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Abstract1

Gene-based association tests aggregate genotypes across multiple variants for each gene, providing2

an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early3

gene-based test applications often focused on rare coding variants; amore recent wave of gene-based4

methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are5

expected to be particularly valuable for gene-based analysis, since most GWAS associations to6

date are non-coding. However, identifying causal genes from regulatory associations remains7

challenging and contentious. Here, we present a statistical framework and computational tool8

to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis,9

applied with comprehensive coding and tissue-specific regulatory annotations. We compare power10

and accuracy identifying causal genes across single-annotation, omnibus, and agnostic tests through11

simulations. Finally, we analyze 128 traits from the UK Biobank, and show that heterogeneous12

annotations increase power and accuracy across a wide range of traits and genetic architectures.13
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Introduction14

Genome-wide association studies (GWAS) have identified thousands of genetic loci associated15

with complex traits (Welter et al. 2013); however, the biological mechanisms underlying these16

associations are often poorly understood. Gene-based association tests can provide a more17

interpretable analysis framework compared to single-variant analysis, interrogating association18

at the gene level by aggregating genotypes across multiple variants for each gene. This strategy can19

also increase power to detect association by aggregating small effects across variants, reducing the20

burden of multiple testing, and weighting or filtering to prioritize functional variants (Neale and21

Sham 2004; Sham and Purcell 2014).22

In gene-based analysis, variants are often grouped or weighted by putative functional effect,23

for example, a common strategy for exome analysis is to include only rare non-synonymous or24

loss-of-function (LoF) variants in gene-based tests such as SKAT and the CMC burden test (DJ Liu25

et al. 2014a; Morrison et al. 2013). A more recent wave of gene-based methods, e.g. PrediXcan26

(Gamazon et al. 2015; A Barbeira et al. 2016) and TWAS (Gusev et al. 2016), use eQTL variants27

(eVariants) to construct gene-based tests of association between the predicted genetic component28

of gene expression and GWAS trait. Incorporating regulatory variants is expected to be particularly29

valuable for gene-based analysis of complex traits, since most genetic associations discovered to30

date are in non-coding regions (MacArthur et al. 2016). However, while coding variants generally31

implicate a single known gene, the gene(s) affected by regulatory variants are often less clear (Ernst32

et al. 2011; Cao et al. 2017).33

Incorporating multiple types of annotation in gene-based analysis provides several advantages34

over analysis methods using annotations of a single type. First, including variants from multiple35

annotation categories is expected to increase accuracy (e.g., odds that the most significant gene at36
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a locus is causal), since signals that overlap a single annotation type (e.g., eVariants) may be driven37

by linkage disequilibrium (LD) or pleiotropic regulatory effects (Wainberg, Sinnott-Armstrong,38

D Knowles, et al. 2017; Wainberg, Sinnott-Armstrong, Mancuso, et al. 2019). Second, it can39

increase power by increasing the signal-to-noise ratio, and capturing a wider range of possible40

mechanisms driving genetic associations with complex traits (e.g., AJ Schork et al. 2013; Lu41

et al. 2016; Kichaev et al. 2019). For example, tests that incorporate both coding variants and42

eVariants are expected to have high power to detect both protein-altering associations as well43

as associations driven by effects on gene expression levels. One-dimensional annotation scores44

derived from multiple annotation data sets can be used to weight variants in gene-based tests (e.g.,45

D Lee et al. 2015; Kelley, Snoek, and Rinn 2016; Rentzsch et al. 2018); however, aggregating46

variants separately for multiple annotation types and combining the result allows us to explicitly47

model multiple distinct genes and biological mechanisms underlying associations.48

Here, we present a statistical framework and computational tool to integrate heterogeneous49

functional annotations with GWAS association summary statistics for gene-based analysis. We50

analyze a diverse set of functional annotation data includingmultiple tissue-specific eQTLannotation51

data sets, multiple epigenetic annotation sets mapping regulatory elements to putative target genes,52

coding variant annotations, and proximity-based annotations. We compare the performance53

of single-annotation, omnibus, and annotation-agnostic gene-based analysis methods through54

simulation studies, and by analyzing GWAS summary statistics from the UKBiobank (Bycroft et al.55

2018). Our contributions are to 1) expound a general statistical framework for gene-based analysis56

with heterogeneous functional annotations, which includes several existing single-annotation gene-based57

associationmethods as components or special cases; 2) provide a computationally efficient open-source58

tool for gene-based analysis from summary statistics; and 3) conduct a comprehensive analysis of59

statistical power and accuracy identifying causal genes across gene-based association methods60
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through extensive simulation studies and analysis of GWAS data for 128 human traits.61

Results62

We first outline a statistical framework and open-source tool for gene-based analysis with63

heterogeneous functional annotations. Next, we describe simulations to evaluate 1) the Type I64

error rates of gene-based test statistics, 2) statistical power, and 3) specificity to identify causal65

genes. Finally, we discuss applications to empirical data using GWAS summary statistics from the66

UK Biobank. We assess 1) the empirical power of gene-based tests by comparing the numbers67

of significant independent gene-based associations discovered for each UK Biobank trait, and 2)68

concordance with benchmark gene lists compiled from the ClinVar database (Landrum et al. 2015)69

and the Human Phenotype Ontology (HPO) (Köhler et al. 2016).70

GAMBIT Framework71

GAMBIT (Gene-based Analysis with oMniBus, Integrative Tests) is an open-source tool for72

calculating and combining annotation-stratified gene-based tests using GWAS summary statistics73

(single-variant association z-scores). Broadly, GAMBIT’s strategy is to first separately calculate74

single-annotation gene-based association tests stratified by functional annotation class, and aggregate75

across classes for each gene to construct omnibus gene-based tests (illustrated in Figure 1). Here76

and elsewhere, we refer to this omnibus test statistic as the GAMBIT gene-based test. GAMBIT77

calculates four general forms of gene based test statistics, described briefly in Table 1 and detailed78

in Materials and Methods. To account for LD between neighboring variants and genes, GAMBIT79

relies on an LD reference panel from an appropriately matched population (e.g., International80

HapMap 3 Consortium 2010; 1000 Genomes Project Consortium 2015). GAMBIT is implemented81

in C++, and is open source under GNU GPL v3.82
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Table 1: Forms of Gene-Based Test Statistics

Statistic Null Distribution Special Cases & Synonyms References
L-form

∑
k wkZk N

(
0,w>RZw

)
Burden test, PrediXcan, TWAS [1]

Q-form
∑

k wkZ2
k

∑
k λk χ

2
1,k SKAT, SOCS [2]

M-form maxk Z2
k

– Min-P, MOCS [3]
ACAT-V

∑
k wkF−1

Cauchy(0,1)(1 − pk) ≈ Cauchy(0,
∑

k wk) ACAT-V [4]
[1] B Li and Leal 2008; Madsen and Browning 2009; Gamazon et al. 2015; Gusev et al. 2016. [2] Wu et al. 2011;
Lamparter et al. 2016. [3] Conneely and Boehnke 2007; Lamparter et al. 2016. [4] Y Liu, Chen, et al. 2018.

Basic gene-based test forms used in GAMBIT. Zk denotes the single-variant z-score association test statistic for
variant k, with p-value pk = 1 − Fχ2

1
(Z2

k
). Under the null hypothesis, each Zk is standard normal and Z is multivariate

normal with correlation matrix RZ .
wk denotes the weight assigned to variant k. Any real-valued weights can be used in L-form tests, whereas Q-form
and ACAT-V require non-negative weights.
λk denotes the k th eigenvalue of diag(w)1/2RZdiag(w)1/2, and each χ2

1,k is i.i.d χ2
1 .
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Figure 1: GAMBIT Analysis Framework & Workflow

Broad overview of GAMBIT workflow. (1) GWAS association summary statistics (single-variant z-scores, or effect
size estimates and standard errors) are cross-referenced and linked with multiple sets of functional annotations. (2)
Annotated GWAS variants are cross-referenced with variants in a haplotype reference panel to estimate LD on-the-fly
as needed. (3) GWAS summary statistics, annotations, and LD estimates are used to calculate stratified gene-based
test statistics. (4) Stratified gene-based tests are combined for each gene to construct omnibus test statistics. GAMBIT
supports multiple single-annotation test methods and multiple omnibus test methods to combine single-annotation
tests; detailed statistical methods are provided in Materials and Methods.
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Gene-Centric Functional Annotation Data83

We considered 5 broad annotation classes in our analysis: 1) proximity-based annotations, 2)84

coding annotations, 3) UTR regions, 4) enhancer and promoter regions, and 5) eVariants. Each of85

these annotation classes comprises multiple subclasses; for example, coding annotations include86

non-synonymous, splice-site, and other variant categories; and eVariants are stratified by tissue.87

Briefly, we annotated coding and UTR variants using TabAnno (Zhan and DJ Liu 2013) and88

EPACTS (H Kang 2014); obtained enhancer element and enhancer-target gene weight annotations89

from RoadmapLinks (Ernst et al. 2011; Kundaje et al. 2015), GeneHancer (Fishilevich et al.90

2017), and JEME (Cao et al. 2017); and pre-computed tissue-specific eVariants annotations from91

PredictDB (Gamazon et al. 2015; A Barbeira et al. 2016) and FUSION/TWAS (Gusev et al. 2016).92

Enhancer annotations were largely derived fromNIH Roadmap Epigenomics and ENCODE project93

data (Bernstein et al. 2010; ENCODE Project Consortium 2012), as well as from the FANTOM94

Consortium (Lizio et al. 2015; Marbach et al. 2016; Cao et al. 2017). All eVariant annotations were95

estimated using the GTEx project v7 data (GTEx Consortium 2015). Figure 2 illustrates a subset96

of these annotations at the CELSR2 locus on chromosome 1; detailed descriptions of annotation97

data and statistical methods used to aggregate test statistics within and across classes are provided98

in Materials and Methods.99
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Figure 2: Gene-Centric Regulatory Annotation Tracks

Illustration of primary regulatory annotation tracks used in GAMBIT gene-based analysis framework at the CELSR2
locus on chromosome 1. Top panel: Distance-to-transcription start site (dTSS) weights, calculated as
wjk(α) = exp(−α |djk |), where djk is the number of base pairs between variant j and the TSS of gene k, shown for
α = 10−5 (solid lines), α = 5 × 10−5 (dashed lines), and α = 10−4 (dotted lines). Gene bodies are indicated by arrows
and variant locations are marked in black at y = 0. Middle panel: enhancer-to-target-gene confidence weights.
Weights are shown for enhancer variant and target gene, and unique enhancer elements are marked by black lines at
y = 0. Lower panel: tissue-specific eVariant weights for each gene. eVariant tissues are differentiated by shape.
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GWAS Simulations100

We simulated GWAS summary statistics at 2,000 loci using haplotype data from the European101

subset of the 1000 Genomes Project (1KGP) Phase 3 reference panel (1000 Genomes Project102

Consortium 2015). Briefly, each locus was defined by first sampling a single causal protein-coding103

gene, aggregating all genes within 1 Mbp of the causal gene, and finally aggregating all variants104

assigned to one or more genes based on functional annotations or within ≤ 500kbp of any gene105

at the locus. For each of the 2,000 loci, we simulated genetic effects under four causal scenarios:106

1) coding variants are causal, 2) eVariants are causal, 3) enhancer variants are causal, and 4)107

UTR variants are causal. For each locus and causal scenario, we varied the proportion of trait108

variance accounted for by variants at the locus h2
L = 0.01%, 0.025%, 0.05%, 0.1%, 0.25% with109

constant GWAS sample size n = 50,000; and for each locus-scenario-h2
L combination, we generated110

100 independent simulated replicates. To evaluate p-value calibration and Type I error rates of111

gene-based tests, we further simulated genome-wide summary statistics for 1,000 traits under the112

null hypothesis. Detailed simulation procedures are provided in Materials and Methods.113

Simulation Studies: Power and Accuracy Identifying Causal Genes114

We compared performance identifying causal genes across 8 gene ranking methods: 1) ranking115

each gene by distance between its transcription start site (TSS) and the most significant independent116

single variant at the locus, 2) the Pascal SOCS test -log10p-value, which assigns equal weight to all117

variants within 500kbp of the gene body, 3) the GAMBIT omnibus test -log10p-value (labeled as118

GAMBIT), and 4-8) -log10p-values for gene-based tests using each annotation class individually119

(listed in Table 2 and described in Materials and Methods). As expected, test statistics calculated120

using the causal annotation class alone were most accurate for identifying the causal gene (e.g.,121

gene-based p-values using coding variants were most accurate when coding variants were causal);122
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however, theGAMBITomnibus test was nearly as accurate, and had the second-highest performance123

across simulation settings (Figure 3; Supplementary Figure 1). In practical applications, the causal124

mechanisms underlying associations are unknown and often heterogeneous across loci; in this case,125

we expect the GAMBIT omnibus testing strategy to be most accurate.126

Table 2: Single-Annotation Gene-Based Tests

Test Form Annotation Subclasses Annotated Variants

dTSS ACAT-V dTSS-α value Variants within 500kbp of TSS
CT-TWAS L-form eQTL tissue eVariants across 48 tissues
Enhancers Q-form; ACAT-V Enhancer region All enhancer variants

UTR Q-form; ACAT-V 3’ and 5’ UTR 3’ and 5’ UTR variants
Coding Q-form; ACAT-V Variant type (e.g., missense, splice site) Exonic variants

Summary of variant types, default test methods, and default aggregation procedures for primary annotation classes in
GAMBIT. Rationale and further details are provided in Materials and Methods.

We also compared statistical power for each of the gene-based test methods at both causal and127

non-causal proximal genes at each simulated locus (Figure 4). For proximal genes, association128

signals are driven by LD and pleiotropic regulatory variants shared with the causal gene; thus,129

gene-based tests should ideally have high power for causal genes but comparatively low power for130

proximal genes. Similar to the previous analysis, gene-based tests using the causal annotation class131

alone had the highest power for causal genes and highest specificity (low power for proximal genes)132

across simulation settings. The GAMBIT omnibus test generally had the second-highest power for133

causal genes, and intermediate power for proximal genes. Thus, we expect the omnibus testing134

approach to be powerful and robust when causal mechanisms are unknown or heterogeneous across135

loci.136
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Figure 3: GWAS Simulations: Performance Identifying Causal Gene

Proportion of simulation replicates in which causal gene is top-ranked at at locus (y-axis) for each gene-based
association or gene ranking method (x-axis & bar fill color) stratified by locus heritability h2

L (bar outline color) when
either coding, eQTL, enhancer, or UTR variants are causal (plot facet).
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Figure 4: GWAS Simulations: Statistical Power

Statistical power (proportion of simulation replicates in which gene-based p-value ≤ 2.5 × 10−6 across loci; y-axis)
for each gene-based testing approach (x-axis & color) stratified by locus heritability h2

L (plot rows) when either
coding, eQTL, enhancer, or UTR variants are causal (plot columns). Power is shown separately for causal genes and
proximal genes (non-causal genes that are proximal to a causal gene, as defined in Materials and Methods). Ideally,
gene-based tests should have high power for causal genes, and relatively lower power for proximal genes. Error bars
show 95% confidence intervals for average power across loci.
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Analysis of GWAS Data from the UK Biobank137

Figure 5: UK Biobank Analysis: Numbers of Significant Independent Associations Detected

Numbers of independent gene-based associations (at Bonferroni-corrected 5% significance level) detected by each
method across 128 UK Biobank traits. Panel A: Total number of significant associations across traits (delineated by
horizontal black lines) for each gene-based test; Wilcoxon signed-rank p-values (top) for paired comparisons between
no. associations detected by GAMBIT omnibus test (red) versus Pascal/SOCS (blue) and single-annotation
gene-based tests (green). GAMBIT detects significantly more associations than any individual constituent gene-based
test or by Pascal/SOCS across UK Biobank traits.
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Figure 6: UK Biobank Analysis: Performance Identifying Benchmark Genes

Percentage of loci at which the benchmark gene (identified from HPO and/or ClinVar) is top-ranked for each
gene-based association or gene ranking method. For each method, bars on the left (outlined in black) are calculated
for benchmark loci present in both HPO and ClinVar (54 loci), and bars on the right (faded outline) are calculated
using the union of all HPO and ClinVar loci (153 loci). Horizontal red lines indicate the expected percentage of
top-ranked benchmark genes under the null hypothesis that gene rank and benchmark labels are independent. Error
bars indicate 95% confidence intervals.

Significant Independent Associations Detected for 128 UK Biobank Traits. To compare the138

power of gene-based tests in empirical data, we evaluated the numbers of significant independent139

gene-based associations detected for each method across 128 approximately independent GWAS140

traits in the UK Biobank (selection procedures are described in Materials and Methods). The141

number of independent associations is calculated for each trait by selecting the most significant142

gene-based association p-value, masking all gene-based tests that include variants within 1 Mbp143

of variants for the selected gene, and repeating until all genes with Bonferroni-adjusted p-value144

≤ 5% are either selected or masked. This procedure ensures that all selected genes are separated145

by at least 1 Mbp, and provides a conservative estimate of the number of significant independent146

signals. GAMBIT omnibus tests detected significantly more associations than any other gene-based147

association method considered (Figure 5A), and consistently detected more associations than other148

methods across a wide range of traits and genetic architectures (Figure 5B).149
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Concordance with Benchmark Genes for 25 UK Biobank Traits. We compiled lists of150

benchmark genes from the ClinVar database (Landrum et al. 2015) and the Human Phenotype151

Ontology (HPO) (Köhler et al. 2016) for 25 traits in the UK Biobank to compare the gene-based152

analysismethods identifying causal genes; procedures and selection criteria are detailed inMaterials153

and Methods. Results are shown separately using the union and intersection of ClinVar and HPO154

benchmark genes; the latter gene set is expected to have higher specificity, albeit fewer genes.155

Performance identifying benchmark genes was assessed by ranking genes separately within each156

benchmark locus for each UK Biobank trait, where a benchmark locus is defined as the set157

of all genes within 1 Mbp of a genome-wide significant single-variant association that also is158

within 1 Mbp of a benchmark gene. To compare the performance of gene ranking methods, we159

calculated fraction of loci at which the top-ranked gene coincides with a benchmark gene (Figure 6)160

and assessed receiver operating characteristic (ROC) and precision-recall curves for each method161

(Supplementary Figure 2).162

GAMBIT omnibus tests had the highest performance identifying benchmark genes among the163

gene ranking methods considered, particularly for the stricter gene set, although the difference was164

not statistically significant relative to most other gene ranking methods (Figure 6). Gene-based165

tests using coding variants alone had the second-highest performance, which may reflect the166

enrichment for coding associations within the benchmark gene set (Supplementary Figure 3)167

caused by benchmark gene selection criteria (described in Materials and Methods). Due to the168

over-representation of coding associations, Figure 6 may underestimate the impact of incorporating169

heterogeneous regulatory annotations for associated loci without an established benchmark gene.170

Further inspection revealed a number of loci of biological or clinical interest. In the analysis171

of skin cancer in the UK Biobank, three melanin or melanogenesis-related genes (TYR, OCA2,172

and MC1R) and telomerase reverse transcriptase (TERT) were top-ranked by GAMBIT, but not173
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top-ranked based onTSS-to-top-SNP distance, while all other benchmark genes for skin cancerwere174

top-ranked by both methods or by neither. At the TERT locus, the lead GWAS variant was intronic,175

whereas the lead variants for TYR, OCA2, and MC1R were nonsynonymous. Unsurprisingly, the176

latter three benchmark genes were also top-ranked based on coding variant gene-based p-values;177

however, only TERT was top-ranked based on CT-TWAS.178

Similarly, APOB, which encodes an apolipoprotein and is associated with autosomal dominant179

forms of hypercholesterolemia, was top-ranked by GAMBIT but not by TSS-to-top-SNP distance180

for disorders of lipoid metabolism in the UK Biobank. Despite being >150 Kbp from the181

intergenic lead GWAS variant, APOB was also top-ranked by all single-annotation gene-based182

tests individually. Conversely, TSHR, which encodes a thyroid horomone receptor, was top-ranked183

based on TSS-to-top-SNP distance but not by GAMBIT for thyrotoxicosis. In this case, the lead184

GWAS variant was intronic, and CT-TWAS was the only single-annotation gene-based test that185

ranked TSHR as the top gene at its locus. A complete table of results for benchmark genes is186

provided in Supplementary Materials.187

Discussion188

Here, we introduced GAMBIT, a statistical framework and software tool for gene-based analysis189

with heterogeneous annotations. Our work makes several contributions to the field:190

First, we conducted extensive simulation studies to systematically compare gene-based test191

methods across a range of plausible biological scenarios, and demonstrated pitfalls of test methods192

that use only a single annotation class. When causal mechanisms are misspecified (i.e., causal193

variants do not overlap annotated variants used in gene-based analysis), standard gene-based tests194

have limited power, and can be confounded by LD and pleiotropic regulatory variants that affect195

multiple genes. This may lead researchers to misidentify the genes and biological mechanisms that196
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contribute to disease risk. Finemapping, co-localization, and conditional analysis can be applied197

to refine association signals and mitigate spurious inferences following gene-based analysis (e.g.,198

Giambartolomei et al. 2014; Z Zhu et al. 2016; Y Lee et al. 2018; Mahajan et al. 2018). By199

contrast, our omnibus testing strategy helps to ameliorate spurious inferences within the context of200

gene-based testing directly, and also has high power to detect associations across a range of causal201

mechanisms underlying genetic associations.202

Second, we analyzed 128 traits from the UK Biobank to evaluate performance in empirical203

data across a range of complex traits and genetic architectures, and confirmed that incorporating204

annotations of many types and across many tissues increases power relative to standard methods.205

While our analysis of concordance with gold-standard causal genes was limited by the relatively206

small numbers of benchmark genes identified for UK Biobank traits and the inherent difficulty207

establishing causal genes underlying regulatory associations, we found suggestive evidence that208

incorporating diverse annotation types in gene-based analysis can improve performance identifying209

causal genes relative to standard approaches (e.g., ranking genes by distance to the most significant210

single variant) and gene based tests using a single annotation type.211

Finally, we provide a unifying framework and easy-to-use software tool to incorporate heterogeneous212

functional annotations in gene-based analysis. From its inception, gene-based analysis was built213

on the premise that aggregating functional variants at the gene level can increase statistical power214

and help identify causal genes in GWAS (Neale and Sham 2004). Early gene based test methods215

were developed primarily for rare genic variants (e.g., B Li and Leal 2008; Madsen and Browning216

2009), and early gene-based association analyses often used only deleterious coding variants (e.g.,217

Purcell et al. 2014; Majithia et al. 2014). However, functional genomics studies have shown that218

most functional variation is non-coding (ENCODE Project Consortium 2012), and most variant219

associations discovered through GWAS to date occur in non-coding regions (Welter et al. 2013;220
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MacArthur et al. 2016), highlighting the importance of regulatory annotations for gene-based221

association analysis. The first gene-based tests developed explicitly for regulatory variation were222

TWAS and PrediXcan, which aggregate eVariants to construct proxy variables for tissue-specific223

gene expression levels using predictive weights estimated from external eQTLmapping data (Gusev224

et al. 2016; A Barbeira et al. 2016). However, functional and regulatory genomics projects have225

introduced a wealth of annotations with potential utility for gene-based analysis (e.g., Lizio et al.226

2015; Cao et al. 2017; Fishilevich et al. 2017; Stranger et al. 2017).227

Our omnibus testing strategy is expected to perform best when variants from a single annotation228

class (e.g., coding variants) are causal at a given locus. When multiple independent signals from229

different annotation classes exist at a single gene locus, this testing strategy is expected to have230

lower power than one that explicitly accounts for multiple possible signal sources (e.g., via Barnett,231

Mukherjee, and X Lin 2017). While we did not explore this possibility in our simulations, it is an232

interesting question which we defer to future work.233

The utility of incoporating annotations in gene-based analysis depends crucially on the accuracy234

and comprehensiveness of the underlying annotation data sets. While we considered the case that235

causal variants may be misspecified, our simulations assumed that the confidence weights assigned236

to regulatory elements are well-calibrated, and that causal eVariants are annotated. Violations237

of these assumptions will reduce both power and accuracy in gene-based analysis, and may in238

part account for differences between our results with empirical versus simulated data. Current239

transcriptomic and epigenomic studies are generally limited to a subset of human tissues and240

cell-types, and are derived from data sets of limited sample size (e.g., Stranger et al. 2017; ENCODE241

Project Consortium 2012). Thus, we expect current transcriptomic and epigenomic annotations242

to be incomplete and imprecise. Looking forward, larger and more comprehensive studies will243

enable more comprehensive and accurate annotations, increasing the utility of annotation-informed244
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association analysis methods.245

In summary, our work builds upon and generalizes previous gene-based association methods,246

providing a flexible framework for gene-based analysis with heterogeneous annotations that can be247

readily adapted when new annotation resources are developed and released.248

Materials and Methods249

We describe 1) methods to aggregate variants for gene-based analysis, 2) omnibus procedures250

to combine multiple gene-based tests, 3) functional genomic and annotation data resources, 4)251

procedures to simulate GWAS data using real genotype and functional annotation data, and 5)252

GWAS data from the UK Biobank to which we applied our methods.253

Multiple-Variant Association Test Statistics254

Here, we review statistical methods to aggregate multiple variants for gene-based, region-based,255

or pathway association analysis. For convenience, we assume a quantitative trait and ignore the256

presence of covariates; however, our results can easily be adapted to other settings.257

Linear-Form Gene-Based Tests (L-form). The oldest and most widely used gene-based tests258

are linear combinations of genotypes across variants (B Li and Leal 2008; Madsen and Browning259

2009; S Lee, Wu, and X Lin 2012), here referred to as L-form tests. Formally, we define the L-form260

test as TL = (w
>RZw)

−1/2w>Z, where w is a vector of single-variant weights, Z is a vector of261

single-variant association statistics (where each Z j follows the standard normal distribution under262

the null hypothesis), and RZ is the correlation matrix of z-scores. Under the null hypothesis of263

no association, TL follows the standard normal distribution. The L-form test statistic TL can be264

computed from GWAS summary statistics (single-variant z-scores, or effect sizes and standard265

errors) and covariance estimates, and can be written either as linear combinations of single-variant266
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association statistics or as linear combinations of genotypes (ZZ Tang and DY Lin 2013; DJ Liu267

et al. 2014b).268

Examples of L-form tests include burden tests, which calculate burden scores as a weighted269

sum of rare, putatively deleterious mutations (B Li and Leal 2008; S Lee, Wu, and X Lin 2012);270

and TWAS/PrediXcan tests (Gamazon et al. 2015; Gusev et al. 2016; A Barbeira et al. 2016),271

which aggregate eQTL variants using predictive weights estimated from external eQTL mapping272

data, e.g. from the GTEx project (GTEx Consortium 2015). These can be viewed as tests of273

association between GWAS trait and an explicit proxy variable constructed as a linear combination274

of genotypes. Importantly, L-form tests rely on prior knowledge regarding the directions of effect275

across variants (Wu et al. 2011; S Lee, Wu, and X Lin 2012). For example, the signed weights used276

in burden tests often reflect the hypothesis that rare deleterious alleles increase risk for disease,277

and the predictive weights used in TWAS/PrediXcan reflect the hypothesis that gene expression278

mediates the associations between genotypes and complex trait.279

Quadratic-Form Gene-Based Tests (Q-form). Variance component tests and quadratic forms280

of single-variant association statistics comprise another widely used class of gene-based association281

methods, here referred to as Q-form (quadratic) tests. Q-form tests include VEGAS (or SOCS),282

defined as the sum of squared single-variant z-scores (JZ Liu et al. 2010; Lamparter et al. 2016);283

and SKAT, a weighted quadratic form of single-variant association statistics (Wu et al. 2011).284

Formally, the Q-form test statistic is defined TQ = Z
>diag(w)Z, where diag(w) is a diagonal285

weight matrix and Z is a vector of single-variant association z-scores; under the null hypothesis286

of no association, TQ follows a mixture chi-squared distribution with mixture proportions equal to287

the eigenvalues of diag(w)1/2RZdiag(w)1/2, where RZ is the correlation matrix of z-scores. In288

contrast to L-form tests, Q-form tests aggregate single-variant association statistics without prior289
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knowledge or assumptions pertaining to the directions of effects across variants (Wu et al. 2011;290

S Lee, Wu, and X Lin 2012). While less tractable than L-form, analytical p-values for Q-form tests291

can be calculated using a variety of techniques to approximate the tail probabilities of multivariate292

normal quadratic forms (e.g., Davies 1980; H Liu, Y Tang, and HH Zhang 2009), which are far293

more efficient than permutation procedures or Monte Carlo methods (Mishra and Macgregor 2015;294

Lamparter et al. 2016). Q-form tests are most appropriate when a sizable proportion of variants295

are hypothesized to have non-zero effects of unknown and inconsistent direction (S Lee, Wu, and296

X Lin 2012).297

Maximum Chi-Squared Statistic as a Gene-Based Test (M-form). Perhaps the simplest298

gene-based test is the maximum chi-squared statistic across variants (or equivalently, the minimum299

p-value), here referred to as M-form tests. Analytical p-values for M-form tests can be calculated300

by directly integrating the multivariate normal density of z-scores within the hypercube given by301

x ∈ Rm : maxk |xk | ≤ max j |Z j | where m is the number of variants, or approximated by adjusting302

the minimum p-value across variants by the effective number of tests (Conneely and Boehnke 2007;303

Lamparter et al. 2016). M-form tests are most appropriate when only one or a small fraction of304

variants are hypothesized to have non-trivial effects.305

Aggregated Cauchy Association Test (ACAT). A recently proposed gene-based association test,306

the aggregated Cauchy association test (ACAT), combines test statistics across multiple variants307

under arbitrary dependence structures by transforming single-variant p-values using the Cauchy308

cumulative distribution function (CDF), and computing a p-value309

pACAT = 1 − FCauchy(0,1)

(
1∑

i′ wi′

∑
i

wiF−1
Cauchy(0,1)(1 − pi)

)
,
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where pi and wi are the p-value and weight for the ith variant and FCauchy(0,1)(t) =
1
π arctan(t) + 1

2310

is the CDF of the standard Cauchy distribution (Y Liu, Chen, et al. 2018; Y Liu and Xie 2018).311

ACAT is expected to perform well when only a small fraction of variants are causal (Y Liu, Chen,312

et al. 2018). Importantly, ACAT does not require LD computation, and can thus be calculated in313

O(m) time where m is the number of variants. Unlike L-form and Q-form, ACAT and M-form test314

p-values are greater than or equal to mini pi. However, L-form and Q-form tests can still increase315

power relative to single-variant analysis by reducing the burden of multiple testing and assigning316

higher weight to functional variants.317

Generalizations and Extensions . The simple forms of gene-based tests described above can be318

related and combined through a variety generalizations and extensions. Q-form and M-form can319

both be viewed as special cases of a statistic (
∑

j w j |Z j |
p)1/p, which is equivalent to Q-form when320

p = 2 and to M-form when p → ∞; this generalization has been used, for example, in the aSPU321

gene-based test (Kwak and Pan 2015). Similarly, Q-form and L-form can both be viewed as special322

cases of a statisticZ>(πdiag(w1)+ (1−π)w2w
>
2 )Z, which is equivalent to Q-form when π = 1 and323

L-form when π = 0; this generalization has been used, for example, in the SKAT-O gene-based test324

(S Lee, Wu, and X Lin 2012). Finally, the ACATmethod can be used to compute omnibus p-values325

aggregating across multiple gene-based tests (Y Liu, Chen, et al. 2018); by default, GAMBIT uses326

this method to aggregate test statistics across annotation classes for each gene.327

Integrating Functional Annotations in Gene-Based Tests328

dTSSWeights . One of the most common heuristics to infer putative causal genes at GWAS loci329

in the absence of functional annotation is to rank genes by distance between their transcription start330

site (TSS) and the peak GWAS variant. This strategy is appealing given the strong enrichment of331

regulatory variants near TSS.332

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/732404doi: bioRxiv preprint 

https://doi.org/10.1101/732404
http://creativecommons.org/licenses/by/4.0/


To incorporate distance-to-TSS (dTSS) and capture association signals at regulatory variants333

that are not well-annotated in gene-based analysis, we define the dTSS weights for gene k as334

w j k(α) = e−α |djk |, where d j k is the genomic distance (number of base pairs) between variant j335

and the TSS for the gene of interest. Larger values of the parameter α confer more weight to336

variants nearer the TSS. While dTSS weights can be used in any weighted gene-based test (e.g.,337

Q-form tests), ACAT is particularly well-suited due to its linear computational complexity, as338

dTSS-weighted tests often involve thousands of variants per gene. The dTSS-weighted ACAT339

p-value for gene k is defined340

pk(α) = 1 − FCauchy(0,1)

(
1∑

j ′ w j ′k(α)

∑
j

w j k(α)F−1
Cauchy(0,1)(1 − p j)

)
,

including only variants within a specified window (e.g., 500kbp) of the TSS for gene k.341

Appropriate α values are in general unknown a priori, and may vary across genes and traits;342

however, the ACAT method can be applied to efficiently calculate an omnibus test p-value by343

aggregating dTSS-weighted gene-based test p-values pk(αi) across multiple values α1, α2, ...(Y Liu,344

Chen, et al. 2018; Y Liu and Xie 2018). By default, GAMBIT calculates omnibus dTSS-weighted345

test statistics across α values 10−4, 5 × 10−5, 10−5, 5 × 10−6.346

Regulatory Element-Target Gene Weights . To capture association signals across regulatory347

elements that have been assigned to one or more target gene, we weight variants in regulatory348

elements by element-to-target-gene confidence scores, and aggregate variants for each gene using349

either ACAT or Q-form gene-based test statistics. For example, we define the regulatory-element350

weighted Q-form test statistic as351
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TR
k =

∑
i

mi∑
j=1

wik Z2
i j

where mi is the number of variants in the ith regulatory element, wik is the confidence weight352

between element i and gene k, and Zi j is the j th variant in the ithregulatory element.353

eQTL Weights. Given a vector of weights bkt to predict expression levels for gene k in a given354

tissue or cell type t as a linear combination of normalized genotypes, the z-score TWAS test of355

association between predicted expression level and GWAS trait is356

Skt =
1√

b>ktRZbkt

b>ktZ

whereZ is the vector of single-variant GWAS z-scores and RZ is the correlation matrix of z-scores.357

To aggregate test statistics acrossmultiple tissues or cell-types, whichwe refer to as Cross-Tissue358

TWAS (CT-TWAS), we considered three approaches:359

1. Q-formCross-tissue Test (CT-Q): Calculating the sum of squared tissue-specific test statistics,360 ∑
t S2

kt , which has amixture chi-squared distribution under the null hypothesis of no association,361

2. M-form Cross-tissue Test (CT-M): Calculating an analytic p-value for the maximum absolute362

test statisticmaxt |Skt | using themultivariate normal joint density of tissue- or cell-type-specific363

test statistics Sk1,Sk2, ... under the null hypothesis of no association, and364

3. ACAT Cross-tissue Test (CT-A): Combining tissue- or cell-type-specific p-values pkt =365

2Φ(−|Skt |) using the ACAT method.366

CT-QandCT-Mrequire the cross-tissue correlationmatrixRS with elements [rS]tt ′ = corr(b>ktZ,b
>
kt ′Z)367

= b>ktRZbkt ′/

√
(b>ktRZbkt)(b

>
kt ′RZbkt ′), which can be computed in O(m2n + mn2) time where m is368
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the number of tissues or cell-types and n is the number of eVariants. By contrast, CT-A p-values369

can be computed in O(m) time, since ACAT does not involve the correlation structure. By default,370

GAMBIT implementsCT-A; in our analysis ofUKBiobank data, CT-MandCT-Agenerally perform371

similarly, while CT-Q tends to detect fewer significant associations (Supplementary Materials).372

Functional Annotation Data Sources373

Promoter and Enhancer-Target Annotation Data . To identify regulatory genetic elements374

and their putative target genes, we used pre-computed annotation data sets from three existing375

methods: Joint Effects of Multiple Enhancers (JEME) (Cao et al. 2017), GeneHancer (Fishilevich376

et al. 2017), and RoadmapLinks (Y Liu, Sarkar, et al. 2017; Ernst et al. 2011; Kundaje et al.377

2015). GeneHancer provides a global confidence score between each enhancer element and one378

or more putative target genes, while JEME and RoadmapLinks provide tissue- or cell-type-specific379

enhancer-target confidence scores. For the latter two data sets, we calculated overall enhancer-target380

confidence scores across tissues and cell types as the softmaximum (LogSumExp function) of tissue-381

or cell-type-specific scores for each enhancer-target pair. Descriptive statistics for each enhancer382

annotation dataset are provided in Supplementary Table 2.383

Tissue-Specific eVariant Annotations and Predictive Weights. To incorporate eVariants in384

gene-based analysis, we used pre-computed tissue-specific predictive weights for eGene expression385

estimated using GTEx v7 (Stranger et al. 2017) from TWAS/FUSION (including elastic net and386

LASSO models) (Gusev et al. 2016) and PredictDB (Gamazon et al. 2015; AN Barbeira et al.387

2018). We generated a GAMBIT eWeight annotation files incorporating all available tissues and388

cell types for each data resource and predictive model. Descriptive statistics for each eVariant389

weight dataset are provided in Supplementary Table 1.390
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Coding Variant and Gene Annotations. We annotated coding variants, TSS locations, and391

UTR variants using TabAnno 419 (Zhan and DJ Liu 2013) and EPACTS (H Kang 2014) based on392

GENCODE v14 (Harrow et al. 2012).393

Simulation Procedures394

Here, we describe procedures to simulate GWAS summary statistics using real genotype data395

or LD estimates. We begin by defining summary statistics and deriving their distribution. We next396

outline procedures to simulate GWAS summary statistics under the desired distribution. Finally,397

we describe procedures to simulate configurations of causal genes, causal variants, and effect sizes398

using real functional genomic annotation data.399

Simulating GWAS Summary Statistics. We simulated GWAS traits under the model400

Y = 1nβ0 + G̃β + ε,

where Y ∈ Rn is a quantitative trait for a GWAS sample of size n, 1n is the n × 1 vector of 1’s401

and β0 ∈ R is the trait intercept, G̃ ∈ Rn×m is the centered and scaled genotype matrix where each402

column has mean 0 and variance 1, β ∈ Rm×1 is a vector of causal genetic effects, and ε ∈ Rn is an403

i.i.d. trait residual with E(εi) = 0 and Var(εi) = σ
2
ε .404

The total trait variance is405

Var(Yi) = Var
[
E(Yi | G̃i)

]
+ E

[
Var(Yi | G̃i)

]
= τ2 + σ2

ε

where the genetic variance τ2 = Var(G̃>i β) = β
>Rβ, and R = Var(G̃i) is the genotype correlation406

(LD) matrix. Here, we treat the genetic effects β as a constant vector rather than a random variable,407

and write E(·) rather than E(·|β) to simplify notation. In addition, we fix β0 = 0 and σ2
ε = 1 − τ2

408
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here and elsewhere (without loss of generality). By fixing the residual variance σ2
ε = 1 − τ2, we409

can interpret τ2 as the trait heritability, i.e. the proportion of trait variance due to genetic effects.410

Single-variant GWAS association analysis aims to detect marginal associations between trait411

and genotypes at individual variants rather than multiple variants jointly. The marginal effect of412

variant k is413

αk B
Cov(Yi, G̃ik)√

Var(G̃ik)
= E

(
G̃ikG̃

>
i β

)
= R>k β,

where Rk is k th row (or column) of the LD matrix R. We note that αk quantifies a statistical414

association (marginal covariance) between variant k genotypes and trait, which is a function of415

both βk and causal effects βk ′ for variants k′ in LD with k. The single-variant association test416

statistic corresponding to the null hypotheses H0 : αk = 0 is417

Zk =
α̂k

ŝe(α̂)
=

α̂k√
1

n−2 (σ̂
2
Y − α̂

2
k)

where α̂k =
1

n−1G̃
>
k Y

p
→ αk and σ̂2

Y =
1

n−1
∑n

i=1(Yi − Y n)
2 p
→ 1.418

We can write the vector of single-variant association statistics for variants k = 1,2, ...,m as419

Z = (Z1, Z2, ..., Zm)
> = (n − 1)1/2D̂−1/2 1

n
G̃>Y

= n1/2D̂−1/2R̂β + (n − 1)1/2D̂−1/2 1
n

G̃>ε

where R̂n =
1

n−1G̃>G̃ is the sample LD matrix, and D̂ is an m × m diagonal matrix with D̂kk =420

n2

(n−2)(n−1) (σ̂
2
Y − α̂

2
k). Note that D̂ ≈ Im if the proportion of trait variance accounted for by each421

individual variant is small (e.g., < 1%). If trait residuals ε are i.i.d. normal with mean 0 and422

variance 1, then423
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Z ∼ Nm

(
n1/2D̂−1/2R̂β, D̂−1/2R̂D̂−1/2

)
.

We simulated GWAS summary statistics by calculating R̂ from the European subset of the424

1000 Genomes Project panel, and replacing D̂ by its asymptotic expected value D = E( lim
n→∞

D̂) with425

elements Dkk = 1 − α2
k . Because D̂

p
→ D, Slutsky’s theorem implies that test statistics calculated426

using D are asymptotically equivalent to those using D̂, which is acceptable when the GWAS427

sample size n is large.428

Simulating Genetic Effects at Causal Loci. We used empirical functional annotation data to429

simulate causal genetic effects β under realistic genetic architectures. For each simulated causal430

locus, we selected a causal gene by sampling a single CCDS protein-coding gene, and defined431

proximal genes as any gene with TSS within 1 Mbp of the causal gene TSS. We then simulated432

single-variant GWAS summary statistics for all variants associated with any causal and proximal433

genes by proximity (≤ 1 Mbp) or functional annotations (e.g., eQTL variants).434

We simulated causal genetic effects under 5 scenarios: 0) no association (null model), 1) coding435

association, 2) enhancer association, 3) eGene association, and 4) UTR association. For coding436

and UTR associations, we first selected the number of causal variants M∗ =
∑

j I(β2
j > 0) from a437

Poisson distribution with rate parameter λ = M/4 truncated to 1 ≤ M∗ ≤ M , where M is the total438

number of coding (or UTR) variants for the causal gene, and randomly selected M∗ causal variants439

from the total set of M coding (or UTR) variants for the causal gene. This procedure results in440

~25% of all coding (or UTR variants) having non-zero causal effects, while ensuring that at least441

one variant is causal. For enhancer associations, we similarly simulated the number of causal442

enhancers M∗ from a Poisson distribution with rate parameter λ = M/4 , where M is the number of443

enhancers mapped to the causal gene, and selected causal enhancers using a categorical distribution444
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with probability weights derived from confidence scores between enhancer elements and the causal445

gene. For eGene associations, we selected a single causal tissue at random, and simulated causal446

effect sizes proportional to precomputed eVariant weights for the causal gene and tissue. Because447

eVariant weights are noisy in practice, we used simulated eVariant weights w̃ ∼ NM∗(w,
9

10N R̂−1
)448

in place of the original eVariant weight vectorw in TWAS gene-based tests, where N is the GTEx449

v7 sample size for the causal tissue.450

The UK Biobank Resource451

We used GWAS summary statistics (single-variant association effect size estimates, standard452

errors, and p-values) for a set of 1,403 traits in the UK Biobank (Bycroft et al. 2018) cohort453

calculated using SAIGE (Zhou et al. 2018). Genotype data were imputed using the Haplotype454

Reference Consortium panel (McCarthy et al. 2016), and filtered to include only variants with455

imputed MAC > 20 in the UK Biobank. We selected a subset of 189 traits for primary analysis456

by including only traits with effective sample size ≥ 5,000, and ≥ 1 single-variant association457

p-value ≤2.5e-8. For our analysis of empirical power, we selected a subset of 128/189 traits by458

iteratively pruning pairs of correlated traits. Beginning with themost highly correlated pair of traits,459

we retained the trait with the larger number of significant independent single-variant associations460

(in the case of ties, we selected the trait with the most detailed description), and repeated this461

procedure until the maximum pairwise correlation-squared between traits was ≤0.10. For our462

analysis of concordance with benchmark genes, we first selected a subset of 47 traits including463

only traits with ≥ 1 single-variant association p-value < 5e-10, excluding benign neoplasms, and464

including at most a single trait within each trait category. We identified ≥ 1 relevant benchmark465

genes for 25 of the original 47 traits.466
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Selection of Benchmark Genes467

To identify benchmark genes for each of the traits selected from the UK Biobank, used the468

ClinVar (Landrum et al. 2015) and Human Phenotype Ontology (HPO) databases (Köhler et al.469

2016). The HPO database explicitly links genes to traits, while the ClinVar database links traits470

to variants. To identify benchmark genes from ClinVar, we extracted protein-altering variants471

(frameshift, missense, nonsense, splice site, or stop-loss variants), and excluded variants with472

unknown or ambiguous molecular consequence (e.g., intergenic and intronic variants). Despite473

including only ClinVar genes with coding associations, we expect to capture some genes for which474

both rare coding variants and common regulatory variants contribute to disease risk. For each475

UK Biobank trait, we extracted all protein-altering ClinVar variants +/- 1 Mbp of a genome-wide476

significant UK Biobank variant, and manually selected ClinVar traits equivalent or closely related477

to the corresponding UK Biobank trait. We then annotated genes associated with one or more478

relevant ClinVar trait as a ClinVar benchmark gene. We identified benchmark genes from the HPO479

database by manually matching keywords between UK Biobank and HPO traits. A complete list of480

HPO/ClinVar traits and benchmark genes for each UK Biobank trait is provided in Supplementary481

Materials.482

Data Access483

GAMBIT Software: https://github.com/corbinq/GAMBIT484

UK Biobank SAIGE Summary Statistics: ftp://share.sph.umich.edu/UKBB_SAIGE_HRC/485

eQTL Annotation Data Sources486

PredictDB: http://predictdb.org/487

TWAS/FUSION: http://gusevlab.org/projects/fusion/#reference-functional-data488

Enhancer Annotation Data Sources489
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RoadmapLinks: www.biolchem.ucla.edu/labs/ernst/roadmaplinking490

JEME: http://yiplab.cse.cuhk.edu.hk/jeme/491

GeneHancer: https://www.genecards.org/492
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Supplementary Tables and Figures646

Supplementary Table 1: Descriptive Statistics for eQTL Annotation Data Sets
TWAS/FUSION PredictDB

Elastic Net LASSO Elastic Net
No. Tissues 48 48 48
Total No. eVariants 766,885 451,186 1,437,864
Total No. eGenes 25,418 25,634 25,844
Mean No. eGenes per eVariant 3.11 1.88 3.26
Mean No. Tissues per eVariant 4.90 2.98 4.38
Mean No. Tissues per eGene 9.17 9.19 9.62
Mean No. eVariants per eGene 93.77 33.17 181.16

Supplementary Table 2: Descriptive Statistics for Enhancer-to-Target Gene Annotation Data Sets
RoadmapLinks JEME GeneHancer

Total No. Regulatory Elements 1,285,355 235,242 209,691
Total No. Target Genes 18,931 18,357 79,782
Total Mbp Spanned 257.1 247.8 331.2
Mean No. Genes per Element 1.3 2.7 3.4
Mean No. Elements per Gene 89.2 35.1 8.8
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Supplementary Figures647

Supplementary Figure 1: GWAS Simulations: ROC and Precision-Recall Curves

Receiver Operating Characteristic (ROC; top) and Precision-Recall (bottom) curves for each gene-based testing
approach (curve color) when either coding, eQTL, enhancer, or UTR variants are causal (plot columns) given locus
heritability h2

L = 0.05%. To aggregate results across loci and simulation replicates, we use standardized scores for
each method calculated by dividing gene-based scores (e.g., -log10-p-values) by the maximum value at the
corresponding locus within each replicate. This procedure ensures that curves reflect performance ranking genes at
each locus individually. We obtained similar results using the quantile rank of gene-based scores within each locus for
each method rather than dividing by the maximum value.
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Supplementary Figure 2: UK Biobank: Sensitivity and Specificity of Gene Ranking Materials and
Methods

ROC and Precision-Recall curves for each gene-based association or ranking method across benchmark loci present in
both HPO and ClinVar (54 loci in total). To aggregate results across benchmark loci and UK Biobank traits, we use
standardized scores for each method calculated by dividing gene-based scores (e.g., -log10-p-values) by the maximum
value at the corresponding locus. This procedure ensures that curves reflect performance ranking genes at each locus
individually. We obtained similar results using the quantile rank of gene-based scores within each locus for each
method rather than dividing by the maximum value.
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Supplementary Figure 3: Most Significant Annotation Class for Benchmark vs. Other Genes

Most significant single-annotation test (x-axis) for genes with one or more gene-based p-value ≤ 5e-6. The proportion
of benchmark genes (the union of HPO and ClinVar gene lists) and other genes (not present in either benchmark genes
list) for which the indicated annotation class is most significant is shown on the y-axis with 95% confidence intervals.
Benchmark genes are strongly enriched for coding associations (odds ratio = 5.03, p-value = 1.3e-16), which is
expected due to the selection criteria used to construct benchmark gene lists (described in Materials and Methods).
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