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Abstract

Multivariate time series from neural electrophysiological recordings are a rich source of information about neural processing systems
and require appropriate methods for proper analysis. Current methods for mapping brain function in these data using neural decoding
aggregate information across space and time in limited ways, rarely incorporating spatial dependence across recording locations.
We propose Shrinkage Classification for Overlapping Time Series (SCOTS), a neural decoding method that maps brain function,
while accounting for spatio-temporal dependence, through interpretable dimensionality reduction and classification of multivariate
neural time series. SCOTS has two components: first, overlapping clustering from sparse semi-nonnegative matrix factorization
gives a data-driven aggregation of neural information across space; second, wavelet-transformed nearest shrunken centroids with
sparse group lasso performs multi-class classification with selection of informative clusters and time intervals. We demonstrate use
of SCOTS by applying it to human intracranial electrophysiological and MEG data collected while participants viewed visual stimuli
from a range of categories. The method reveals the dynamic activation of brain regions with sensitivity to different object categories,

giving insight into spatio-temporal contributions of these neural processing systems.
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1. Introduction

Neural electrophysiological recordings provide multivariate
time series that reveal dynamic neural processing during ex-
perimental tasks. Proper analysis of these time series is chal-
lenging due to the high spatial dimensionality and high degree
of complexity in the relationships within the recorded activity,
with dependence across multiple time scales and spatial scales.
Moreover, there are many possible modes of information repre-
sentation in the brain, including mean-shifts, oscillatory signals,
and shifts in statistical dependence between spatial areas.

One important technique for understanding neural processing
systems is neural decoding, the process of predicting experi-
mental conditions based on recorded neural activity. If recorded
neural activity is sufficient for distinguishing between experi-
mental conditions it implies that the neural signal carries infor-
mation relevant to the varying conditions. With well-designed
experimental conditions, researchers can control what relevant
information is captured in the decoding process. However, it is
also important to be able to interpret a classifier that successfully
discriminates amongst experimental conditions (Yamashita et al.,
2008; Rasmussen et al., 2012; Haufe et al., 2014). A black-box
classifier that predicts experimental conditions successfully may
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confirm the presence of relevant signal in recorded neural activ-
ity but gives little additional insight. Decoding may also capture
information that is not relevant to cognition (Kriegeskorte and
Douglas, 2018). Classifiers that maintain some degree of inter-
pretability are advantageous for understanding how information
is encoded in neural activity and lead to broader insight into how
neural systems process information (Naselaris et al., 2011).

The type of interpretability needed depends on the analysis
task. One important task in understanding neural processing is
mapping where and at what latency the brain responds to differ-
ent visual stimuli. Spatial and temporal localization of neural
response reveal organizing principles of how the brain processes
information and which areas contribute to different stages of
processing. Our goal in this paper is to provide an interpretable
classification method for locating stimulus-specific neural re-
sponses in neural electrophysiological recordings that addresses
the challenges posed by high dimensionality and dependence
across space and time.

We apply our proposed method to both intracranial EEG
(iEEG) and MEG experiments, with a focus on analysis of single
trial local field potentials (LFPs) and event related potentials
(ERPs). We demonstrate that our method is appropriate for
both recording techniques. iEEG is a tool for neuroscientific
research in clinical settings that offers high signal to noise ratio
and temporal resolution but presents several unique challenges
for analysis. Subjects in iEEG studies typically have electrodes
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implanted primarily for clinical rather than research purposes,
with locations of electrodes varying across patients as needed.
Additionally, electrodes are not spread uniformly and are instead
in clusters of varying size. MEG provides whole brain coverage
at lower spatial resolution, with comparable coverage across
all subjects. An overview of electrophysiological recording
techniques is given by Buzséki et al. (2012).

1.1. Previous Methods

Previous methods for localizing spatial and temporal re-
sponses have relied on searching through recording locations
and time bins to find discriminative power between experimen-
tal conditions. As examples, Liu et al. (2009) applied a linear
support vector machine to time-binned features derived from
iEEG ERPs to classify stimuli from individual trials. Ghuman
et al. (2014) used a time-binned nearest neighbor classifier on
single-channel iEEG ERPs to evaluate sensitivity to face im-
ages in the fusiform face area. Hirshorn et al. (2016) evaluated
word reading sensitivity in the left midfusiform gyrus using
time-binned Gaussian naive Bayes. As an alternative approach,
Li et al. (2017) proposed connectivity maps based on canonical
correlation analysis to relate information in two neural regions
of interest and applied the method to decoding images from
fMRI and individual face identity from iEEG wavelet features.

This general search strategy has two primary drawbacks. First,
the process of searching carries a risk of overfitting due to multi-
ple testing, and correcting for this risk leads to a considerable
reduction in statistical power. Second, this strategy limits the
ability to recognize and make use of relationships and interac-
tions across spatial locations as each section of the recording is
evaluated only in isolation.

A similar “searchlight” method was proposed by Kriegesko-
rte et al. (2006) for finding informative regions in fMRI, with
spherical regions of voxels independently measured for informa-
tion distinguishing experimental conditions. A spatio-temporal
searchlight method has also been proposed for a similar analysis
of scalp EEG and MEG imaging (Su et al., 2012). Drawbacks
to searchlight analysis are discussed in Etzel et al. (2013). One
concern in particular is the size of the searchlight used. A search-
light that is too small may fail to detect a large pool of voxels
that are weakly informative individually but strongly informa-
tive collectively. If the searchlight is too large, a small number
of strongly informative voxels may bias the measure of many
nearby uninformative voxels. This underscores the importance
of a data-driven approach to extracting the main modes of varia-
tion in neural response instead of uniform search.

1.2. Our Proposal

In this paper we propose Shrinkage Classification for Overlap-
ping Time Series (SCOTS), a novel method for dimensionality
reduction and interpretable classification that aggregates infor-
mation from neural activity across space and time in a data
driven manner. SCOTS follows two steps. In the first step we
generate a low rank representation of the multivariate time series
using sparse semi-nonnegative matrix factorization. This factor-
ization finds both overlapping clusters of recording channels and

corresponding latent cluster-level time series. In the second step
we estimate condition-specific deviations of the latent time series
from the overall signal mean using wavelet-transformed nearest
shrunken centroids with an additional sparse group lasso penalty.
We can validate discovered condition-specific deviations using
out-of-sample nearest centroid classification.

Classical nonnegative matrix factorization (NMF) (Lee and
Seung, 1999) is a linear dimensionality reduction method that ap-
proximates a data matrix X as the product of two matrices W and
H, each with nonnegative entries. Rows of the right hand matrix
H form a basis for rows of X, while rows of the left hand matrix
W serve as basis coefficients or loadings. NMF is appropriate
for data that is naturally nonnegative and built from layers of
components and therefore has has been applied in a wide variety
of contexts, including characterization of high gamma response
profiles to speech in iEEG (Hamilton et al., 2018), tumor de-
tection in spectroscopic imaging (Ortega-Martorell et al., 2012;
Sajda et al., 2004), community detection (Wang et al., 2011),
audio analysis (Févotte et al., 2009), computational biology (De-
varajan, 2008), document clustering (Xu et al., 2003), and blind
source separation (Virtanen, 2007). Semi-NMF (SNMF) (Ding
et al., 2010) relaxes the nonnegativity constraint on the basis
matrix. This is appropriate when data is not nonnegative but is
still built from layers of components. Penalized versions have
also been proposed to promote smoothness in the basis vectors
and sparsity in both W and H (Cichocki et al., 2007; Drakakis
et al., 2008; Yokota et al., 2015). A comprehensive overview of
extensions is given by Wang and Zhang (2013).

In our method, SNMF represents time series observed from
recording channels as nonnegative mixtures of unconstrained
latent time series. We impose additional sparsity on these non-
negative mixtures via an L; penalty, so that each recording chan-
nel is built up from a small number of latent time series, and
each latent time series appears in a small number of recording
channels. We also project the latent time series onto a truncated
wavelet basis to account for dependence across time. Unlike
with searchlight methods, the estimated latent time series aggre-
gate neural activity in a way that preserves observed variation
rather than in pre-defined windows. Sparsity in this low dimen-
sional representation also helps with spatial mapping of neural
responses to stimuli.

Nearest shrunken centroids (NSC) was first proposed by Tib-
shirani et al. (2003) for interpretable classification, associating
genes with diseases. The goal of NSC is to perform multi-way
classification with class-specific variable selection. The vari-
ables to be selected in our method are time points in a specific
latent time series. This poses a challenge because separate time
points are not independent — we should select time intervals
rather than scattered time points. We address this problem by
performing NSC on the coefficients in a wavelet basis for the
latent time series. As a result, variable selection picks a sparse
set of wavelet basis elements, which correspond to a curve on a
compact time interval as desired. Wavelet shrinkage and spar-
sity has been established as a successful tool for adaptive curve
estimation (Donoho and Johnstone, 1994; Zhao et al., 2012).
We additionally use a group lasso penalty so that entire non-
discriminative clusters can be eliminated.
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We emphasize the goal of interpretability in designing this
method. Being able to attribute classification success to certain
spatial regions and temporal latencies helps us learn more about
underlying neural processing than using a black box classifier
with superior predictive performance. Sparsity plays a critical
role in the interpretability of our method, both in the dimen-
sionality reduction provided by SNMF and the class-specific
variable selection of wavelet nearest shrunken centroids.

1.3. Application to a Visual Category Localizer Experiment

As an illustration of the proposed method, we applied SCOTS
to human subject iEEG and MEG data from a visual category
localizer experiment. In the experiment, subjects were shown
a series of images, each falling into one of several categories,
and they were asked to indicate if the same image was repeated
consecutively. The experiment focused on neural activity in
the ventral visual stream, an area that is believed to be partic-
ularly important for object recognition (Kravitz et al., 2013).
Characteristic ERPs of responses in the ventral visual stream
to various visual stimuli have been described by Allison et al.
(1994); Nobre et al. (1994); Allison et al. (1999); McCarthy et al.
(1999). We are interested in measuring category-specific activity
in this experiment as it is indicative of an area’s involvement
in processing a particular visual concept. Spatial and temporal
localization are particularly important as they can reveal at what
stage of visual processing a certain concept is distinguished and
improve understanding of the dynamics of visual processing as
a whole.

We applied SCOTS to visually-evoked LFPs from across each
of nine iEEG subjects and three MEG subjects. The number of
recording channels per iEEG subject ranged from 22 to 144 with
placement depending on a mix of clinical and research goals.
Analysis for MEG subjects was performed in source space in the
left hemisphere. Results derived from both imaging modalities
provided interpretable dynamic neural activity that was centered
in cortical regions previously implicated with visual or language
processing.

2. Methods

2.1. Overview

We propose SCOTS, a method for spatio-temporal localiza-
tion of condition-specific mean shifts in ERPs in response to
stimuli. The method has two stages: in Section 2.2, sparse
SNMF gives soft clustering of recording channels and separa-
tion of latent source signals; in Section 2.3, a grouped version of
nearest shrunken centroids is applied in a wavelet transformed
space for selection of cluster-category pairs and corresponding
time regions with distinct behavior. These two stages are il-
lustrated in Figure 2.1. To validate discovered spatio-temporal
category sensitivity, we classify held-out trials using fitted cen-
troids (Section 2.4).

2.2. Sparse Semi-Nonnegative Wavelet-Projected Matrix Fac-
torization

The first stage of SCOTS uses a sparse adaptation of SNMF
with a truncated wavelet basis. SNMF builds an approximation
X ~ WH, where X is a data matrix, H is an unconstrained basis
matrix, and W is a nonnegative coefficient matrix. The choice
of nonnegativity in W reflects an interpretation of observations
in X as being built from additive layers of basis vectors in H,
where the basis vectors are latent time series.

In our application we observe a matrix X; € RP*T where p is
the number of electrodes and T is the number of time points, for
each of i = 1,...,n experimental trials, and we decompose each
observed matrix in the wavelet domain: X;® ~ WH;®, with ®
a pre-determined truncated wavelet basis matrix. Our version of
SNMF is defined by the following optimization problem, with
F; = H;® consisting of wavelet basis coefficients:

1 n
3 D IXi® — WE| + AWl

arg min
W {Fi}i i=1
o (1)
subject to W >0,
IFilz <1, i=1,....n,

where K is the number of latent time series, W € R?*K F; e
RXXT and A is a penalty weight. We can recover a time-domain
decomposition of X; by setting H; = F;®7.

The coefficients W, which are fixed across all trials, can be in-
terpreted as determining a set of clusters of variables with shared
behavior. Sparsity in the coefficients is important for this inter-
pretation, as such clusters may overlap but should be relatively
local in space. This is especially the case because modeling W
as fixed across time and categories implies that clusters should
mostly reflect spatial propagation of electrophysiological neural
activity. The nonnegativity constraint imposes some sparsity but
is generally not sufficient for this interpretation. We therefore
impose additional sparsity is by adding an L; penalty to W in
(1.

We perform SNMF in the wavelet domain to account for time
dependence in observations within each trial. A wavelet basis
represents a univariate time series as a linear combination of
basis vectors, each associated with a time shift and a time scale.
Wavelet bases are popular in signal processing for their ability to
represent curves with sometimes sharp changes using relatively
few basis vectors. After transforming back into the time domain,
the use of a truncated wavelet basis results in smooth latent time
series H; that can also have sharp jumps, as have been observed
in characteristic ERPs for visual stimuli (Allison et al., 1994,
Nobre et al., 1994; Allison et al., 1999; McCarthy et al., 1999).
The truncated wavelet basis projection also offers computational
benefits, as the number of wavelet coefficients used is much
smaller than the number of time points 7.

2.3. Wavelet Nearest Shrunken Centroids

After performing dimensionality reduction, SCOTS finds lo-
calized category-specific neural responses by applying a mod-
ification of nearest shrunken centroids to the latent time series
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Figure 1: SCOTS Overview: (a) we observe p recording locations for n trials and 7 time points per trial. (b) We apply sparse SNMF to get k overlapping clusters of
recording locations, with associated weights and cluster time series for each trial (Section 2.2). (c) We average cluster time series over trials, then (d) apply NSC to
get centroid time series for each cluster and trial category (Section 2.3). NSC uses shrinkage to find clusters and time ranges with category sensitivity. The gray
confidence band for the overall mean across categories is used to decide the amount of shrinkage — all category centroids are within the confidence band before the
patient is shown an image (Section 2.5.4). (e) New observations, e.g. the purple dashed time course, are classified by finding the nearest centroid.

H;. This finds spatio-temporal regions where a centroid for a
category can be distinguished from the average across all cate-
gories. Nearest shrunken centroids was originally proposed for
diagnosing medical conditions using gene expression data. In
that context, sparsity in gene-diagnosis associations was used to
simplify the interpretation of a diagnosis. The basic strategy is
to shrink within-category means for each covariate to the over-
all mean using soft-thresholding adjusted for covariate-specific
variance. This strategy is unsatisfactory when applied to mul-
tivariate time series, since each latent time series has natural
dependence across time that would not be accounted for. We
should also expect cluster-wise sparsity. That is, if the response
for a category deviates from the overall average, that deviation
should only appear in a small number of latent time series.

We address time-dependence by projecting the differences
between each category centroid and the overall mean onto a
wavelet basis for each latent source. Switching to the wavelet
domain allows us to leverage the sparsity encouraged by nearest
shrunken centroids to get curves for the differences between cen-
troids and the overall mean that respect time dependence. Use
of wavelets also gives additional control over time localization.
As we use a truncated basis, i.e. set all basis coefficients to zero
for the finest time scales, we get an initial smoothing of the
centroids across time. We additionally can weight thresholding
differently across wavelet time scales, which allows us to set a
stricter standard for finding differences in neural response on
time scales that are biologically less likely.

We address the need for cluster-wise sparsity by adding a
group lasso penalty to the differences between the category cen-
troids and the overall mean. We group together all time points for
each cluster-category pairing. This encourages entire latent time
series to show no difference between a given category centroid

and the overall mean, thus restricting estimates of differentiated
neural response to a small number of recorded locations.

Our modified version of nearest shrunken centroids can be
written as follows. Suppose g(i) is the category label for trial
i, G is the number of categories, and W and H; are the factors
estimated using sparse SNMF. Further, let ® be a truncated
wavelet basis matrix and w be the weights determined by the
wavelet scales. We use Ay to denote row k of matrix A. We
solve the following optimization problem:

n G
1 : .
in{— » [IF9 - H®|% + F& —F)All1,, +
argmln(n El | IF +a § 1 AL,

o pe

FsF
G K
(=) > " A, - Fk,;nz,w).

g=1 k=1

2

Here A is a diagonal matrix with entries 4, ..., Ax as cluster-
specific penalty parameters controlling the overall penalization.
An additional parameter @ € (0, 1) controls the trade-off be-
tween individual and group sparsity. The matrices F¢ and F
represent the wavelet coefficients for the category g centroid and
the overall mean respectively. To get category centroids back in
the time domain we simply invert the wavelet transformation:
H¢ = FsT,

2.4. Classifying New Observations

After finding category centroids in latent time series space,
we can classify held-out trials to validate apparent differentiated
responses. Suppose that we have estimated W and centroids H®
on a training set and want to classify a new trial X* not used for
training. We estimate the latent time series for the new trial by
projection using W. The standard least squares estimate is H* =
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(WTW)~'WTX*. The distance to each estimated centroid is
d(H",H®) = |[H* —H®||r. The new observation is then classified
according to the minimum distance.

2.5. Visual Category Localizer Experiment
2.5.1. Experimental Setup

We applied SCOTS to a visual category localizer experiment
where human subjects were shown a sequence of images, each
from one of several categories. Neural activity in nine subjects
was recorded using iEEG while the images were shown. Re-
sults from this experiment and details regarding data collection
and pre-processing were previously published in Ghuman et al.
(2014). We also analyzed three subjects for whom neural activity
was recorded using MEG.

For iEEG subjects, the number of recording channels used
ranged from 22 to 144. The area of greatest interest was the
ventral temporal cortex. For subjects with fewer than 20 ventral
temporal recording channels we used all recording channels
from the experiment. Details for the recordings are shown in
Table 2.5.1. Two of the subjects, P2 and P4, participated in two
sessions each, labeled (a) and (b) respectively. For each category
there were 30 images. Each image was shown a baseline of twice,
with a random of chance of being repeated on the following trial.
This repeat probability was either 1/3 or 1/6 depending on the
subject. The sets of images of faces and bodies were each 50%
male.

In each trial in each session, the image was presented for
900 ms with 900 ms inter-trial interval during which a fixation
cross was presented at the center of the screen (approximately
10° x 10° of visual angle). Participants were instructed to press
a button on a button box when an image was repeated (1-back).

For MEG subjects, analysis was performed in source space in
the left hemisphere, with the number of vertices ranging from
3,606 to 3,853. Subjects were shown images from four cat-
egories: words, houses, hammers, and false fonts. For each
category there were 30 images. Each image was shown a base-
line of three times with a 1/6 chance of being repeated on the
following trial, for a total of 420 trials. The images of faces were
50% male. In each trial the image was presented for 300 ms
with a 1.5 s inter-trial interval.

Each of the iEEG subjects were patients with pharmacolog-
ically intractable epilepsy that had intracranial electrodes im-
planted for the localization of epileptic foci. Ages of the iIEEG
subjects ranged from 19 to 56 with five females. The MEG
subjects were healthy control participants. Ages of the MEG
subjects ranged from 19 to 27 with one female. All patients
and subjects provided written informed consent to experimental
protocols approved by the University of Pittsburgh’s Institutional
Review Board.

2.5.2. MEG and iEEG Data Pre-Processing

Local field potentials were recorded from iEEG electrodes
via a GrapeVine Neural Interface (Ripple, LLC) with 1 kHz
sampling rate. Data was subsequently band pass filtered from
0.1-115 Hz using fourth order butter-worth filters, and notch
filtered at 60/120/180 Hz using the FieldTrip toolbox (Oosten-
veld et al., 2011). Data was then epoched from 500 ms pre to

1000 ms post-stimulus presentation. iEEG electrodes were local-
ized to individual subject anatomy via post operative MRIs or
CT scans using the brainstorm MATLAB toolbox (Tadel et al.,
2011). Surface electrodes were projected to the nearest vertex
on the pre-operative MRI to correct for brain shift (Hermes et al.,
2010). Trials with outlying neural activity were removed (see
Appendix B).

MEG data were collected on an Elekta Neuromag Vectorview
system (Elekta Oy, Helsinki, Finland) with 204 gradiometers
and 102 magnetometers arranged in orthogonal triplets. Data
were collected at 1000 kHz, then subsquently pre-processed
with Signal-Space Projection operators tailored to eliminate en-
vironmental artifacts based on empty room data (Tesche et al.,
1995; Uusitalo and Ilmoniemi, 1997). Data were then band-pass
filtered from 1-50 Hz (5 Hz low-pass transition band, 3-sample
high-pass transition band and 8917 sample filter length) then
downsampled to 250 Hz using the MNE-C toolbox (Gramfort
et al., 2014). Finally, data were pre-processed via temporal
source space separation (10-second buffer length, 0.98 correla-
tion limit) (Taulu and Hari, 2009; Taulu and Simola, 2006) using
Elekta MaxFilter software. Data were then epoched from -500
to 1000 ms around stimulus presentations.

2.5.3. Training and Testing

For each subject, experimental trials were split into training
and testing sets. The training sets consisted of 36 randomly cho-
sen trials from each image category. The testing sets consisted
of all other trials. Sparse SNMF was applied only to the training
set for each subject. Trials in the test set for each subject were
projected onto the corresponding estimated weight matrix W, as
in Section 2.4.

2.5.4. Choosing Tuning Parameters

Applying sparse SNMF required choosing a number of clus-
ters and a sparsity penalty parameter for each subject. For each
iEEG subject we solved the sparse SNMF problem for a grid of
k and A values. The best parameters were chosen to balance two
criteria: (i) increase in reconstruction loss when decreasing k
and/or increasing A, and (ii) stability of cluster estimates under
bootstrapping of training trials. The first criterion is analogous
to the scree plot elbow rule for choosing dimension in PCA. To
reduce computational burden for MEG subjects, a common k
was chosen based on singular values of the data matrices.

Applying wavelet nearest shrunken centroids required choos-
ing penalty mixture « and cluster sparsity parameters A, ..., Ag.
The cluster sparsity parameters were chosen so that category
centroids fell within a 90% confidence band for the overall mean
in the pre-stimulus LFP. The confidence band for the overall
mean was estimated using a bootstrap sample of the training set,
without stratifying by category. The penalty mixture @ was set
to 0.9, with results robust to the choice of the parameter. We
could alternatively select 4y, . .., Ax via cross validation within
the training set, but we prefer using the pre-stimulus as a control
because it tends to give sparser, and therefore more interpretable,
models.
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Image Categories P1 | P2(a) | P2(b) | P3 | P4(a) | P4(b) | P5 P6 P7 P8 P9
Faces X X X X X X X X X X X
Bodies X X X X X X X X X X X
Words X X X X X X X X X X X
Scrambled Faces X X X X X X X X X X X
Houses X X X X X X X X X X
Hammers X X X X X X X X X X
Animals X
Pseudowords X X

Letter strings X X

Repeat Probability | 1/3 1/6 1/6 1/3 1/3 1/3 /3 | 13 | 13 | 1/3 | 1/3
# Trials Total 476 | 483 484 | 476 | 476 477 | 473 | 469 | 480 | 475 | 556
# Channels 118 118 118 104 22 22 118 | 32 54 | 144 | 138

Table 1: Protocol Details: Each subject was shown images from several categories. Here we indicate the categories presented to each iEEG subject, P1-P9, with (a)
and (b) indicating repeats of the experiment with the same subject. The listed repeat probability is the proportion of trials for which the same image was presented
twice in a row, to which the subject responded with a button-press. The number of channels is the number of recording locations we analyzed from each subject.

2.5.5. Single Category d’

Although we perform multi-way classification, only a subset
of categories may be possible to classify. This is because the
recorded areas of the brain are likely only involved in processing
particular types of visual stimuli; our ability to accurately clas-
sify experimental trials is indicative of which stimuli the area
is involved in processing. Selective classification accuracy is
therefore of scientific interest rather than a statistical failing.

We account for category-specific classifiability by measuring
sensitivity, the proportion of trials from a given category that
are accurately labeled, and false positive rate, the proportion of
trials from all other categories that are labeled as being from the
given category, separately for each category. For each category
we assess sensitivity and false positive rate using a single index,
d’, related to the Gaussian inverse CDF ®~! by

d = (D‘l(sensitivity) — @ !(false positive rate). 3)

We use d’ as a measure of separation because it tends to be rea-
sonably insensitive to classification cutoff; indeed, under certain
assumptions it is invariant to cutoff (Macmillan and Creelman,
2004). This allows us to make reasonable comparisons even
between classifiers tuned for different trade-offs between sensi-
tivity and false positive rate.

2.5.6. Single Cluster Classification

As another test of localized information content, we assessed
modified classifiers that were restricted to using only one cluster
at a time. These modified classifiers differ only in the final stage
— for each cluster k we can calculate d(HJ, Hf), the distance
from the projection for the new trial to the shrunken centroid for
category g restricted to cluster k. This helps to summarize the
discriminating information present in each cluster.

2.5.7. Permutation Tests for Baseline Category Deviation and
Classification Performance

We used permutation tests to select clusters that showed be-

havior unique to a particular category as estimated by wavelet

nearest shrunken centroids. We assessed the deviation from con-
sensus behavior in each cluster £ and category g by finding the
maximum ratio py . of the category centroid’s deviation from the
overall mean across time to the time-varying bootstrap standard
error of the overall mean:

H{, - Hy,
pk,g = m;’:lX W (4)
This statistic both accounts for differing baseline variation and
the intuition that behavior of interest may be short in duration.
Deviation size was assessed by refitting wavelet nearest shrunken
centroids for 200 random shuffies of the training labels.

We used two selection schemes: the first controlling family-
wise error (FWER) across clusters and the second controlling
false discovery rate (FDR) across clusters. For each randomly
trained model, we calculated the overall maximum deviation
ratio pmax = Maxg g Pr¢ and the cluster-wise maximum deviation
ratios pxmax = Maxg Pk .. The overall maximum deviation ratios
form a distribution for the largest observed deviation under
a global null hypothesis that the true deviation in the mean
is zero for all clusters and categories. We then select cluster-
category pairs from the non-permuted results with a deviation
ratio exceeding the 95" percentile of the permutation distribution
to get FWER control. The cluster-wise maximum deviation
ratios are used to test each cluster separately. We can calculate p-
values from the permutation distribution for each cluster and use
the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995) to get cluster selections with FDR control.

We also used permutation tests to assess all-cluster classifica-
tion performance. These permutation tests are used to account
for the bias that results from picking the best classification per-
formance across all categories. We repeated the permutation
test for single-cluster classification, but for each permutation we
used the maximum d” across all cluster-category pairs, restrict-
ing to cases where sensitivity was at least 10%. This restriction
removed cases where d” was infinite due to lack of false positives
but classification was not meaningfully successful because of
the very small sensitivity. In both cases permutation tests were
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based on refitting wavelet nearest shrunken centroids under 200
random shuffles of category labels.

One caveat for the permutation test we used is that the classifi-
cation performances for different categories are not independent
within each subject. In fact, sensitivity to one category will tend
to shrink the false positive rate for other categories, resulting in
positive correlation across categories. The permutation test is
for the global null hypothesis that none of the categories have
sensitivity and does not establish the distribution of the k" best
d’ under the null hypothesis that there are k — 1 truly sensitive
categories for k # 1. As a result, comparison to permutation
test thresholds is only a heuristic assessment for lower ranked
categories. This is a generic problem for all permutation tests.

2.5.8. Model Comparisons

We compared our method’s predictive performance on iEEG
experiments to two similar procedures. The first procedure is a
version of SCOTS with tuning parameters for wavelet nearest
shrunken centroids chosen by cross validation (see Section 2.5.4).
The second procedure builds a prototype for each class by taking
the within-class mean, using neither dimensionality reduction
nor centroid shrinkage. For MEG, the cross validated version of
SCOTS is replaced with a shrinkage-free version due to compu-
tational constraints. The area under the curve (AUC) for each
category is calculated by adjusting a classification threshold
based on the difference in the distance from the observation to
the category centroid to the minimum such distance across all
categories.

3. Results

3.1. Overlapping clusters in subjects

We applied sparse SNMF, described in Section 2.2, to the
training set for each subject to find overlapping clusters of record-
ing channels with shared behavior and cluster-level time series
for each experimental trial. The cluster structure for one of
the iEEG subjects, P6, is shown in Figure 2. These recording
channels are split between the left basal temporal area and the
left temporal pole. The number of clusters and sparsity penalty
were chosen as in Section 2.5.4. This resulted in 19 clusters
for 138 channels in P9, 10 clusters for 144 channels in P8, 11
clusters for 54 channels in P7, 9 clusters for 32 channels in P6,
20 clusters for 118 channels in P5, 9 clusters for 22 channels
in P4, 17 clusters for 104 channels in P3, 20 clusters for 118
channels in P2, and 20 clusters for 118 channels in P1. All MEG
subjects had 40 clusters.

The clusters above came from applying sparse SNMF to time
series that included both pre-stimulus and post-stimulus time
segments and used a shared decomposition across all categories.
We also considered separately modeling the cluster structure
for each stimulus category and shorter time segments but found
that the results were consistent across category and time. This
suggests that the cluster structure was driven by fixed spatial re-
lationships rather than as a response to the experimental stimuli.

Subject P6 Cluster Structure

\ J- Weight
] N..
1.0

0.5

Cluster Number
B

| =

15 25 30
Channel

Figure 2: P6 Cluster Structure: This plot shows basis coefficients mapping
recording channels to clusters for subject P6. The first 28 recording channels are
located in the left basal temporal area, and the last four are located in the left
temporal pole. Channels 1-14 and 15-28 run in parallel on high density strips
running from lateral to medial on ventral temporal cortex (see Figure 5). This
structure is reflected in the cluster weights.

’ Sub;j. \ Categories

P1 Faces, Scrambled Faces

P2(a) | X

P2(b) | Houses, Scrambled Faces

P3 X

P4(a) Faces, Words, Scrambled Faces, Houses,
Bodies, Hammers

P4(b) | Faces, Words, Scrambled Faces, Houses

P5 Words, Scrambled Faces
Faces, Words, Scrambled Faces, Bodies,

P6 Hammers
P7 Words
Faces, Words, Scrambled Faces, Houses,
P8 .
Bodies
P9 Faces, Words, Scrambled Faces, Houses,
Hammers

Table 2: NSC-Selected Category Sensitivity: For each subject, we use NSC to
select clusters with category-specific neural activity. Here we list for each subject
the categories with sensitive clusters detected by NSC with false discovery rate
(FDR) control. Bold indicates categories that were also selected with family-wise
error rate (FWER) control.

3.2. Localizing effects

After applying sparse SNMF to obtain cluster-level time se-
ries for each trial, we applied wavelet nearest shrunken centroids,
described in Section 2.3. This method yields category-specific
centroids describing average behavior in each cluster across all
trials for the respective category. The deviations of the esti-
mated centroids for P6 from the means from selected categories
across all categories are shown as an example in Figure 3. The
estimated category sensitivity for each subject based on NSC
is shown in Table 3.2. These selected locations, chosen as de-
scribed in Section 2.5.7, are candidates for having category
sensitivity.

3.3. Classification

For confirmation of the detected differences between cate-
gories in Section 3.2, we used the estimated centroids to attempt
to classify a held out test set of trials.
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Figure 3: P6 Cluster Centroids: This plot shows the centroids of clusters with detected category sensitivity for subject P6. Dashed vertical lines indicate stimulus
onset 500 ms into the trial recording. Gray bands in each plot indicate a time-varying 90% confidence region for the overall mean. Category sensitivity is assessed
by comparing a category’s deviation from the mean at each time point to the width of the confidence band. The large deviations in clusters 1 and 6 suggest face
sensitivity in the corresponding electrodes. Clusters 1, 3 and 5 show apparent word sensitivity, and clusters 4 and 5 show apparent sensitivity to scrambled faces.

3.3.1. All-cluster Classification in iEEG

We first consider classifying test set trials using centroids
estimated for all clusters. This method of classification is ex-
plained in Section 2.4. Accuracy was assessed using permuta-
tion tests described in Section 2.5.7. We compare the sensitivity
and false positive rate for each category to the sensitivity, false
positive rate trade-off corresponding to the 957 percentile of
the d’ permutation distribution. The results of the permutation
tests for each subject and candidates for category sensitivity
are shown in Figure 4. Aggregating across iEEG subjects, 21
of the 23 FWER-controlled candidates and 29 of the 32 FDR-
controlled candidates for category sensitivity were corroborated
by all-cluster classification success. The corroborated category
sensitivity for P6 is shown in Figure 5.

3.3.2. Single-cluster Classification in iEEG

We also wish to attribute classification success to specific
clusters. We repeated the evaluation in Section 3.3.1 without ag-
gregating distance for classification across clusters, as described
in Section 2.5.6. Each cluster then had its own classification
score for each category. Table 3.3.2 shows for each iEEG sub-
ject the proportion of candidate category-cluster pairs that were
corroborated by single-cluster classification and the categories
for which there is corroborated sensitivity. Aggregating across
iEEG subjects, we find that 36 of the 44 FWER-controlled can-
didate category-cluster pairs and 15 of the additional 31 FDR-
controlled candidate category-cluster pairs were corroborated.

3.3.3. Classification in MEG

We applied both all-cluster and single-cluster classification to
three MEG subjects. Accuracy was assessed using permutation
tests described in Section 2.5.7. The results of the permutation
tests for each subject are shown in Figure 8. We find that 11

Subj. | NSC-Selected Categories Prop. of | Prop. of
with Successful Classfication FWER FDR

P1 Faces, Scram. Faces 0/0 2/2

P2(b) | X 0/0 0/2
Faces, Words, Scram. Faces,

Pa(a) Houses, Bodies, Hammers 13/14 18/22

P4(b) | Faces, Words, Scram. Faces 5/7 7/9

P5 Words 1/1 1/4

P6 Faces, Words, Scram. Faces 6/7 8/12

P7 X 0/1 0/2
Faces, Words, Scram. Faces,

P8 Houses, Bodies 6/6 »
Faces, Words, Scram. Faces,

P9 Houses, Hammers /8 8/15

Table 3: Single-Cluster Classification Results for NSC-Selected Sensitivity:
For each subject and each cluster selected by NSC with either FWER or FDR
control, we test whether each cluster can be used to independently classify
trials on its own (Section 2.5.6). We evaluate success using a permutation test
(Section 2.5.7), comparing cluster-specific d’ to the best d” when trial labels are
shuffled, excluding cases with sensitivity under 10%. Categories with significant
single-cluster classification are listed, with bold indicating that the cluster was
originally selected by NSC with FWER control. We also report proportions
of single-cluster classification significance among clusters selected by NSC,
separated by whether the NSC selection was based on FDR or FWER control,
showing 82% overall verification after FWER-controlled selection and 68%
verification among clusters selected with FDR-control but not FWER-control.


https://doi.org/10.1101/733279
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/733279; this version posted August 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

P1 Category ROC P2(b) Category ROC

P4(a) Category ROC

P4(b) Category ROC P5 Category ROC

Sensitivity
o o =
o ~ o
o (&) o
Sensitivity
o o =
o ~ o
o (4] o
Sensitivity
o o =
0 ~ o
o (4] o

o
N
o
=}
N
a
\

=}
N
a

o
o
S]
o
o
S]
¥
\
o
o
S]

Sensitivity
o o =
o ~ o
o (&) o
Sensitivity
o o =
o ~ o
o (4] o

o
N
o
o
N
a

o
=}
S

005 010 015 0.20 01
False Positive Rate

P7 Category ROC

01 02 03
False Positive Rate

P6 Category ROC

02 03 00 01 02 03 01 02 03
False Positive Rate

P8 Category ROC

False Positive Rate False Positive Rate

P9 Category ROC

-
o
=}
g
o
=}
-
o
S

[}

o
3
a
o
3
al
o
3
a

Sensitivity
o
3
Sensitivity
o
3
Sensitivity
o
3

<
N
a
<
N}
a
<
N}
a

<
o
S
<
o
=}
<
o
S

1004 o Type
L ]
L Faces

o
~
al

© Words

b Scrambled

Sensitivity
o
3

Hammers

\
\
\
\
<
N}
a
\
\
\
°

Bodies

- ® Houses

o
o
S]

a

01 02 03 00 01 02 03 01
False Positive Rate False Positive Rate

False Positive Rate

02 01 02 Permuted
False Positive Rate

Figure 4: Permutation Test for All-Cluster Classification in iEEG: For each iEEG subject we evaluate six-way or seven-way classification success on the test set using
a permutation test (Section 2.5.7). For each label shuffle, we find the best single-category d’. The permutation distribution is plotted along with the solid black line
indicating the false positive rate, sensitivity trade-off corresponding to the 95" percentile of the @’ permutation distribution. We evaluate classification results for
categories selected by NSC with FDR control and see 29 of the 32 selected category-subject pairs out-perform the 95% cutoff for the corresponding subject.

of the 12 categories across the three subjects have successful
classification. Single-cluster classification found 27 cluster-
category sensitive pairs in S1, 21 in S3 and 8 in S2. Figure 6
highlights several anatomical locations of category sensitivity
in the three subjects, with corresponding centroids shown in
Figure 7. These clusters correspond to spatially continuous
regions ranging from 308 to 587 vertices.

S1 demonstrated two distinct clusters of word-sensitive ver-
tices. The first peaked early, around 135 ms post-stimulus, and
was concentrated around early visual cortices in the occipital
lobe. The second cluster was slightly more anterior, in ven-
tral temporal cortex and inferior temporal gyrus, and peaked
at 240 ms. In S2, we also found two distinct clusters of word-
sensitive vertices. One cluster concentrated primarily on ventral
temporal cortex demonstrated relatively early activity for words,
peaking at 275 ms. The other word-sensitive cluster was primar-
ily concentrated on the left superior temporal sulcus, angular
gyrus and ventral somatosensory cortex. The activity of these
regions was later than that of the first cluster, peaking around
375 ms. Finally, S3 demonstrated a highly category-discriminant
cluster of vertices encompassing several ventral visual stream
areas including early visual cortex and ventral temporal cortex.
The temporal dynamics of this cluster contained several oscil-
lations of object discriminability for three of the four object
categories.

3.3.4. Results of Model Comparisons

Figure 9 compares classification in iEEG subjects across mod-
els (see Section 2.5.8). Our goal is to understand how tuning for
interpretability, and its corresponding benefits for learning about
underlying neural processing, affects predictive performance.
We find that pre-stimulus based tuning shows comparable perfor-
mance to using a prototype without dimensionality reduction and

shrinkage, while cross validation provides the best predictive per-
formance. Figure 10 compares classification in MEG subjects
and finds simimilar predictive performance using SCOTS to
classification without shrinkage after dimensionality reduction
and classification using neither shrinkage nor dimensionality
reduction.

4. Discussion

One fundamental task in neuroscience is mapping brain func-
tion, both in terms of the specialization of different brain regions
and their temporal latency. In this paper we proposed SCOTS,
a method for finding neural activity specific to particular cat-
egories of visual stimuli that can be interpreted both spatially
and temporally. Our model pairs two major components that are
new to the problem of localizing neural activity: overlapping
clustering as a means of data-driven aggregation of neural in-
formation and dimensionality reduction, and grouped nearest
shrunken centroids in the wavelet domain for category sensitivity
based cluster and time segment selection. These components
are important for avoiding the problem of search inherent to
methods currently in use. We also emphasize the use of wavelets
to adjust both the sparse SNMF and grouped NSC to time series.

Our results show that the proposed method is successful, with
eight cases of category sensitivity validated across six iEEG sub-
jects and 14 cases of clusters with validated category sensitivity.
Subjects P6, P1, P2 and P3 all demonstrated face sensitivity
in the fusiform gyrus, which has previously been implicated in
processing face forms (Kanwisher et al., 1997). P4(b) demon-
strates face sensitivity in the right homologue of this region. P6
also demonstrated word sensitivity in the left fusiform gyrus,
consistent with previous fMRI work on word processing in the
ventral stream (McCandliss et al., 2003).
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Cluster 1 Cluster 2 Cluster 3

— 100

Figure 5: Anatomical locations of category-sensitive regions in P6: Circles indicate electrodes analyzed. The color of the circle indicates relative strength of
membership in the given cluster, i.e. the magnitude of the coefficient in W (Section 2.2) relative to the highest magnitude coefficient for that cluster. Gray circles are
electrodes that are not part of a category-sensitive cluster. As an example, cluster 6 is centered in the fusiform gyrus. Results from Figure 3 indicate face sensitivity in
this area.

S3 Cluster 40 S2 Cluster 27 S2 Cluster 13 S1 Cluster 26 S1 Cluster 25

Figure 6: Anatomical locations of category-sensitive regions in MEG subjects: Each column shows an example category-sensitive region from lateral (top) and
ventral (bottom) perspectives. Color indicates strength of cluster membership i.e. the magnitude of the coefficient in W (Section 2.2) relative to the highest magnitude
coefficient in the cluster. As an example, cluster 27 in S2 is located in ventral temporal cortex and, from Figure 7, displays word sensitivity
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Figure 7: MEG Cluster Centroids: This plot shows the centroids of clusters with detected category sensitivity for MEG subjects. Dashed vertical lines indicate
stimulus onset 500 ms into the trial recording. Gray bands in each plot indicate a time-varying 90% confidence region for the overall mean. Category sensitivity is
assessed by comparing a category’s deviation from the mean at each time point to the width of the confidence band.
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Figure 8: Permutation Test for All-Cluster Classification in MEG: For each MEG subject we evaluate four-way classification success on the test set using a permutation
test (Section 2.5.7). For each label shuffle, we find the best single-category d’. The permutation distribution is plotted along with the solid black line indicating the
false positive, sensitivity trade-off corresponding to the 95" percentile of the permutation distribution. We find that 11 of the 12 category-subject pairs have successful
classification.
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Figure 9: Category-wise AUC for Method Variants in iEEG: This figure compares category-wise ROC trade-offs in iEEG for SCOTS to a version with NSC penalty
weights chosen by cross validation (CV) and a null form without either dimensionality reduction or regularization (MEANS). The results for SCOTS show comparable

predictive performance even though it optimizes for interpretability.
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Figure 10: Category-wise AUC for Method Variants in MEG: We compare category-wise ROC trade-offs in MEG for SCOTS to a reduced form with only sparse
SNMF (NOSHRINK) and a null form without either dimensionality reduction or regularization (MEANS). SCOTS optimizes for interpretability with little loss of

predictive performance.

In MEG subjects, the temporal dynamics of their category-
discriminant responses often varied as expected with their
anatomical location. S1 and S3 both displayed evidence of
hierarchical visual processing (Grill-Spector and Weiner, 2014):
early visual clusters respond earlier than ventral temporal clus-
ters in S1, and in S3 a highly category-discriminant cluster of
vertices across several ventral visual stream areas includes early
visual cortex and ventral temporal cortex. In S2, early activity
in the ventral temporal cortex in response to words was also
consistent with previously noted importance of regions within
ventral temporal cortex to visual word processing (McCandliss
et al., 2003). Later activity concentrated on the left superior
temporal sulcus, angular gyrus and ventral somatosensory cortex
may reflect post-lexical processing of word stimuli (Fiez and
Petersen, 1998).

Sparse SNMF and NSC are also related to other methods of
multivariate analysis. Our adjustment to NMF can be seen as
a structured form of principal component analysis (PCA) - in
fact the SVD-based initialization we use is equivalent to PCA.
Our use of sparsity in SNMF allows us to better interpret com-
ponents as locally co-occurring neural activity across recording
channels. While PCA describes statistically independent modes
of variation in the data, our use of sparse SNMF does not require
statistical independence. This leaves open the question of how
these separate components interact with each other. Further in-
vestigation could reveal dynamic interactions between different
brain regions that contribute to the processing of different object
categories.

Nearest shrunken centroids is also a structured version of
other popular classification methods. When Euclidean distance
is used and centroids are not shrunken, this incorporates assump-
tions from both naive Bayes and linear discriminant analysis
(LDA), i.e. observations are normally distributed with covariance
identical between classes and all features mutually independent.
While this is a highly unreasonable assumption for observations
in a time series, our wavelet transformation shifts the implicit in-
dependence assumption to the wavelet domain. A natural avenue

for future investigation would be to weaken these assumptions
for greater flexibility, though this may also require experiments
with greater numbers of trials.

It is also important to note that this approach examines only
category sensitivity found in the time domain. Similar meth-
ods could be used to find information carried in the frequency
domain. This oscillatory behavior can be characterized using a
short-time Fourier transform so that each trial is associated with
a nonnegative tensor indexed by time, frequency and recording
channel. Adapting SCOTS to this data could reveal regions
in time-frequency space with class-specific behavior or find
class-specific spectral signatures that emerge at varying tempo-
ral latencies.

In this paper we demonstrate the application of SCOTS to
iEEG and MEG data, and in principle similar methodology could
be applied for other human electrophysiological data, including
scalp EEG. One of the primary differences between iEEG and
scalp EEG/MEQG is the spatial configuration of recording loca-
tions — both scalp EEG and MEG offer whole brain coverage
with more uniform coverage density compared to iEEG. As such,
the relatively sharp edges in clusters induced by the lasso penalty
may be unrealistic. To instead get tapered cluster edges, using
an elastic net penalty (combining both L; and L, terms) may be
preferred. Another option is a graph-based penalty, encouraging
similarity in loadings based on spatial distance.

We also advocate more generally for dimensionality reduc-
tion based analysis techniques as in Cunningham and Yu (2014).
These techniques provide a natural domain for analyzing dynam-
ics across a recorded system. In our case, overlapping clustering
gives us a way to handle shared behavior across recording chan-
nels and separate distinct sources within recording channels
where necessary. The clusters we get are then more relevant to
distinguishing responses to stimuli.

Clusters or factors from dimensionality reduction should also
be useful for other tasks. One challenge with intracranial EEG is
the idiosyncratic placement of electrodes across subjects, which
makes it difficult to compare results across subjects. Clusters
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or factors derived from dimensionality reduction could serve
as a way to bridge this gap between subjects. For example,
one could find clusters of neural activity that behave similarly
across subjects. If these clusters are localized to nearby regions
of space across subjects, they may be thought of as equivalent,
offering a way to pool information in separate subjects. Further,
defining equivalent areas in cluster space would likely be more
robust than using individual electrodes.
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Appendix A. Optimization Procedure

Appendix A.1. SNMF

We use alternating minimization, summarized in Algorithm 1, to reach a local minimum of (1), which is a non-convex minimization
problem. We alternate between updating estimates for W and Fy,...,F,. Updating each F; requires solving a series of ridge
regressions in constrained form. This can be done using the Frank-Wolfe method. The update for W is a nonnegative lasso problem.
This can be solved using proximal gradient descent (Hastie et al., 2015) (also known as iterative shrinkage-thresholding (Beck and
Teboulle, 2009)), with steps given by the proximal function

_ _w- At w 2> A, A
prox,(w) = 8 y(w), = 0 w < At (A.1)

Algorithm 1 Sparse Semi-NMF with Wavelets

1. procedure SWSNMF(X{,...,X,, K, 1, D)

2: X « X)D,...,X,D]

3: F,W « SVD(X) > see Egs. A.2

4: repeat

5: W « ProxGrad(X, W, F, 1)

6: F « FrankWolfe(X, W, K)

7: J « Objective(X,W,F, 1, K)

8: until J converges

9: H « [F,®7,...,F,®7]

10: return W, H

We initialize estimates using the singular value decomposition (SVD). We first horizontally concatenate trials, writing X =

[X;D,...,X,®]. Then using A, to denote the first £ rows and m columns of a matrix A, we set:
UzV! =X,
Wo = (UZ)p. 41, (A2)

[Fi.....F,] =Fo = VI .

Note that column signs of U and V in the SVD can be arbitrary, and we choose signs so that the column sums of W are each positive,
i.e. to maximize cluster weights after setting negative values to 0.

Appendix A.2. WNSC

This is solved using alternating minimization in each F¢ and F, as summarized in Algorithm 2. We perform minimization in F$
using the R SGL package (Simon et al., 2013). The minimizer in F is a pointwise median across category centroids.
Appendix B. Outlier Removal

Outlying trials were detected using a two-step procedure. First, for each trial the average time signal across all channels was
calculated. Second, for each trial the maximum absolute signal across time was found and z-scored with respect to the distribution of
such maximums across trials. All trials with a z-score above 4 were removed.
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Algorithm 2 Wavelet Nearest Shrunken Centroids

1. procedure WNSC(H,,...,H,,A, D, @)
2: forg=1:Gdo

3: F8 « ni, Zg(i):g H,(D

4: for (k,t)in (1: K)x (1:T) do

5 Fy, < Median(F,....,F{)
6: repeat

7 forg=1:Gdo

8: ¢ « SGL(F* - F,A, )

9: for (k,tH)in (1: K)x(1:T) do
10: Fi, « Median(f],,....f
11:  until F converges

122 He« FoT

13: forg=1:Gdo

14: HS « 8T

15: return A, H', ... H?
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Appendix C. Additional Results

A representative choice of figures is included in the results. Here we present all cluster centroids and corresponding cluster
locations with NSC-selected sensitivity verified by out of sample classification.

Appendix C.1. iEEG Centroids

Subject P1 Cluster Centroids — Deviation from Mean Subject P5 Cluster Centroids — Deviation from Mean
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Appendix C.2. iEEG Cluster Locations
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