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23 Highlights

24 e Proteome reduction with minimal genetic intervention as design principle

25 e Regulatory and proteomic data integration to identify transcription factor activated
26 proteome

27 o Deletion of the TF combination that reduces the greater proteomic load

28 e Regulatory interventions are highly specific

29 o Designed strains show less burden, improved protein and violacein production
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33  Abstract

34  Engineering resource allocation in biological systems for synthetic biology applications is an
35 ongoing challenge. Wild type organisms allocate abundant cellular resources for ensuring
36  survival in changing environments, reducing the productivity of engineered functions. Here
37  we present a novel approach for engineering the resource allocation of Escherichia coli by
38 rationally modifying the transcriptional regulatory network of the bacterium. Our method
39  (ReProMin) identifies the minimal set of genetic interventions that maximise the savings in
40 cell resources that would normally be used to express non-essential genes. To this end we
41 categorize Transcription Factors (TFs) according to the essentiality of the genes they
42  regulate and we use available proteomic data to rank them based on its proteomic balance,
43  defined as the net proteomic charge they release. Using a combinatorial approach, we
44  design the removal of TFs that maximise the release of the proteomic charge and we
45  validate the model predictions experimentally. Expression profiling of the resulting strain
46  shows that our designed regulatory interventions are highly specific. We show that our
47  resulting engineered strain containing only three mutations, theoretically releasing 0.5% of
48  their proteome, has higher proteome budget and show increased production yield of a
49  molecule of interest obtained from a recombinant metabolic pathway. This approach shows
50 that combining whole-cell proteomic and regulatory data is an effective way of optimizing

51 strains in a predictable way using conventional molecular methods.

52 Importance

53  Biological regulatory mechanisms are complex and occur in hierarchical layers such as
54  transcription, translation and post-translational mechanisms. We foresee the use of
55  regulatory mechanism as a control layer that will aid in the design of cellular phenotypes.
56  Our ability to engineer biological systems will be dependent on the understanding of how
57 cells sense and respond to their environment at a system level. Few studies have tackled
58 this issue and none of them in a rational way. By developing a workflow of engineering
59  resource allocation based on our current knowledge of E. coli's regulatory network, we
60 pursue the objective of minimizing cell proteome using a minimal genetic intervention
61  principle. We developed a method to rationally design a set of genetic interventions that
62 reduce the hedging proteome allocation. Using available datasets of a model bacterium we
63 were able to reallocate parts of the unused proteome in laboratory conditions to the
64  production of an engineered task. We show that we are able to reduce the unused proteome

65  (theoretically 0.5%) with only three regulatory mutations designed in a rational way, which
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66  results in strains with increased capabilities for recombinant expression of pathways of

67 interest.
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68 Introduction

69

70  The removal of accessory non-essential functions is one of the strategies used to engineer
71  microbial phenotypes. This approach relies on the assumption that cellular resources for
72  gene expression are limited and, therefore, by removing unneeded genes in a certain
73  environment, the cell is capable of allocating resources to other functions (e.g. expression
74  of recombinant genes). These minimization approaches are mostly done by reducing
75 genome size and gene number including performing random deletions®?, however, the
76  precise way in which the resource allocation takes place after the genetic intervention is not
77  considered.

78 Organisms respond to the environment by cellular signalling encoded in regulatory
79  networks®. The intricacy of the lifestyle of an organism is generally translated into signalling
80 complexity*. Biological regulatory networks are robust® and evolvable® to cope with
81  environmental and lifestyle perturbations, however this robustness involves intrinsic trade-
82  offs, such as resource allocation strategies. It has been shown that cellular states are
83 naturally “primed” for typical upcoming changes. Bacteria anticipate to fluctuations in the
84  environment’®, draining resources from functions that are mostly performed in relatively
85  stable conditions. The expression of anticipation functions, also called hedging functions, is
86  encoded in the regulatory network and it has a proteomic cost®. Genome scale models along
87  with experimental data sets enable the calculation of the minimal theoretical proteome
88  needed to sustain growth in a defined condition!®. Therefore, comparing minimal theoretical
89  proteomes with measured proteomes reveal the costs of the hedging proteome allocation.
90 Proteome econometric approaches can facilitate the engineering of cellular states or
91 phenotypes aimed at displaying an engineered function. Recent studies have focused in the
92  host-construct interactions for increasing predictability of synthetic constructs'*-3, In
93  addition to these approaches, the rational design of the host used for expression following
94  econometric models can be adopted to improve the performance of synthetic constructs,
95 including production phenotypes for molecules of added value. Among other benefits,
96 streamlined organisms obtained this way are less likely to develop undesired emerging
97  behaviours'®.

98 In this work we develop a new top- down cell engineering strategy for Escherichia coli using
99 the Transcriptional Regulatory Network (TRN) as a control layer for proteome allocation. By
100 combining high-throughput proteomic information, regulatory network interactions and gene

101  essentiality observations, we develop a method capable of finding the minimal set of genetic
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102 interventions required to divert the resources invested in superfluous hedging into increased

103
104  resources to express engineered functions.

biosynthetic potential. The resulting strain exhibits an increased availability of cellular
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105 Results

106  Combining gene essentiality and TRN analysis identifies dispensable TFs for

107 proteome reduction in a defined condition

108  The genome scale model of Metabolism and gene Expression (ME model) computes the
109 minimal theoretical proteome and allows calculating the cost of expressing hedging
110 functions. It can be used to simulate different scenarios of expression of the hedging
111  proteome (as unused protein fraction coefficient, see methods)*. These simulations allow
112  us to calculate the costs and the benefits of different interventions, e.g. by modulating the
113 expression of the hedging proteome, expressed in terms of growth, the size of both essential
114  and recombinant proteome sectors (Supp. fig. 1).

115  We build on ME-models to design strains containing the minimal genetic interventions that
116  reduce the greatest amount of proteomic resources not required to grow in a specific
117  condition. Our method uses Transcription Factors (TFs) as the key dials controlling the
118 allocation of the hedging proteome in a pre-defined specific environment. We begin by
119  establishing batch growth in minimal media (M9) supplemented with glucose as the sole
120  carbon source as the defined environment for the first case of this study. Then, by compiling
121  experimental and genome-scale model generated essential gene sets, we generated a list
122 of essential genes for growth in this specific environment (Figure 1A, Supp. Table 1, see
123  methods). Once the case specific gene essentiality is defined, we analysed the TF-gene
124  interactions compiled in RegulonDB 5. After determining gene essentiality and TF-gene
125 regulatory interactions, we analyse the sub-network of interactions of each TF (Figure 1B)
126  looking for dispensable TFs, defined as those that do not activate the expression of any
127  essential gene. According to our analysis, 156 from the 200 TFs contained in the regulatory
128  network can be eliminated (Figure 1C). Since our goal is to reduce the hedging proteome,
129  out of the 156 dispensable TFs we select as candidates for non-essential function reduction
130 those 34 TF's with at least one unique (meaning it is not activated by any other TF) positive
131  regulated gene (Supp. Table 2) (See methods); this gives the certainty of silencing at least

132 one gene.
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135 Figure 1 Gene essentiality and transcriptional regulatory network analysis in the pre-defined
136  condition. A) Essentiality profile of E. coli genome under selected growth condition. The essential
137  fraction of the genome is divided into core (always needed) and conditional (M9-glucose needed). B)
138  Graphical representation of the sub-network of interactions considered for the classification of the
139  TFs; grey squares represent essential TFs, light green squares dispensable TFs, green squares
140 candidate TFs, dark blue circles essential genes, light blue circles dispensable genes and arrows
141 positive interactions. C) Essentiality profile of the TFs contained in RegulonDB. Total E. coli genes
142  according to Ecocyc?.

143

144  Integration of proteomic data and the TF-Gene regulatory network

145  We determine the proteome associated to each non-essential TF in our network integrating
146  a quantitative proteomic data set!’, that provides protein copy number per cell under 22
147  different growth conditions with 95% of proteome coverage (by mass). Here we define two
148  emerging properties derived from the quantitative proteomics data integration: the Proteomic
149  Load of a gene (P.) in fg of protein per cell (Figure 2A) and the Proteomic Balance (Pg) of a
150  TFresulting from the summation of the P, of the genes that would result silenced or activated
151 by the elimination of a TF (Figure 2B). Pg is conceptually important to rank the TFs according
152  to the size of the proteome they control, since it takes into account the net addition of protein
153  mass (in fg of protein/cell) liberated when removing a TF. A graphic representation of the 34
154  candidate TF subnetwork illustrating the P, all the possible targets to affect is shown in
155  Figure 4A.

156
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159 Figure 2 Emerging properties from proteomics data integration. A) Proteomic load of a gene
160 (P)), this property is defined as the molecular weight of the protein (MWp) multiplied by the number of
161 copies per cell (Ccen) divided by Avogadro's number (Na) (6.022x108 fg equivalent), the more
162 expressed the gene is, the more proteomic load it generates. B) Proteomic Balance of a TF (Pg)
163  which is defined as the sum of the P of the silenced genes minus the sum of the P of the induced
164  genes. C) Schematic of a simple case of shared regulation in which removing both TFs silences all
165  genes but this is not the case when the TFs are silenced individually.

166

167 Computational search of minimal TF eliminations for the release of the maximal
168 hedging proteome

169 Even though E. coli is one of the most studied organisms and its TRN has been widely
170 investigated, only half of its genes have regulatory information (RegulonDB). In order to
171  prevent detrimental effects on gene expression due to our incomplete knowledge of the
172 regulatory network, we searched the smallest combination of TFs that liberate the greatest
173  amount of resources. We observed that many TFs have shared target genes (Figure 2C), in
174  fact, many of them are part of a simplified version of a Dense Overlapping Regulon (DOR)
175  network motif'8, meaning that a particular combination of TFs is needed in order to “fully”
176  silence these targets. Due to the size of the landscape of potential phenotypes resulting
177  from the combinatorial TFs deletions, we developed a computational tool to assist with the
178 design of mutant strains. We called our tool ReProMin (Regulation based Proteome
179  Minimization). ReProMin tool uses the previously described TF-Gene interaction network;
180  quantitative proteomic data and a list of candidate non-essential TF to find the n-combination
181  of mutations that silences the higher proteomic load (see methods).

182  In order to test our method (ReProMin), we first performed calculations using data from the

183  glucose minimal media condition on which we defined gene and TF essentiality. Calculations
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184  were made considering two cases, the Shared Target (ST) case: considering all non-
185  essential TFs with positive Pg (132 TF), which takes into account some TFs with no unique
186  regulated genes. And the Unique Target (UT) case: considering candidate TFs with positive
187  Pg (20 TF). Our computational tool was able to solve up to triple TF combinations for ST
188 case and up to 20 TF combinations for UT case (Figure 3A and B).

189 For the ST case, calculations revealed that the elimination of all the non-essential TFs
190 theoretically would liberate up to 1.06% of total proteome. However, up to 0.53% of total
191 proteome can be released by removing a top combination of three TFs. For the UT case,
192 the elimination of all 20 candidate TFs would liberate up to 0.72% of the proteome, and our
193  simulations show that there is not a significant improvement in resource release after the
194  elimination of 8 TFs.

195 We tested the accuracy of ReProMin predictions in other conditions for which proteomic
196 data is available, such as growth on galactose and acetate minimal media. In this case we
197 used the rich media essentiality gene set (see methods) and for the environment specific
198 genes we performed essentiality simulations with a genome scale metabolic model in the
199  corresponding growth condition (see methods). As a result, we obtained 164 and 166 non-
200 essential TFs for galactose and acetate respectively and found that most of the identified
201  TFs are shared among the three evaluated (glucose, galactose, acetate minimal media)
202  meaning that they are all non-essential for minimal media growth with those carbon sources
203  (Supp. fig. 2). In both cases we identified 23 candidate TFs that belong to the UT case and
204  have a positive Ps. Proteome liberation calculations were made using these subsets of
205 candidate TFs. Our predictions show that we can release 0.88% and 0.81% of the total
206  proteome in galactose and acetate, respectively, with the deletion of all these TFs (Figure
207 3Cand D).

10
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210 Figure 3 Proteome liberation calculations using ReProMin. A) Potential optimization landscape
211 corresponding to the ST case; the solved region is shown in blue while the unsolved region in red,
212 PYC mutant location in the landscape is shown with a green circle. Solved optimization landscape for
213 UT case in B) glucose, PFC mutant location in the landscape is shown with a green circle, C)
214  galactose and D) acetate.

215

216  Generation of combinatorial strains

217  Based on our ReProMin predictions, two triple knockout strains were generated, for the ST
218 case: PYC (AphoB - phosphate scavenging system, AyedW - unknown gene, AcusR -
219  copper efflux system) with a Pg of 1.3 fg representing 0.53% of the total proteome in glucose
220  (Figure 3A), is a particular case of shared regulation where most of the target genes are
221  only silenced by the deletion of all the three TFs together (a graphical representation of its
222 TF-gene network is presented in Figure 4B). For the UT case: PFC (AphoB - phosphate
223 scavenging system, AfInC - flagella master regulator, AcueR- copper efflux system) with a

224  Pg of 1.08 fg representing 0.44% of the total proteome in glucose (Figure 3B), has a higher

11
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225  grade of confidence in the design than PYC due to simpler regulatory subnetwork (Figure
226  4C). We also generated a strain, using an intuitive approach, in which we eliminated three
227  TFs that regulate non-growth related functions. The resulting strain is called FOG (AfliA -
228 flagella sigma factor, AoxyR - oxidative stress master regulator, AgadE - acid resistance
229 regulator). The FOG strain was not generated by our design pipeline; therefore the
230  regulatory interventions may affect some important functions and it was used as a control to

231  compare to our designed strains.
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234 Figure 4 TF-Gene network and P representation. A) Subnetwork of interactions corresponding to
235 the 34 candidate TF representing all the potentially affected targets; green squares represent
236  candidate TF, while light blue circles represent dispensable genes, dark blue circles are essential
237 genes and light green squares are dispensable TF, circle size is proportional to the P. of the gene.
238 Subnetwork of predicted regulated targets of the PYC (B) and PFC (C) mutants. In both cases, green
239 circles represent predicted silenced targets, red circles predicted induced targets and yellow circles
240 genes with no proteomic coverage; the size of the circles is proportional to the P. of the target. High
241 resolution versions of the sub networks are available in the supplementary material (Supp. figs. 3 -
242 5).

243

244  RNA-seq analysis confirms the high specificity of introduced mutations

245  The predictive power of ReProMin depends on the accuracy of the interactions compiled in
246  the E. coli TRN. We validated the predictions for the PFC mutant strain by comparing its
247  transcriptome profile obtained by RNA-seq to that of the wild-type (WT). This experiment
248  aims at determining the degree of success in gene silencing at the transcriptional level, and

249  at assessing other possible transcriptional perturbations resulting from our regulatory

12
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250 modifications. Results show that no transcripts corresponding to the three deleted TFs were
251  detected in PFC (Figure 5A). By mapping the fold change obtained in the analysis to the
252  predictions of the computational tool, it is possible to visualize the impact at the
253  transcriptional level of the missing regulators on their targets (Figure 5C). Four targets
254  associated to flnC, corresponding to genes forming the flagella (flgB, flgC, flgE and flgG)
255  were completely silenced; furthermore, all the other flagella-related genes also registered a
256  decrease on their expression. Regarding phoB, two targets were successfully silenced (phnl
257 and phnL), both genes belong to an operon that is induced under phosphate starvation and
258 is required for use of phosphonate and phosphite as phosphorous sources °, many other
259  targets related to this operon also reduced their expression. On the contrary, phnK present
260  inthe same operon was surprisingly overexpressed. We were unable to map any transcripts
261  to six genes belonging to the previously mentioned operon, which may not be entirely
262 expressed in the absence of phosphate starvation. Furthermore, phoR (part of the phoB-
263  phoR two-component system) also reduced its expression. Finally, both targets of cueR
264  (copA and cueO) also decreased drastically their abundance.

265 Regarding the accuracy of our ReProMin predictions, 28 genes of 47 predicted silenced
266  genes were silenced at different levels, whereas 11 predicted silenced genes presented
267  higher expression values than the WT strain. Finally, transcripts of 8 predicted targets were
268  not found in either strain. These observations show that in 72% (28 of 39 measured genes)
269  of the cases the predictions of the computational tool were accurate (Supp. fig. 7).

270  Additionally to the designed transcriptional changes, we found 17 genes differentially
271  expressed (8 down regulated genes and 9 up regulated (log2 Fold Change = 1 or < -1 and
272 p-value < 0.05) (Figure 5B) (Supp. Table 3). This RNA-seq analysis shows that besides the
273  intended transcriptional changes, few off-target effects were identified at the transcriptomic
274  level in the PFC strain.

13
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276 Figure 5 Transcriptomic analysis of the designed strain. A) Correlation plot for PFC and WT
277 strains transcripts. Blue dots represent the three deleted TFs. B) Volcano plot showing differential
278 gene expression. In both cases, statistically significant genes are highlighted. C) Integration of
279  transcriptomics with computational tool predictions. The size of the circle corresponds to the fold
280 change of each target (the largest circles represent fully silenced genes), in all cases green circles
281 represent targets releasing resources (down regulated), red circles represent targets generating
282 burden (up regulated) and yellow circles targets that were not expressed. High resolution version of

283 the sub network is available in supplementary material (Supp. fig. 6).

284  Phenotypic evaluation revealed reduced burden, increased cell yield and production
285  budget for designed strains

286  Our three ReProMin generated mutants (ST case, UT case, and control) were evaluated in
287  rich (LB) as well as in minimal media containing three different carbon sources (acetate,

288  galactose, glucose). The computationally designed strains (PYC and PFC) showed neither

14
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289  growth defects nor increase in the growth rate or biomass yield in any of the four conditions
290 tested. On the contrary, the control strain (FOG) showed growth defects in all growth
291  condition tested (Supp. fig. 8). For glucose minimal media, we also evaluated the effect of
292  recombinant protein production using a plasmid expressing a genetic circuit with two
293  fluorescent reporters (Figure 6A) 2°. The burden caused by carrying a plasmid is reflected
294  as a decrease in the growth rate in all tested strains (Supp. fig. 9A); this decrease is higher
295  when the plasmid is expressing the genetic circuit, however the burden displayed by both
296  ReProMin designed strains is lower compared to the wild-type counterpart. Additionally, the
297  PFC strain also showed a higher final biomass production (Supp. fig. 9B). It has been
298  described that the expression levels of two protein reporters encoded on the same plasmid
299  but without a regulatory connection between them is captured by a linear relationship which
300 can be interpreted as an isocost line, a concept used in microeconomics to describe how
301 two products can be bought with a limited budget, so the more is used on one, the less can
302 be used on the other. These lines represent the boundary of the production budget of a
303 given strain and condition (Figure 6B) 2. We obtained the isocost lines at balanced growth
304 (=5 h.) determined by two different methods: mean plate reader fluorescence and mean
305 fluorescence measured by flow cytometry. The line corresponding to PFC strain show a
306  parallel upward shift compared to the WT strain, which represents an increase of 9% in
307 absolute fluorescence (p < 0.01) (Figure 6C) and 12% in mean fluorescence per cell (p <
308 0.01) (Supp. fig. 10), this difference is increased at the stationary phase of the culture (~24
309 h.) were higher maximal biomass is achieved and the quantity of recombinant protein is
310 increased up to 18% (Figure 6D).
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311

312 Figure 6 Synthetic circuit characterization. A) Schematic of the gene circuit evaluated, which
313 encodes the fluorescent reporters GFP and RFP: the first is constitutively expressed, while the latter
314  is under the control of an N-acyl-homoserine lactone (AHL) inducible promoter. B) When plotting the
315  expression of one protein against the other at different levels of induction, an isocost line is obtained.
316  The size of the area below the line represents the total proteome budget dedicated to the circuit, a
317  parallel upward shift in the line represent an increase in the budget. Isocost lines of the designed
318 strains showing absolute fluorescence during C) balanced growth and D) stationary phase. Each
319 point represent the red reporter (x axis) plotted against the green reporter (y axis) in an increasing
320 inductor concentration (1.25, 2.5, 5, 10, 20 nM AHL) and represents the mean of three replicates
321 across three different experiments. A linear regression was used to fit the points to a line.

322

323  Expression of an engineered metabolic pathway: violacein production.

324  We tested the ability of our engineered strain for synthesizing the molecule violacein as a
325  proof-of-concept for applications of our method in metabolic engineering. Violacein is a
326  pigment from Chromobacterium violaceum endowed with many biological activities
327  (antibacterial, antiviral, anti-parasite) and has recently gained importance in the industrial
328 field especially for applications in cosmetics, medicines and fabrics ?*. Violacein is
329  synthesized in a five-step metabolic pathway using tryptophan as a precursor. Here we used
330 the violacein pathway plasmid reported by Darlington et al., 2018, where the five genes for

331 violacein biosynthesis are arranged in two operons, one consisting of vioA constitutively
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332  expressed, while the rest of the pathway encoded by the vioBCDE genes is under the control
333  of an AHL inducible promoter 2 (Figure 7A). This construction follows the same principle as
334  the previous circuit so the more of one module is produced, the less of the other is expressed
335 due to the competition for limited resources for gene expression. However, in this case the
336 number of genes in each module is different and code for actively metabolic enzymes with
337 different kinetic properties, which results in differential violacein biosynthesis.

338  We evaluated violacein production after 24 hours in the wild-type and PFC strains using M9
339  glucose medium supplemented with tryptophan (2.0 g/L) and AHL (1.25, 2.5, 5, 10, 20 nM)
340 for induction. PFC showed a mean increase in violacein production of 18% (Figure 7B),
341  additionally we found that the maximum production is achieved with just a minimum quantity
342  of inducer (1.25 nM) indicating that is crucial to have a balanced expression of the pathway
343  with the right amount of each module to maximize the synthesis of the final product. Similarly
344  to our observations on fluorescent protein production, the increase in violacein production
345  shows that our approach can be harnessed to increase the production of metabolites from
346  costly heterologous metabolic pathways.

17


https://doi.org/10.1101/733592
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/733592; this version posted August 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

347

348

349
350
351
352

aCC-BY-NC-ND 4.0 International license.

A) AHL

o
.

Module 1 Module 2

(v
L

=
(=}

Violacein
{575 nm)
()]
wu

e
o

Figure 7 Violacein Pathway Evaluation. A) Schematic of the pathway of violacein biosynthesis. B)
Total violacein production using 2 g/L tryptophan after 24 h in the presence of increasing inducer
concentrations; each value represents the mean of three replicates across three different

experiments.
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353 Discussion

354 Gene regulatory networks are robust and can be severely rewired with interesting
355  phenotypic outcomes??, thus they are a perfect rational engineering target for synthetic
356  biology applications. In this work we prove that the definition of an essential gene set
357 together with regulatory network information allows the identification of TFs whose
358 elimination leads directly to silencing proteome fractions that are not used in a particular
359 condition. We show that by eliminating hedging proteome activators we can release
360 resources and increase cellular capacity for engineered functions. In agreement with the
361 presented ME-model simulations reducing the unused protein fraction, our designed strain
362 shows higher proteomic budget, measured by the isocost lines, and a higher capacity to
363 produce a metabolite from a heterologous pathway. Furthermore, by comparing our strains
364  with an intuitive control strain, we show that inaccurate TF elimination results in detrimental
365 effects on growth, maximal biomass and protein production (Supp. figs. 9 and 11). These
366  findings indicate that the elimination of a combination of TFs is not a trivial process; it may
367 affect essential functions and introduce phenotypic defects. Our method shows good
368 accuracy in terms of the obtained gene expression changes measured by RNAseq, despite
369  our limited knowledge of the regulatory networks. In addition, the regulatory data available
370 is condition dependent, what limits the predictive power of our method, since we need to
371 assume that regulatory interactions are present at all times. We anticipate that
372  developments in high throughput technologies (such as Chip-seq) combined with novel
373  computational approaches?=2% will enable the fast generation of complete regulatory
374 networks and the application of our method to even non-model organisms. Several
375 approaches have been applied for resource allocation optimization in bacterial host
376  engineering. Genome minimization has been mainly done by large scale genetic
377 interventions whose outcomes are difficult to predict and do not show greater genome
378  stability 26?7, Adaptive Laboratory Evolution (ALE) has showed great success, especially to
379 identify functions not related to growth 28, however, it selects for fast growing strains which
380 not necessarily result in the best production phenotypes. Moreover, the underlying selection
381 mechanisms in ALE are normally not known therefore its effects are not predictable 2.
382  Genome scale models, such as the ME-model, may also be used to find the proteomic cost
383 and fitness benefit of gene expression, thus to aid in the design of proteome allocation,
384  however kinetic data of each protein is needed * and its scope focuses on growth related
385 functions. There are only a few reports describing regulatory approaches to improve

386  production phenotypes, such as the global Transcriptional Machinery Engineering (gTME)
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387 3 but none of them followed a rational approach. The methodology presented in this work
388 is a novel strategy for proteome optimization with minimal genetic interventions which
389  overcomes the serious limitations of deleting large regions of the genome; it is a flexible
390 pipeline which can be applied to other growth and production conditions and also to different
391  organisms where sufficient information is available. This work shows the potential of rational

392  design of biological systems over the predominantly used trial and error approaches.
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393  Materials and Methods

394

395 1) ME-Model Simulations

396  All simulations were done using model iJL1678b ME 4. The corresponding transcription and
397 translation reactions for recombinant protein (GFP) production were manually added to the
398 model using standard methods. Unused protein fraction and flux through the recombinant
399  protein production are changeable variables in the ME-Model that affect predicted growth
400 rate and proteome composition, the values of these two variables were systematically
401 changed in the ME-Model to assess their effect on growth rate (UPF = 0.36, 0.30, 0.25; Flux
402 =0, 0.001, 0.002, 0.0025, 0.0030, 0.0035, 0.0040), all other model parameters were set as
403  default. Proteome sectors were classified according to O’Brien et al., 2016.

404

405  2) Definition of the essential gene list

406  To compile the essential gene list in the glucose minimal media condition we combined five
407  different datasets from different sources. Three of them were experimentally generated
408 using different methods of gene disruption: A) random transposon mutagenesis using M9
409  with glucose as growth condition (Tn-seq)®?, B) removing large fragments of the
410 chromosome using a homologous recombination system in rich medium (LB) * and C) the
411  updated list of the mutants of the Keio collection that are lethal, the collection was generated
412  using rich medium 343, Two gene lists were generated in silico using simulations of genome
413  scale metabolic and expression models capable of predicting gene expression needs in a
414  particular condition: D) genes that are essential for growth in M9 with glucose using
415  iOL1554-ME model * and E) genes that are essential for growth in the metabolic model
416 iJO1366 and also experimentally in M9 with glucose *’. Within the compiled list, genes
417  exclusively belonging to the Tn-seq and the glucose minimal media ME-model simulations
418 gene lists were considered conditionally essential, as these gene lists were originally
419 generated using M9 with glucose as the growth condition, while the rest of the genes were
420 classified as core essential for our purposes.

421  For the cases of galactose and acetate minimal media conditions we performed gene
422  essentially analysis with the iML1515 model * in COBRApy *.

423

424  3) ldentification of candidate regulators and combinatorial analysis

425  We sorted the TF/gene interactions from RegulonDB (version 8, regulondb.ccg.unam.mx),

426  discarding all the sigma factors-gene interactions. Next, we classified as essential all TFs

21


https://doi.org/10.1101/733592
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/733592; this version posted August 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

427  that activate at least one essential gene (from our M9 glucose condition gene list) and as
428 non-essential all TF's that do not activate any essential genes. Then we analysed the sub-
429  network of interactions of each non-essential TF by numerically analysing the output level
430 of each TF (TFour), which is classified into positive and negative output (TFour+ and TFour-
431 ) representing positive and negative regulated genes respectively and the degree of entry
432  of each regulated gene (GENEn) in turn also divided into positive and negative (GENE -+
433 and GENEn.). We defined as candidate for proteome reduction all those TFs that activate
434  at least one unique gene, which numerically meet the following condition and represent a

435  simplified version of a SIM:

436

437 TFoyr+ =21 A GENE,, =1 A GENE,, =0
438

439 Where GENE;, represents any gene activated by TF.
440

441  On the other hand, the proteomic dataset previously described !’ was used to calculate the
442  Proteomic Load (P.) of each gene and Proteomic Balance (Pg) of each TF according to the
443  equations in Figure 2.

444  The combinatorial analysis was achieved as follows, given a list of TFs, we created and
445  tested all the possible N combinations. Next, the total number of silenced and induced genes
446  for each combination was determined following the next criteria: for every gene involved in
447  the combination, we subtracted one from the value of GENEn. for each TF that regulates
448  the target gene positively and one to the value of GENE\. for each TF that regulates the
449  target gene negatively. At the end of this process a gene was considered silenced if:

450

‘451 GENE;y = GENE;y, = 0

452

453  orinduced if:

‘454 GENE;y = GENE;y_ = 0

455

456

457  Finally, the Pg of each combination tested was calculated and ranked. The full computational

458  set of tools coded in Python and datasets used in the analysis are available in the following
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459  repository (https://github.com/utrillalab/repromin). Cytoscape software version 3.7 ° was
460 used to plot the network representation of the data.

461

462  4) Generation of combinatorial knock-out strains

463  The combinatorial mutants were generated by sequential P1 phage transduction from the
464  individual knock-out strains of the Keio collection according to the protocol described by
465  Miller (1992) 4. The removal of the kanamycin resistance cassette before each transduction
466  was done using the pE-FLP plasmid (Addgene plasmid #45978), pE-FLP was a gift from
467 Drew Endy & Keith Shearwinand. Each knock-out strain was confirmed by PCR using
468  primers flanking each gene. In all experiments Escherichia coli BW25113 was used as the
469  WT background. The characteristics of the strains, plasmids and primers used in this study
470  are described in the supplementary material (Supp. Table 4).

471

472  5) RNA sample extraction and sequencing

473  Strains were grown in 50 mL of M9 media with glucose (4 g/L) M9 media in 250 mL
474  Erlenmeyer flasks cultures in an orbital incubator at 37°C (250 rpm). Cells were harvested
475 in mid-log phase using the Qiagen’s RNAprotect bacteria reagent according to the
476  manufacturer’'s specifications. Cell pellets were incubated with lysozyme, Superaseln and
477  protease K for 10 min at 37°C. Total RNA was isolated and purified using Zymo Research’s
478  Quick-RNA kit according to the manufacturer’'s specifications. All samples’ quality was
479 inspected in a bioanalyzer RNA chip (Agilent). Starting with 10ug of total RNA of each
480 sample, the removal of ribosomal RNA was done with the Ribominus kit by Invitrogen. For
481  the construction of the libraries, the TruSeq Stranded mRNA Sample Prep Kit by lllumina
482  was used, following the HT protocol. For sequencing a NextSeq 500 v2 was used, with a
483  configuration of 2 x 75 paired-end read and 10 million reads per sample.

484  Reads were mapped to reference genome E. coli MG1655 (RefSeq: NC_000913.3) using
485  aligner Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2). Final differential analysis was
486  made using the Cufflinks library (http://cole-trapnell-lab.github.io/cufflinks). Genes with log2
487  Fold Change = 1 were considered up regulated and < -1 down regulated, considering a p-
488  value < 0.01.

489

490 6) Growth phenotype characterization

491  For the evaluation of growth in different carbon sources, the following conditions were used:

492  glucose M9 medium (4 g/L), galactose M9 medium (3.2 g/L), acetate M9 medium (2.5 g/L)
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493  and LB. Cells were cultured overnight in the corresponding media. The next day the strains
494  were diluted to an ODew of 0.05 in fresh medium and 150 pl of the fresh culture were
495 transferred to a transparent 96-well plate (Corning) and incubated at 37 °C with fast linear
496  shaking in a microplate reader (Synergy 2.0, BioTek) for 24 hours, taking measurements for
497  ODego every 20 min. In all trials three replicates were included and the experiment was
498 repeated independently on three different days.

499  The characterization of the growth kinetics was conducted using the algorithm developed by
500 Swain et al., % with the default parameters. In all cases, when comparing the parameters
501 obtained from the mutant strains against the wild type, the p-value was determined using a
502  two-tailed Student t-test as the statistical significance reliability index.

503

504  7)Isocost circuit evaluation

505  Strains were inoculated into glucose M9 medium with gentamicin (20 ug/ml), and grown
506 overnight. Next day strains were diluted to an OD.., of 0.05 in fresh glucose M9 medium
507 containing N-acyl homoserine lactone (AHL, Sigma-Aldrich, St. Louis, MO, USA, final
508 concentrations of 1.25, 2.5, 5, 10, 20 nM), then 150 pl of the fresh culture were transferred
509 to a 96-well black plate with transparent bottom (Corning) and incubated as described
510 above, taking measurements for ODeoo, GFP (ex., 485 nm, em., 528 nm) and RFP (ex., 590
511 nm, em., 645 nm). The characterization of the production kinetics of GFP and RFP was also
512  done using the algorithm described above.

513

514  8) Flow cytometry measurements

515  For flow cytometry measurements, cell cultures were prepared as described above, but later
516  grown in 24-well plates using 1 ml of medium. Every hour 50 pyL aliquots were taken from
517 each well and mixed with 150 yL of PBS, the volume of the wells was kept constant by
518 adding fresh medium. Cell suspension was loaded into an Attune NxT Flow Cytometer
519  (ThermoFisher, Waltham, MA, USA) and analysed for GFP (excitation 488 nm; emission
520 525/50nm) and RFP (excitation 561 nm; emission 620/15nm). For each sample 20,000
521 events were analysed and population means were estimated using the default software of
522  the instrument.

523

524  9) Characterization of violacein-producing strains.

525  The strains were inoculated into glucose M9 medium with gentamicin (20 ug/ml), and grown

526  overnight. Next day strains were diluted to an ODeoo Of 0.05 in fresh glucose M9 medium
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527  containing AHL (1.25, 2.5, 5, 10, 20 nM) and tryptophan (0, 0.5, 1.0 and 2.0 g/L), then 150
528  ul of the fresh culture were transferred to a 96-well plate and incubated as described above.
529  After 24 h the plate was centrifuged (13,000xg, 10 min), and the supernatant of each well
530 was discarded. Violacein was extracted by suspending the pellet in each well in 200 pl
531 absolute ethanol and incubating the plate at 95 °C for 10 min followed by pelleting cell debris
532  (13,000xg, 10 min). Violacein present in the extract was determined spectrophotometrically
533  at 575 nm in a microplate reader (Synergy 2.0, BioTek).

534
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658 Supplementary Figure 1 ME-Model simulations and proteome sector response. The expression of
659 hedging functions has a proteomic cost that impacts growth and resource availability for the
660  recombinant sector % 9. Genome scale models of metabolism and gene expression can be used to
661 analyse the amount of resources devoted to those functions and predict engineering outcomes.
662 Similar to the maintenance energy coefficient 43, the hedging proteome and other non-growth related
663 (thus not modelled) functions are accounted for in ME-models as a part of the unused protein fraction
664 (UPF). This proteome sector is comprised by functions not directly related to growth in the simulated
665 environment; therefore those functions are not included in the model. The ME-model iJL1678b-ME 4
666  was used to simulate the effect of the reduction of the UPF and different expression levels of an
667 unused recombinant model protein (GFP). The simulation shows an increased availability of cellular
668 resources for recombinant protein production by reducing the UPF.
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671  Supplementary Figure 2. Non-essential TF distribution for the UT case across three growth

672 conditions tested in this study.
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Supplementary Figure 3 Subnetwork of interactions corresponding to the 34 candidate TF
representing all the potentially affected targets; green squares represent candidate TF, while light
blue circles represent dispensable genes, dark blue circles essential genes and light green squares

dispensable TF, circle size is proportional to the P. of the gene.

Supplementary Figure 4 Regulatory subnetwork of predicted gene targets of the PYC mutant; green
circles represent predicted silenced targets, red circles predicted induced targets and yellow circles

genes with no proteomic coverage; size of the circles is proportional to the P. of the target.
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Supplementary Figure 5 Regulatory subnetwork of predicted gene targets of the PFC mutant; green

circles represent predicted silenced targets, red circles predicted induced targets and yellow circles

genes with no proteomic coverage; size of the circles is proportional to the P. of the target.
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701

702  Supplementary Figure 6 Integration of transcriptomics with computational tool predictions, the size
703 of the circle corresponds to the fold change of each target (biggest circles represent fully silenced
704  genes), in all cases green represent targets liberating resources (down regulated), red circles
705 represent targets generating burden (up regulated) and yellow circles are targets not expressed.
706
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714 Supplementary Figure 7 Accuracy of computational tool predictions (PFC) based on RNAseq data.
715 Red circles represent wrong predictions, green circles represent accurate predictions and yellow
716  circles represent unmapped predictions (expression was not detected).
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Supplementary Figure 8 Phenotypic evaluation of strains on different carbon source
supplemented M9 media and rich media (LB). (A-D) shows max growth rate and (E-H)

shows max O.D.
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733  Supplementary Figure 9 Metabolic burden while carrying empty, circuit plasmid and
734 induced circuit plasmid, A) shows max growth rate and B) shows max O.D.
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740  Supplementary Figure 10 Isocost lines showing mean fluorescence per cell measured by
741  flow cytometry during balanced growth (~5 h).
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747  Supplementary Figure 11 Isocost lines of the FOG mutant compared to the WT strain
748  during balanced growth (~5 h).
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