

1

2 **A quantitative method for proteome reallocation using minimal
3 regulatory interventions**

4

5 Lastiri-Pancardo Gustavo¹, Mercado-Hernandez J.S¹, Kim Juhyun², Jiménez José I.², Utrilla
6 José^{1*}.

7

8 1. Systems and Synthetic Biology Program, Centro de Ciencias Genómicas, Universidad
9 Nacional Autónoma de México.

10 2. Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

11

12

13 *Corresponding author:

14 Name: José Utrilla

15 Address: UNAM-Centro de Ciencias Genómicas. Av. Universidad s/n Col. Chamilpa.
16 Cuernavaca, Morelos Mexico. 62210

17 utrilla@ccg.unam.mx

18

19

20

21 **Keywords:** proteome minimization, regulatory network, *Escherichia coli*, rational
22 design, synthetic biology, systems biology

23 **Highlights**

24 • Proteome reduction with minimal genetic intervention as design principle
25 • Regulatory and proteomic data integration to identify transcription factor activated
26 proteome
27 • Deletion of the TF combination that reduces the greater proteomic load
28 • Regulatory interventions are highly specific
29 • Designed strains show less burden, improved protein and violacein production

30

31

32

33 **Abstract**

34 Engineering resource allocation in biological systems for synthetic biology applications is an
35 ongoing challenge. Wild type organisms allocate abundant cellular resources for ensuring
36 survival in changing environments, reducing the productivity of engineered functions. Here
37 we present a novel approach for engineering the resource allocation of *Escherichia coli* by
38 rationally modifying the transcriptional regulatory network of the bacterium. Our method
39 (ReProMin) identifies the minimal set of genetic interventions that maximise the savings in
40 cell resources that would normally be used to express non-essential genes. To this end we
41 categorize Transcription Factors (TFs) according to the essentiality of the genes they
42 regulate and we use available proteomic data to rank them based on its proteomic balance,
43 defined as the net proteomic charge they release. Using a combinatorial approach, we
44 design the removal of TFs that maximise the release of the proteomic charge and we
45 validate the model predictions experimentally. Expression profiling of the resulting strain
46 shows that our designed regulatory interventions are highly specific. We show that our
47 resulting engineered strain containing only three mutations, theoretically releasing 0.5% of
48 their proteome, has higher proteome budget and show increased production yield of a
49 molecule of interest obtained from a recombinant metabolic pathway. This approach shows
50 that combining whole-cell proteomic and regulatory data is an effective way of optimizing
51 strains in a predictable way using conventional molecular methods.

52 **Importance**

53 Biological regulatory mechanisms are complex and occur in hierarchical layers such as
54 transcription, translation and post-translational mechanisms. We foresee the use of
55 regulatory mechanism as a control layer that will aid in the design of cellular phenotypes.
56 Our ability to engineer biological systems will be dependent on the understanding of how
57 cells sense and respond to their environment at a system level. Few studies have tackled
58 this issue and none of them in a rational way. By developing a workflow of engineering
59 resource allocation based on our current knowledge of *E. coli*'s regulatory network, we
60 pursue the objective of minimizing cell proteome using a minimal genetic intervention
61 principle. We developed a method to rationally design a set of genetic interventions that
62 reduce the hedging proteome allocation. Using available datasets of a model bacterium we
63 were able to reallocate parts of the unused proteome in laboratory conditions to the
64 production of an engineered task. We show that we are able to reduce the unused proteome
65 (theoretically 0.5%) with only three regulatory mutations designed in a rational way, which

66 results in strains with increased capabilities for recombinant expression of pathways of
67 interest.

68 **Introduction**

69

70 The removal of accessory non-essential functions is one of the strategies used to engineer
71 microbial phenotypes. This approach relies on the assumption that cellular resources for
72 gene expression are limited and, therefore, by removing unneeded genes in a certain
73 environment, the cell is capable of allocating resources to other functions (e.g. expression
74 of recombinant genes). These minimization approaches are mostly done by reducing
75 genome size and gene number including performing random deletions^{1,2}, however, the
76 precise way in which the resource allocation takes place after the genetic intervention is not
77 considered.

78 Organisms respond to the environment by cellular signalling encoded in regulatory
79 networks³. The intricacy of the lifestyle of an organism is generally translated into signalling
80 complexity⁴. Biological regulatory networks are robust⁵ and evolvable⁶ to cope with
81 environmental and lifestyle perturbations, however this robustness involves intrinsic trade-
82 offs, such as resource allocation strategies. It has been shown that cellular states are
83 naturally “primed” for typical upcoming changes. Bacteria anticipate to fluctuations in the
84 environment^{7,8}, draining resources from functions that are mostly performed in relatively
85 stable conditions. The expression of anticipation functions, also called hedging functions, is
86 encoded in the regulatory network and it has a proteomic cost⁹. Genome scale models along
87 with experimental data sets enable the calculation of the minimal theoretical proteome
88 needed to sustain growth in a defined condition¹⁰. Therefore, comparing minimal theoretical
89 proteomes with measured proteomes reveal the costs of the hedging proteome allocation.
90 Proteome econometric approaches can facilitate the engineering of cellular states or
91 phenotypes aimed at displaying an engineered function. Recent studies have focused in the
92 host-construct interactions for increasing predictability of synthetic constructs¹¹⁻¹³. In
93 addition to these approaches, the rational design of the host used for expression following
94 econometric models can be adopted to improve the performance of synthetic constructs,
95 including production phenotypes for molecules of added value. Among other benefits,
96 streamlined organisms obtained this way are less likely to develop undesired emerging
97 behaviours¹¹.

98 In this work we develop a new top- down cell engineering strategy for *Escherichia coli* using
99 the Transcriptional Regulatory Network (TRN) as a control layer for proteome allocation. By
100 combining high-throughput proteomic information, regulatory network interactions and gene
101 essentiality observations, we develop a method capable of finding the minimal set of genetic

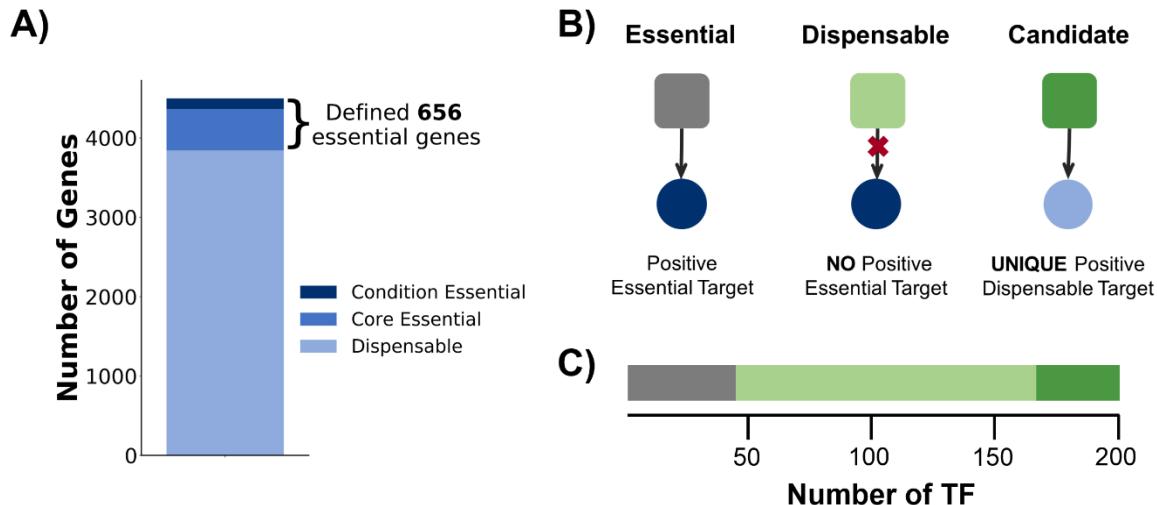
102 interventions required to divert the resources invested in superfluous hedging into increased
103 biosynthetic potential. The resulting strain exhibits an increased availability of cellular
104 resources to express engineered functions.

105 **Results**

106 **Combining gene essentiality and TRN analysis identifies dispensable TFs for**
107 **proteome reduction in a defined condition**

108 The genome scale model of Metabolism and gene Expression (ME model) computes the
109 minimal theoretical proteome and allows calculating the cost of expressing hedging
110 functions. It can be used to simulate different scenarios of expression of the hedging
111 proteome (as unused protein fraction coefficient, see methods)¹⁴. These simulations allow
112 us to calculate the costs and the benefits of different interventions, e.g. by modulating the
113 expression of the hedging proteome, expressed in terms of growth, the size of both essential
114 and recombinant proteome sectors (Supp. fig. 1).

115 We build on ME-models to design strains containing the minimal genetic interventions that
116 reduce the greatest amount of proteomic resources not required to grow in a specific
117 condition. Our method uses Transcription Factors (TFs) as the key dials controlling the
118 allocation of the hedging proteome in a pre-defined specific environment. We begin by
119 establishing batch growth in minimal media (M9) supplemented with glucose as the sole
120 carbon source as the defined environment for the first case of this study. Then, by compiling
121 experimental and genome-scale model generated essential gene sets, we generated a list
122 of essential genes for growth in this specific environment (Figure 1A, Supp. Table 1, see
123 methods). Once the case specific gene essentiality is defined, we analysed the TF-gene
124 interactions compiled in RegulonDB ¹⁵. After determining gene essentiality and TF-gene
125 regulatory interactions, we analyse the sub-network of interactions of each TF (Figure 1B)
126 looking for dispensable TFs, defined as those that do not activate the expression of any
127 essential gene. According to our analysis, 156 from the 200 TFs contained in the regulatory
128 network can be eliminated (Figure 1C). Since our goal is to reduce the hedging proteome,
129 out of the 156 dispensable TFs we select as candidates for non-essential function reduction
130 those 34 TF's with at least one unique (meaning it is not activated by any other TF) positive
131 regulated gene (Supp. Table 2) (See methods); this gives the certainty of silencing at least
132 one gene.



133

134

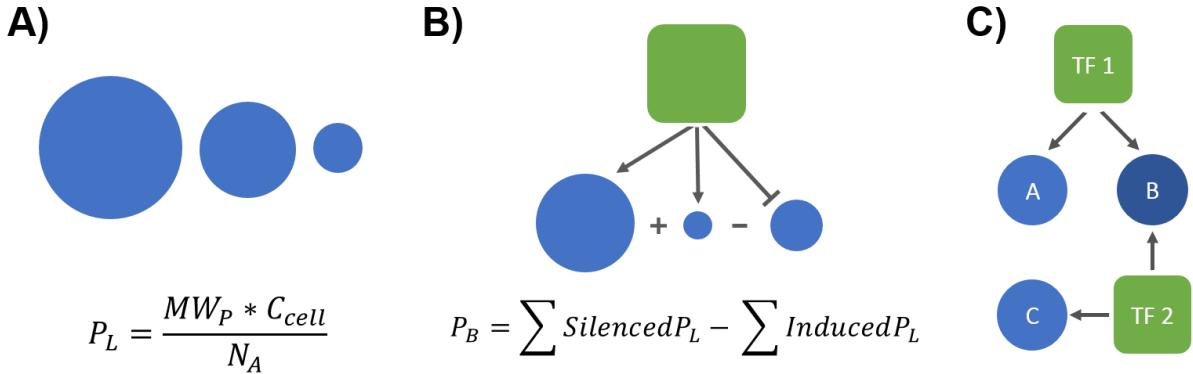
135 **Figure 1 Gene essentiality and transcriptional regulatory network analysis in the pre-defined**
136 **condition. A)** Essentiality profile of *E. coli* genome under selected growth condition. The essential
137 fraction of the genome is divided into core (always needed) and conditional (M9-glucose needed). **B)**
138 Graphical representation of the sub-network of interactions considered for the classification of the
139 TFs; grey squares represent essential TFs, light green squares dispensable TFs, green squares
140 candidate TFs, dark blue circles essential genes, light blue circles dispensable genes and arrows
141 positive interactions. **C)** Essentiality profile of the TFs contained in RegulonDB. Total *E. coli* genes
142 according to Ecocyc¹⁶.

143

144 **Integration of proteomic data and the TF-Gene regulatory network**

145 We determine the proteome associated to each non-essential TF in our network integrating
146 a quantitative proteomic data set¹⁷, that provides protein copy number per cell under 22
147 different growth conditions with 95% of proteome coverage (by mass). Here we define two
148 emerging properties derived from the quantitative proteomics data integration: the Proteomic
149 Load of a gene (P_L) in fg of protein per cell (Figure 2A) and the Proteomic Balance (P_B) of a
150 TF resulting from the summation of the P_L of the genes that would result silenced or activated
151 by the elimination of a TF (Figure 2B). P_B is conceptually important to rank the TFs according
152 to the size of the proteome they control, since it takes into account the net addition of protein
153 mass (in fg of protein/cell) liberated when removing a TF. A graphic representation of the 34
154 candidate TF subnetwork illustrating the P_L all the possible targets to affect is shown in
155 Figure 4A.

156



157

158

159 **Figure 2 Emerging properties from proteomics data integration.** **A)** Proteomic load of a gene
160 (P_L), this property is defined as the molecular weight of the protein (MW_p) multiplied by the number of
161 copies per cell (C_{cell}) divided by Avogadro's number (N_A) (6.022×10^8 fg equivalent), the more
162 expressed the gene is, the more proteomic load it generates. **B)** Proteomic Balance of a TF (P_B)
163 which is defined as the sum of the P_L of the silenced genes minus the sum of the P_L of the induced
164 genes. **C)** Schematic of a simple case of shared regulation in which removing both TFs silences all
165 genes but this is not the case when the TFs are silenced individually.

166

167 **Computational search of minimal TF eliminations for the release of the maximal
168 hedging proteome**

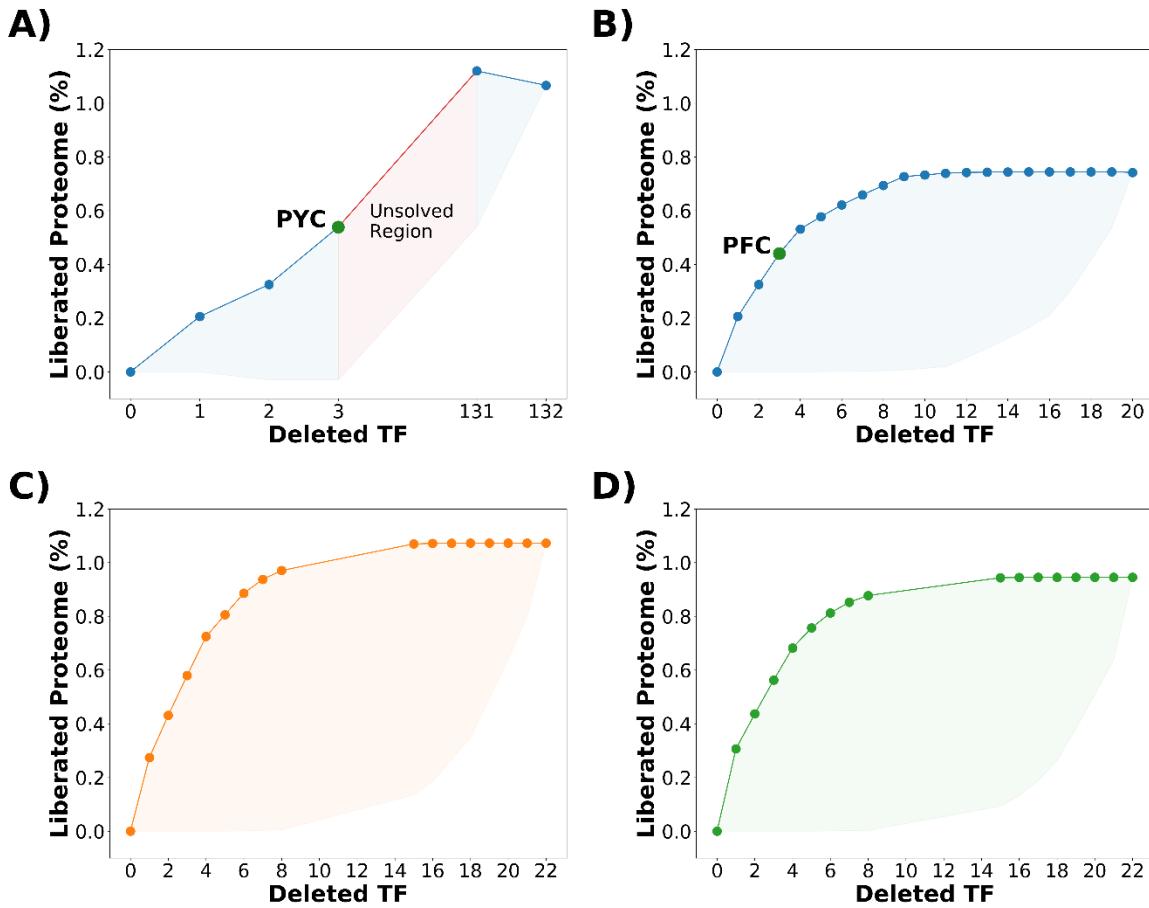
169 Even though *E. coli* is one of the most studied organisms and its TRN has been widely
170 investigated, only half of its genes have regulatory information (RegulonDB). In order to
171 prevent detrimental effects on gene expression due to our incomplete knowledge of the
172 regulatory network, we searched the smallest combination of TFs that liberate the greatest
173 amount of resources. We observed that many TFs have shared target genes (Figure 2C), in
174 fact, many of them are part of a simplified version of a Dense Overlapping Regulon (DOR)
175 network motif¹⁸, meaning that a particular combination of TFs is needed in order to "fully"
176 silence these targets. Due to the size of the landscape of potential phenotypes resulting
177 from the combinatorial TFs deletions, we developed a computational tool to assist with the
178 design of mutant strains. We called our tool ReProMin (**R**egulation based **P**roteome
179 **M**inimization). ReProMin tool uses the previously described TF-Gene interaction network;
180 quantitative proteomic data and a list of candidate non-essential TF to find the n-combination
181 of mutations that silences the higher proteomic load (see methods).

182 In order to test our method (ReProMin), we first performed calculations using data from the
183 glucose minimal media condition on which we defined gene and TF essentiality. Calculations

184 were made considering two cases, the Shared Target (ST) case: considering all non-
185 essential TFs with positive P_B (132 TF), which takes into account some TFs with no unique
186 regulated genes. And the Unique Target (UT) case: considering candidate TFs with positive
187 P_B (20 TF). Our computational tool was able to solve up to triple TF combinations for ST
188 case and up to 20 TF combinations for UT case (Figure 3A and B).

189 For the ST case, calculations revealed that the elimination of all the non-essential TFs
190 theoretically would liberate up to 1.06% of total proteome. However, up to 0.53% of total
191 proteome can be released by removing a top combination of three TFs. For the UT case,
192 the elimination of all 20 candidate TFs would liberate up to 0.72% of the proteome, and our
193 simulations show that there is not a significant improvement in resource release after the
194 elimination of 8 TFs.

195 We tested the accuracy of ReProMin predictions in other conditions for which proteomic
196 data is available, such as growth on galactose and acetate minimal media. In this case we
197 used the rich media essentiality gene set (see methods) and for the environment specific
198 genes we performed essentiality simulations with a genome scale metabolic model in the
199 corresponding growth condition (see methods). As a result, we obtained 164 and 166 non-
200 essential TFs for galactose and acetate respectively and found that most of the identified
201 TFs are shared among the three evaluated (glucose, galactose, acetate minimal media)
202 meaning that they are all non-essential for minimal media growth with those carbon sources
203 (Supp. fig. 2). In both cases we identified 23 candidate TFs that belong to the UT case and
204 have a positive P_B . Proteome liberation calculations were made using these subsets of
205 candidate TFs. Our predictions show that we can release 0.88% and 0.81% of the total
206 proteome in galactose and acetate, respectively, with the deletion of all these TFs (Figure
207 3C and D).



208

209

210 **Figure 3 Proteome liberation calculations using ReProMin.** **A)** Potential optimization landscape corresponding to the ST case; the solved region is shown in blue while the unsolved region in red, PYC mutant location in the landscape is shown with a green circle. Solved optimization landscape for UT case in **B)** glucose, PFC mutant location in the landscape is shown with a green circle, **C)** galactose and **D)** acetate.

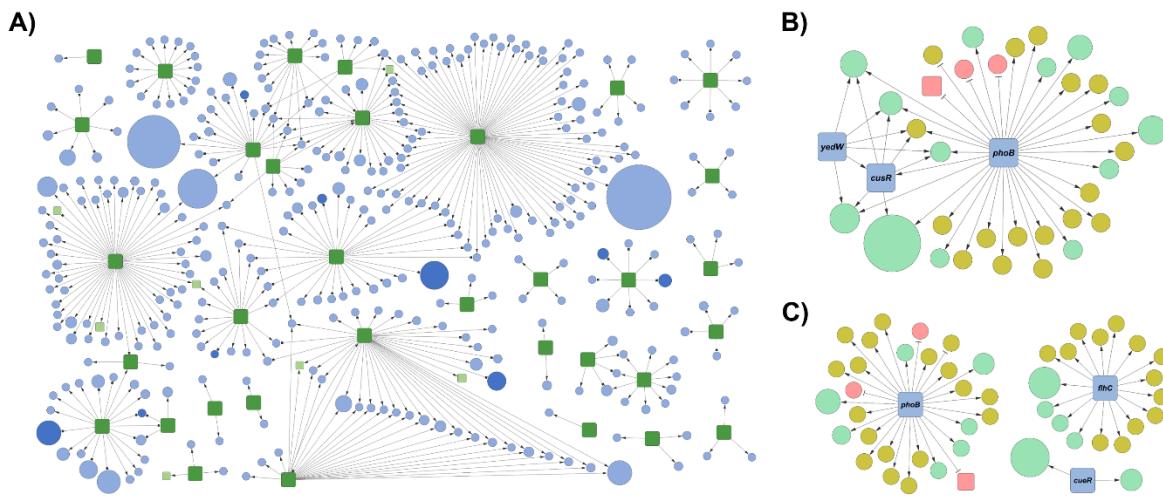
215

216 Generation of combinatorial strains

217 Based on our ReProMin predictions, two triple knockout strains were generated, for the ST case: PYC ($\Delta phoB$ - phosphate scavenging system, $\Delta yedW$ - unknown gene, $\Delta cusR$ - copper efflux system) with a P_B of 1.3 fg representing 0.53% of the total proteome in glucose (Figure 3A), is a particular case of shared regulation where most of the target genes are only silenced by the deletion of all the three TFs together (a graphical representation of its TF-gene network is presented in Figure 4B). For the UT case: PFC ($\Delta phoB$ - phosphate scavenging system, $\Delta fhlC$ - flagella master regulator, $\Delta cueR$ - copper efflux system) with a P_B of 1.08 fg representing 0.44% of the total proteome in glucose (Figure 3B), has a higher

225 grade of confidence in the design than PYC due to simpler regulatory subnetwork (Figure
226 4C). We also generated a strain, using an intuitive approach, in which we eliminated three
227 TFs that regulate non-growth related functions. The resulting strain is called FOG ($\Delta fliA$ -
228 flagella sigma factor, $\Delta oxyR$ - oxidative stress master regulator, $\Delta gadE$ - acid resistance
229 regulator). The FOG strain was not generated by our design pipeline; therefore the
230 regulatory interventions may affect some important functions and it was used as a control to
231 compare to our designed strains.

232



233

234 **Figure 4 TF-Gene network and P_L representation.** **A)** Subnetwork of interactions corresponding to
235 the 34 candidate TF representing all the potentially affected targets; green squares represent
236 candidate TF, while light blue circles represent dispensable genes, dark blue circles are essential
237 genes and light green squares are dispensable TF, circle size is proportional to the P_L of the gene.
238 Subnetwork of predicted regulated targets of the PYC **(B)** and PFC **(C)** mutants. In both cases, green
239 circles represent predicted silenced targets, red circles predicted induced targets and yellow circles
240 genes with no proteomic coverage; the size of the circles is proportional to the P_L of the target. High
241 resolution versions of the sub networks are available in the supplementary material (Supp. figs. 3 -
242 5).

243

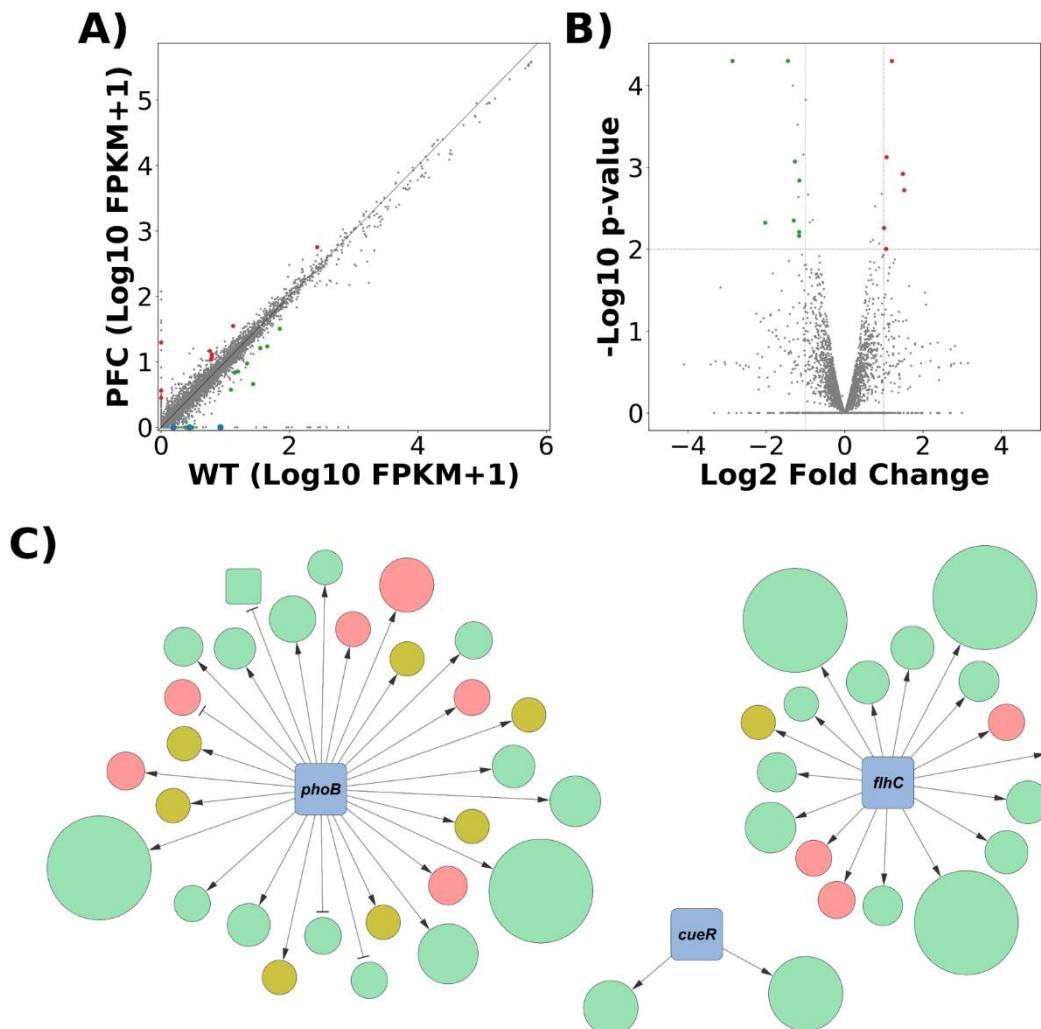
244 **RNA-seq analysis confirms the high specificity of introduced mutations**

245 The predictive power of ReProMin depends on the accuracy of the interactions compiled in
246 the *E. coli* TRN. We validated the predictions for the PFC mutant strain by comparing its
247 transcriptome profile obtained by RNA-seq to that of the wild-type (WT). This experiment
248 aims at determining the degree of success in gene silencing at the transcriptional level, and
249 at assessing other possible transcriptional perturbations resulting from our regulatory

250 modifications. Results show that no transcripts corresponding to the three deleted TFs were
251 detected in PFC (Figure 5A). By mapping the fold change obtained in the analysis to the
252 predictions of the computational tool, it is possible to visualize the impact at the
253 transcriptional level of the missing regulators on their targets (Figure 5C). Four targets
254 associated to *flhC*, corresponding to genes forming the flagella (*flgB*, *flgC*, *flgE* and *flgG*)
255 were completely silenced; furthermore, all the other flagella-related genes also registered a
256 decrease on their expression. Regarding *phoB*, two targets were successfully silenced (*phnI*
257 and *phnL*), both genes belong to an operon that is induced under phosphate starvation and
258 is required for use of phosphonate and phosphite as phosphorous sources ¹⁹, many other
259 targets related to this operon also reduced their expression. On the contrary, *phnK* present
260 in the same operon was surprisingly overexpressed. We were unable to map any transcripts
261 to six genes belonging to the previously mentioned operon, which may not be entirely
262 expressed in the absence of phosphate starvation. Furthermore, *phoR* (part of the *phoB*-
263 *phoR* two-component system) also reduced its expression. Finally, both targets of *cueR*
264 (*copA* and *cueO*) also decreased drastically their abundance.

265 Regarding the accuracy of our ReProMin predictions, 28 genes of 47 predicted silenced
266 genes were silenced at different levels, whereas 11 predicted silenced genes presented
267 higher expression values than the WT strain. Finally, transcripts of 8 predicted targets were
268 not found in either strain. These observations show that in 72% (28 of 39 measured genes)
269 of the cases the predictions of the computational tool were accurate (Supp. fig. 7).

270 Additionally to the designed transcriptional changes, we found 17 genes differentially
271 expressed (8 down regulated genes and 9 up regulated (\log_2 Fold Change ≥ 1 or ≤ -1 and
272 $p\text{-value} \leq 0.05$) (Figure 5B) (Supp. Table 3). This RNA-seq analysis shows that besides the
273 intended transcriptional changes, few off-target effects were identified at the transcriptomic
274 level in the PFC strain.



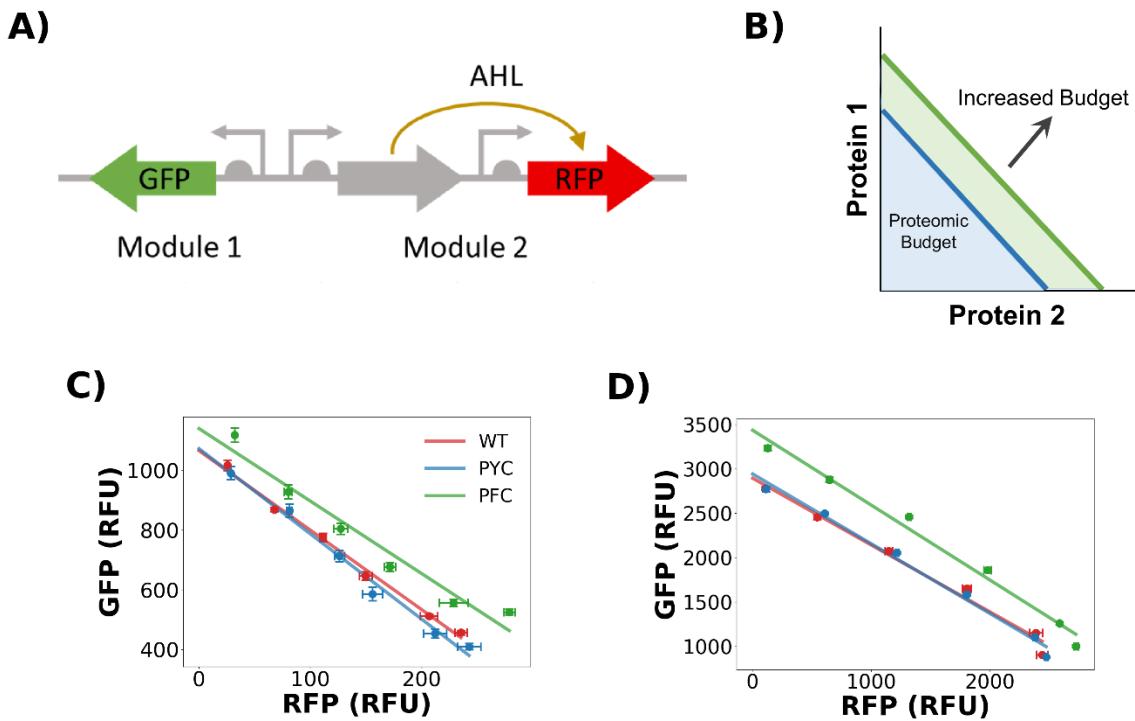
275

276 **Figure 5 Transcriptomic analysis of the designed strain. A)** Correlation plot for PFC and WT
277 strains transcripts. Blue dots represent the three deleted TFs. **B)** Volcano plot showing differential
278 gene expression. In both cases, statistically significant genes are highlighted. **C)** Integration of
279 transcriptomics with computational tool predictions. The size of the circle corresponds to the fold
280 change of each target (the largest circles represent fully silenced genes), in all cases green circles
281 represent targets releasing resources (down regulated), red circles represent targets generating
282 burden (up regulated) and yellow circles targets that were not expressed. High resolution version of
283 the sub network is available in supplementary material (Supp. fig. 6).

284 **Phenotypic evaluation revealed reduced burden, increased cell yield and production
285 budget for designed strains**

286 Our three ReProMin generated mutants (ST case, UT case, and control) were evaluated in
287 rich (LB) as well as in minimal media containing three different carbon sources (acetate,
288 galactose, glucose). The computationally designed strains (PYC and PFC) showed neither

289 growth defects nor increase in the growth rate or biomass yield in any of the four conditions
290 tested. On the contrary, the control strain (FOG) showed growth defects in all growth
291 condition tested (Supp. fig. 8). For glucose minimal media, we also evaluated the effect of
292 recombinant protein production using a plasmid expressing a genetic circuit with two
293 fluorescent reporters (Figure 6A) ²⁰. The burden caused by carrying a plasmid is reflected
294 as a decrease in the growth rate in all tested strains (Supp. fig. 9A); this decrease is higher
295 when the plasmid is expressing the genetic circuit, however the burden displayed by both
296 ReProMin designed strains is lower compared to the wild-type counterpart. Additionally, the
297 PFC strain also showed a higher final biomass production (Supp. fig. 9B). It has been
298 described that the expression levels of two protein reporters encoded on the same plasmid
299 but without a regulatory connection between them is captured by a linear relationship which
300 can be interpreted as an isocost line, a concept used in microeconomics to describe how
301 two products can be bought with a limited budget, so the more is used on one, the less can
302 be used on the other. These lines represent the boundary of the production budget of a
303 given strain and condition (Figure 6B) ²⁰. We obtained the isocost lines at balanced growth
304 (~5 h.) determined by two different methods: mean plate reader fluorescence and mean
305 fluorescence measured by flow cytometry. The line corresponding to PFC strain show a
306 parallel upward shift compared to the WT strain, which represents an increase of 9% in
307 absolute fluorescence ($p < 0.01$) (Figure 6C) and 12% in mean fluorescence per cell ($p <$
308 0.01) (Supp. fig. 10), this difference is increased at the stationary phase of the culture (~24
309 h.) were higher maximal biomass is achieved and the quantity of recombinant protein is
310 increased up to 18% (Figure 6D).



311
312 **Figure 6 Synthetic circuit characterization.** **A)** Schematic of the gene circuit evaluated, which
313 encodes the fluorescent reporters GFP and RFP: the first is constitutively expressed, while the latter
314 is under the control of an N-acyl-homoserine lactone (AHL) inducible promoter. **B)** When plotting the
315 expression of one protein against the other at different levels of induction, an isocost line is obtained.
316 The size of the area below the line represents the total proteome budget dedicated to the circuit, a
317 parallel upward shift in the line represent an increase in the budget. Isocost lines of the designed
318 strains showing absolute fluorescence during **C)** balanced growth and **D)** stationary phase. Each
319 point represent the red reporter (x axis) plotted against the green reporter (y axis) in an increasing
320 inductor concentration (1.25, 2.5, 5, 10, 20 nM AHL) and represents the mean of three replicates
321 across three different experiments. A linear regression was used to fit the points to a line.

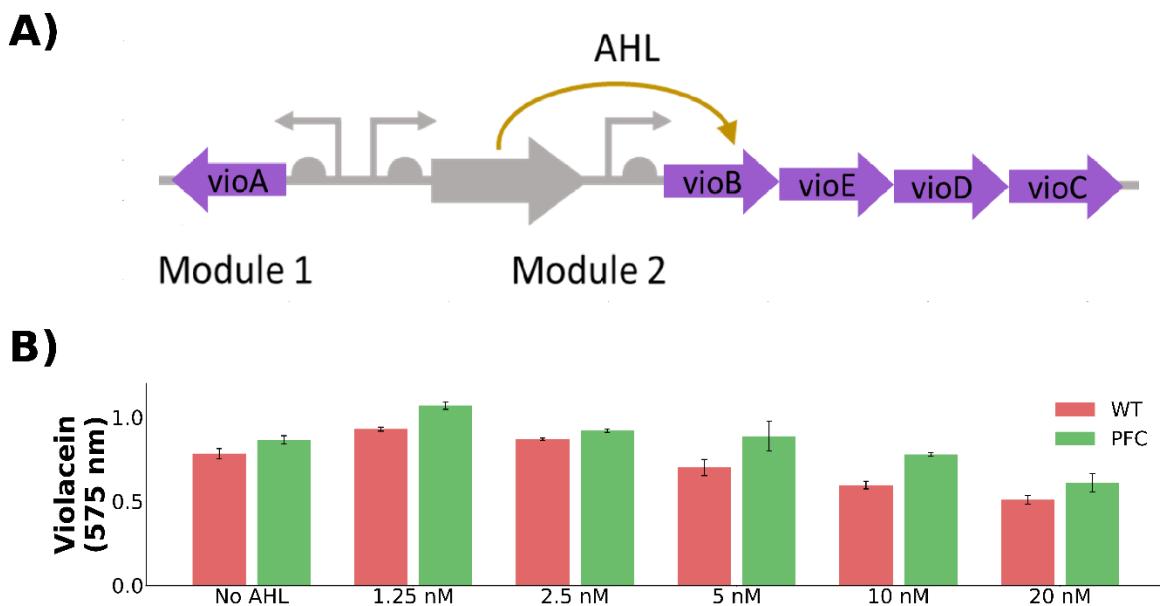
322

323 **Expression of an engineered metabolic pathway: violacein production.**

324 We tested the ability of our engineered strain for synthesizing the molecule violacein as a
325 proof-of-concept for applications of our method in metabolic engineering. Violacein is a
326 pigment from *Chromobacterium violaceum* endowed with many biological activities
327 (antibacterial, antiviral, anti-parasite) and has recently gained importance in the industrial
328 field especially for applications in cosmetics, medicines and fabrics ²¹. Violacein is
329 synthesized in a five-step metabolic pathway using tryptophan as a precursor. Here we used
330 the violacein pathway plasmid reported by Darlington *et al.*, 2018, where the five genes for
331 violacein biosynthesis are arranged in two operons, one consisting of *vioA* constitutively

332 expressed, while the rest of the pathway encoded by the *vioBCDE* genes is under the control
333 of an AHL inducible promoter ¹³ (Figure 7A). This construction follows the same principle as
334 the previous circuit so the more of one module is produced, the less of the other is expressed
335 due to the competition for limited resources for gene expression. However, in this case the
336 number of genes in each module is different and code for actively metabolic enzymes with
337 different kinetic properties, which results in differential violacein biosynthesis.
338 We evaluated violacein production after 24 hours in the wild-type and PFC strains using M9
339 glucose medium supplemented with tryptophan (2.0 g/L) and AHL (1.25, 2.5, 5, 10, 20 nM)
340 for induction. PFC showed a mean increase in violacein production of 18% (Figure 7B),
341 additionally we found that the maximum production is achieved with just a minimum quantity
342 of inducer (1.25 nM) indicating that is crucial to have a balanced expression of the pathway
343 with the right amount of each module to maximize the synthesis of the final product. Similarly
344 to our observations on fluorescent protein production, the increase in violacein production
345 shows that our approach can be harnessed to increase the production of metabolites from
346 costly heterologous metabolic pathways.

347



348

349 **Figure 7 Violacein Pathway Evaluation. A)** Schematic of the pathway of violacein biosynthesis. **B)**
350 Total violacein production using 2 g/L tryptophan after 24 h in the presence of increasing inducer
351 concentrations; each value represents the mean of three replicates across three different
352 experiments.

353 **Discussion**

354 Gene regulatory networks are robust and can be severely rewired with interesting
355 phenotypic outcomes²², thus they are a perfect rational engineering target for synthetic
356 biology applications. In this work we prove that the definition of an essential gene set
357 together with regulatory network information allows the identification of TFs whose
358 elimination leads directly to silencing proteome fractions that are not used in a particular
359 condition. We show that by eliminating hedging proteome activators we can release
360 resources and increase cellular capacity for engineered functions. In agreement with the
361 presented ME-model simulations reducing the unused protein fraction, our designed strain
362 shows higher proteomic budget, measured by the isocost lines, and a higher capacity to
363 produce a metabolite from a heterologous pathway. Furthermore, by comparing our strains
364 with an intuitive control strain, we show that inaccurate TF elimination results in detrimental
365 effects on growth, maximal biomass and protein production (Supp. figs. 9 and 11). These
366 findings indicate that the elimination of a combination of TFs is not a trivial process; it may
367 affect essential functions and introduce phenotypic defects. Our method shows good
368 accuracy in terms of the obtained gene expression changes measured by RNAseq, despite
369 our limited knowledge of the regulatory networks. In addition, the regulatory data available
370 is condition dependent, what limits the predictive power of our method, since we need to
371 assume that regulatory interactions are present at all times. We anticipate that
372 developments in high throughput technologies (such as Chip-seq) combined with novel
373 computational approaches^{23–25} will enable the fast generation of complete regulatory
374 networks and the application of our method to even non-model organisms. Several
375 approaches have been applied for resource allocation optimization in bacterial host
376 engineering. Genome minimization has been mainly done by large scale genetic
377 interventions whose outcomes are difficult to predict and do not show greater genome
378 stability^{26,27}. Adaptive Laboratory Evolution (ALE) has showed great success, especially to
379 identify functions not related to growth²⁸, however, it selects for fast growing strains which
380 not necessarily result in the best production phenotypes. Moreover, the underlying selection
381 mechanisms in ALE are normally not known therefore its effects are not predictable²⁹.
382 Genome scale models, such as the ME-model, may also be used to find the proteomic cost
383 and fitness benefit of gene expression, thus to aid in the design of proteome allocation,
384 however kinetic data of each protein is needed³⁰ and its scope focuses on growth related
385 functions. There are only a few reports describing regulatory approaches to improve
386 production phenotypes, such as the global Transcriptional Machinery Engineering (gTME)

387 ³¹, but none of them followed a rational approach. The methodology presented in this work
388 is a novel strategy for proteome optimization with minimal genetic interventions which
389 overcomes the serious limitations of deleting large regions of the genome; it is a flexible
390 pipeline which can be applied to other growth and production conditions and also to different
391 organisms where sufficient information is available. This work shows the potential of rational
392 design of biological systems over the predominantly used trial and error approaches.

393 **Materials and Methods**

394

395 **1) ME-Model Simulations**

396 All simulations were done using model iJL1678b ME ¹⁴. The corresponding transcription and
397 translation reactions for recombinant protein (GFP) production were manually added to the
398 model using standard methods. Unused protein fraction and flux through the recombinant
399 protein production are changeable variables in the ME-Model that affect predicted growth
400 rate and proteome composition, the values of these two variables were systematically
401 changed in the ME-Model to assess their effect on growth rate (UPF = 0.36, 0.30, 0.25; Flux
402 = 0, 0.001, 0.002, 0.0025, 0.0030, 0.0035, 0.0040), all other model parameters were set as
403 default. Proteome sectors were classified according to O'Brien *et al.*, 2016.

404

405 **2) Definition of the essential gene list**

406 To compile the essential gene list in the glucose minimal media condition we combined five
407 different datasets from different sources. Three of them were experimentally generated
408 using different methods of gene disruption: A) random transposon mutagenesis using M9
409 with glucose as growth condition (Tn-seq)³², B) removing large fragments of the
410 chromosome using a homologous recombination system in rich medium (LB) ³³ and C) the
411 updated list of the mutants of the Keio collection that are lethal, the collection was generated
412 using rich medium ^{34,35}. Two gene lists were generated *in silico* using simulations of genome
413 scale metabolic and expression models capable of predicting gene expression needs in a
414 particular condition: D) genes that are essential for growth in M9 with glucose using
415 iOL1554-ME model ³⁶ and E) genes that are essential for growth in the metabolic model
416 iJO1366 and also experimentally in M9 with glucose ³⁷. Within the compiled list, genes
417 exclusively belonging to the Tn-seq and the glucose minimal media ME-model simulations
418 gene lists were considered conditionally essential, as these gene lists were originally
419 generated using M9 with glucose as the growth condition, while the rest of the genes were
420 classified as core essential for our purposes.

421 For the cases of galactose and acetate minimal media conditions we performed gene
422 essentially analysis with the iML1515 model ³⁸ in COBRApy ³⁹.

423

424 **3) Identification of candidate regulators and combinatorial analysis**

425 We sorted the TF/gene interactions from RegulonDB (version 8, regulondb.ccg.unam.mx),
426 discarding all the sigma factors-gene interactions. Next, we classified as essential all TFs

427 that activate at least one essential gene (from our M9 glucose condition gene list) and as
428 non-essential all TF's that do not activate any essential genes. Then we analysed the sub-
429 network of interactions of each non-essential TF by numerically analysing the output level
430 of each TF (TF_{OUT}), which is classified into positive and negative output (TF_{OUT+} and TF_{OUT-})
431 representing positive and negative regulated genes respectively and the degree of entry
432 of each regulated gene ($GENE_{IN}$) in turn also divided into positive and negative ($GENE_{IN+}$
433 and $GENE_{IN-}$). We defined as candidate for proteome reduction all those TFs that activate
434 at least one unique gene, which numerically meet the following condition and represent a
435 simplified version of a SIM:

436

437
$$TF_{OUT+} \geq 1 \quad \wedge \quad GENE_{n_{IN+}} = 1 \quad \wedge \quad GENE_{n_{IN-}} \geq 0$$

438

439 Where $GENE_n$, represents any gene activated by TF.

440

441 On the other hand, the proteomic dataset previously described ¹⁷ was used to calculate the
442 Proteomic Load (P_L) of each gene and Proteomic Balance (P_B) of each TF according to the
443 equations in Figure 2.

444 The combinatorial analysis was achieved as follows, given a list of TFs, we created and
445 tested all the possible N combinations. Next, the total number of silenced and induced genes
446 for each combination was determined following the next criteria: for every gene involved in
447 the combination, we subtracted one from the value of $GENE_{IN+}$ for each TF that regulates
448 the target gene positively and one to the value of $GENE_{IN-}$ for each TF that regulates the
449 target gene negatively. At the end of this process a gene was considered silenced if:

450

451
$$GENE_{IN} = GENE_{IN+} = 0$$

452

453 or induced if:

454
$$GENE_{IN} = GENE_{IN-} = 0$$

455

456

457 Finally, the P_B of each combination tested was calculated and ranked. The full computational
458 set of tools coded in Python and datasets used in the analysis are available in the following

459 repository (<https://github.com/utrillalab/repromin>). Cytoscape software version 3.7⁴⁰ was
460 used to plot the network representation of the data.

461

462 **4) Generation of combinatorial knock-out strains**

463 The combinatorial mutants were generated by sequential P1 phage transduction from the
464 individual knock-out strains of the Keio collection according to the protocol described by
465 Miller (1992)⁴¹. The removal of the kanamycin resistance cassette before each transduction
466 was done using the pE-FLP plasmid (Addgene plasmid #45978), pE-FLP was a gift from
467 Drew Endy & Keith Shearwin and. Each knock-out strain was confirmed by PCR using
468 primers flanking each gene. In all experiments *Escherichia coli* BW25113 was used as the
469 WT background. The characteristics of the strains, plasmids and primers used in this study
470 are described in the supplementary material (Supp. Table 4).

471

472 **5) RNA sample extraction and sequencing**

473 Strains were grown in 50 mL of M9 media with glucose (4 g/L) M9 media in 250 mL
474 Erlenmeyer flasks cultures in an orbital incubator at 37°C (250 rpm). Cells were harvested
475 in mid-log phase using the Qiagen's RNAprotect bacteria reagent according to the
476 manufacturer's specifications. Cell pellets were incubated with lysozyme, SuperaseIn and
477 protease K for 10 min at 37°C. Total RNA was isolated and purified using Zymo Research's
478 Quick-RNA kit according to the manufacturer's specifications. All samples' quality was
479 inspected in a bioanalyzer RNA chip (Agilent). Starting with 10ug of total RNA of each
480 sample, the removal of ribosomal RNA was done with the Ribominus kit by Invitrogen. For
481 the construction of the libraries, the TruSeq Stranded mRNA Sample Prep Kit by Illumina
482 was used, following the HT protocol. For sequencing a NextSeq 500 v2 was used, with a
483 configuration of 2 x 75 paired-end read and 10 million reads per sample.

484 Reads were mapped to reference genome *E. coli* MG1655 (RefSeq: NC_000913.3) using
485 aligner Bowtie2 (<http://bowtie-bio.sourceforge.net/bowtie2>). Final differential analysis was
486 made using the Cufflinks library (<http://cole-trapnell-lab.github.io/cufflinks>). Genes with log2
487 Fold Change ≥ 1 were considered up regulated and ≤ -1 down regulated, considering a p-
488 value ≤ 0.01 .

489

490 **6) Growth phenotype characterization**

491 For the evaluation of growth in different carbon sources, the following conditions were used:
492 glucose M9 medium (4 g/L), galactose M9 medium (3.2 g/L), acetate M9 medium (2.5 g/L)

493 and LB. Cells were cultured overnight in the corresponding media. The next day the strains
494 were diluted to an OD₆₀₀ of 0.05 in fresh medium and 150 µl of the fresh culture were
495 transferred to a transparent 96-well plate (Corning) and incubated at 37 °C with fast linear
496 shaking in a microplate reader (Synergy 2.0, BioTek) for 24 hours, taking measurements for
497 OD₆₀₀ every 20 min. In all trials three replicates were included and the experiment was
498 repeated independently on three different days.

499 The characterization of the growth kinetics was conducted using the algorithm developed by
500 Swain *et al.*,⁴² with the default parameters. In all cases, when comparing the parameters
501 obtained from the mutant strains against the wild type, the p-value was determined using a
502 two-tailed Student t-test as the statistical significance reliability index.

503

504 **7) Isocost circuit evaluation**

505 Strains were inoculated into glucose M9 medium with gentamicin (20 ug/ml), and grown
506 overnight. Next day strains were diluted to an OD₆₀₀ of 0.05 in fresh glucose M9 medium
507 containing *N*-acyl homoserine lactone (AHL, Sigma-Aldrich, St. Louis, MO, USA, final
508 concentrations of 1.25, 2.5, 5, 10, 20 nM), then 150 µl of the fresh culture were transferred
509 to a 96-well black plate with transparent bottom (Corning) and incubated as described
510 above, taking measurements for OD₆₀₀, GFP (ex., 485 nm, em., 528 nm) and RFP (ex., 590
511 nm, em., 645 nm). The characterization of the production kinetics of GFP and RFP was also
512 done using the algorithm described above.

513

514 **8) Flow cytometry measurements**

515 For flow cytometry measurements, cell cultures were prepared as described above, but later
516 grown in 24-well plates using 1 ml of medium. Every hour 50 µL aliquots were taken from
517 each well and mixed with 150 µL of PBS, the volume of the wells was kept constant by
518 adding fresh medium. Cell suspension was loaded into an Attune NxT Flow Cytometer
519 (ThermoFisher, Waltham, MA, USA) and analysed for GFP (excitation 488 nm; emission
520 525/50 nm) and RFP (excitation 561 nm; emission 620/15 nm). For each sample 20,000
521 events were analysed and population means were estimated using the default software of
522 the instrument.

523

524 **9) Characterization of violacein-producing strains.**

525 The strains were inoculated into glucose M9 medium with gentamicin (20 ug/ml), and grown
526 overnight. Next day strains were diluted to an OD₆₀₀ of 0.05 in fresh glucose M9 medium

527 containing AHL (1.25, 2.5, 5, 10, 20 nM) and tryptophan (0, 0.5, 1.0 and 2.0 g/L), then 150
528 μ l of the fresh culture were transferred to a 96-well plate and incubated as described above.
529 After 24 h the plate was centrifuged (13,000xg, 10 min), and the supernatant of each well
530 was discarded. Violacein was extracted by suspending the pellet in each well in 200 μ l
531 absolute ethanol and incubating the plate at 95 °C for 10 min followed by pelleting cell debris
532 (13,000xg, 10 min). Violacein present in the extract was determined spectrophotometrically
533 at 575 nm in a microplate reader (Synergy 2.0, BioTek).

534

535 **Acknowledgements:** Elisa Marquez-Zavala and Colton Lloyd for ME-Model simulations
536 support. Yared Castillo-Franco for computational support and Georgina Hernandez-Chavez
537 for technical support.

538 **Funding:** UNAM–DGAPA-PAPIIT projects IA200716 and IA201518. Newton advanced
539 Fellowship Project NA 160328. JJ, and JK acknowledge the support received from the
540 Biology and Biotechnology Research Council (BBSRC) (grant BB/M009769/1) and
541 European Union’s Horizon 2020 research and innovation programme for the project P4SB
542 (grant agreement no. 633962).

543 **Author contribution:** JU and GLP designed ReProMin; GLP developed computational
544 methods and performed data analysis; GLP, JSMH carried out experiments; GLP, JK and
545 JIJ analysed flow cytometry experiments, isocost lines and violacein production; JU
546 supervised the study; JU, GLP and JIJ wrote the manuscript.

547 **Data availability:** RNA-seq data from this study have been deposited in NCBI’s Gene
548 Expression Omnibus (GSE 134335). The code to run ReProMin can be found at:
549 <https://github.com/utrillalab/repromin>

550 **Conflict of interest:** JU and GLP are inventors in a MX patent application filled by UNAM.

551 **References**

- 552 1. Hutchison, C. A. *et al.* Design and synthesis of a minimal bacterial genome. *Science*
553 (80-). **351**, aad6253–aad6253 (2016).
- 554 2. Balikó, G. *et al.* Rational efforts to streamline the escherichia coli genome. in
555 *Synthetic Biology: Parts, Devices and Applications* 49–80 (2018).
- 556 3. Ishihama, A. Prokaryotic genome regulation: Multifactor promoters, multitarget
557 regulators and hierarchic networks. *FEMS Microbiology Reviews* **34**, 628–645
558 (2010).

559 4. Ulrich, L. E. & Zhulin, I. B. The MiST2 database: a comprehensive genomics
560 resource on microbial signal transduction. *Nucleic Acids Res.* **38**, D401-7 (2010).

561 5. Kitano, H. Biological robustness. *Nat. Rev. Genet.* **5**, 826–837 (2004).

562 6. Isalan, M. *et al.* Evolvability and hierarchy in rewired bacterial gene networks.
563 *Nature* **452**, 840–845 (2008).

564 7. Mitchell, A. *et al.* Adaptive prediction of environmental changes by microorganisms.
565 *Nature* **460**, 220–224 (2009).

566 8. Tagkopoulos, I., Liu, Y.-C. & Tavazoie, S. Predictive behavior within microbial
567 genetic networks. *Science* **320**, 1313–1317 (2008).

568 9. Utrilla, J. *et al.* Global Rebalancing of Cellular Resources by Pleiotropic Point
569 Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution. *Cell Syst.* **2**,
570 260–71 (2016).

571 10. O'Brien, E. J., Utrilla, J. & Palsson, B. O. Quantification and Classification of *E. coli*
572 Proteome Utilization and Unused Protein Costs across Environments. *PLoS
573 Comput. Biol.* **12**, e1004998 (2016).

574 11. Nikolados, E.-M., Weiße, A. Y., Ceroni, F. & Oyarzún, D. A. Growth Defects and
575 Loss-of-Function in Synthetic Gene Circuits. *ACS Synth. Biol.* acssynbio.8b00531
576 (2019).

577 12. Ceroni, F. *et al.* Burden-driven feedback control of gene expression. *Nat. Methods*
578 (2018).

579 13. Darlington, A. P. S., Kim, J., Jiménez, J. I. & Bates, D. G. Dynamic allocation of
580 orthogonal ribosomes facilitates uncoupling of co-expressed genes. *Nat. Commun.*
581 **9**, 695 (2018).

582 14. Lloyd, C. J. *et al.* COBRAme: A computational framework for genome-scale models
583 of metabolism and gene expression. *PLOS Comput. Biol.* **14**, e1006302 (2018).

584 15. Santos-Zavaleta, A. *et al.* RegulonDB v 10.5: tackling challenges to unify classic
585 and high throughput knowledge of gene regulation in *E. coli* K-12. *Nucleic Acids
586 Res.* **47**, D212–D220 (2019).

587 16. Keseler, I. M. *et al.* EcoCyc: a comprehensive view of *Escherichia coli* biology.
588 *Nucleic Acids Res.* **37**, D464-70 (2009).

589 17. Schmidt, A. *et al.* The quantitative and condition-dependent *Escherichia coli*
590 proteome. *Nat. Biotechnol.* **34**, 104–110 (2015).

591 18. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the
592 transcriptional regulation network of *Escherichia coli*. *Nat. Genet.* **31**, 64–68 (2002).

593 19. Yakovleva, G. M., Kim, S. K. & Wanner, B. L. Phosphate-independent expression of
594 the carbon-phosphorus lyase activity of *Escherichia coli*. *Appl. Microbiol. Biotechnol.*
595 **49**, 573–8 (1998).

596 20. Gyorgy, A. *et al.* Isocost Lines Describe the Cellular Economy of Genetic Circuits.
597 *Biophys. J.* **109**, 639–46 (2015).

598 21. Durán, N. *et al.* Advances in *Chromobacterium violaceum* and properties of
599 violacein-Its main secondary metabolite: A review. *Biotechnol. Adv.* **34**, 1030–1045
600 (2016).

601 22. Baumstark, R. *et al.* The propagation of perturbations in rewired bacterial gene
602 networks. *Nat. Commun.* **6**, 10105 (2015).

603 23. Fang, X. *et al.* Global transcriptional regulatory network for *Escherichia coli* robustly
604 connects gene expression to transcription factor activities. *Proc. Natl. Acad. Sci.*
605 201702581 (2017).

606 24. Ibarra-Arellano, M. A., Campos-González, A. I., Treviño-Quintanilla, L. G., Tauch, A.
607 & Freyre-González, J. A. Abasy Atlas: a comprehensive inventory of systems,
608 global network properties and systems-level elements across bacteria. *Database*
609 **2016**, baw089 (2016).

610 25. Sastry, A. V. *et al.* The *Escherichia coli* Transcriptome Consists of Independently
611 Regulated Modules. *bioRxiv* 620799 (2019).

612 26. Couto, J. M., McGarrity, A., Russell, J. & Sloan, W. T. The effect of metabolic stress
613 on genome stability of a synthetic biology chassis *Escherichia coli* K12 strain.
614 *Microb. Cell Fact.* **17**, 8 (2018).

615 27. Choe, D. *et al.* Adaptive laboratory evolution of a genome-reduced *Escherichia coli*.
616 *Nat. Commun.* **10**, 935 (2019).

617 28. Yang, L. *et al.* Principles of proteome allocation are revealed using proteomic data
618 and genome-scale models. *Sci. Rep.* **6**, 36734 (2016).

619 29. McCloskey, D. *et al.* Evolution of gene knockout strains of *E. coli* reveal regulatory
620 architectures governed by metabolism. *Nat. Commun.* **9**, 3796 (2018).

621 30. Nilsson, A., Nielsen, J. & Palsson, B. O. Metabolic Models of Protein Allocation Call
622 for the Kinetome. *Cell Syst.* **5**, 538–541 (2017).

623 31. Klein-Marcuschamer, D., Santos, C. N. S., Yu, H. & Stephanopoulos, G.
624 Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of
625 complex phenotypes. *Appl. Environ. Microbiol.* **75**, 2705–11 (2009).

626 32. Yang, L. *et al.* Systems biology definition of the core proteome of metabolism and
627 expression is consistent with high-throughput data. *Proc. Natl. Acad. Sci.* **112**,
628 10810–10815 (2015).

629 33. Kato, J.-I. & Hashimoto, M. Construction of consecutive deletions of the *Escherichia*
630 *coli* chromosome. *Mol. Syst. Biol.* **3**, 132 (2007).

631 34. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout
632 mutants: the Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).

633 35. Yamamoto, N. *et al.* Update on the Keio collection of *Escherichia coli* single-gene
634 deletion mutants. *Mol. Syst. Biol.* **5**, 335 (2009).

635 36. O'Brien, E. J., Lerman, J. a, Chang, R. L., Hyduke, D. R. & Palsson, B. Ø. Genome-
636 scale models of metabolism and gene expression extend and refine growth
637 phenotype prediction. *Mol. Syst. Biol.* **9**, 693 (2013).

638 37. Orth, J. D. & Palsson, B. Gap-filling analysis of the iJO1366 *Escherichia coli*
639 metabolic network reconstruction for discovery of metabolic functions. *BMC Syst*
640 *Biol* **6**, 30 (2012).

641 38. Monk, J. M. *et al.* iML1515, a knowledgebase that computes *Escherichia coli* traits.
642 *Nat. Biotechnol.* **35**, 904–908 (2017).

643 39. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-
644 Based Reconstruction and Analysis for Python. *BMC Syst. Biol.* **7**, 74 (2013).

645 40. Shannon, P. *et al.* Cytoscape: a software environment for integrated models of
646 biomolecular interaction networks. *Genome Res.* **13**, 2498–504 (2003).

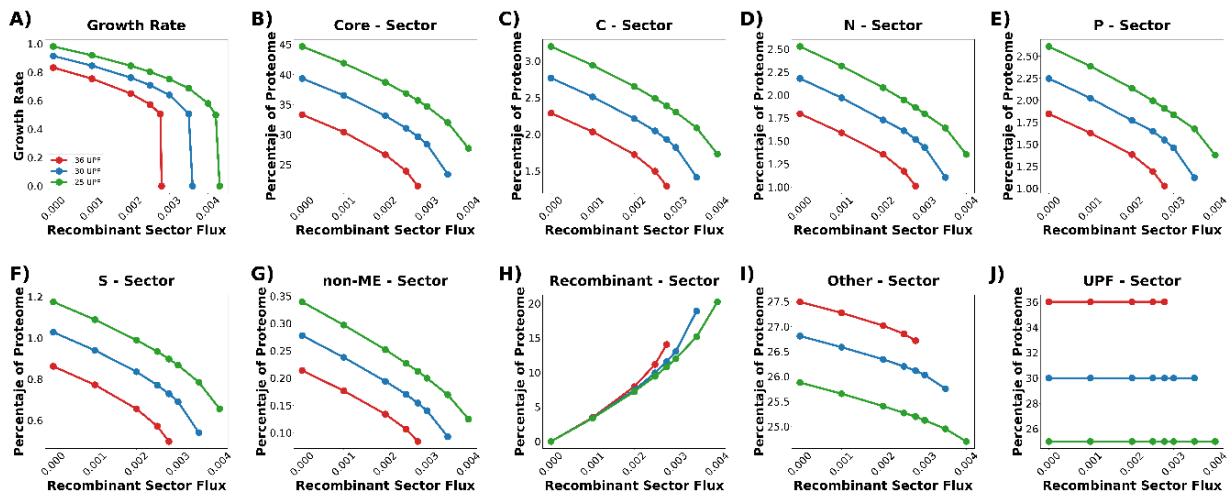
647 41. Miller, J. H. *A short course in bacterial genetics : a laboratory manual and handbook*
648 *for Escherichia coli and related bacteria*. (Cold Spring Harbor Laboratory Press,
649 1992).

650 42. Swain, P. S. *et al.* Inferring time derivatives including cell growth rates using
651 Gaussian processes. *Nat. Commun.* **7**, 13766 (2016).

652 43. Pirt, S. J. The Maintenance Energy of Bacteria in Growing Cultures. *Biological*
653 *Sciences* **163**, (1965).

654 **Supplementary Figures**

655

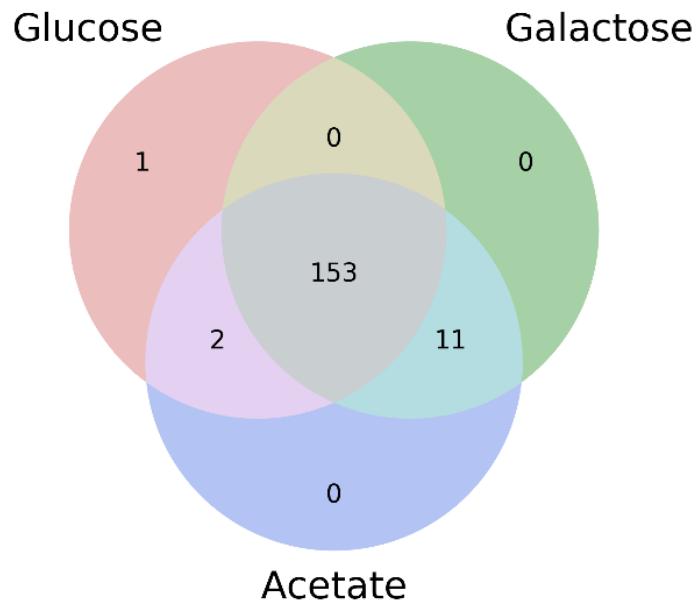


656

657

658 **Supplementary Figure 1** ME-Model simulations and proteome sector response. The expression of
659 hedging functions has a proteomic cost that impacts growth and resource availability for the
660 recombinant sector ^{9, 10}. Genome scale models of metabolism and gene expression can be used to
661 analyse the amount of resources devoted to those functions and predict engineering outcomes.
662 Similar to the maintenance energy coefficient ⁴³, the hedging proteome and other non-growth related
663 (thus not modelled) functions are accounted for in ME-models as a part of the unused protein fraction
664 (UPF). This proteome sector is comprised by functions not directly related to growth in the simulated
665 environment; therefore those functions are not included in the model. The ME-model iJL1678b-ME ¹⁴
666 was used to simulate the effect of the reduction of the UPF and different expression levels of an
667 unused recombinant model protein (GFP). The simulation shows an increased availability of cellular
668 resources for recombinant protein production by reducing the UPF.

669



670

671 **Supplementary Figure 2.** Non-essential TF distribution for the UT case across three growth
672 conditions tested in this study.

673

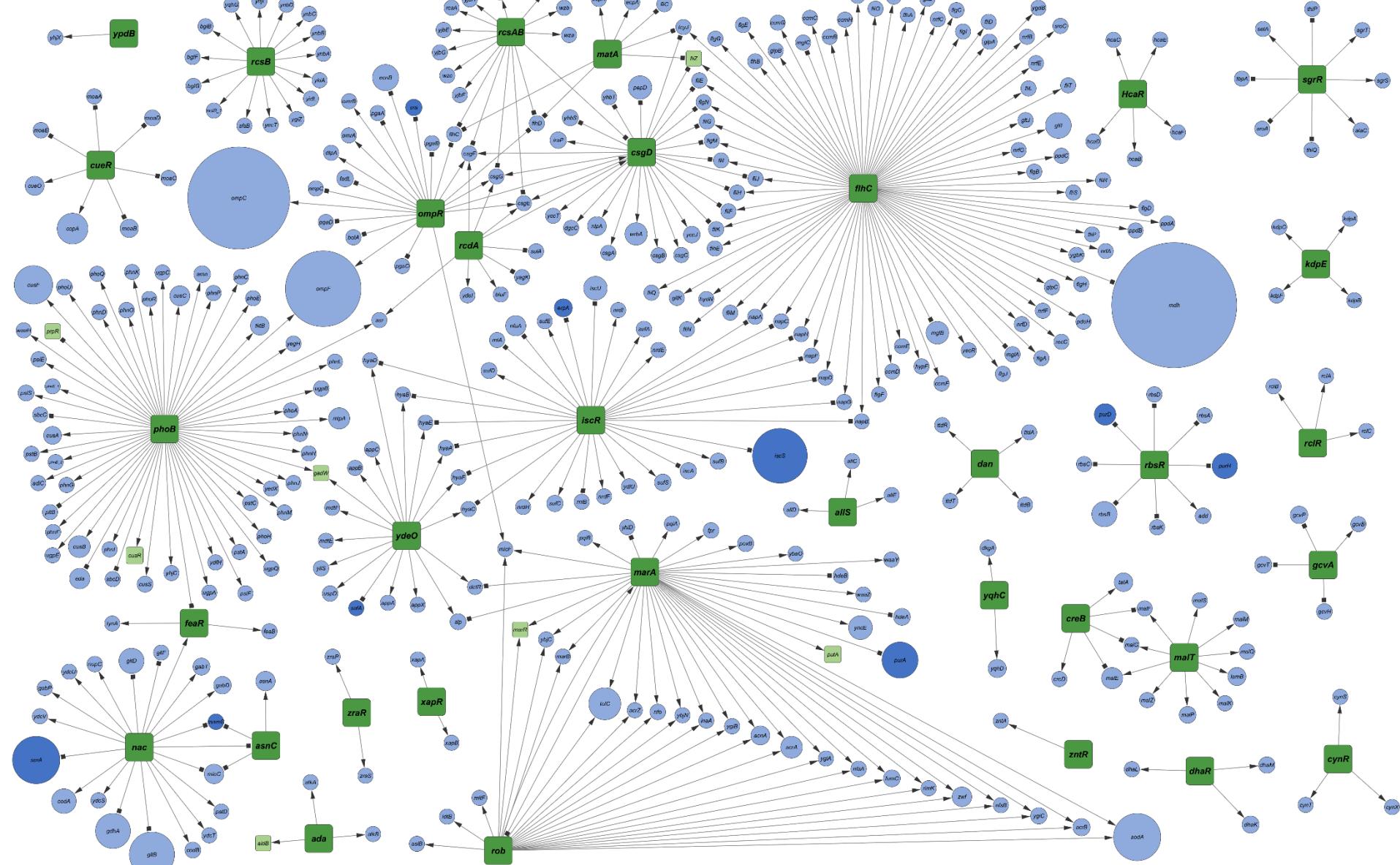
674

675

676

677

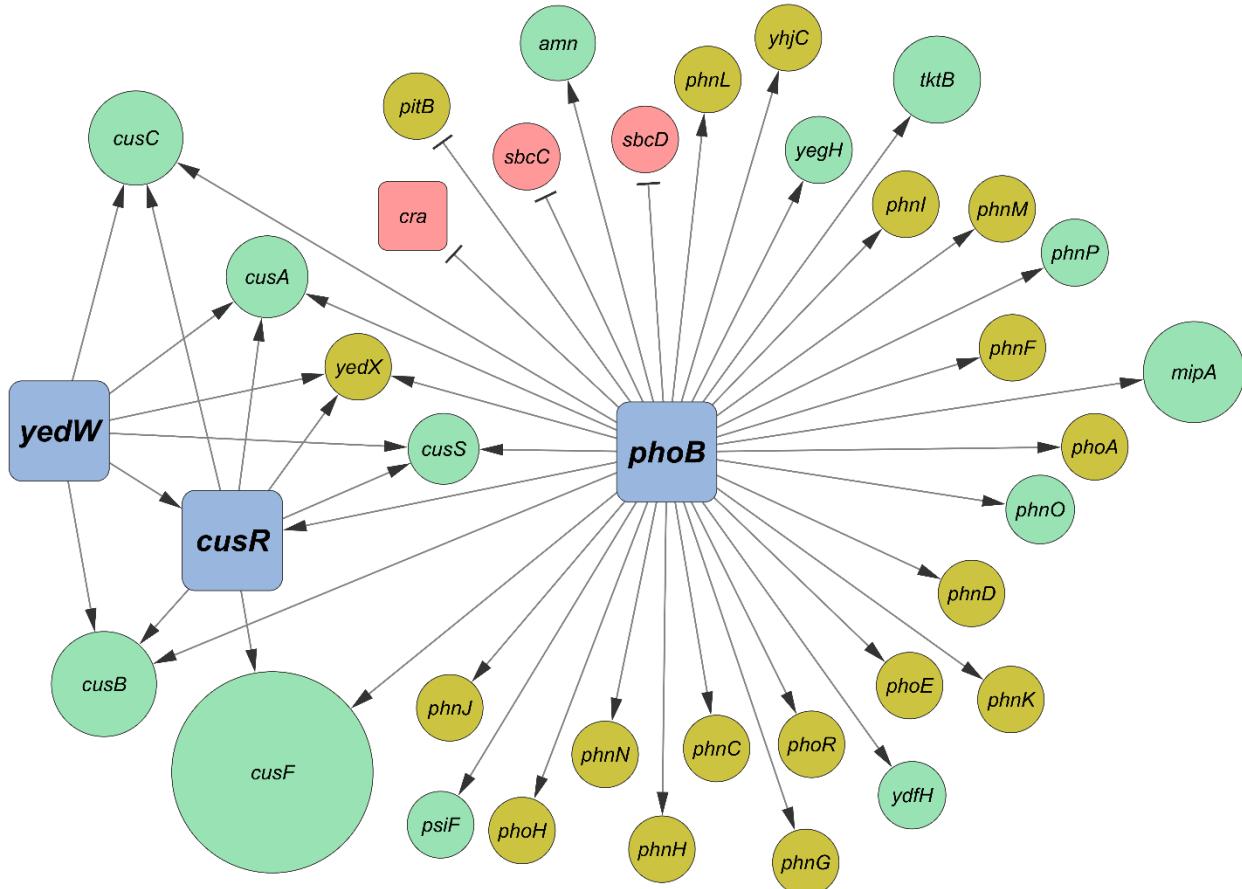
678



680 **Supplementary Figure 3** Subnetwork of interactions corresponding to the 34 candidate TF
681 representing all the potentially affected targets; green squares represent candidate TF, while light
682 blue circles represent dispensable genes, dark blue circles essential genes and light green squares
683 dispensable TF, circle size is proportional to the P_L of the gene.

684

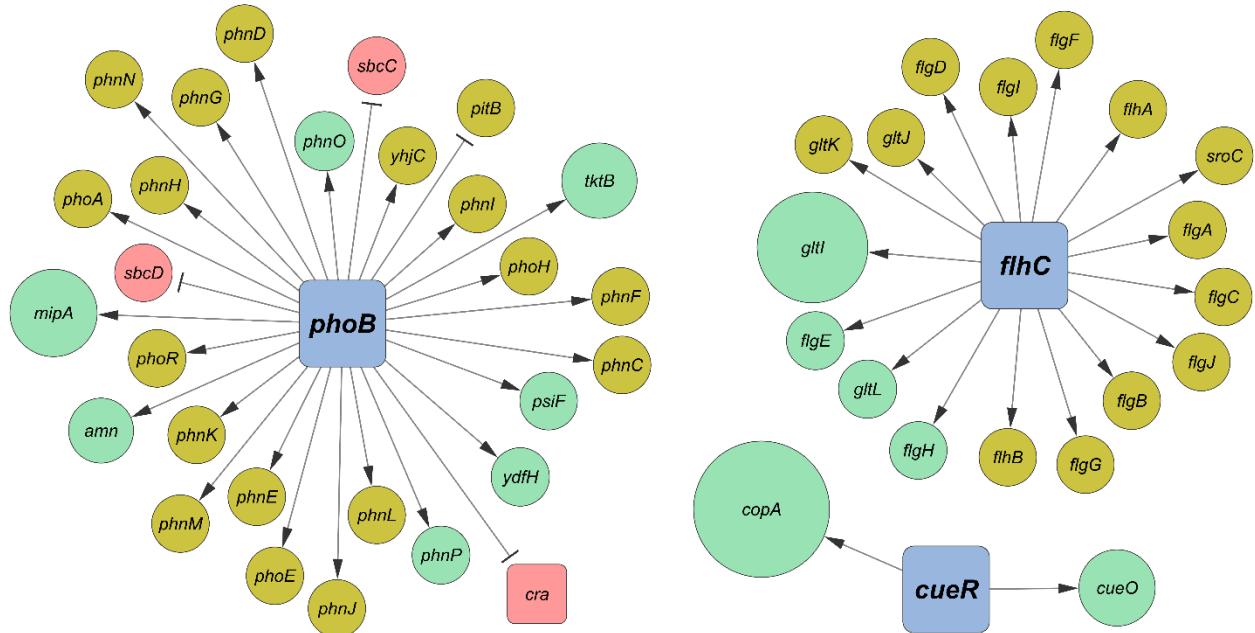
685



686

687

688 **Supplementary Figure 4** Regulatory subnetwork of predicted gene targets of the PYC mutant; green
689 circles represent predicted silenced targets, red circles predicted induced targets and yellow circles
690 genes with no proteomic coverage; size of the circles is proportional to the P_L of the target.



691

692

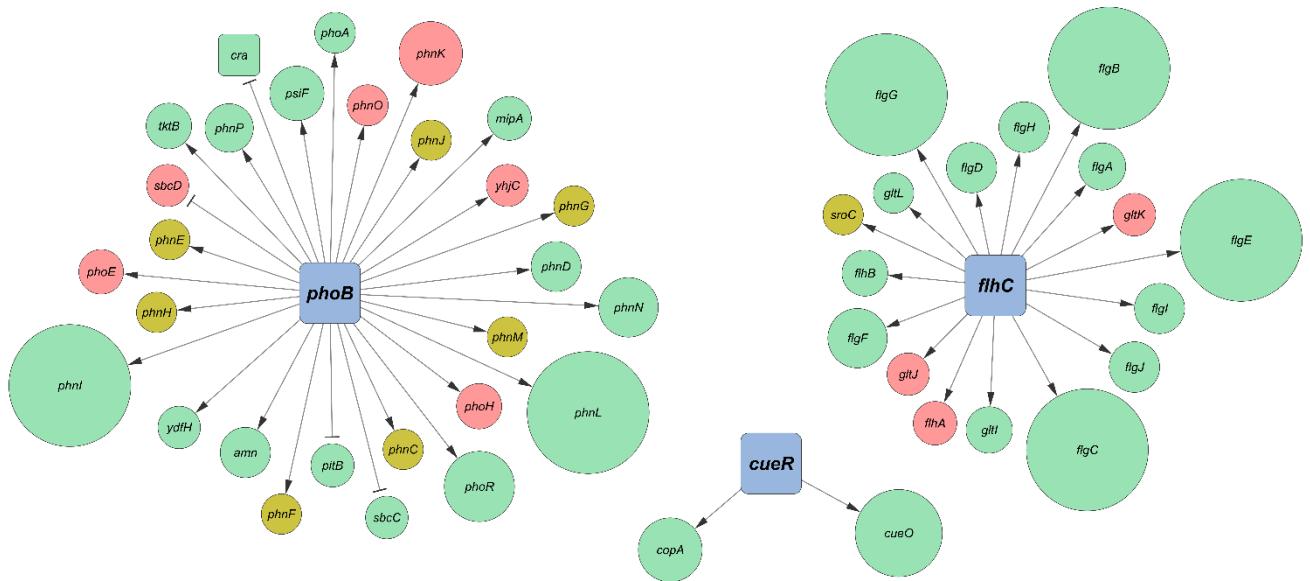
693 **Supplementary Figure 5** Regulatory subnetwork of predicted gene targets of the PFC mutant; green
694 circles represent predicted silenced targets, red circles predicted induced targets and yellow circles
695 genes with no proteomic coverage; size of the circles is proportional to the P_L of the target.

696

697

698

699



700

701

702 **Supplementary Figure 6** Integration of transcriptomics with computational tool predictions, the size
703 of the circle corresponds to the fold change of each target (biggest circles represent fully silenced
704 genes), in all cases green represent targets liberating resources (down regulated), red circles
705 represent targets generating burden (up regulated) and yellow circles are targets not expressed.

706

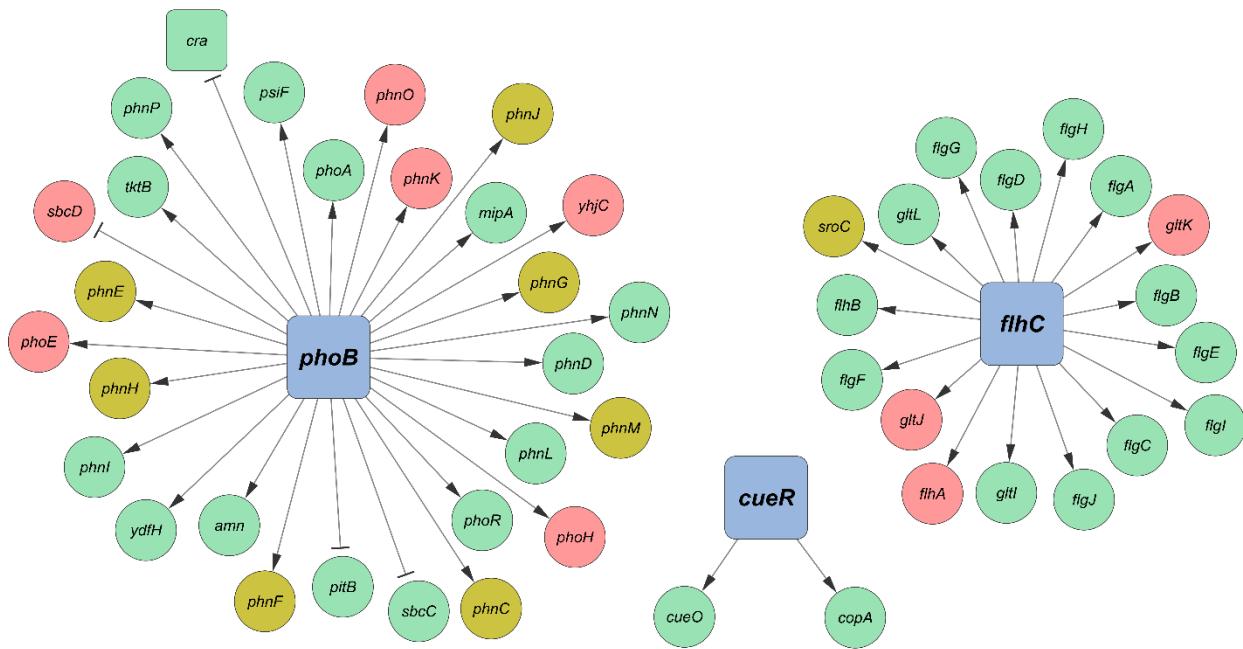
707

708

709

710

711



712

713

714 **Supplementary Figure 7** Accuracy of computational tool predictions (PFC) based on RNAseq data.

715 Red circles represent wrong predictions, green circles represent accurate predictions and yellow
716 circles represent unmapped predictions (expression was not detected).

717

718

719

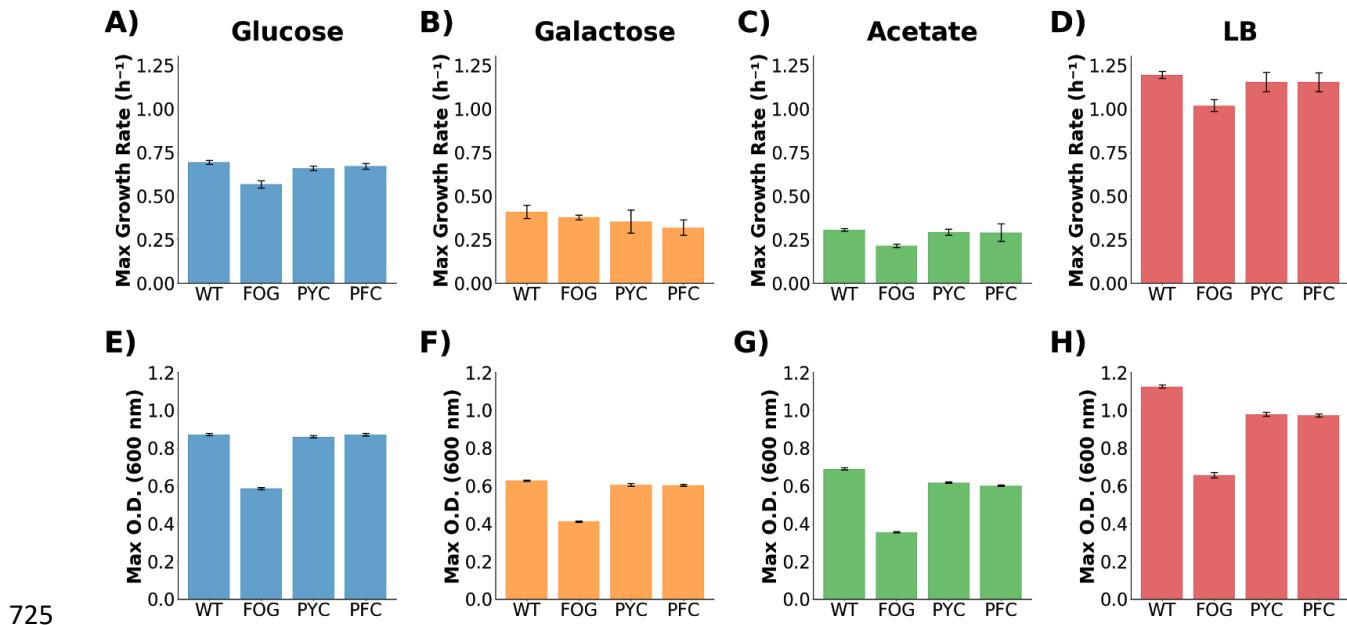
720

721

722

723

724



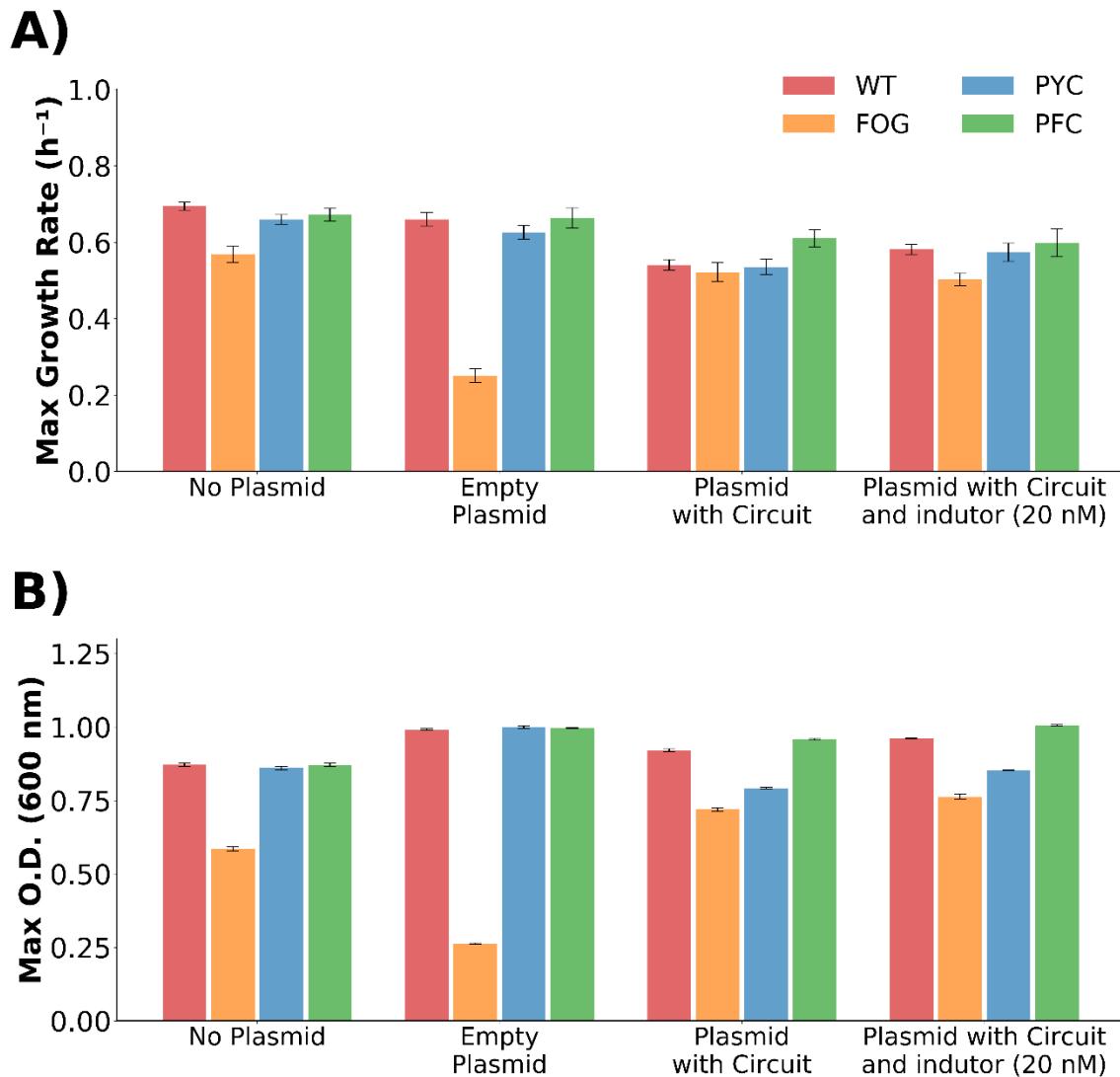
725

726

727 **Supplementary Figure 8** Phenotypic evaluation of strains on different carbon source
728 supplemented M9 media and rich media (LB). (A-D) shows max growth rate and (E-H)
729 shows max O.D.

730

731



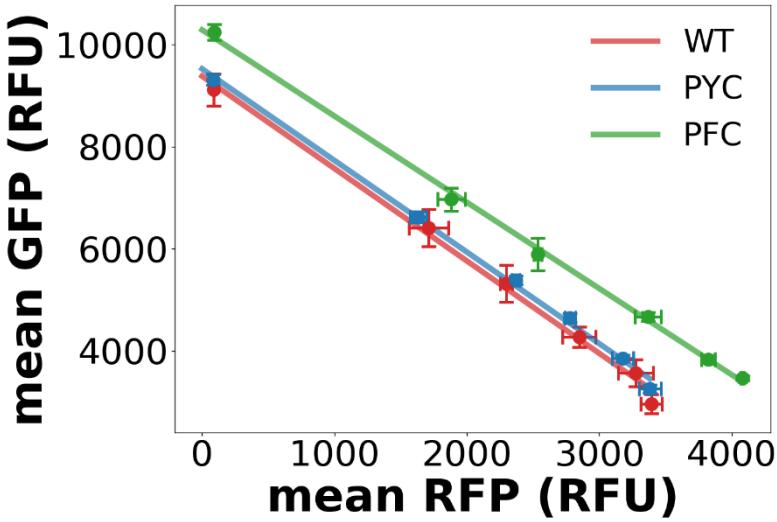
732

733 **Supplementary Figure 9** Metabolic burden while carrying empty, circuit plasmid and
734 induced circuit plasmid, **A)** shows max growth rate and **B)** shows max O.D.

735

736

737



738

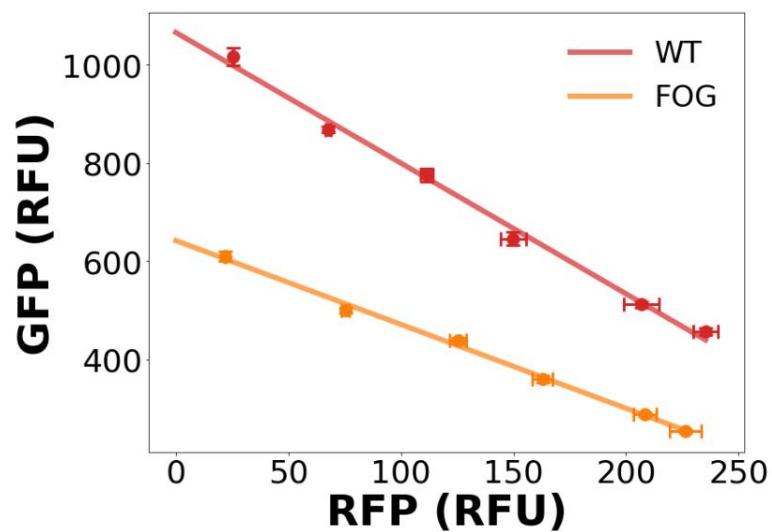
739

740 **Supplementary Figure 10** Isocost lines showing mean fluorescence per cell measured by
741 flow cytometry during balanced growth (~5 h).

742

743

744



745

746

747 **Supplementary Figure 11** Isocost lines of the FOG mutant compared to the WT strain
748 during balanced growth (~5 h).