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Abstract   
Is the mechanical unfolding of proteins just a technological feat applicable only to synthetic 

preparations or is it applicable to real biological samples? Here, we describe all the steps 
necessary to deal with native membranes, from the isolation of the membrane of single cells, 
to the characterization and identification of the embedded membrane proteins. To do so, we 
combined AFM-based single-molecule force spectroscopy (SMFS) with an automatic pattern 
classification and the cross-matching of proteomic databases (Uniprot, PDB) to identify the 
unfolded proteins.  We applied this method to four cell types: hippocampal and dorsal root 
ganglia neurons, rod outer segments and disks, and we were able to classify the unfolding of 
5-10% of their total content of membrane proteins. The ability to mechanically probe proteins 
in their native environment enables the direct mechanical phenotyping of the membrane 
proteins from different cell types. 

 
 
Introduction    
Much of what we know about the mechanics of cell membranes1–3 and polymers4,5 we owe 

it to atomic force microscopy (AFM) and to its ability to work at the nanoscale. Single-molecule 
force spectroscopy (SMFS) in particular uses an AFM to apply a force able to unfold directly 
a single molecule or a protein. The obtained force-distance (F-D) curves encode the unfolding 
pathway of the molecule, allowing the identification of folded and unfolded regions from the 
analysis of the sequence of force peaks8.   

SMFS has been mostly used to study the mechanics of purified proteins in solution or 
reconstituted in a lipid bilayer. However, the information that is possible to extrapolate from 
the F-D curves (e.g. mechanical stability9,10, structural heterogeneity11) depends on the 
physical and chemical properties of the cell membrane12,13, therefore it is desirable  to unfold 
membrane proteins in their original membrane. 

   The obvious questions are:  is the mechanical unfolding of proteins just a technological 
feat applicable only to synthetic preparations or is it applicable to real biological samples? If 
this is technically feasible, how can we identify the molecular structure of the unfolded protein 
among the plethora of native membrane proteins? What additional information can we get? 

In the present manuscript we describe a methodology, both experimental and theoretical, 
to unfold and recognize membrane proteins obtained from native cell membranes (Fig. 1a). 
Firstly, we developed a technique to extract the membrane from single cells. Secondly, by 
using AFM-based SMFS we obtained hundreds of thousands of F-d curves in experiments 
using real biological membranes. Thirdly, we developed a filtering and clustering procedure 
based on pattern recognition that is able to detect clusters of similar unfolding curves among 
the thousands of F-d curves. Fourthly, we implemented a Bayesian meta-analysis of mass 
spectrometry libraries that allowed us to identify the candidate proteins. This Bayesian 
identification is further refined by cross-analyzing additional databases so to have very few 
candidates for the obtained clusters of F-d curves. We focused on native membrane proteins 
from hippocampal neurons, dorsal root ganglia (DRG) neurons, and the plasma and disc 
membrane of rod outer segments, which represent the only native sample that were 
approached in the past14. We validate the identification using the known unfolding of two 
proteins from rod OSs: cyclic nucleotide gated (CNG) channels12 and rhodopsin molecules14.  
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Besides the identification, the proposed methodology generates as by-product the 
unfolding signature of a given cell type which could be used for phenotyping cells in 
screening/biomedical applications.  

 
 
Results    

 

 
 
Figure 1 | Experimental method for membrane isolation and protein unfolding. a, 

workflow of the method in four steps: isolation of the apical membrane of single cells; AFM-
based protein unfolding of native membrane proteins; identification of the persistent patterns 
of unfolding and generation of the mechanical phenotype; Bayesian protein identification with 
mass spectrometry, Uniprot and PDB. b, side view and c, top view of the cell culture and the 
triangular coverslip approaching the target cell (red arrow) to be unroofed. d, positioning of 
the AFM tip in the region of unroofing. e, AFM topography of the isolated cell membrane with 
profile. f, cartoon of the process that leads to SMFS on native membranes. Examples of F-D 
curves of g, no binding events; h, membrane tethers that generate constant viscous force 
during retraction; i, sawtooth-like patterns, typical sign of the unfolding of a protein.  

 
Unfolding proteins from isolated cell membranes. 
In order  to study the unfolding of membrane proteins from their native environment, we 

optimized an unroofing method15 to isolate the apical part of cell membranes. We sandwiched 
a single cell or neuron between two glass plates, i.e. the culture coverslip and another 
mounted on the AFM itself (see Fig. 1b-c, triangular coverslip). The triangular coverslip is 
coated with polylysine which favors membrane adhesion. When adhesion is reached, a rapid 
separation of the plates driven by a loaded spring permits the isolation of the apical membrane 
of the cell (see Fig. 1d-e, Supplementary Fig. 1). The method is reliable (n=42, ~80% success 
rate) with cell types grown on coverslips (epithelial cells and neurons) and the fast unroofing 
obtained by the introduction of the spring. For cells that do not grow in culture, like freshly 
isolated rods, we broke the cell with a lateral flux of medium16.  
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After membrane isolation, we imaged the membrane with the AFM (Fig. 1f) and we verified 
that the isolated membrane patches have a height of 5-8 nm with rugosity in the order of 1nm. 
Then, we performed standard SMFS17 with non-functionalized tips collecting 301,654 curves 
on the hippocampal membrane, 213,468 curves on DRG, 386,128 on rods and 221,565 on 
rod discs. Of the obtained curves, the ~90% shows no binding (Fig. 1 g), ~5% shows plateau 
ascribable to membrane tethers18(Fig. 1 h), while the remaining >5% displays the common 
sawtooth-like shape that characterizes the unfolding of proteins17,19(Fig. 1 i). Indeed, the good 
F-D curves are constituted by a sequence of rising concave phases followed by vertical jumps: 
the rising phases fit the worm-like chain (WLC) model with a persistence length of ~0.4nm 
indicating the stretching of an unstructured aminoacidic chain20. In these cases the AFM tip 
binds non-specifically the underlying proteins (physisorption)8. 

 
Architecture of membrane proteins and performance of SMFS on native membranes.  
The Protein Data Bank (PDB) contains 8662 entries that are also annotated in the 

Orientation of Proteins in Membrane (OPM)21,22 providing the information of the position of 
each aminoacid relative to the cell membrane. The OPM resource provides useful statistics 
on the architecture of membrane proteins. We categorized all these 8662 proteins in eight 
different classes based on their architecture (Fig. 2 a, see Methods for details). 53% of the 
resolved membrane proteins are peripheral membrane proteins anchored to the membrane, 
of which the two thirds are located extracellularly, therefore not accessible to the AFM tip in 
our unroofed membrane patches (Fig.1). The intracellular peripheral membrane proteins can 
be unfolded only if they are tightly bounded to the membrane. The remaining 47% of these 
proteins are transmembrane proteins of which only the 7% have both the C- and the N-
terminus in the extracellular side. Of the eight classes shown in Fig. 2 a, five (I-V) have already 
been investigated in purified conditions12,14,17,23,24 and the obtained F-d curves display the 
usual sawtooth-like, i.e. the piece-wise WLC behavior (see also the Methods section) that is 
present also in our F-d curves. Class VIII is not expected to be present in our experiments as 
it cannot attach to a cantilever approaching from the intracellular side, while proteins of Class 
VI and VII can be pulled.  

 

 
 

Figure 2 | Membrane proteins architectures. a, eight classes of membrane proteins and 
their fraction over all resolved proteins present in the PDB-OPM. b, position of the termini 
relative to the center cell membrane along the axis perpendicular to the membrane.       

 
Proteins, when pulled, generate their own characteristic pattern of unfolding25. By visual 

inspection, we observed that our F-d curves contain recurrent patterns of unfolding similar to 
those obtained in purified conditions when pulled from the C or N-terminus17,23,24. However, 
the attachment to either the C and N-terminus and the resulting complete unfolding of a single 
protein is not the only possible event that occur in our experiments. On the basis of the 
architectural analysis and disposition of membrane proteins, we have considered three 
additional cases: i) the simultaneous attachment of two or more proteins to the tip26, ii) the 
incomplete unfolding of the attached protein, iii) the binding of the AFM tip to a loop of the 
protein instead of to a terminus end (Fig. 3 a-d).  
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i) Attachment of multiple proteins: the blind movements of the tip apex (radius of curvature 
10-20 nm) leads the tip landing in random configurations on the sample so that it could bind 
simultaneously to multiple proteins. Since the ratio between non-empty curves over all curves 
is ~ 5 %, it follows that the binding probability is also close to 5%: the probability to bind 2 
proteins at the same time is therefore its square (~0.2%). The attachment of multiple proteins 
occurs 20 times less frequently than the single attachment, and it will happen with 
combinations of different protein species and the resulting F-d curves will not have recurrent 
patterns. Furthermore, when the two chains are unfolded together the resulting spectrum is 
the sum of the two individual spectra: that causes deviations in the measured persistence 
length in the part of the curve where both chains are stretched (Supplementary Fig. 2). The 
simultaneous unfolding of multiple proteins is also characterized by the doubling of the peaks 
and evident changes in the range of the forces (Fig. 3 b and d, Supplementary Fig. 2).  

ii) Incomplete unfolding of the protein: if the tip prematurely detaches from the terminus, 
the resulting F-d curve will display a similar but shorter pattern compared to a complete 
unfolding (Fig. 3 c). The fraction of curves that prematurely detaches is reported to be ~23% 
of the fully unfolded proteins14, but this value could vary from protein to protein. 

ii) Binding of the AFM tip to a loop:  the unfolding from a loop is equivalent to the attachment 
of multiple proteins because the tip unfolds two chains at the same time. However, if the 
attachment of the cantilever tip to a loop occurs with some consistency - like to the C or the 
N-terminus - we will obtain a recurrent pattern with the features described in case i) (deviation 
of persistence length during intersection, 2 major levels of unfolding force).  

We have heuristics to identify these cases which are expected to be governed by 
stochasticity so that the corresponding F-d curves occur without recurrent patterns and 
therefore we focused on the detection of F-d curves with clear recurrent patterns. 

 
Finding the unfolding patterns of native membrane proteins. 

The ideal methodology to find the recurrent patterns of unfolding in the data coming from 
native membranes is an unsupervised procedure able to filter out the stochastic events, and 
to identify clusters of dense patterns of any shape without setting their number a priori. For 
this purpose, we designed a pattern classification pipeline combining the density peak 
clustering27 benchmarked for SMFS data28 with a final pattern recognition method used to 
determine the cluster population. This pipeline can detect statistically dense patterns of 
unfolding within large datasets with a desktop computer (see Methods section for further 
details). This pipeline does not require to pre-set neither the number of clusters to be identified 
nor the dimension of the F-d curves and can be applied without prior knowledge of the sample 
composition. The method is automatic and only partially unsupervised because it considers 
“good” patterns only those that are in agreement with the worm-like chain model that describes 
the stretching of a polymer made of aminoacids with few deviations. 

We found 15, 10, 8 and 5 clusters (Fig.3 i-l) in F-d curves from DRG, hippocampal neurons, 
rod outer segments and rod discs membranes respectively. We identified four major classes 
of clusters based on their unfolding behavior. Short curves with increasing forces: DRG12, 
H5, H8 and R3 shows repeated peaks (ΔLc 10-20 nm, distance between consecutive peaks) 
of increasing force that reach also 400 pN in force; these clusters resemble the unfolding 
behavior of tandem globular proteins4. Long and periodic curves: R6, H7 or DRG10 display 
periodic peaks of ~100 pN and with a ΔLc of 30-40 nm whose unfolding patterns are similar 
to the one of LacY19. Short curves: the majority of the identified clusters like DRG1, H3, R8 
and all clusters from the rod discs have curves less than 120 nm long and with constant or 
descending force peaks. The F-d curves of these clusters share various features with the 
opsin family proteins unfolded in purified conditions8, e.g. a conserved unfolding peak at the 
beginning (at contour length < 20 nm) revealing the initiation of the denaturation of the protein. 
We found also “unconventional” clusters such as DRG7, DRG8 and R7: DRG8 for instance 
shows initial high forces and variable peaks followed by a phase of more periodic low forces 
that recall the pattern of Fig. 2 d obtained in our model of unfolding from a loop/multiple-
unfolding, while cluster R7 has a conserved flat plateau at the end of the curve of unknown 
origin. 
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Figure 3 | Unfolding clusters in native cell membranes. Cartoon representing a, complete 
unfolding of a membrane protein and its F-D curve, b, simultaneous unfolding of two proteins 
and the balance of the forces involved. c, incomplete unfolding of a protein, d, unfolding from 
a loop and prototypical F-D curve of a multiple unfolding/ unfolding from a loop (other 
examples in Supplementary Fig. 2). Bright field image of e, dorsal root ganglia neuron; f 
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hippocampal neuron; g rot before unroofing (scale bar 15 µm). h, AFM error image of an 
isolated disc (scale bar 1 µm).  i, j, k, l, superimposition of clustered F-D curves plotted as 
density maps. m, n, o, p, unfolding phenotype in the compact representation of all the 
clustered F-D curves in maximum contour length vs. average unfolding force space (DRG: n 
= 1255; hippocampus: n = 563; rod: n = 1039; disc: n = 703). 

 
The clustering allows also a representation of the output of the experiments in a single and 

compact display (Fig. 3 m-p) defining what we call the ‘unfolding phenotype’ of a specific cell 
membrane, which is peculiar of the cell type. We assign to each F-D curve different 
parameters related to the geometrical features that are physically relevant (maximal contour 
length (Lc max), average unfolding force, average ΔLc, etc.). In this way it is possible visualize 
the ensemble of all the clusters obtained from a specific cellular membrane and find 
differences in data obtained from hippocampal (Fig. 3 m) and DRG neurons (Fig. 3 n), plasma 
membrane of outer segments (Fig. 3 o) and discs (Fig. 3 p) so that it is possible to obtain a 
phenotyping of membrane proteins of a given membrane patch (Supplementary Fig. 3). 

 
Bayesian identification of the unfolded patterns. 
Having identified clusters of F-d curves from native membranes, the next question is: which 

is the membrane protein whose unfolding corresponds to the identified clusters in Fig. 3? In 
order to answer to this question, we developed a Bayesian method providing a limited list of 
candidate proteins on the basis of the information present in data from Mass Spectrometry of 
the sample under investigation and general proteomic databases (ProteomeXchange for mass 
spectrometry, Uniprot, PDB). The Bayesian identification  (Fig. 4 a.) is based on two steps: 
firstly, the crossing of information from the cluster under investigation and the results of Mass 
Spectrometry analysis of the sample (hippocampal neurons, discs, etc.); secondly, a 
refinement of the preliminary candidates using additional information (structural and 
topological) present in the PDB and Uniprot databases. 

The first step leverages the contour length of the last peak of the clusters (Lcmax; Fig. 4 a 
I). The SMFS-literature contains 14 examples of unfolded membrane proteins allowing a 
comparison between the Lcmax of the measured F-d curves and the real length of the same 
protein completely stretched (Fig.4 b). On the basis of these experiments, we extrapolated the 
first likelihood function of our Bayesian inference (Fig. 4 c) suggesting that, on average, the 
Lcmax corresponds to 89% of the real length of the protein. By searching for proteins with this 
total length in the Mass Spectrometry data from the same samples29–31  and by using their 
abundance (Fig. 4 a II) we obtained a first list in which we could assign a probability to each 
candidate.  

The refinement to the first step (Fig. 4 a III) is obtained by combining the information on the 
molecular structure of the proteins (Fig. 4 a IV) extracted from the PDB and Uniprot. We 
created a table containing all the membrane proteins present in the Mass Spec data from the 
sample under investigation (hippocampal neurons, rods, etc.) containing their abundance, 
number of amino acids, subcellular location, orientation of the N and C terminus, fraction of 
alpha helices and beta sheets for each protein, and the presence of Cys-Cys bonds (Fig. 4 b, 
Supplementary Tables). The Bayesian approach assigns to the candidate proteins a 
probability also based on the location of the C and N terminus, and on the fact that unfolding 
beta sheets typically requires forces larger than in the case of alpha helices (see Fig.  4 d). 
From this distribution we obtained the second likelihood function (Fig. 4 e) of our model.  

A separate discussion needs to be made for proteins with disulfide bonds (i.e. covalent 
bonds between non-adjacent cysteines) that have a high breaking force32, till 1 nN. As a result, 
the mechanical unfolding of the protein might be not sufficient to break the bonds, generating 
a cluster with a shorter Lcmax

14,32. The effective length of the protein with disulfide bonds is 
therefore reduced of the length enclosed between two consecutive bonded cysteines. The 
crossing with the Uniprot database that contains the information of the disulfide bonds allowed 
us to recalculate the effective total length of the proteins in our lists. The structure of the lists 
is summarized in Fig. 4 f, while the complete tables are attached in the Supplementary data 
of the article. 
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Figure 4 | Likelihoods and priors for the Bayesian identification. a, workflow of the 

Bayesian steps: selection due to total length and abundance (mass spectrometry), 
refinement with structural and topological information (PDB and Uniprot). b, Comparison of 
the real length of the protein vs. the measured maximal contour length of the F-D curves in 
14 SMFS experiments on membrane proteins (see Methods). c, Likelihood function of the 
observed maximal length of the clusters obtained from b. d, Comparison of the force 
necessary to unfold beta sheets and alpha helices in 22 SMFS experiments (see Methods).  
e, Likelihood function of the observed unfolding forces obtained from d. f,  

 
Following the Bayesian inference, we developed a software to estimate the probability of 

the candidate proteins for all the unfolding clusters found in hippocampal neurons, rod 
membranes and discs (Fig. 5 a-c). Starting from no information on the nature of these 
unfolding events, the software provides a list of known proteins which are the candidates of 
the molecules unfolded in the clusters of Fig.3. The software not only provides the candidates 
but assign to each known protein a probability based on the Bayesian inference (Fig.4). 
Therefore, by simply crossing and exploiting the large information available in various 
databases, we identified a restricted number of molecular candidates for the identified 
unfolding clusters (Fig. 5). The more accurate assignations happen when a protein has a very 
high abundance (e.g. rhodopsin in discs and rods) or when there are few proteins of the same 
mass (length) of the identified protein.  

 
To verify this analysis, we looked for an orthogonal validation of the proposed method, based 
on the results of two membrane proteins unfolded in native membranes, i.e. the cyclic 
nucleotide gated channel yet unfolded in semi-purified conditions12 and hypothesized in 
previous experiments in the plasma membrane of rod outer segments33, and the rhodopsin 
unfolded in discs14,33. The CNG got a probability equal to 29% for the longest cluster in the rod 
plasma membrane (Fig 2 k, R4) mostly due to a combination of the correct Lc window and 
high abundance. The pattern shows the occurrence of the 5 major unfolding barriers. We 
engineered a chimera of the CNG with N2B on the C-terminus  that we overexpressed in the 
hybrid conditions explained in ref. 12. These experiments generated an unfolding cluster with 
the same unfolding barrier shifted of ~ 85 nm, i.e. the length of the N2B, which confirmed also 
the fact that we were unfolding from the C- terminus (Supplementary Fig. 4 a-f). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2019. ; https://doi.org/10.1101/732933doi: bioRxiv preprint 

https://doi.org/10.1101/732933
http://creativecommons.org/licenses/by-nc-nd/4.0/


With rhodopsin we reproduced the experiments performed in discs in ref. 14,33. In discs we 
obtained 5 unfolding clusters of which 2 matches the unfolding pattern of Tanuj et al. 
(Supplementary Fig. 4 g-l): the identity of these clusters was demonstrated with the enzymatic 
digestion that caused a truncation in the C-III loop of the rhodopsin molecule. The experiments 
performed after enzymatic digestion showed a 40-fold reduction of long curves confirming the 
identity of rhodopsin 

 

 
Figure 5 | Bayesian identification of the unfolding clusters. Most probable candidates 

for the unfolding clusters found in a, hippocampal neurons; b, rods; c, rod discs. The label 
‘SS-broken’ and ‘SS-intact’ refers to state of the disulfide bond after the unfolding. 

 
 
 

Discussion 
 
The method here illustrated describes all the necessary steps to obtain F-d curves from 

biological membranes of many cell types that grow in culture, and provides an automatic way 
to obtain clusters of F-d curves representing the unfolding of the membrane proteins present 
in the sample. We describe also a Bayesian approach able to provide a list of known proteins 
as candidates to be the unfolded protein. The Bayesian approach depends on the information 
present in Mass Spectrometry data and on the PDB and Uniprot databases. Therefore, the list 
of candidate proteins is expected to be refined as these databases will become richer and 
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more complete, and the quality of Mass Spectrometry data will be improved. Let us discuss, 
now, the advantages and the weaknesses of the proposed method. 

 
The possibility to perform SMFS experiments in natural samples obtained from native cells 

provides a clear breakthrough in the field of protein unfolding by avoiding purification and 
reconstitution, but it has implications in particular in complementary fields. An example is the 
possibility to characterize molecules coming from a very limited amount of native material 
(membranes isolated from 1 to 10 cells). The unfolding phenotype is a univocal tool to 
characterize the sample under investigation (see Fig.3) and this approach could be extended 
to characterize membrane proteins in neurons/cells in healthy and sick conditions. Indeed, it 
is remarkable that the distribution of the detected proteins in our SMFS experiments (solid 
lines in Fig.6) is similar to that obtained in the Mass Spec experiments of thousands of cells 
(broken lines). This is also an ex post confirmation of the goodness of using the Mass Spec 
data in the Bayesian inference. 
 

 
Figure 6 | Comparison of mass spectrometry protein detection vs. SMFS data. a, 

hippocampal neurons. b, rod discs. 
 
In our experiments we collected a limited number of F-d curves – some hundreds of thousands 
– and by increasing their number by 10- or 100-fold, we expect to improve the total number of 
detected clusters – as those in Fig.3 – possibly close to 100. As the total number of different 
membrane proteins from a native sample is on the order of hundreds, we would be able to 
detect and characterize a significant fraction of the total membrane proteins present in the 
sample. Improvements of the proposed method, primarily by increasing its throughput, could 
potentially provide a new screening method with clinical applications: indeed, the 
characterization of the changes of the unfolding phenotype caused by a disease will provide 
a better understanding of the malfunction of membrane proteins. Moreover, the proposed 
method is able to explore the variety of proteins present in a sample with an accuracy almost 
similar to that obtained by Mass Spec, but using a much simpler apparatus. 
 
The proposed method has inherent limitations: indeed, the molecular identity of the unfolded 
proteins is guessed by a Bayesian estimator, which can be improved, but cannot be firmly 
established as in experiments with purified proteins. A possible way to obtain a better and 
more reliable identification of the proteins in the membrane would be to couple the SMFS 
analysis of the native sample with a high-resolution AFM imaging of the same native samples: 
in this way it will be possible also to “see” all the proteins present in the sample. Unfortunately, 
the necessary molecular resolution is nowadays difficult to be achieved even in purified 
conditions, therefore we don’t expect this to be possible in few years. 
The proposed method for clustering F-d curves is automatic but it is not fully unsupervised 
indeed Block 3 - in which we evaluate the quality of the F-d curve - assumes that a good F-d 
curve is piece-wise close to WLC. Block 5 of clustering method requires also a refinement 
which is done by the experimenter. The development of an unsupervised and fully automatic 
clustering method is under way.  
Another major limitation of the proposed method – in its present form – is the possibility to 
merge in the same cluster the unfolding of proteins with a different molecular identity: indeed, 
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from the Mass Spec data it’s evident that different proteins have the same – or approximately 
the same – molecular weight and total unfolded length Lc, in particular for Lc between 50 nm 
and 200 nm. In order to overcome this limitation, it will be desirable to couple to SMFS some 
chemical information on the unfolded protein. In our opinion, this will be a desirable 
achievement, which will make a substantial improvement to the method here proposed. 

 
 
Acknowledgments 
 
We thank dr. Kosaku Shinoda for support in the emPAI determination.  
 
 
 
 
References 
 

1. Al-Rekabi, Z. & Contera, S. Multifrequency AFM reveals lipid membrane mechanical 
properties and the effect of cholesterol in modulating viscoelasticity. PNAS 115, 2658–
2663 (2018). 

2. Casuso, I. et al. Characterization of the motion of membrane proteins using high-speed 
atomic force microscopy. Nature Nanotechnology 7, 525–529 (2012). 

3. García-Sáez, A. J., Chiantia, S. & Schwille, P. Effect of Line Tension on the Lateral 
Organization of Lipid Membranes. J. Biol. Chem. 282, 33537–33544 (2007). 

4. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: A 
comparison. PNAS 96, 3694–3699 (1999). 

5. Sarkar, A., Caamano, S. & Fernandez, J. M. The Elasticity of Individual Titin PEVK Exons 
Measured by Single Molecule Atomic Force Microscopy. J. Biol. Chem. 280, 6261–6264 
(2005). 

6. Scheuring, S. & Sturgis, J. N. Chromatic Adaptation of Photosynthetic Membranes. 
Science 309, 484–487 (2005). 

7. Baumgartner, W. et al. Cadherin interaction probed by atomic force microscopy. 
Proceedings of the National Academy of Sciences 97, 4005–4010 (2000). 

8. Engel, A. & Gaub, H. E. Structure and Mechanics of Membrane Proteins. Annual Review 
of Biochemistry 77, 127–148 (2008). 

9. Otten, M. et al. From genes to protein mechanics on a chip. Nat Meth 11, 1127–1130 
(2014). 

10. Thoma, J., Burmann, B. M., Hiller, S. & Müller, D. J. Impact of holdase chaperones Skp 
and SurA on the folding of β-barrel outer-membrane proteins. Nat Struct Mol Biol 22, 795–
802 (2015). 

11. Hinczewski, M., Hyeon, C. & Thirumalai, D. Directly measuring single-molecule 
heterogeneity using force spectroscopy. PNAS 113, E3852–E3861 (2016). 

12. Maity, S. et al. Conformational rearrangements in the transmembrane domain of CNGA1 
channels revealed by single-molecule force spectroscopy. Nature Communications 6, 
7093 (2015). 

13. Thoma, J. et al. Protein-enriched outer membrane vesicles as a native platform for outer 
membrane protein studies. Communications Biology 1, 23 (2018). 

14. Tanuj Sapra, K. et al. Detecting Molecular Interactions that Stabilize Native Bovine 
Rhodopsin. Journal of Molecular Biology 358, 255–269 (2006). 

15. Galvanetto, N. Single-cell unroofing: probing topology and nanomechanics of native 
membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1860, 2532–2538 
(2018). 

16. Clarke, M., Schatten, G., Mazia, D. & Spudich, J. A. Visualization of actin fibers associated 
with the cell membrane in amoebae of Dictyostelium discoideum. PNAS 72, 1758–1762 
(1975). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2019. ; https://doi.org/10.1101/732933doi: bioRxiv preprint 

https://doi.org/10.1101/732933
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Oesterhelt, F. et al. Unfolding Pathways of Individual Bacteriorhodopsins. Science 288, 
143–146 (2000). 

18. Chu, C., Celik, E., Rico, F. & Moy, V. T. Elongated Membrane Tethers, Individually 
Anchored by High Affinity α4β1/VCAM-1 Complexes, Are the Quantal Units of Monocyte 
Arrests. PLoS ONE 8, e64187 (2013). 

19. Serdiuk, T. et al. YidC assists the stepwise and stochastic folding of membrane proteins. 
Nat Chem Biol 12, 911–917 (2016). 

20. Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 
(2002). 

21. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database 
and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids 
Research 40, D370–D376 (2012). 

22. Lomize, A. L., Pogozheva, I. D. & Mosberg, H. I. Anisotropic Solvent Model of the Lipid 
Bilayer. 2. Energetics of Insertion of Small Molecules, Peptides, and Proteins in 
Membranes. Journal of Chemical Information and Modeling 51, 930–946 (2011). 

23. Thoma, J., Bosshart, P., Pfreundschuh, M. & Müller, D. J. Out but Not In: The Large 
Transmembrane β-Barrel Protein FhuA Unfolds but Cannot Refold via β-Hairpins. 
Structure 20, 2185–2190 (2012). 

24. Sapra, K. T. et al. One β Hairpin after the Other: Exploring Mechanical Unfolding Pathways 
of the Transmembrane β‐Barrel Protein OmpG. Angewandte Chemie International Edition 
48, 8306–8308 (2009). 

25. Marsico, A., Labudde, D., Sapra, T., Muller, D. J. & Schroeder, M. A novel pattern 
recognition algorithm to classify membrane protein unfolding pathways with high-
throughput single-molecule force spectroscopy. Bioinformatics 23, e231–e236 (2007). 

26. Walder, R. et al. Rapid Characterization of a Mechanically Labile α-Helical Protein 
Enabled by Efficient Site-Specific Bioconjugation. Journal of the American Chemical 
Society 139, 9867–9875 (2017). 

27. Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science 344, 
1492–1496 (2014). 

28. Ilieva, N. Computational analysis of single molecule force spectroscopy experiments on 
native membranes. PhD thesis 

29. Chen, P. et al. Proteomic analysis of rat hippocampal plasma membrane: characterization 
of potential neuronal-specific plasma membrane proteins. Journal of Neurochemistry 98, 
1126–1140 (2006). 

30. Kwok, M. C. M., Holopainen, J. M., Molday, L. L., Foster, L. J. & Molday, R. S. Proteomics 
of Photoreceptor Outer Segments Identifies a Subset of SNARE and Rab Proteins 
Implicated in Membrane Vesicle Trafficking and Fusion. Molecular & Cellular Proteomics 
7, 1053–1066 (2008). 

31. Panfoli, I. et al. Proteomic Analysis of the Retinal Rod Outer Segment Disks. Journal of 
Proteome Research 7, 2654–2669 (2008). 

32. Ainavarapu, S. R. K. et al. Contour Length and Refolding Rate of a Small Protein 
Controlled by Engineered Disulfide Bonds. Biophysical Journal 92, 225–233 (2007). 

33. Maity, S., Ilieva, N., Laio, A., Torre, V. & Mazzolini, M. New views on phototransduction 
from atomic force microscopy and single molecule force spectroscopy on native rods. 
Scientific Reports 7, (2017). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2019. ; https://doi.org/10.1101/732933doi: bioRxiv preprint 

https://doi.org/10.1101/732933
http://creativecommons.org/licenses/by-nc-nd/4.0/

