of interactions corresponding to 234 

the 34 candidate TF representing all the potentially affected targets; green squares represent 235 

candidate TF, while light blue circles represent dispensable genes, dark blue circles are essential 236 

genes and light green squares are dispensable TF, circle size is proportional to the PL of the gene. 237 

Subnetwork of predicted regulated targets of the PYC (B) and PFC (C) mutants. In both cases, green 238 

circles represent predicted silenced targets, red circles predicted induced targets and yellow circles 239 

genes with no proteomic coverage; the size of the circles is proportional to the PL of the target. High 240 

resolution versions of the sub networks are available in the supplementary material (Supp. figs. 3 - 241 

5). 242 

 243 

RNA-seq analysis confirms the high specificity of introduced mutations 244 

The predictive power of ReProMin depends on the accuracy of the interactions compiled in 245 

the E. coli TRN. We validated the predictions for the PFC mutant strain by comparing its 246 

transcriptome profile obtained by RNA-seq to that of the wild-type (WT). This experiment 247 

aims at determining the degree of success in gene silencing at the transcriptional level, and 248 

at assessing other possible transcriptional perturbations resulting from our regulatory 249 
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modifications. Results show that no transcripts corresponding to the three deleted TFs were 250 

detected in PFC (Figure 5A). By mapping the fold change obtained in the analysis to the 251 

predictions of the computational tool, it is possible to visualize the impact at the 252 

transcriptional level of the missing regulators on their targets (Figure 5C). Four targets 253 

associated to flhC, corresponding to genes forming the flagella (flgB, flgC, flgE and flgG) 254 

were completely silenced; furthermore, all the other flagella-related genes also registered a 255 

decrease on their expression. Regarding phoB, two targets were successfully silenced (phnI 256 

and phnL), both genes belong to an operon that is induced under phosphate starvation and 257 

is required for use of phosphonate and phosphite as phosphorous sources 19, many other 258 

targets related to this operon also reduced their expression. On the contrary, phnK present 259 

in the same operon was surprisingly overexpressed. We were unable to map any transcripts 260 

to six genes belonging to the previously mentioned operon, which may not be entirely 261 

expressed in the absence of phosphate starvation. Furthermore, phoR (part of the phoB-262 

phoR two-component system) also reduced its expression. Finally, both targets of cueR 263 

(copA and cueO) also decreased drastically their abundance.  264 

Regarding the accuracy of our ReProMin predictions, 28 genes of 47 predicted silenced 265 

genes were silenced at different levels, whereas 11 predicted silenced genes presented 266 

higher expression values than the WT strain. Finally, transcripts of 8 predicted targets were 267 

not found in either strain. These observations show that in 72% (28 of 39 measured genes) 268 

of the cases the predictions of the computational tool were accurate (Supp. fig. 7). 269 

Additionally to the designed transcriptional changes, we found 17 genes differentially 270 

expressed (8 down regulated genes and 9 up regulated (log2 Fold Change ≥ 1 or ≤ -1 and 271 

p-value ≤ 0.05) (Figure 5B) (Supp. Table 3). This RNA-seq analysis shows that besides the 272 

intended transcriptional changes, few off-target effects were identified at the transcriptomic 273 

level in the PFC strain. 274 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/733592doi: bioRxiv preprint 

https://doi.org/10.1101/733592
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 275 

Figure 5 Transcriptomic analysis of the designed strain. A) Correlation plot for PFC and WT 276 

strains transcripts. Blue dots represent the three deleted TFs. B) Volcano plot showing differential 277 

gene expression. In both cases, statistically significant genes are highlighted. C) Integration of 278 

transcriptomics with computational tool predictions. The size of the circle corresponds to the fold 279 

change of each target (the largest circles represent fully silenced genes), in all cases green circles 280 

represent targets releasing resources (down regulated), red circles represent targets generating 281 

burden (up regulated) and yellow circles targets that were not expressed. High resolution version of 282 

the sub network is available in supplementary material (Supp. fig. 6). 283 

Phenotypic evaluation revealed reduced burden, increased cell yield and production 284 

budget for designed strains 285 

Our three ReProMin generated mutants (ST case, UT case, and control) were evaluated in 286 

rich (LB) as well as in minimal media containing three different carbon sources (acetate, 287 

galactose, glucose). The computationally designed strains (PYC and PFC) showed neither 288 
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growth defects nor increase in the growth rate or biomass yield in any of the four conditions 289 

tested. On the contrary, the control strain (FOG) showed growth defects in all growth 290 

condition tested (Supp. fig. 8). For glucose minimal media, we also evaluated the effect of 291 

recombinant protein production using a plasmid expressing a genetic circuit with two 292 

fluorescent reporters (Figure 6A) 20. The burden caused by carrying a plasmid is reflected 293 

as a decrease in the growth rate in all tested strains (Supp. fig. 9A); this decrease is higher 294 

when the plasmid is expressing the genetic circuit, however the burden displayed by both 295 

ReProMin designed strains is lower compared to the wild-type counterpart. Additionally, the 296 

PFC strain also showed a higher final biomass production (Supp. fig. 9B). It has been 297 

described that the expression levels of two protein reporters encoded on the same plasmid 298 

but without a regulatory connection between them is captured by a linear relationship which 299 

can be interpreted as an isocost line, a concept used in microeconomics to describe how 300 

two products can be bought with a limited budget, so the more is used on one, the less can 301 

be used on the other. These lines represent the boundary of the production budget of a 302 

given strain and condition (Figure 6B) 20. We obtained the isocost lines at balanced growth 303 

(~5 h.) determined by two different methods: mean plate reader fluorescence and mean 304 

fluorescence measured by flow cytometry. The line corresponding to PFC strain show a 305 

parallel upward shift compared to the WT strain, which represents an increase of 9% in 306 

absolute fluorescence (p < 0.01) (Figure 6C) and 12% in mean fluorescence per cell (p < 307 

0.01) (Supp. fig. 10), this difference is increased at the stationary phase of the culture (~24 308 

h.) were higher maximal biomass is achieved and the quantity of recombinant protein is 309 

increased up to 18% (Figure 6D). 310 
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 311 

Figure 6 Synthetic circuit characterization. A) Schematic of the gene circuit evaluated, which 312 

encodes the fluorescent reporters GFP and RFP: the first is constitutively expressed, while the latter 313 

is under the control of an N-acyl-homoserine lactone (AHL) inducible promoter. B) When plotting the 314 

expression of one protein against the other at different levels of induction, an isocost line is obtained. 315 

The size of the area below the line represents the total proteome budget dedicated to the circuit, a 316 

parallel upward shift in the line represent an increase in the budget. Isocost lines of the designed 317 

strains showing absolute fluorescence during C) balanced growth and D) stationary phase. Each 318 

point represent the red reporter (x axis) plotted against the green reporter (y axis) in an increasing 319 

inductor concentration (1.25, 2.5, 5, 10, 20 nM AHL) and represents the mean of three replicates 320 

across three different experiments. A linear regression was used to fit the points to a line. 321 

 322 

Expression of an engineered metabolic pathway: violacein production. 323 

We tested the ability of our engineered strain for synthesizing the molecule violacein as a 324 

proof-of-concept for applications of our method in metabolic engineering. Violacein is a 325 

pigment from Chromobacterium violaceum endowed with many biological activities 326 

(antibacterial, antiviral, anti-parasite) and has recently gained importance in the industrial 327 

field especially for applications in cosmetics, medicines and fabrics 21. Violacein is 328 

synthesized in a five-step metabolic pathway using tryptophan as a precursor. Here we used 329 

the violacein pathway plasmid reported by Darlington et al., 2018, where the five genes for 330 

violacein biosynthesis are arranged in two operons, one consisting of vioA constitutively 331 
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expressed, while the rest of the pathway encoded by the vioBCDE genes is under the control 332 

of an AHL inducible promoter 13 (Figure 7A). This construction follows the same principle as 333 

the previous circuit so the more of one module is produced, the less of the other is expressed 334 

due to the competition for limited resources for gene expression. However, in this case the 335 

number of genes in each module is different and code for actively metabolic enzymes with 336 

different kinetic properties, which results in differential violacein biosynthesis.  337 

We evaluated violacein production after 24 hours in the wild-type and PFC strains using M9 338 

glucose medium supplemented with tryptophan (2.0 g/L) and AHL (1.25, 2.5, 5, 10, 20 nM) 339 

for induction. PFC showed a mean increase in violacein production of 18% (Figure 7B), 340 

additionally we found that the maximum production is achieved with just a minimum quantity 341 

of inducer (1.25 nM) indicating that is crucial to have a balanced expression of the pathway 342 

with the right amount of each module to maximize the synthesis of the final product. Similarly 343 

to our observations on fluorescent protein production, the increase in violacein production 344 

shows that our approach can be harnessed to increase the production of metabolites from 345 

costly heterologous metabolic pathways.   346 
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 347 

 348 

Figure 7 Violacein Pathway Evaluation. A) Schematic of the pathway of violacein biosynthesis. B) 349 

Total violacein production using 2 g/L tryptophan after 24 h in the presence of increasing inducer 350 

concentrations; each value represents the mean of three replicates across three different 351 

experiments.  352 
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Discussion 353 

Gene regulatory networks are robust and can be severely rewired with interesting 354 

phenotypic outcomes22, thus they are a perfect rational engineering target for synthetic 355 

biology applications. In this work we prove that the definition of an essential gene set 356 

together with regulatory network information allows the identification of TFs whose 357 

elimination leads directly to silencing proteome fractions that are not used in a particular 358 

condition. We show that by eliminating hedging proteome activators we can release 359 

resources and increase cellular capacity for engineered functions. In agreement with the 360 

presented ME-model simulations reducing the unused protein fraction, our designed strain 361 

shows higher proteomic budget, measured by the isocost lines, and a higher capacity to 362 

produce a metabolite from a heterologous pathway. Furthermore, by comparing our strains 363 

with an intuitive control strain, we show that inaccurate TF elimination results in detrimental 364 

effects on growth, maximal biomass and protein production (Supp. figs. 9 and 11). These 365 

findings indicate that the elimination of a combination of TFs is not a trivial process; it may 366 

affect essential functions and introduce phenotypic defects. Our method shows good 367 

accuracy in terms of the obtained gene expression changes measured by RNAseq, despite 368 

our limited knowledge of the regulatory networks. In addition, the regulatory data available 369 

is condition dependent, what limits the predictive power of our method, since we need to 370 

assume that regulatory interactions are present at all times. We anticipate that 371 

developments in high throughput technologies (such as Chip-seq) combined with novel 372 

computational approaches23–25 will enable the fast generation of complete regulatory 373 

networks and the application of our method to even non-model organisms. Several 374 

approaches have been applied for resource allocation optimization in bacterial host 375 

engineering. Genome minimization has been mainly done by large scale genetic 376 

interventions whose outcomes are difficult to predict and do not show greater genome 377 

stability 26,27. Adaptive Laboratory Evolution (ALE) has showed great success, especially to 378 

identify functions not related to growth 28, however, it selects for fast growing strains which 379 

not necessarily result in the best production phenotypes. Moreover, the underlying selection 380 

mechanisms in ALE are normally not known therefore its effects are not predictable 29. 381 

Genome scale models, such as the ME-model, may also be used to find the proteomic cost 382 

and fitness benefit of gene expression, thus to aid in the design of proteome allocation, 383 

however kinetic data of each protein is needed 30 and its scope focuses on growth related 384 

functions. There are only a few reports describing regulatory approaches to improve 385 

production phenotypes, such as the global Transcriptional Machinery Engineering (gTME) 386 
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31, but none of them followed a rational approach. The methodology presented in this work 387 

is a novel strategy for proteome optimization with minimal genetic interventions which 388 

overcomes the serious limitations of deleting large regions of the genome; it is a flexible 389 

pipeline which can be applied to other growth and production conditions and also to different 390 

organisms where sufficient information is available. This work shows the potential of rational 391 

design of biological systems over the predominantly used trial and error approaches.  392 
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Materials and Methods 393 

 394 

1) ME-Model Simulations 395 

All simulations were done using model iJL1678b ME 14. The corresponding transcription and 396 

translation reactions for recombinant protein (GFP) production were manually added to the 397 

model using standard methods. Unused protein fraction and flux through the recombinant 398 

protein production are changeable variables in the ME-Model that affect predicted growth 399 

rate and proteome composition, the values of these two variables were systematically 400 

changed in the ME-Model to assess their effect on growth rate (UPF = 0.36, 0.30, 0.25; Flux 401 

= 0, 0.001, 0.002, 0.0025, 0.0030, 0.0035, 0.0040), all other model parameters were set as 402 

default. Proteome sectors were classified according to O’Brien et al., 2016. 403 

 404 

2) Definition of the essential gene list 405 

To compile the essential gene list in the glucose minimal media condition we combined five 406 

different datasets from different sources. Three of them were experimentally generated 407 

using different methods of gene disruption: A) random transposon mutagenesis using M9 408 

with glucose as growth condition (Tn-seq)32, B) removing large fragments of the 409 

chromosome using a homologous recombination system in rich medium (LB) 33 and C) the 410 

updated list of the mutants of the Keio collection that are lethal, the collection was generated 411 

using rich medium 34,35. Two gene lists were generated in silico using simulations of genome 412 

scale metabolic and expression models capable of predicting gene expression needs in a 413 

particular condition: D) genes that are essential for growth in M9 with glucose using 414 

iOL1554-ME model 36 and E) genes that are essential for growth in the metabolic model 415 

iJO1366 and also experimentally in M9 with glucose 37. Within the compiled list, genes 416 

exclusively belonging to the Tn-seq and the glucose minimal media ME-model simulations 417 

gene lists were considered conditionally essential, as these gene lists were originally 418 

generated using M9 with glucose as the growth condition, while the rest of the genes were 419 

classified as core essential for our purposes. 420 

For the cases of galactose and acetate minimal media conditions we performed gene 421 

essentially analysis with the iML1515 model 38 in COBRApy 39.  422 

 423 

3) Identification of candidate regulators and combinatorial analysis 424 

We sorted the TF/gene interactions from RegulonDB (version 8, regulondb.ccg.unam.mx), 425 

discarding all the sigma factors-gene interactions. Next, we classified as essential all TFs 426 
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that activate at least one essential gene (from our M9 glucose condition gene list) and as 427 

non-essential all TF´s that do not activate any essential genes. Then we analysed the sub-428 

network of interactions of each non-essential TF by numerically analysing the output level 429 

of each TF (TFOUT), which is classified into positive and negative output (TFOUT+ and TFOUT-430 

) representing positive and negative regulated genes respectively and the degree of entry 431 

of each regulated gene (GENEIN) in turn also divided into positive and negative (GENEIN+ 432 

and GENEIN-). We defined as candidate for proteome reduction all those TFs that activate 433 

at least one unique gene, which numerically meet the following condition and represent a 434 

simplified version of a SIM: 435 

 436 

𝑇𝐹𝑂𝑈𝑇+ ≥ 1    ∧     𝐺𝐸𝑁𝐸𝑛𝐼𝑁+
= 1    ∧       𝐺𝐸𝑁𝐸𝑛𝐼𝑁−

≥ 0  437 

 438 

Where GENEn, represents any gene activated by TF. 439 

  440 

On the other hand, the proteomic dataset previously described 17 was used to calculate the 441 

Proteomic Load (PL) of each gene and Proteomic Balance (PB) of each TF according to the 442 

equations in Figure 2. 443 

The combinatorial analysis was achieved as follows, given a list of TFs, we created and 444 

tested all the possible N combinations. Next, the total number of silenced and induced genes 445 

for each combination was determined following the next criteria: for every gene involved in 446 

the combination, we subtracted one from the value of GENEIN+ for each TF that regulates 447 

the target gene positively and one to the value of GENEIN- for each TF that regulates the 448 

target gene negatively. At the end of this process a gene was considered silenced if: 449 

 450 

𝐺𝐸𝑁𝐸𝐼𝑁 = 𝐺𝐸𝑁𝐸𝐼𝑁+ = 0       451 

 452 

or induced if: 453 

𝐺𝐸𝑁𝐸𝐼𝑁 = 𝐺𝐸𝑁𝐸𝐼𝑁− = 0 454 

 455 

 456 

Finally, the PB of each combination tested was calculated and ranked. The full computational 457 

set of tools coded in Python and datasets used in the analysis are available in the following 458 
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repository (https://github.com/utrillalab/repromin). Cytoscape software version 3.7 40 was 459 

used to plot the network representation of the data. 460 

 461 

4) Generation of combinatorial knock-out strains 462 

The combinatorial mutants were generated by sequential P1 phage transduction from the 463 

individual knock-out strains of the Keio collection according to the protocol described by 464 

Miller (1992) 41. The removal of the kanamycin resistance cassette before each transduction 465 

was done using the pE-FLP plasmid (Addgene plasmid #45978), pE-FLP was a gift from 466 

Drew Endy & Keith Shearwinand. Each knock-out strain was confirmed by PCR using 467 

primers flanking each gene. In all experiments Escherichia coli BW25113 was used as the 468 

WT background. The characteristics of the strains, plasmids and primers used in this study 469 

are described in the supplementary material (Supp. Table 4). 470 

 471 

5) RNA sample extraction and sequencing 472 

Strains were grown in 50 mL of M9 media with glucose (4 g/L) M9 media in 250 mL 473 

Erlenmeyer flasks cultures in an orbital incubator at 37°C (250 rpm). Cells were harvested 474 

in mid-log phase using the Qiagen’s RNAprotect bacteria reagent according to the 475 

manufacturer’s specifications. Cell pellets were incubated with lysozyme, SuperaseIn and 476 

protease K for 10 min at 37°C. Total RNA was isolated and purified using Zymo Research’s 477 

Quick-RNA kit according to the manufacturer’s specifications. All samples’ quality was 478 

inspected in a bioanalyzer RNA chip (Agilent). Starting with 10ug of total RNA of each 479 

sample, the removal of ribosomal RNA was done with the Ribominus kit by Invitrogen. For 480 

the construction of the libraries, the TruSeq Stranded mRNA Sample Prep Kit by Illumina 481 

was used, following the HT protocol. For sequencing a NextSeq 500 v2 was used, with a 482 

configuration of 2 x 75 paired-end read and 10 million reads per sample.  483 

Reads were mapped to reference genome E. coli MG1655 (RefSeq: NC_000913.3) using 484 

aligner Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2). Final differential analysis was 485 

made using the Cufflinks library (http://cole-trapnell-lab.github.io/cufflinks). Genes with log2 486 

Fold Change ≥ 1 were considered up regulated and ≤ -1 down regulated, considering a p-487 

value ≤ 0.01. 488 

 489 

6) Growth phenotype characterization  490 

For the evaluation of growth in different carbon sources, the following conditions were used: 491 

glucose M9 medium (4 g/L), galactose M9 medium (3.2 g/L), acetate M9 medium (2.5 g/L) 492 
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and LB. Cells were cultured overnight in the corresponding media. The next day the strains 493 

were diluted to an OD600 of 0.05 in fresh medium and 150 μl of the fresh culture were 494 

transferred to a transparent 96-well plate (Corning) and incubated at 37 °C with fast linear 495 

shaking in a microplate reader (Synergy 2.0, BioTek) for 24 hours, taking measurements for 496 

OD600 every 20 min. In all trials three replicates were included and the experiment was 497 

repeated independently on three different days.  498 

The characterization of the growth kinetics was conducted using the algorithm developed by 499 

Swain et al., 42 with the default parameters. In all cases, when comparing the parameters 500 

obtained from the mutant strains against the wild type, the p-value was determined using a 501 

two-tailed Student t-test as the statistical significance reliability index. 502 

 503 

7) Isocost circuit evaluation 504 

Strains were inoculated into glucose M9 medium with gentamicin (20 ug/ml), and grown 505 

overnight. Next day strains were diluted to an OD600 of 0.05 in fresh glucose M9 medium 506 

containing N-acyl homoserine lactone (AHL, Sigma-Aldrich, St. Louis, MO, USA, final 507 

concentrations of 1.25, 2.5, 5, 10, 20 nM), then 150 μl of the fresh culture were transferred 508 

to a 96-well black plate with transparent bottom (Corning) and incubated as described 509 

above, taking measurements for OD600, GFP (ex., 485 nm, em., 528 nm) and RFP (ex., 590 510 

nm, em., 645 nm). The characterization of the production kinetics of GFP and RFP was also 511 

done using the algorithm described above. 512 

 513 

8) Flow cytometry measurements 514 

For flow cytometry measurements, cell cultures were prepared as described above, but later 515 

grown in 24-well plates using 1 ml of medium. Every hour 50 μL aliquots were taken from 516 

each well and mixed with 150 μL of PBS, the volume of the wells was kept constant by 517 

adding fresh medium. Cell suspension was loaded into an Attune NxT Flow Cytometer 518 

(ThermoFisher, Waltham, MA, USA) and analysed for GFP (excitation 488 nm; emission 519 

525/50 nm) and RFP (excitation 561 nm; emission 620/15 nm). For each sample 20,000 520 

events were analysed and population means were estimated using the default software of 521 

the instrument. 522 

 523 

9) Characterization of violacein-producing strains. 524 

The strains were inoculated into glucose M9 medium with gentamicin (20 ug/ml), and grown 525 

overnight. Next day strains were diluted to an OD600 of 0.05 in fresh glucose M9 medium 526 
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containing AHL (1.25, 2.5, 5, 10, 20 nM) and tryptophan (0, 0.5, 1.0 and 2.0 g/L), then 150 527 

μl of the fresh culture were transferred to a 96-well plate and incubated as described above. 528 

After 24 h the plate was centrifuged (13,000×g, 10 min), and the supernatant of each well 529 

was discarded. Violacein was extracted by suspending the pellet in each well in 200 µl 530 

absolute ethanol and incubating the plate at 95 °C for 10 min followed by pelleting cell debris 531 

(13,000×g, 10 min). Violacein present in the extract was determined spectrophotometrically 532 

at 575 nm in a microplate reader (Synergy 2.0, BioTek). 533 
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Supplementary Figures 654 

 655 

 656 

 657 

Supplementary Figure 1 ME-Model simulations and proteome sector response. The expression of 658 

hedging functions has a proteomic cost that impacts growth and resource availability for the 659 

recombinant sector 9, 10. Genome scale models of metabolism and gene expression can be used to 660 

analyse the amount of resources devoted to those functions and predict engineering outcomes. 661 

Similar to the maintenance energy coefficient 43, the hedging proteome and other non-growth related 662 

(thus not modelled) functions are accounted for in ME-models as a part of the unused protein fraction 663 

(UPF). This proteome sector is comprised by functions not directly related to growth in the simulated 664 

environment; therefore those functions are not included in the model. The ME-model iJL1678b-ME 14 665 

was used to simulate the effect of the reduction of the UPF and different expression levels of an 666 

unused recombinant model protein (GFP). The simulation shows an increased availability of cellular 667 

resources for recombinant protein production by reducing the UPF. 668 

 669 
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 670 

Supplementary Figure 2. Non-essential TF distribution for the UT case across three growth 671 

conditions tested in this study. 672 

 673 
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 675 
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 677 
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Supplementary Figure 3 Subnetwork of interactions corresponding to the 34 candidate TF 680 

representing all the potentially affected targets; green squares represent candidate TF, while light 681 

blue circles represent dispensable genes, dark blue circles essential genes and light green squares 682 

dispensable TF, circle size is proportional to the PL of the gene. 683 

 684 

 685 

 686 

 687 

Supplementary Figure 4 Regulatory subnetwork of predicted gene targets of the PYC mutant; green 688 

circles represent predicted silenced targets, red circles predicted induced targets and yellow circles 689 

genes with no proteomic coverage; size of the circles is proportional to the PL of the target. 690 
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 691 

 692 

Supplementary Figure 5 Regulatory subnetwork of predicted gene targets of the PFC mutant; green 693 

circles represent predicted silenced targets, red circles predicted induced targets and yellow circles 694 

genes with no proteomic coverage; size of the circles is proportional to the PL of the target. 695 
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 700 

 701 

Supplementary Figure 6 Integration of transcriptomics with computational tool predictions, the size 702 

of the circle corresponds to the fold change of each target (biggest circles represent fully silenced 703 

genes), in all cases green represent targets liberating resources (down regulated), red circles 704 

represent targets generating burden (up regulated) and yellow circles are targets not expressed. 705 

 706 
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 712 

 713 

Supplementary Figure 7 Accuracy of computational tool predictions (PFC) based on RNAseq data. 714 

Red circles represent wrong predictions, green circles represent accurate predictions and yellow 715 

circles represent unmapped predictions (expression was not detected). 716 
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 726 

Supplementary Figure 8 Phenotypic evaluation of strains on different carbon source 727 

supplemented M9 media and rich media (LB). (A-D) shows max growth rate and (E-H) 728 

shows max O.D. 729 
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 732 

Supplementary Figure 9 Metabolic burden while carrying empty, circuit plasmid and 733 

induced circuit plasmid, A) shows max growth rate and B) shows max O.D. 734 
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 738 

 739 

Supplementary Figure 10 Isocost lines showing mean fluorescence per cell measured by 740 

flow cytometry during balanced growth (~5 h). 741 

 742 

 743 

 744 

 745 

 746 

Supplementary Figure 11 Isocost lines of the FOG mutant compared to the WT strain 747 

during balanced growth (~5 h). 748 
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