

1 Reconstructed protein sequence evolution consistent with
2 the evolution of C₄ photosynthesis via a C₂ ancestor in the
3 Paniceae

4 Daniel S. Carvalho¹, Sunil Kumar Kenchanmane Raju², Yang Zhang^{1,3} & James C. Schnable¹

5 1. Center for Plant Science Innovation, Department of Agronomy and Horticulture, University
6 of Nebraska-Lincoln, Lincoln, NE, USA.
7 2. Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
8 3. Present Address: St. Jude Children's Research Hospital, Memphis, TN, USA.

9 ORCID: 0000-0001-6590-4287 (DSC), 0000-0001-8960-094X (SKKR), 0000-0003-1712-7211 (YZ),
10 0000-0001-6739-5527 (JCS).

11 **Abstract**

12 The grass tribe Paniceae includes a monophyletic subclade of species, the MPC clade, which
13 specialize in each of the three primary C₄ sub-pathways NADP-ME, NAD-ME and PCK. The
14 evolutionary history of C₄ photosynthesis in this subclade remains ambiguous. Leveraging
15 newly sequenced grass genomes and syntenic orthology data, we estimated rates of protein
16 sequence evolution on ancestral branches for both core enzymes shared across different C₄
17 sub-pathways and enzymes specific to C₄ sub-pathways. While core enzymes show elevated
18 rates of protein sequence evolution in ancestral branches consistent with a transition from
19 C₃ to C₄ photosynthesis in the ancestor for this clade, no subtype specific enzymes showed
20 similar patterns. At least one protein involved in photorespiration also showed elevated rates
21 of protein sequence evolution in the ancestral branch. The set of core C₄ enzymes examined
22 here combined with the photorespiratory pathway are necessary for the C₂ photosynthetic
23 cycle, a previously proposed intermediate between C₃ and C₄ photosynthesis. The patterns
24 reported here are consistent with, but not conclusive proof that, C₄ photosynthesis in the
25 MPC clade of the Paniceae evolved via a C₂ intermediate.

26 **Introduction**

27 C₄ plants are responsible for over a quarter of world terrestrial photosynthetic productivity (Gillon
28 and Yakir, 2001; Sage, 2001). C₄ grasses alone account for approximately 18% of global produc-
29 tivity (Ehleringer et al., 1997; Wand et al., 1999). The high productivity of C₄ plants is linked to
30 their ability to increase the ratio of CO₂ to O₂ around RuBisCO, lowering the net energy negative
31 process of photorespiration (Bull, 1969; Keys, 1986), and reducing water losses to transpiration.
32 C₄ plants are able to keep their stomata closed for longer because they are less sensitive to declines
33 in intraleaf CO₂ concentrations than plants dependent on C₃ photosynthesis. C₄ photosynthesis
34 is thought to have arisen in parallel in over 60 lineages approximately 30 million years ago in
35 responses to a drop in CO₂ levels (Vicentini et al., 2008; Sage et al., 2011).

36 While exceptions exist (Akhani et al., 2003; Offermann et al., 2015), many lineages utilizing
37 C₄ photosynthesis split the process between two different cell types: mesophyll (M) and bundle-
38 sheath (BS) cells. In the M cells, CO₂ is fixed into bicarbonate to form oxaloacetate (OAA). OAA
39 is converted to either malate or aspartate or both depending on the species and the C₄ pathway
40 being used. Malate or aspartate is then transported to the BS cells where it is decarboxylated,
41 releasing CO₂ which is then fixed via the conventional Calvin-Benson cycle (Kanai and Edwards,
42 1999). While this broad pattern is consistently found in a wide range of C₄ using species, the
43 C₄ photosynthesis cycle can be divided into three subtypes based on 1) the decarboxylase enzyme
44 which releases CO₂ within the bundle sheath and 2) the linked property of where decarboxylation
45 occurs. The three enzyme families known to act as decarboxylases for C₄ as NAD-malic

46 enzyme (NAD-ME) which decarboxylates in the mitochondria, NADP-malic enzyme (NADP-ME)
47 which decarboxylates in the chloroplast and PEP carboxykinase (PCK) which decarboxylates in
48 the cytosol (Kanai and Edwards, 1999; Furbank, 2011). Individual species might utilize a single
49 decarboxylase and hence a single C₄ pathway or multiple decarboxylases and multiple C₄ path-
50 ways (Walker et al., 1997; John et al., 2014; Huang et al., 2016; de Oliveira Dal'Molin et al., 2016;
51 Washburn et al., 2017).

52 The tribe Paniceae within the grasses includes 84 genera (Morrone et al., 2012). Notably the
53 clade encompasses different species which utilize each of the the three C₄ pathways as their primary
54 carbon fixation mechanism. These species share a single common ancestor to the exclusion of any
55 know C₃ lineage (Sage et al., 2011; Washburn et al., 2015).

56 This clade containing only C₄ photosynthesizers encompasses the subtribes Melinidinae (PCK
57 subtype), Panicinae (NAD-ME subtype) and Cenchrinae (NADP-ME subtype) and is also referred
58 to as the MPC clade. Ancestral state reconstruction based on phylogenies and current state data
59 identified either NAD-ME subtype of C₄ photosynthesis or C₃ photosynthesis as the likely ancestral
60 state of the MPC clade (Washburn et al., 2015). Ancestral state reconstruction based on expression
61 data suggested that the common ancestor may have been a species using all three C₄ pathways
62 simultaneously (Washburn et al., 2017).

63 Here we sought to employ a third approach based on the reconstruction of rates of protein
64 sequence evolution along ancestral branches of the phylogeny. Estimates of changes in protein
65 sequence evolution rates between C₃ lineages and ancestral branches along the phylogeny of the
66 MPC clade were used to evaluate several potential models for the photosynthetic state of the com-
67 mon ancestor of the MPC clade. While several core enzymes shared by all three C₄ pathways did
68 indeed show elevated rates of protein sequence evolution in the ancestral branch leading to the
69 MPC clade, none of the three decarboxylases showed elevated rates of protein sequence evolution
70 along this branch. At least one gene involved in photorespiration also showed elevated rates of
71 protein sequence evolution in the ancestral MPC branch. Our findings are suggestive of a C₂
72 pathway intermediate ancestor at the base of the MPC clade. The C₂ uses the photorespiratory
73 pathway as a CO₂ carbon pump and has been proposed as a potential intermediate state between
74 the conventional C₃ and C₄ photosynthetic pathways (Tolbert, 1997; Mallmann et al., 2014; Ed-
75 wards, 2019). Taken together, these results may represent a "ghost of C₂ past" in the genomes of
76 this C₄ clade Edwards (2019).

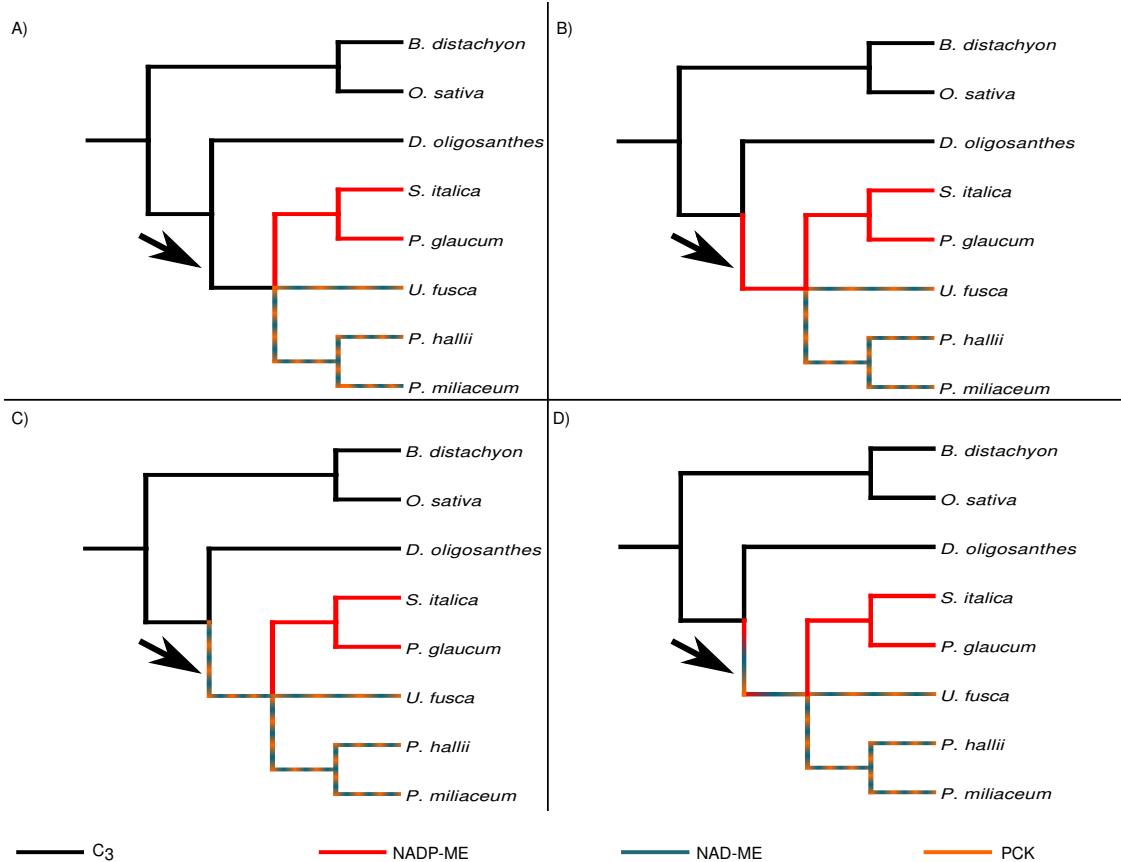


Figure 1: Potential models for the evolution of C₄ photosynthesis in the MPC clade. A) The common ancestor of the MPC clade utilized C₃ or another non-C₄ pathway and C₄ evolved independently in the three subtribes utilizing different C₄ pathways Washburn et al. (2015); B) The common ancestor of the MPC clade utilized the C₄ NADP-ME pathway and the NAD-ME and PCK clades represent later evolutionary changes from one C₄ subtype to another; C) The common ancestor of the MPC clade utilized either the C₄ NAD-ME and PCK pathways or a mix of both; D) The common ancestor of the MPC clade utilized utilized all three pathways simultaneously (Washburn et al., 2017). Black arrow indicates the ancestral branch for the MPC subclade within the Paniceae.

77 Material and methods

78 Plant growth and RNA-Seq data generation for *Urochloa fusca*

79 *Urochloa fusca* seeds were planted and grown in a Percival (Percival model E-41L2) growth chamber
80 with target conditions of 111 $\mu\text{mol m}^{-2} \text{ s}^{-1}$, 60% relative humidity, a 12 hour/12 hour day/night
81 cycle with a target temperature of 29°C during the day and 23°C at night. Under the growing
82 conditions employed, twelve days after planting (DAP) plants were collected. The whole seedlings
83 (except root) were used for RNA extraction. RNA isolation and library construction followed the
84 protocol described by Zhang et al. (Zhang et al., 2015). The library was sequenced using 2x100 bp
85 paired end Illumina sequencing, and transcripts were generated using Trinity (v2.0.6) with default
86 parameters with the exception of "-seqType fq -max_memory 20G -CPU 16" (Grabherr et al.,
87 2011).

88 Sequence data set

89 Coding Sequences (CDS) for the transcript annotated as "primary" for each gene in *Brachypodium*
90 *distachyon* (Initiative et al., 2010), *Oryza sativa* (rice) (Kawahara et al., 2013), *Panicum hallii*
91 (Lovell et al., 2018) and *Setaria italica* (foxtail millet) (Bennetzen et al., 2012) were obtained

92 from Phytozome 12 (<https://phytozome.jgi.doe.gov/pz/portal.html>). For *Dichanthelium*
93 *oligosanthes* the CDS were retrieved from version v1.001 in CoGe OrganismView, genome ID
94 28856 (<https://genomevolution.org/CoGe/OrganismView.pl>) (Studer et al., 2016). CDS from
95 *Pennisetum glaucum* (pearl millet) were obtained from (Varshney et al., 2017). CDS from *Panicum*
96 *miliaceum* (proso millet) were downloaded from CoGe (Genome ID: 52484), version v1 (Lyons and
97 Freeling, 2008; Zou et al., 2019). Open reading frames for *Urochloa fusca* were obtained from the
98 transcriptome assembly described above. As a number of transcript assemblies were not full length
99 in manual proofing, open reading frames were constrained to those ending in a stop codon, but
100 were not required to start with an ATG.

101 Orthology assignment

102 LASTZ (Harris, 2007) was used to perform all by all comparisons of coding sequence from the
103 primary transcript of each gene as downloaded from Phytozome 12 with the following param-
104 eters –identity=70 –coverage=50 –ambiguous=iupac, –notransition, and –seed=match12. LASTZ
105 output was parsed to identify syntenic orthologs using QuotaAlign with the additional parameters
106 –tandemNmax=10, cscore=0.5, –merge and –Dm=20 (Tang et al., 2011). To reverse the collapse
107 of tandem gene clusters which are part of the QuotaAlign algorithm, final syntenic orthologs were
108 assigned based on the gene copy with the highest LASTZ alignment score within 20 genes up or
109 downstream of the original syntenic location predicted by quota align. Synteny analysis of proso
110 and pearl millet could not retrieve all C₄ related genes possibly due to larger amounts of genomic
111 rearrangement and smaller blocks of conserved synteny relative to other grass species included
112 in this study. When no syntenic ortholog could be identified in pearl millet and/or proso millet
113 based on synteny, the best reciprocal LASTZ hit to the foxtail millet gene copy was included as
114 a presumed ortholog, even in the absence of synteny. A similar process was employed for four
115 genes from the *Dichanthelium oligosanthes* genome, as this genome was assembled using purely
116 short read technology and remains fragmented into a large number of scaffolds. In all cases, or-
117 thology for *Urochloa fusca* sequences was inferred based on reciprocal best LASTZ hits with the
118 foxtail millet C₄ genes. The list of syntenic orthologous and presumed orthologous gene sequences
119 analyzed here is provided in supplemental material 2.

120 dN/dS calculation and evolutionary analyses

121 The DNA sequence of the coding sequence region of each gene was translated to an amino acid
122 sequence. Amino acid sequences for groups of orthologous and presumed orthologous genes were
123 aligned using Kalign version 2.04 (Lassmann and Sonnhammer, 2005). This amino acid multi-
124 ple sequence alignment was used to create a codon level DNA sequence alignment. The codon
125 alignment and a guide phylogenetic tree created based on the known relationships of all species
126 included in the analysis (Edwards et al., 2011) were used to calculate the nonsynonymous and
127 synonymous substitution rates (dN/dS) for each branch of the tree using codeml from the PAML
128 package version 4.09 (Yang, 2007).

129 Statistical comparison of branch dN/dS values and photosynthetic trait 130 values

131 A Fisher Exact Test was performed in order to test whether significant differences in evolutionary
132 rate existed between branches leading to species utilizing C₃ photosynthesis and branches
133 leading to species utilizing C₄ photosynthesis. For each comparison, a contingency table was
134 constructed comparing the separate estimated number of synonymous and nonsynonymous sub-
135 stitutions in two branches or groups of branches. For each gene, each one of the C₄ branches was
136 tested for an elevated ratio of nonsynonymous to synonymous substitutions relative to the aggre-
137 gate background C₃ branches. C₃ background values for both non-synonymous and synonymous
138 substitutions were summed across three branches each leading to a single C₃ species: *D. oligosan-*
139 *thes*, *B. distachyon*, and *O. sativa*. A Fisher Exact Test was used to compare each tested branch
140 to the aggregate C₃ branch values.

141 Results

142 The evolutionary patterns of ten genes encoding enzymes either unique to individual pathways of
 143 C₄ photosynthesis or shared by two or more pathways were investigated (Figure 2). The selection of
 144 genes for investigation was guided both by the strength of literature supporting their specific roles
 145 in one or more pathways of C₄ photosynthesis and the identification of high confidence orthologs
 146 in as many of the grass species included in this analysis (Table 1). Two different signatures
 147 were possible for genes which experienced positive selection as part of a transition from C₃ to
 148 C₄ photosynthesis. The first of these two potential signatures is an unambiguous signal where
 149 the rate of nonsynonymous substitutions (dN) exceeds the rate of synonymous substitutions (dS)
 150 on a given branch (i.e. dN/dS > 1) (Figure 3). This signal can be observed either on extremely
 151 short branches, or when positive selection continued for long periods of time. The second potential
 152 signal is more ambiguous. When an interval of positive selection occurs on a given branch but is
 153 preceded and/or followed by purifying within the same branch, the effects of these two intervals
 154 cannot be disambiguated without including additional outgroups to break up the branch into short
 155 segments. As a result, in branches that include both positive and purifying selection dN/dS will be
 156 elevated relative to branches experiencing purely purifying selection. However, despite the presence
 157 of positive selection, the dN/dS ratio for the entire branch may still still be less than 1 (Figure
 158 3). Unfortunately, the same signature (elevated dN/dS ratios relative to other branches but not
 159 exceeding a ratio of one) is also produced in cases of relaxed selection of pseudogenization. Here
 160 we considered either case to be potentially informative about the origins of C₄ photosynthesis in
 161 the MPC clade, however the interpretation of all results presented here must be in the context of
 162 both potential explanations for elevated substitution rates.

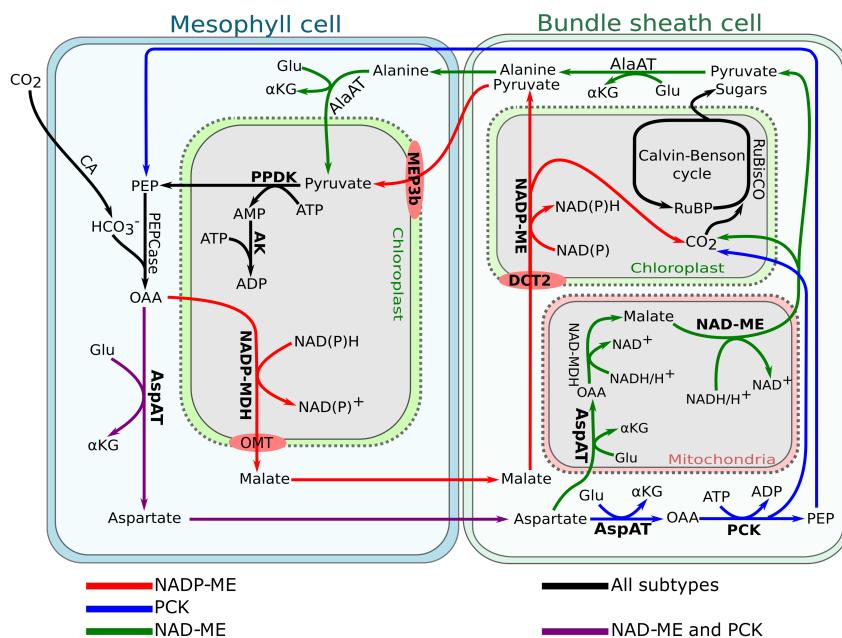


Figure 2: Simplified pathway representation of the three main C₄ photosynthesis subtypes. Enzymes where protein sequence evolutionary rates were calculated as part of this study are indicated in bold.

Enzyme name	C ₄ subtype	Reference
AK	All subtypes	Kanai and Edwards (1999)
AspAT	NAD-ME & PEPCK	Hatch et al. (1975); Kanai and Edwards (1999)
DCT2	NADP-ME	Huang et al. (2016)
MEP3b	NADP-ME	John et al. (2014)
NAD-ME	NAD-ME	Hatch et al. (1975); Kanai and Edwards (1999); Wang et al. (2011)
NADP-MDH	NADP-ME & PEPCK	Kanai and Edwards (1999)
NADP-ME	NADP-ME	Hatch et al. (1975); Kanai and Edwards (1999)

PCK	PCK	Hatch et al. (1975); Kanai and Edwards (1999)
PPDK	All subtypes	Hatch et al. (1975); Kanai and Edwards (1999);
PPDK-RP	All subtypes	Furbank (2011)

Table 1: List of enzymes investigated as part of this study, and the set of C_4 subpathways each enzyme was inferred to contribute to based on the literature.

Case 1 - C_4 under positive selection

Case 2 - C_4 under different types of selection

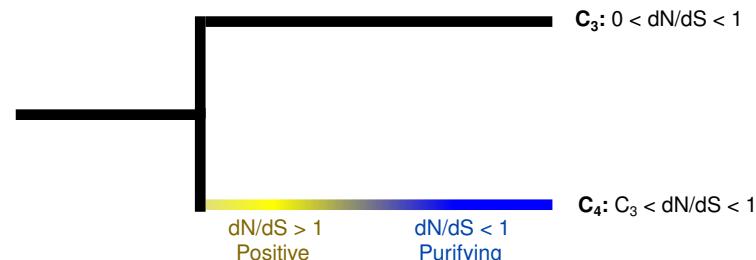


Figure 3: Models for different histories of selection and the predicted outcomes on dN/dS ratios. Case 1 shows a classical case of positive selection leading to change in function, while Case 2 shows a case where an enzyme might have gone through a mixture of positive and purifying selection leading to a change in function and a final purifying selection period to maintain the new enzymatic function.

163 Core C_4 enzymes, those which are utilized by all three C_4 photosynthetic subtypes, showed
 164 distinct patterns of change in synonymous/nonsynonymous substitution rates relative to enzymes
 165 used in specific subtypes. The analysis of the phylogenetic tree was performed on the branches
 166 leading to C_4 species as well as the ancestor branch of the Paniceae, which is the common ancestor
 167 of all C_4 species in this study (Figure 1). Both PPDK and PPDK-RP, core enzymes, showed
 168 a significantly faster rates of protein sequence evolution in the common ancestor of C_4 species
 169 branch relative to C_3 . Adenylate kinase (AK) did not show accelerated protein sequence evolution
 170 in the ancestral branch, but showed significantly faster rates on the proso and pearl millet branches
 171 compared to their C_3 counterparts (Figure S1).

172 None of the subtype specific enzymes showed significantly higher dN/dS values than the back-
 173 ground C_3 genes in the common ancestor of C_4 species branch (Figure S2). Dicarboxylic acid
 174 transporter 2 (DCT2), NADP-ME and MEP3b are all employed in the NADP-ME C_4 subtype.
 175 Both NADP-ME and MEP3b enzymes showed a significantly faster evolutionary rate in all branches
 176 of the NADP-ME subtype (foxtail millet, pearl millet and their ancestral branch) and most other
 177 C_4 branches compared to the background C_3 rate. The C_4 branches showing no significant differ-
 178 ences in dN/dS relative to the background C_3 rate were: *P. hallii* for the NADP-ME enzyme, and
 179 both *P. hallii* and NAD-ME ancestor for MEP3b. DCT2 exhibited a similar pattern to the other
 180 two enzymes, with the exception of the branch leading to *S. italica*. An evolutionary pattern shared

181 among NADP-ME, MEP3b and DCT2 enzymes was a significantly faster evolutionary rate in *U.*
182 *fusca* and proso millet, which perform PCK and NAD-ME subtypes, respectively, compared to
183 the background C₃ rate. NADP-MDH only showed significantly faster evolutionary rates than C₃
184 branches in pearl millet, NADP-ME species, and the ancestral branch of NAD-ME subtype. Both
185 AspAT and NAD-ME showed significantly higher dN/dS ratios in branches leading to NAD-ME
186 and PCK subtype species compared with C₃ species (Table 2).

Enzyme name	Lineages showing accelerated protein sequence evolution	Tree branches
AK	NADP-ME & NAD-ME	pearl millet & proso millet
AspAT	NAD-ME & PCK	proso millet, <i>P. hallii</i> & <i>urochloa</i> *
DCT2	NADP-ME, NAD-ME & PCK	ancestral NADP-ME branch, proso millet & <i>urochloa</i>
MEP3b	NADP-ME, NAD-ME & PCK	ancestral C ₄ & NADP-ME branches
NAD-ME	NAD-ME & PCK	ancestral NAD-ME branch & <i>urochloa</i>
NADP-MDH	NADP-ME & NAD-ME	pearl millet & ancestral branch of NAD-ME
NADP-ME	NADP-ME, NAD-ME & PCK	all NADP-ME branches, NAD-ME ancestral branch & <i>urochloa</i>
PCK	PCK & NAD-ME	<i>urochloa</i> & proso millet
PPDK	All subtypes	ancestral branch of all C ₄
PPDK-RP	All subtypes	ancestral branch of all C ₄

Table 2: List of enzymes employed in this study which showed elevated rates of protein sequence evolution relative to the C₃ background in one or more branches leading to C₄ species. Cases highlighted in red showed elevated rates of protein sequence evolution in at least one branch which is inconsistent with the canonical assignment of MPC grasses into three clades each utilizing a single distinct C₄ pathway. *this branch was marginally insignificant p = 0.062.

187 In addition to the 10 C₄ photosynthesis related enzymes studied here, the approach used to find
188 genes involved in the C₄ cycle was used to retrieve the sequences of genes encoding two enzymes
189 involved in the photorespiratory pathway: glycolate oxidase (GOX) and serine hydroxymethyl-
190 transferase (SHMT). Both enzymes exhibit faster rates of protein sequence change in branches
191 leading to C₄ species than in branches leading to C₃ species. GOX is localized in the peroxisome
192 while SHMT is localized in the mitochondria (Figure 4). The evolutionary pattern of these enzymes
193 were different. GOX showed a faster evolutionary rate than C₃ species branches in the ancestral
194 branch of all Paniceae, the branch leading to *U. fusca*, the ancestral branch of *S. italica* and *P.*
195 *glaucum* and the branch leading to *S. italica*. On the other hand, SHMT showed fast evolving
196 branches in *U. fusca* branch, the ancestral branch of both *P. miliaceum* genes and one of the *P.*
197 *miliaceum* genes. In the branch leading to the common ancestor of the MPC clade, GOX, but not
198 SHMT, also showed elevated rates of protein sequence changes relative to branches leading to C₃
199 species (S3).

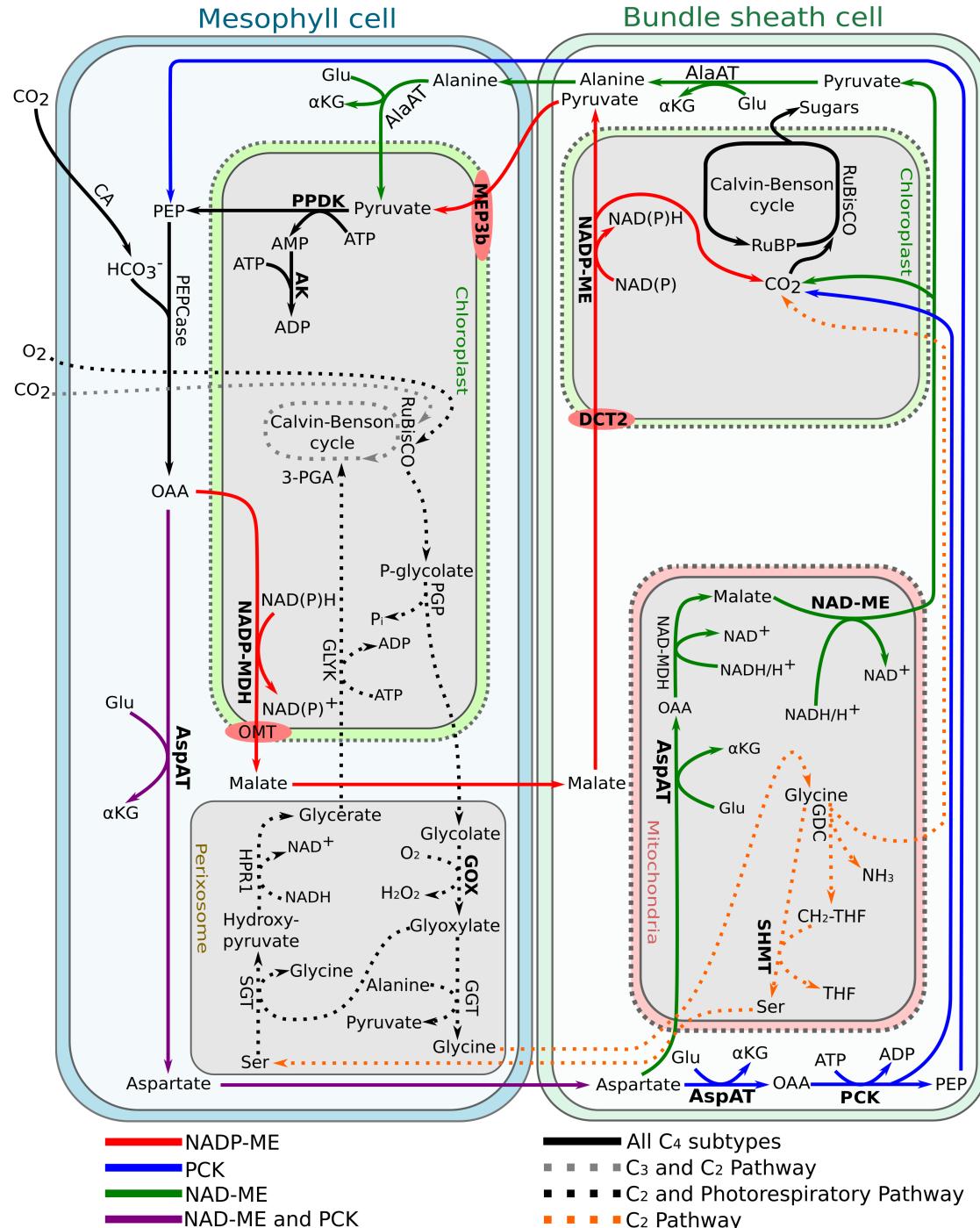


Figure 4: Simplified pathway representation of the three main C₄ photosynthesis subtypes including the C₃, C₂ and photorespiratory pathways. Enzymes studied here are represented in bold. Mitochondrial pathway of the C₂ cycle is the same as the mitochondrial photorespiratory cycle. However the mitochondrial pathway occurs in the bundle sheath cell in the C₂ cycle and in the mesophyll cell in the photorespiratory cycle.

200 Discussion

201 The emergence of C₄ photosynthesis in more than sixty plant lineages remains a fascinating example
 202 of the parallel evolutionary emergence of a complex trait. Reconstruction of protein sequence
 203 evolution on ancient branches provides a potential window into the mechanisms plants employed
 204 to cope with a comparatively rapid drop in CO₂ concentrations in the atmosphere. Here we used
 205 sequence data from eight grass species to examine the patterns of evolution in an ancestral lineage

206 that split from its closest sequenced C₃ relative 18 million years ago, and gave rise to a diverse set
207 of NADP-ME, NAD-ME and PCK utilizing C₄ species 13 million years ago (Kumar et al., 2017).
208 What happened over that five million year span? Did that ancestral lineage make the leap from C₃
209 photosynthesis to C₄, or was it a matter of luck or some genetic predisposition that lead to all of its
210 extant descendants utilizing C₄ photosynthesis, admittedly diverse varieties of C₄ photosynthesis
211 today?

212 If one were to focus only on core enzymes which are both low copy and clearly necessary for
213 all forms of the C₄ photosynthetic pathway, it would appear that this ancient lineage did indeed
214 make the transition from C₃ photosynthesis to C₄ (Figure S1). A focus on enzymes used in some
215 C₄ pathways but not others instead is consistent with the common ancestor of the MPC clade still
216 utilizing C₃ photosynthesis. This model also implies C₄ photosynthesis instead emerged later and
217 independently in the diversification of this clade. The pattern we observed is also inconsistent with
218 a clean separation into NADP-ME, NAD-NE, and PCK utilizing species (Figure S2). In fact only
219 in two cases, AspAT and NAD-ME, where the branches that exhibited accelerated protein sequence
220 evolution relative to C₃ outgroups, are entirely consistent with the primary C₄ pathways utilizing
221 by species descended from those branches (Table 2). This complexity of C₄ pathway utilization
222 suggested by which enzymes show accelerated rates of protein sequence evolution in which lineages
223 is consistent with more recent studies. Multiple reports indicate that many species traditionally
224 thought to employ only a single C₄ pathway may actually fix significant proportions of their total
225 carbon through two or more C₄ pathways (Walker et al., 1997; John et al., 2014; Huang et al.,
226 2016; de Oliveira Dal'Molin et al., 2016; Washburn et al., 2017).

227 The observation that glycolate oxidase, a critical component of the photorespiratory pathway,
228 also shows accelerated protein sequence evolution in the lineage leading to the common ancestor
229 of the MPC clade (Figure S3) in addition to PPDK and PPDK-RP suggests an intermediate
230 hypothesis. Sometime in the five million year span between the divergence of the MPC lineage
231 from *Dichanthelium oligosanthes* and the most recent common ancestor of the MPC clade, this
232 lineage transitioned from conventional C₃ photosynthesis to the intermediate C₂ photosynthetic
233 cycle where the photorespiratory pathway acts as carbon pump, rather than utilizing any of the
234 three decarboxylation enzymes of classical C₄ photosynthesis (Figure 4). This model is consistent
235 with (Washburn et al., 2015) where ancestral state reconstruction suggested the MPC species
236 utilizing different subtypes of C₄ photosynthesis may have evolved from a non-C₄ ancestor.

237 It is intriguing to speculate that these ancient changes in protein sequence represents an evolu-
238 tionary echo of the strong selection acting on plants to adapt to a dramatic decline in atmospheric
239 CO₂ levels. However, it is important to keep in mind the same caveat discussed above: elevated
240 dN/dS ratios which remain below one, even when statistically significant, can be explained by
241 either a mixture of purifying and positive selection or by a simple relaxation of purifying selection.
242 In addition, parallel substitution for the same amino acid substitutions in sister lineages can some-
243 times lead to a amino acid change being incorrectly inferred to have happened a single time in the
244 common ancestor. This phenomenon has been observed in the study of the parallel evolution of
245 C₄ grasses in the past (Christin et al., 2007, 2008). The findings we present here are suggestive of
246 a C₂ intermediate in the evolution of C₄ photosynthesis in the MPC clade (Sage, 2001; Edwards,
247 2019), but they do not yet represent conclusive proof of such an ancestor. Given the accelerating
248 pace of plant genome sequencing and improved automated methods for identifying orthologs even
249 in the absence of high quality synteny data, future investigations may incorporate data from larger
250 numbers of C₃ and C₄ grass species, as well as larger numbers of different genes known to be or
251 believed to be involved in C₃, C₂, and/or C₄ photosynthesis.

252 Data availability

253 CDS sequences for *Urochloa fusca* are available at Zenodo with the identifier [10.5281/zenodo.3238541](https://doi.org/10.5281/zenodo.3238541).

254 Conflict of Interest Statement

255 The authors declare that the research was conducted in the absence of any commercial or financial
256 relationships that could be construed as a potential conflict of interest.

257 Author Contributions

258 DSC, SKKR, YZ and JCS wrote the paper; DSC and JCS designed and conducted the analyses;
259 JCS and YZ collected the data.

260 Acknowledgements

261 This study was supported by Science without Borders scholarship (214038/2014-9) to DSC, a
262 Robert B. Daugherty Water for Food Institute research support to JCS and award 2016-67013-
263 24613 from the USDA National Institute of Food and Agriculture to JCS. We thank Jyothi Kumar
264 for critical reading and commentary on earlier versions of this manuscript.

265 Supplemental Data

266 Supplementary material:
267 File S1) Complete set of supplementary figures
268 File S2) The syntenic and and reciprocal best blast hit inferred orthologs used in this study
269

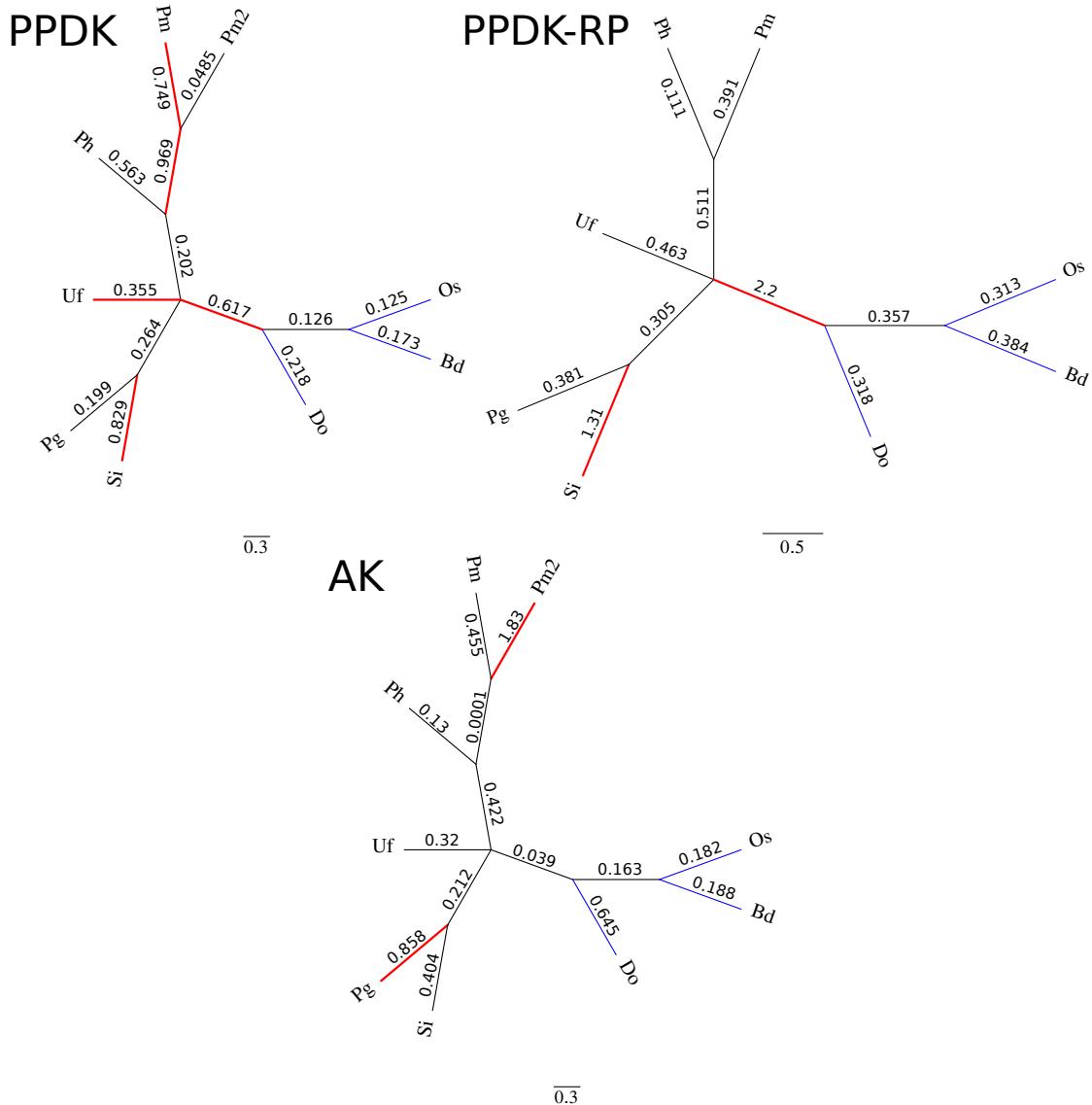


Figure S1: **Unrooted phylogenetic trees of C₄ photosynthesis core enzymes, present in all subtypes, according to citations in Table 1.** Branch lengths are equal. Thick red branches represent branches evolving significantly faster than background C₃ branches in blue. Abbreviations: Os = *Oryza sativa*, Bd = *Brachypodium distachyon*, Do = *Dichanthelium oligosanthes*, Si = *Setaria italica*, Pg = *Pennisetum glaucum*, Uf = *Urochloa fusca*, Ph = *Panicum hallii*, Pm = *Panicum miliaceum*.

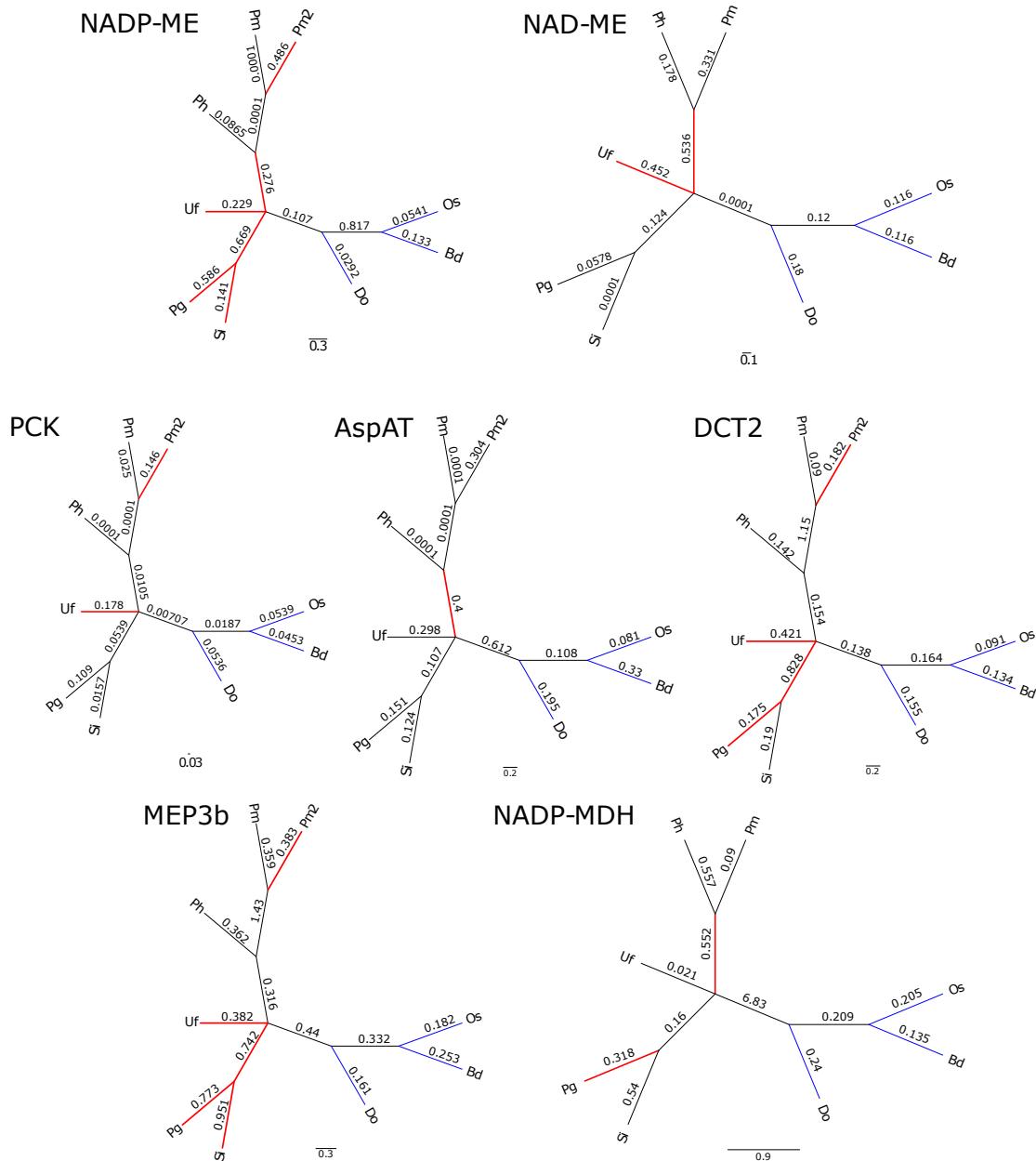


Figure S2: **Unrooted phylogenetic trees of C₄ photosynthesis subtype specific enzymes.** Branch lengths are equal. Thick red branches represent branches evolving significantly faster than background C₃ branches in blue. Abbreviations: Os = *Oryza sativa*, Bd = *Brachypodium distachyon*, Do = *Dichanthelium oligosanthes*, Si = *Setaria italica*, Pg = *Pennisetum glaucum*, Uf = *Urochloa fusca*, Ph = *Panicum hallii*, Pm = *Panicum miliaceum*.

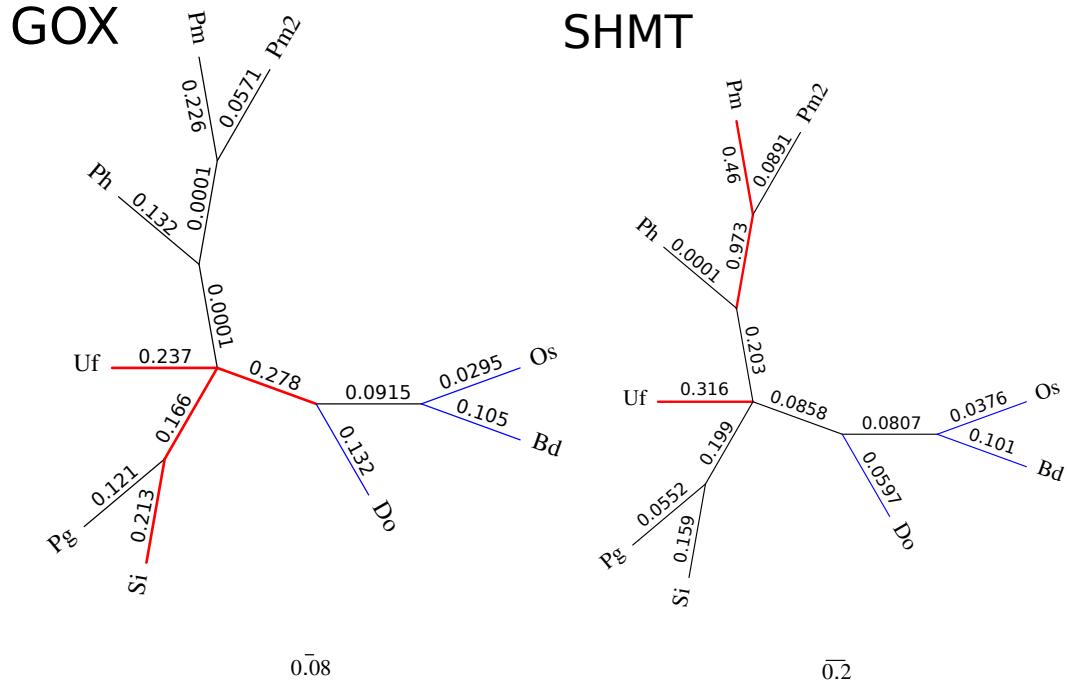


Figure S3: **Unrooted phylogenetic trees of C₄ photosynthesis photorespiratory enzymes.** Branch lengths are equal. Thick red branches represent branches evolving significantly faster than background C₃ branches in blue. Abbreviations: Os = *Oryza sativa*, Bd = *Brachypodium distachyon*, Do = *Dichanthelium oligosanthes*, Si = *Setaria italica*, Pg = *Pennisetum glaucum*, Uf = *Urochloa fusca*, Ph = *Panicum hallii*, Pm = *Panicum miliaceum*.

270 References

271 Akhani, H., Ghobadnejhad, M. and Hashemi, S. (2003). Ecology, biogeography and pollen
272 morphology of bienertia cycloptera bunge ex boiss.(chenopodiaceae), an enigmatic c4 plant with-
273 out kranz anatomy. *Plant Biology* **5**, 167–178.

274 Bennetzen, J. L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A. C.,
275 Estep, M., Feng, L., Vaughn, J. N., Grimwood, J. et al. (2012). Reference genome
276 sequence of the model plant setaria. *Nature biotechnology* **30**, 555.

277 Bull, T. (1969). Photosynthetic efficiencies and photorespiration in calvin cycle and c4-
278 dicarboxylic acid plants 1. *Crop Science* **9**, 726–729.

279 Christin, P.-A., Petitpierre, B., Salamin, N., Büchi, L. and Besnard, G. (2008). Evolution
280 of c4 phospho enol pyruvate carboxykinase in grasses, from genotype to phenotype. *Molecular
281 Biology and Evolution* **26**, 357–365.

282 Christin, P.-A., Salamin, N., Savolainen, V., Duvall, M. R. and Besnard, G. (2007).
283 C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. *Current Biology* **17**,
284 1241–1247.

285 de Oliveira Dal'Molin, C. G., Orellana, C., Gebbie, L., Steen, J., Hodson, M. P.,
286 Chrysanthopoulos, P., Plan, M. R., McQualter, R., Palfreyman, R. W. and Nielsen,
287 L. K. (2016). Metabolic reconstruction of setaria italica: a systems biology approach for in-
288 tegrating tissue-specific omics and pathway analysis of bioenergy grasses. *Frontiers in plant
289 science* **7**.

290 Edwards, E. (2019). Evolutionary trajectories, accessibility, and other metaphors: the case of c4
291 and cam photosynthesis. *The New phytologist* .

292 Edwards, E., Aliscioni, S., Bell, H. et al. (2011). New grass phylogeny resolves deep evolu-
293 tionary relationships and discovers c4 origins. *New Phytologist* **193**, 304–312.

294 Ehleringer, J. R., Cerling, T. E. and Helliker, B. R. (1997). C4 photosynthesis, atmospheric
295 co2, and climate. *Oecologia* **112**, 285–299.

296 Furbank, R. T. (2011). Evolution of the c4 photosynthetic mechanism: are there really three c4
297 acid decarboxylation types? *Journal of experimental botany* **62**, 3103–3108.

298 Gillon, J. and Yakir, D. (2001). Influence of carbonic anhydrase activity in terrestrial vegetation
299 on the 18o content of atmospheric co2. *Science* **291**, 2584–2587.

300 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I.,
301 Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q. et al. (2011). Trinity: reconstructing
302 a full-length transcriptome without a genome from rna-seq data. *Nature biotechnology* **29**, 644.

303 Harris, R. S. (2007). *Improved pairwise alignment of genomic DNA*. The Pennsylvania State
304 University.

305 Hatch, M., Kagawa, T. and Craig, S. (1975). Subdivision of c4-pathway species based on
306 differing c4 acid decarboxylating systems and ultrastructural features. *Functional Plant Biology*
307 **2**, 111–128.

308 Huang, P., Studer, A. J., Schnable, J. C., Kellogg, E. A. and Brutnell, T. P. (2016).
309 Cross species selection scans identify components of c4 photosynthesis in the grasses. *Journal of
310 Experimental Botany* p. erw256.

311 Initiative, I. B. et al. (2010). Genome sequencing and analysis of the model grass brachypodium
312 distachyon. *Nature* **463**, 763.

313 John, C. R., Smith-Unna, R. D., Woodfield, H., Covshoff, S. and Hibberd, J. M.
314 (2014). Evolutionary convergence of cell-specific gene expression in independent lineages of c4
315 grasses. *Plant physiology* **165**, 62–75.

316 Kanai, R. and Edwards, G. E. (1999). The biochemistry of c4 photosynthesis. *C4 plant biology*
317 pp. 49–87.

318 Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R.,
319 Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., Zhou, S. et al. (2013). Improvement
320 of the oryza sativa nipponbare reference genome using next generation sequence and optical map
321 data. *Rice* **6, 4.**

322 Keys, A. (1986). Rubisco: its role in photorespiration. *Phil. Trans. R. Soc. Lond. B* **313, 325–336.**

323 Kumar, S., Stecher, G., Suleski, M. and Hedges, S. B. (2017). Timetree: a resource for
324 timelines, timetrees, and divergence times. *Molecular biology and evolution* **34, 1812–1819.**

325 Lassmann, T. and Sonnhammer, E. L. (2005). Kalign—an accurate and fast multiple sequence
326 alignment algorithm. *BMC bioinformatics* **6, 298.**

327 Lovell, J. T., Jenkins, J., Lowry, D. B., Mamidi, S., Sreedasyam, A., Weng, X., Barry,
328 K., Bonnette, J., Campitelli, B., Daum, C. et al. (2018). The genomic landscape of
329 molecular responses to natural drought stress in panicum hallii. *Nature communications* **9,**
330 5213.

331 Lyons, E. and Freeling, M. (2008). How to usefully compare homologous plant genes and
332 chromosomes as dna sequences. *The Plant Journal* **53, 661–673.**

333 Mallmann, J., Heckmann, D., Bräutigam, A., Lercher, M. J., Weber, A. P., Westhoff,
334 P. and Gowik, U. (2014). The role of photorespiration during the evolution of c4 photosynthesis
335 in the genus flaveria. *Elife* **3, e02478.**

336 Morrone, O., Aagesen, L., Scataglini, M. A., Salariato, D. L., Denham, S. S.,
337 Chemisquy, M. A., Sede, S. M., Giussani, L. M., Kellogg, E. A. and Zuloaga, F. O.
338 (2012). Phylogeny of the paniceae (poaceae: Panicoideae): integrating plastid dna sequences
339 and morphology into a new classification. *Cladistics* **28, 333–356.**

340 Offermann, S., Friso, G., Doroshenk, K. A., Sun, Q., Sharpe, R. M., Okita, T. W.,
341 Wimmer, D., Edwards, G. E. and van Wijk, K. J. (2015). Developmental and subcellular
342 organization of single-cell c4 photosynthesis in bienertia sinuspersici determined by large-scale
343 proteomics and cdna assembly from 454 dna sequencing. *Journal of proteome research* **14,**
344 2090–2108.

345 Sage, R. (2001). Environmental and evolutionary preconditions for the origin and diversification
346 of the c4 photosynthetic syndrome. *Plant Biology* **3, 202–213.**

347 Sage, R. F., Christin, P.-A. and Edwards, E. J. (2011). The c4 plant lineages of planet
348 earth. *Journal of Experimental Botany* **62, 3155–3169.**

349 Studer, A. J., Schnable, J. C., Weissmann, S., Kolbe, A. R., McKain, M. R., Shao,
350 Y., Cousins, A. B., Kellogg, E. A. and Brutnell, T. P. (2016). The draft genome of the
351 c 3 panicoid grass species dichanthelium oligosanthes. *Genome biology* **17, 223.**

352 Tang, H., Lyons, E., Pedersen, B., Schnable, J. C., Paterson, A. H. and Freeling, M.
353 (2011). Screening synteny blocks in pairwise genome comparisons through integer programming.
354 *BMC bioinformatics* **12, 102.**

355 Tolbert, N. (1997). The c2 oxidative photosynthetic carbon cycle. *Annual review of plant biology*
356 **48, 1–25.**

357 Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao,
358 Y., Wang, X., Rathore, A. et al. (2017). Pearl millet genome sequence provides a resource
359 to improve agronomic traits in arid environments. *Nature biotechnology* **35, 969.**

360 Vicentini, A., Barber, J. C., Aliscioni, S. S., Giussani, L. M. and Kellogg, E. A. (2008).
361 The age of the grasses and clusters of origins of c4 photosynthesis. *Global Change Biology* **14,**
362 2963–2977.

363 **Walker, R. P., Acheson, R. M., Técsi, L. I. and Leegood, R. C.** (1997). Phosphoenolpyru-
364 vate carboxykinase in c4 plants: its role and regulation. *Functional Plant Biology* **24**, 459–468.

365 **Wand, S. J., Midgley, G., Jones, M. H., Curtis, P. S. et al.** (1999). Responses of wild c4
366 and c3 grass (poaceae) species to elevated atmospheric co₂ concentration: a meta-analytic test
367 of current theories and perceptions. *Global Change Biology* **5**, 723–741.

368 **Wang, L., Peterson, R. B. and Brutnell, T. P.** (2011). Regulatory mechanisms underlying
369 c4 photosynthesis. *New Phytologist* **190**, 9–20.

370 **Washburn, J. D., Kothapalli, S. S., Brose, J. M., Covshoff, S., Hibberd, J. M., Conant,
371 G. C. and Pires, J. C.** (2017). Ancestral reconstruction and c3 bundle sheath transcript
372 abundance in the paniceae grasses indicate the foundations for all three biochemical c4 sub-
373 types were likely present in the most recent ancestor. *bioRxiv* p. 162644.

374 **Washburn, J. D., Schnable, J. C., Davidse, G. and Pires, J. C.** (2015). Phylogeny and
375 photosynthesis of the grass tribe paniceae. *American journal of botany* **102**, 1493–1505.

376 **Yang, Z.** (2007). Paml 4: phylogenetic analysis by maximum likelihood. *Molecular biology and
377 evolution* **24**, 1586–1591.

378 **Zhang, Y., Ding, Z., Ma, F., Chauhan, R. D., Allen, D. K., Brutnell, T. P., Wang,
379 W., Peng, M. and Li, P.** (2015). Transcriptional response to petiole heat girdling in cassava.
380 *Scientific reports* **5**, 8414.

381 **Zou, C., Li, L., Miki, D., Li, D., Tang, Q., Xiao, L., Rajput, S., Deng, P., Peng, L.,
382 Jia, W. et al.** (2019). The genome of broomcorn millet. *Nature Communications* **10**, 436.