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. Abstract

= Gene-based association tests aggregate genotypes across multiple variants for each gene, providing
s an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early
+ gene-based test applications often focused on rare coding variants; a more recent wave of gene-based
s methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are
s expected to be particularly valuable for gene-based analysis, since most GWAS associations to
7 date are non-coding. However, identifying causal genes from regulatory associations remains
s challenging and contentious. Here, we present a statistical framework and computational tool
s to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis,
1w applied with comprehensive coding and tissue-specific regulatory annotations. We compare power
» and accuracy identifying causal genes across single-annotation, omnibus, and agnostic tests through
12 simulations. Finally, we analyze 128 traits from the UK Biobank, and show that heterogeneous

13 annotations increase power and accuracy across a wide range of traits and genetic architectures.
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. Introduction

15 Genome-wide association studies (GWAS) have identified thousands of genetic loci associated
e with complex traits (Welter et al. 2013); however, the biological mechanisms underlying these
7 associations are often poorly understood. Gene-based association tests can provide a more
s interpretable analysis framework compared to single-variant analysis, interrogating association
19 at the gene level by aggregating genotypes across multiple variants for each gene. This strategy can
20 also increase power to detect association by aggregating small effects across variants, reducing the
21 burden of multiple testing, and weighting or filtering to prioritize functional variants (Neale and
22 Sham 2004; Sham and Purcell 2014).

2 In gene-based analysis, variants are often grouped or weighted by putative functional effect,
2« for example, a common strategy for exome analysis is to include only rare non-synonymous or
25 loss-of-function (LoF) variants in gene-based tests such as SKAT and the CMC burden test (DJ Liu
2 et al. 2014a; Morrison et al. 2013). A more recent wave of gene-based methods, e.g. PrediXcan
2z (Gamazon et al. 2015; A Barbeira et al. 2016) and TWAS (Guseyv et al. 2016), use eQTL variants
s (eVariants) to construct gene-based tests of association between the predicted genetic component
2o of gene expression and GWAS trait. Incorporating regulatory variants is expected to be particularly
w0 valuable for gene-based analysis of complex traits, since most genetic associations discovered to
a1 date are in non-coding regions (MacArthur et al. 2016). However, while coding variants generally
= implicate a single known gene, the gene(s) affected by regulatory variants are often less clear (Ernst
s etal. 2011; Cao et al. 2017).

3 Incorporating multiple types of annotation in gene-based analysis provides several advantages
s over analysis methods using annotations of a single type. First, including variants from multiple

s annotation categories is expected to increase accuracy (e.g., odds that the most significant gene at
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a locus is causal), since signals that overlap a single annotation type (e.g., eVariants) may be driven
by linkage disequilibrium (LD) or pleiotropic regulatory effects (Wainberg, Sinnott-Armstrong,
D Knowles, et al. 2017; Wainberg, Sinnott-Armstrong, Mancuso, et al. 2019). Second, it can
increase power by increasing the signal-to-noise ratio, and capturing a wider range of possible
mechanisms driving genetic associations with complex traits (e.g., AJ Schork et al. 2013; Lu
et al. 2016; Kichaev et al. 2019). For example, tests that incorporate both coding variants and
eVariants are expected to have high power to detect both protein-altering associations as well
as associations driven by effects on gene expression levels. One-dimensional annotation scores
derived from multiple annotation data sets can be used to weight variants in gene-based tests (e.g.,
D Lee et al. 2015; Kelley, Snoek, and Rinn 2016; Rentzsch et al. 2018); however, aggregating
variants separately for multiple annotation types and combining the result allows us to explicitly
model multiple distinct genes and biological mechanisms underlying associations.

Here, we present a statistical framework and computational tool to integrate heterogeneous
functional annotations with GWAS association summary statistics for gene-based analysis. We
analyze a diverse set of functional annotation data including multiple tissue-specific eQTL annotation
data sets, multiple epigenetic annotation sets mapping regulatory elements to putative target genes,
coding variant annotations, and proximity-based annotations. We compare the performance
of single-annotation, omnibus, and annotation-agnostic gene-based analysis methods through
simulation studies, and by analyzing GWAS summary statistics from the UK Biobank (Bycroft et al.
2018). Our contributions are to 1) expound a general statistical framework for gene-based analysis
with heterogeneous functional annotations, which includes several existing single-annotation gene-based
association methods as components or special cases; 2) provide a computationally efficient open-source
tool for gene-based analysis from summary statistics; and 3) conduct a comprehensive analysis of

statistical power and accuracy identifying causal genes across gene-based association methods
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& through extensive simulation studies and analysis of GWAS data for 128 human traits.

- Results

& We first outline a statistical framework and open-source tool for gene-based analysis with
&« heterogeneous functional annotations. Next, we describe simulations to evaluate 1) the Type I
s error rates of gene-based test statistics, 2) statistical power, and 3) specificity to identify causal
s genes. Finally, we discuss applications to empirical data using GWAS summary statistics from the
&« UK Biobank. We assess 1) the empirical power of gene-based tests by comparing the numbers
¢ of significant independent gene-based associations discovered for each UK Biobank trait, and 2)
s concordance with benchmark gene lists compiled from the ClinVar database (Landrum et al. 2015)

7 and the Human Phenotype Ontology (HPO) (Ko&hler et al. 2016).

» GAMBIT Framework

72 GAMBIT (Gene-based Analysis with oMniBus, Integrative Tests) is an open-source tool for
72 calculating and combining annotation-stratified gene-based tests using GWAS summary statistics
7+ (single-variant association z-scores). Broadly, GAMBIT’s strategy is to first separately calculate
75 single-annotation gene-based association tests stratified by functional annotation class, and aggregate
76 across classes for each gene to construct omnibus gene-based tests (illustrated in Figure 1). Here
77 and elsewhere, we refer to this omnibus test statistic as the GAMBIT gene-based test. GAMBIT
7 calculates four general forms of gene based test statistics, described briefly in Table 1 and detailed
7o in Materials and Methods. To account for LD between neighboring variants and genes, GAMBIT
s relies on an LD reference panel from an appropriately matched population (e.g., International
st HapMap 3 Consortium 2010; 1000 Genomes Project Consortium 2015). GAMBIT is implemented

ez in C++, and is open source under GNU GPL v3.
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Table 1: Forms of Gene-Based Test Statistics

‘ Statistic ‘ Null Distribution ‘ Special Cases & Synonyms ‘ References ‘
L-form Dk WiZr N (O,wTsz) Burden test, PrediXcan, TWAS [1]
Q-form Sk wiZ] Sk Ak x%, . SKAT, SOCS [2]
M-form maxp Z,f - Min-P, MOCS [3]

ACAT-V | X kaC_a]uchy(O,l)(l — pr) | = Cauchy(0, > wi) ACAT-V [4]

[1] B Li and Leal 2008; Madsen and Browning 2009; Gamazon et al. 2015; Gusev et al. 2016. [2] Wu et al. 2011;
Lamparter et al. 2016. [3] Conneely and Boehnke 2007; Lamparter et al. 2016. [4] Y Liu, Chen, et al. 2018.

Basic gene-based test forms used in GAMBIT. Z; denotes the single-variant z-score association test statistic for

variant k, with p-value p, = 1 - F X]z(Z,%). Under the null hypothesis, each Z; is standard normal and Z is multivariate
normal with correlation matrix Rz.
wy denotes the weight assigned to variant k. Any real-valued weights can be used in L-form tests, whereas Q-form

and ACAT-V require non-negative weights.

A denotes the k™ eigenvalue of diag(w)1/2deiag(w)1/2, and each ,\/lzk isi.i.d Xlz-
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Figure 1: GAMBIT Analysis Framework & Workflow
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Broad overview of GAMBIT workflow. (1) GWAS association summary statistics (single-variant z-scores, or effect
size estimates and standard errors) are cross-referenced and linked with multiple sets of functional annotations. (2)
Annotated GWAS variants are cross-referenced with variants in a haplotype reference panel to estimate LD on-the-fly
as needed. (3) GWAS summary statistics, annotations, and LD estimates are used to calculate stratified gene-based
test statistics. (4) Stratified gene-based tests are combined for each gene to construct omnibus test statistics. GAMBIT
supports multiple single-annotation test methods and multiple omnibus test methods to combine single-annotation
tests; detailed statistical methods are provided in Materials and Methods.
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» Gene-Centric Functional Annotation Data

84 We considered 5 broad annotation classes in our analysis: 1) proximity-based annotations, 2)
ss coding annotations, 3) UTR regions, 4) enhancer and promoter regions, and 5) eVariants. Each of
s these annotation classes comprises multiple subclasses; for example, coding annotations include
& non-synonymous, splice-site, and other variant categories; and eVariants are stratified by tissue.
ss Briefly, we annotated coding and UTR variants using TabAnno (Zhan and DJ Liu 2013) and
s EPACTS (H Kang 2014); obtained enhancer element and enhancer-target gene weight annotations
« from RoadmapLinks (Ernst et al. 2011; Kundaje et al. 2015), GeneHancer (Fishilevich et al.
ot 2017), and JEME (Cao et al. 2017); and pre-computed tissue-specific eVariants annotations from
2 PredictDB (Gamazon et al. 2015; A Barbeira et al. 2016) and FUSION/TWAS (Guseyv et al. 2016).
« Enhancer annotations were largely derived from NIH Roadmap Epigenomics and ENCODE project
« data (Bernstein et al. 2010; ENCODE Project Consortium 2012), as well as from the FANTOM
s Consortium (Lizio et al. 2015; Marbach et al. 2016; Cao et al. 2017). All eVariant annotations were
s estimated using the GTEx project v7 data (GTEx Consortium 2015). Figure 2 illustrates a subset
o of these annotations at the CELSR2 locus on chromosome 1; detailed descriptions of annotation
s data and statistical methods used to aggregate test statistics within and across classes are provided

e in Materials and Methods.
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Figure 2: Gene-Centric Regulatory Annotation Tracks
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Ilustration of primary regulatory annotation tracks used in GAMBIT gene-based analysis framework at the CELSR2
locus on chromosome 1. Top panel: Distance-to-transcription start site (dTSS) weights, calculated as

wjk(a) = exp(—ald;k|), where dji is the number of base pairs between variant j and the TSS of gene k, shown for

a = 107 (solid lines), @ = 5 x 10~ (dashed lines), and & = 107* (dotted lines). Gene bodies are indicated by arrows
and variant locations are marked in black at y = 0. Middle panel: enhancer-to-target-gene confidence weights.
Weights are shown for enhancer variant and target gene, and unique enhancer elements are marked by black lines at
y = 0. Lower panel: tissue-specific eVariant weights for each gene. eVariant tissues are differentiated by shape.
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o GWAS Simulations

101 We simulated GWAS summary statistics at 2,000 loci using haplotype data from the European
12 subset of the 1000 Genomes Project (1KGP) Phase 3 reference panel (1000 Genomes Project
s Consortium 2015). Briefly, each locus was defined by first sampling a single causal protein-coding
14 gene, aggregating all genes within 1 Mbp of the causal gene, and finally aggregating all variants
15 assigned to one or more genes based on functional annotations or within < 500kbp of any gene
w6 at the locus. For each of the 2,000 loci, we simulated genetic effects under four causal scenarios:
w7 1) coding variants are causal, 2) eVariants are causal, 3) enhancer variants are causal, and 4)
s UTR variants are causal. For each locus and causal scenario, we varied the proportion of trait
19 variance accounted for by variants at the locus h% = 0.01%, 0.025%, 0.05%, 0.1%, 0.25% with
1o constant GWAS sample size n = 50,000; and for each locus—scenario—hi combination, we generated
11 100 independent simulated replicates. To evaluate p-value calibration and Type I error rates of
12 gene-based tests, we further simulated genome-wide summary statistics for 1,000 traits under the

13 null hypothesis. Detailed simulation procedures are provided in Materials and Methods.

1 Simulation Studies: Power and Accuracy Identifying Causal Genes

15 We compared performance identifying causal genes across 8 gene ranking methods: 1) ranking
16 each gene by distance between its transcription start site (TSS) and the most significant independent
17 single variant at the locus, 2) the Pascal SOCS test -log,p-value, which assigns equal weight to all
e variants within 500kbp of the gene body, 3) the GAMBIT omnibus test -log;,p-value (labeled as
1o GAMBIT), and 4-8) -log,,p-values for gene-based tests using each annotation class individually
120 (listed in Table 2 and described in Materials and Methods). As expected, test statistics calculated
121 using the causal annotation class alone were most accurate for identifying the causal gene (e.g.,

122 gene-based p-values using coding variants were most accurate when coding variants were causal);

10
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122 however, the GAMBIT omnibus test was nearly as accurate, and had the second-highest performance
124 across simulation settings (Figure 3; Supplementary Figure 1). In practical applications, the causal
s mechanisms underlying associations are unknown and often heterogeneous across loci; in this case,

126 we expect the GAMBIT omnibus testing strategy to be most accurate.

Table 2: Single-Annotation Gene-Based Tests

‘ Test Form Annotation Subclasses Annotated Variants
dTSS ACAT-V dTSS-a value Variants within 500kbp of TSS
CT-TWAS L-form eQTL tissue eVariants across 48 tissues
Enhancers | Q-form; ACAT-V Enhancer region All enhancer variants
UTR Q-form; ACAT-V 3’ and 5 UTR 3’ and 5° UTR variants
Coding Q-form; ACAT-V | Variant type (e.g., missense, splice site) Exonic variants

Summary of variant types, default test methods, and default aggregation procedures for primary annotation classes in
GAMBIT. Rationale and further details are provided in Materials and Methods.

127 We also compared statistical power for each of the gene-based test methods at both causal and
126 non-causal proximal genes at each simulated locus (Figure 4). For proximal genes, association
120 signals are driven by LD and pleiotropic regulatory variants shared with the causal gene; thus,
10 gene-based tests should ideally have high power for causal genes but comparatively low power for
131 proximal genes. Similar to the previous analysis, gene-based tests using the causal annotation class
132 alone had the highest power for causal genes and highest specificity (low power for proximal genes)
133 across simulation settings. The GAMBIT omnibus test generally had the second-highest power for
134 causal genes, and intermediate power for proximal genes. Thus, we expect the omnibus testing
135 approach to be powerful and robust when causal mechanisms are unknown or heterogeneous across

136 lOCi.

11
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Figure 3: GWAS Simulations: Performance Identifying Causal Gene
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either coding, eQTL, enhancer, or UTR variants are causal (plot facet).
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Figure 4: GWAS Simulations: Statistical Power
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for each gene-based testing approach (x-axis & color) stratified by locus heritability hi (plot rows) when either
coding, eQTL, enhancer, or UTR variants are causal (plot columns). Power is shown separately for causal genes and
proximal genes (non-causal genes that are proximal to a causal gene, as defined in Materials and Methods). Ideally,
gene-based tests should have high power for causal genes, and relatively lower power for proximal genes. Error bars
show 95% confidence intervals for average power across loci.
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v Analysis of GWAS Data from the UK Biobank

Figure 5: UK Biobank Analysis: Numbers of Significant Independent Associations Detected
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Numbers of independent gene-based associations (at Bonferroni-corrected 5% significance level) detected by each
method across 128 UK Biobank traits. Panel A: Total number of significant associations across traits (delineated by
horizontal black lines) for each gene-based test; Wilcoxon signed-rank p-values (top) for paired comparisons between
no. associations detected by GAMBIT omnibus test (red) versus Pascal/SOCS (blue) and single-annotation
gene-based tests (green). GAMBIT detects significantly more associations than any individual constituent gene-based
test or by Pascal/SOCS across UK Biobank traits.
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Figure 6: UK Biobank Analysis: Performance Identifying Benchmark Genes
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Percentage of loci at which the benchmark gene (identified from HPO and/or ClinVar) is top-ranked for each
gene-based association or gene ranking method. For each method, bars on the left (outlined in black) are calculated
for benchmark loci present in both HPO and ClinVar (54 loci), and bars on the right (faded outline) are calculated
using the union of all HPO and ClinVar loci (153 loci). Horizontal red lines indicate the expected percentage of
top-ranked benchmark genes under the null hypothesis that gene rank and benchmark labels are independent. Error
bars indicate 95% confidence intervals.

s Significant Independent Associations Detected for 128 UK Biobank Traits. To compare the
139 power of gene-based tests in empirical data, we evaluated the numbers of significant independent
140 gene-based associations detected for each method across 128 approximately independent GWAS
1w traits in the UK Biobank (selection procedures are described in Materials and Methods). The
12 number of independent associations is calculated for each trait by selecting the most significant
13 gene-based association p-value, masking all gene-based tests that include variants within 1 Mbp
14 of variants for the selected gene, and repeating until all genes with Bonferroni-adjusted p-value
1s < 5% are either selected or masked. This procedure ensures that all selected genes are separated
1s by at least 1 Mbp, and provides a conservative estimate of the number of significant independent
17 signals. GAMBIT omnibus tests detected significantly more associations than any other gene-based
1 association method considered (Figure 5A), and consistently detected more associations than other

149 methods across a wide range of traits and genetic architectures (Figure 5B).

15
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i Concordance with Benchmark Genes for 25 UK Biobank Traits. We compiled lists of
151 benchmark genes from the ClinVar database (Landrum et al. 2015) and the Human Phenotype
12 Ontology (HPO) (Kohler et al. 2016) for 25 traits in the UK Biobank to compare the gene-based
153 analysis methods identifying causal genes; procedures and selection criteria are detailed in Materials
1.« and Methods. Results are shown separately using the union and intersection of ClinVar and HPO
155 benchmark genes; the latter gene set is expected to have higher specificity, albeit fewer genes.
s Performance identifying benchmark genes was assessed by ranking genes separately within each
157 benchmark locus for each UK Biobank trait, where a benchmark locus is defined as the set
s of all genes within 1 Mbp of a genome-wide significant single-variant association that also is
159 within 1 Mbp of a benchmark gene. To compare the performance of gene ranking methods, we
0 calculated fraction of loci at which the top-ranked gene coincides with a benchmark gene (Figure 6)
e and assessed receiver operating characteristic (ROC) and precision-recall curves for each method
12 (Supplementary Figure 2).

163 GAMBIT omnibus tests had the highest performance identifying benchmark genes among the
14 gene ranking methods considered, particularly for the stricter gene set, although the difference was
165 not statistically significant relative to most other gene ranking methods (Figure 6). Gene-based
16 tests using coding variants alone had the second-highest performance, which may reflect the
w7 enrichment for coding associations within the benchmark gene set (Supplementary Figure 3)
s caused by benchmark gene selection criteria (described in Materials and Methods). Due to the
160 over-representation of coding associations, Figure 6 may underestimate the impact of incorporating
w70 heterogeneous regulatory annotations for associated loci without an established benchmark gene.
171 Further inspection revealed a number of loci of biological or clinical interest. In the analysis
w72 of skin cancer in the UK Biobank, three melanin or melanogenesis-related genes (TYR, OCA2,

w7 and MCIR) and telomerase reverse transcriptase (TERT) were top-ranked by GAMBIT, but not

16
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7 top-ranked based on TSS-to-top-SNP distance, while all other benchmark genes for skin cancer were
s top-ranked by both methods or by neither. At the TERT locus, the lead GWAS variant was intronic,
76 whereas the lead variants for TYR, OCA2, and MCIR were nonsynonymous. Unsurprisingly, the
w77 latter three benchmark genes were also top-ranked based on coding variant gene-based p-values;
s however, only TERT was top-ranked based on CT-TWAS.

179 Similarly, APOB, which encodes an apolipoprotein and is associated with autosomal dominant
180 forms of hypercholesterolemia, was top-ranked by GAMBIT but not by TSS-to-top-SNP distance
w1 for disorders of lipoid metabolism in the UK Biobank. Despite being >150 Kbp from the
12 intergenic lead GWAS variant, APOB was also top-ranked by all single-annotation gene-based
183 tests individually. Conversely, TSHR, which encodes a thyroid horomone receptor, was top-ranked
1« based on TSS-to-top-SNP distance but not by GAMBIT for thyrotoxicosis. In this case, the lead
1ss  GWAS variant was intronic, and CT-TWAS was the only single-annotation gene-based test that
s ranked TSHR as the top gene at its locus. A complete table of results for benchmark genes is

17 provided in Supplementary Materials.

- Discussion

189 Here, we introduced GAMBIT, a statistical framework and software tool for gene-based analysis
190 with heterogeneous annotations. Our work makes several contributions to the field:

191 First, we conducted extensive simulation studies to systematically compare gene-based test
192 methods across a range of plausible biological scenarios, and demonstrated pitfalls of test methods
193 that use only a single annotation class. When causal mechanisms are misspecified (i.e., causal
194 variants do not overlap annotated variants used in gene-based analysis), standard gene-based tests
195 have limited power, and can be confounded by LD and pleiotropic regulatory variants that affect

19 multiple genes. This may lead researchers to misidentify the genes and biological mechanisms that

17
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17 contribute to disease risk. Finemapping, co-localization, and conditional analysis can be applied
198 to refine association signals and mitigate spurious inferences following gene-based analysis (e.g.,
199 Giambartolomei et al. 2014; Z Zhu et al. 2016; Y Lee et al. 2018; Mahajan et al. 2018). By
200 contrast, our omnibus testing strategy helps to ameliorate spurious inferences within the context of
201 gene-based testing directly, and also has high power to detect associations across a range of causal
22 mechanisms underlying genetic associations.

203 Second, we analyzed 128 traits from the UK Biobank to evaluate performance in empirical
204 data across a range of complex traits and genetic architectures, and confirmed that incorporating
205 annotations of many types and across many tissues increases power relative to standard methods.
26 While our analysis of concordance with gold-standard causal genes was limited by the relatively
2 small numbers of benchmark genes identified for UK Biobank traits and the inherent difficulty
28 establishing causal genes underlying regulatory associations, we found suggestive evidence that
200 incorporating diverse annotation types in gene-based analysis can improve performance identifying
210 causal genes relative to standard approaches (e.g., ranking genes by distance to the most significant
211 single variant) and gene based tests using a single annotation type.

212 Finally, we provide a unifying framework and easy-to-use software tool to incorporate heterogeneous
213 functional annotations in gene-based analysis. From its inception, gene-based analysis was built
21« on the premise that aggregating functional variants at the gene level can increase statistical power
s and help identify causal genes in GWAS (Neale and Sham 2004). Early gene based test methods
215 were developed primarily for rare genic variants (e.g., B Li and Leal 2008; Madsen and Browning
27 2009), and early gene-based association analyses often used only deleterious coding variants (e.g.,
21s Purcell et al. 2014; Majithia et al. 2014). However, functional genomics studies have shown that
219 most functional variation is non-coding (ENCODE Project Consortium 2012), and most variant

220 associations discovered through GWAS to date occur in non-coding regions (Welter et al. 2013;

18
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221 MacArthur et al. 2016), highlighting the importance of regulatory annotations for gene-based
222 association analysis. The first gene-based tests developed explicitly for regulatory variation were
222 TWAS and PrediXcan, which aggregate eVariants to construct proxy variables for tissue-specific
22« gene expression levels using predictive weights estimated from external eQTL mapping data (Gusev
25 et al. 2016; A Barbeira et al. 2016). However, functional and regulatory genomics projects have
226 introduced a wealth of annotations with potential utility for gene-based analysis (e.g., Lizio et al.
227 2015; Cao et al. 2017; Fishilevich et al. 2017; Stranger et al. 2017).

228 Our omnibus testing strategy is expected to perform best when variants from a single annotation
220 class (e.g., coding variants) are causal at a given locus. When multiple independent signals from
20 different annotation classes exist at a single gene locus, this testing strategy is expected to have
21 lower power than one that explicitly accounts for multiple possible signal sources (e.g., via Barnett,
22 Mukherjee, and X Lin 2017). While we did not explore this possibility in our simulations, it is an
23 interesting question which we defer to future work.

234 The utility of incoporating annotations in gene-based analysis depends crucially on the accuracy
25 and comprehensiveness of the underlying annotation data sets. While we considered the case that
26 causal variants may be misspecified, our simulations assumed that the confidence weights assigned
27 to regulatory elements are well-calibrated, and that causal eVariants are annotated. Violations
28 Of these assumptions will reduce both power and accuracy in gene-based analysis, and may in
20 part account for differences between our results with empirical versus simulated data. Current
200 transcriptomic and epigenomic studies are generally limited to a subset of human tissues and
20 cell-types, and are derived from data sets of limited sample size (e.g., Stranger et al. 2017; ENCODE
22 Project Consortium 2012). Thus, we expect current transcriptomic and epigenomic annotations
23 to be incomplete and imprecise. Looking forward, larger and more comprehensive studies will

2.« enable more comprehensive and accurate annotations, increasing the utility of annotation-informed
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25 association analysis methods.
246 In summary, our work builds upon and generalizes previous gene-based association methods,
2z providing a flexible framework for gene-based analysis with heterogeneous annotations that can be

«s readily adapted when new annotation resources are developed and released.

.. Materials and Methods

250 We describe 1) methods to aggregate variants for gene-based analysis, 2) omnibus procedures
251 to combine multiple gene-based tests, 3) functional genomic and annotation data resources, 4)
22 procedures to simulate GWAS data using real genotype and functional annotation data, and 5)

s GWAS data from the UK Biobank to which we applied our methods.

. Multiple-Variant Association Test Statistics
255 Here, we review statistical methods to aggregate multiple variants for gene-based, region-based,
256 Or pathway association analysis. For convenience, we assume a quantitative trait and ignore the

27 presence of covariates; however, our results can easily be adapted to other settings.

s Linear-Form Gene-Based Tests (L-form). The oldest and most widely used gene-based tests
29 are linear combinations of genotypes across variants (B Li and Leal 2008; Madsen and Browning
20 2009; S Lee, Wu, and X Lin 2012), here referred to as L-form tests. Formally, we define the L-form
s testas Tp = (wTRzw) 2w Z, where w is a vector of single-variant weights, Z is a vector of
22 single-variant association statistics (where each Z; follows the standard normal distribution under
23 the null hypothesis), and Ry is the correlation matrix of z-scores. Under the null hypothesis of
26« NO association, 77 follows the standard normal distribution. The L-form test statistic 77, can be
s computed from GWAS summary statistics (single-variant z-scores, or effect sizes and standard

26 errors) and covariance estimates, and can be written either as linear combinations of single-variant
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27 association statistics or as linear combinations of genotypes (ZZ Tang and DY Lin 2013; DJ Liu
268 et al. 2014b).

269 Examples of L-form tests include burden tests, which calculate burden scores as a weighted
20 sum of rare, putatively deleterious mutations (B Li and Leal 2008; S Lee, Wu, and X Lin 2012);
o and TWAS/PrediXcan tests (Gamazon et al. 2015; Gusev et al. 2016; A Barbeira et al. 2016),
22 which aggregate eQTL variants using predictive weights estimated from external eQTL mapping
23 data, e.g. from the GTEx project (GTEx Consortium 2015). These can be viewed as tests of
27+ association between GWAS trait and an explicit proxy variable constructed as a linear combination
25 of genotypes. Importantly, L-form tests rely on prior knowledge regarding the directions of effect
27e across variants (Wu et al. 2011; S Lee, Wu, and X Lin 2012). For example, the signed weights used
27 in burden tests often reflect the hypothesis that rare deleterious alleles increase risk for disease,
2zs  and the predictive weights used in TWAS/PrediXcan reflect the hypothesis that gene expression

2o mediates the associations between genotypes and complex trait.

20 Quadratic-Form Gene-Based Tests (Q-form). Variance component tests and quadratic forms
21 Of single-variant association statistics comprise another widely used class of gene-based association
222 methods, here referred to as Q-form (quadratic) tests. Q-form tests include VEGAS (or SOCS),
23 defined as the sum of squared single-variant z-scores (JZ Liu et al. 2010; Lamparter et al. 2016);
2.« and SKAT, a weighted quadratic form of single-variant association statistics (Wu et al. 2011).
s Formally, the Q-form test statistic is defined Tp = Z"diag(w)Z, where diag(w) is a diagonal
255 Wweight matrix and Z is a vector of single-variant association z-scores; under the null hypothesis
27 Of no association, Ty follows a mixture chi-squared distribution with mixture proportions equal to
= the eigenvalues of diag(w)!'/?Rdiag(w)'/?, where Ry is the correlation matrix of z-scores. In

29 contrast to L-form tests, Q-form tests aggregate single-variant association statistics without prior

21


https://doi.org/10.1101/732404
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/732404; this version posted August 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

20 knowledge or assumptions pertaining to the directions of effects across variants (Wu et al. 2011;
201 S Lee, Wu, and X Lin 2012). While less tractable than L-form, analytical p-values for Q-form tests
22 can be calculated using a variety of techniques to approximate the tail probabilities of multivariate
2.s normal quadratic forms (e.g., Davies 1980; H Liu, Y Tang, and HH Zhang 2009), which are far
2« more efficient than permutation procedures or Monte Carlo methods (Mishra and Macgregor 2015;
2s Lamparter et al. 2016). Q-form tests are most appropriate when a sizable proportion of variants
206 are hypothesized to have non-zero effects of unknown and inconsistent direction (S Lee, Wu, and

207 X Lin 2012)

s Maximum Chi-Squared Statistic as a Gene-Based Test (M-form). Perhaps the simplest
200 gene-based test is the maximum chi-squared statistic across variants (or equivalently, the minimum
a0 p-value), here referred to as M-form tests. Analytical p-values for M-form tests can be calculated
a1 by directly integrating the multivariate normal density of z-scores within the hypercube given by
w2 @ € R™ : maxy |x¢| < max; |Z;| where m is the number of variants, or approximated by adjusting
w3 the minimum p-value across variants by the effective number of tests (Conneely and Boehnke 2007;
w4  Lamparter et al. 2016). M-form tests are most appropriate when only one or a small fraction of

s variants are hypothesized to have non-trivial effects.

Aggregated Cauchy Association Test (ACAT). A recently proposed gene-based association test,
w7 the aggregated Cauchy association test (ACAT), combines test statistics across multiple variants
w8 under arbitrary dependence structures by transforming single-variant p-values using the Cauchy

20 cumulative distribution function (CDF), and computing a p-value

1
- § ol —p;
pACAT - 1 - FCaUChY((),]) Z Wir WlFCallChY((),l)(l pl) s
i’ "i i
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w0 where p; and w; are the p-value and weight for the i’ variant and Feauchy ) (1) = % arctan(z) + %
a1 is the CDF of the standard Cauchy distribution (Y Liu, Chen, et al. 2018; Y Liu and Xie 2018).
sz ACAT is expected to perform well when only a small fraction of variants are causal (Y Liu, Chen,
a1z et al. 2018). Importantly, ACAT does not require LD computation, and can thus be calculated in
sie - O(m) time where m is the number of variants. Unlike L-form and Q-form, ACAT and M-form test
s1s  p-values are greater than or equal to min; p;. However, L-form and Q-form tests can still increase

s1is  power relative to single-variant analysis by reducing the burden of multiple testing and assigning

a7 higher weight to functional variants.

s1s  Generalizations and Extensions. The simple forms of gene-based tests described above can be
a9 related and combined through a variety generalizations and extensions. Q-form and M-form can
=0 both be viewed as special cases of a statistic (X; w;|Z; |P)!/P, which is equivalent to Q-form when
w2 p = 2 and to M-form when p — oo; this generalization has been used, for example, in the aSPU
w22 gene-based test (Kwak and Pan 2015). Similarly, Q-form and L-form can both be viewed as special
= cases of a statistic Z T (rdiag(w)+ (1 —7)wrw, ) Z, which is equivalent to Q-form when 7 = 1 and
w24 L-form when 7 = 0; this generalization has been used, for example, in the SKAT-O gene-based test
ws (S Lee, Wu, and X Lin 2012). Finally, the ACAT method can be used to compute omnibus p-values
»s aggregating across multiple gene-based tests (Y Liu, Chen, et al. 2018); by default, GAMBIT uses

27 this method to aggregate test statistics across annotation classes for each gene.

» Integrating Functional Annotations in Gene-Based Tests

2o dTSS Weights. One of the most common heuristics to infer putative causal genes at GWAS loci
=0 in the absence of functional annotation is to rank genes by distance between their transcription start
s site (TSS) and the peak GWAS variant. This strategy is appealing given the strong enrichment of

sz regulatory variants near TSS.
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333 To incorporate distance-to-T'SS (dTSS) and capture association signals at regulatory variants
w4 that are not well-annotated in gene-based analysis, we define the dTSS weights for gene k as
ws Wi(a) = e~ where djy is the genomic distance (number of base pairs) between variant j
xs and the TSS for the gene of interest. Larger values of the parameter a confer more weight to
.7 variants nearer the TSS. While dTSS weights can be used in any weighted gene-based test (e.g.,
ss  Q-form tests), ACAT is particularly well-suited due to its linear computational complexity, as
a9 dTSS-weighted tests often involve thousands of variants per gene. The dTSS-weighted ACAT

a0 p-value for gene k is defined

1
pk(a) =1- FCauchY(o,D m
T

2 W@ F g, (1= ).

J
s including only variants within a specified window (e.g., 500kbp) of the TSS for gene k.
342 Appropriate @ values are in general unknown a priori, and may vary across genes and traits;
a3 however, the ACAT method can be applied to efficiently calculate an omnibus test p-value by
«e  aggregating dTSS-weighted gene-based test p-values py(«a;) across multiple values a1, a3, ...(Y Liu,

us  Chen, et al. 2018; Y Liu and Xie 2018). By default, GAMBIT calculates omnibus dT'SS-weighted

s test statistics across @ values 1074, 5 x 1073, 1073, 5 x 107°.

«»  Regulatory Element-Target Gene Weights . To capture association signals across regulatory
us elements that have been assigned to one or more target gene, we weight variants in regulatory
s elements by element-to-target-gene confidence scores, and aggregate variants for each gene using
0 either ACAT or Q-form gene-based test statistics. For example, we define the regulatory-element

s weighted Q-form test statistic as
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Tk = WlkZij
i j=1

where m; is the number of variants in the i"" regulatory element, w;; is the confidence weight

between element i and gene k, and Z;; is the j’ " variant in the i""regulatory element.

eQTL Weights. Given a vector of weights by, to predict expression levels for gene k in a given
tissue or cell type ¢ as a linear combination of normalized genotypes, the z-score TWAS test of
association between predicted expression level and GWAS trait is

1
St = ———b Z

A ’b;{r[RZbkt

where Z is the vector of single-variant GWAS z-scores and Ry is the correlation matrix of z-scores.
To aggregate test statistics across multiple tissues or cell-types, which we refer to as Cross-Tissue

TWAS (CT-TWAS), we considered three approaches:

1. Q-form Cross-tissue Test (CT-Q): Calculating the sum of squared tissue-specific test statistics,

> S,f .» Which has a mixture chi-squared distribution under the null hypothesis of no association,

2. M-form Cross-tissue Test (CT-M): Calculating an analytic p-value for the maximum absolute
test statistic max; | Sk, | using the multivariate normal joint density of tissue- or cell-type-specific

test statistics Sk1, Sk2, ... under the null hypothesis of no association, and

3. ACAT Cross-tissue Test (CT-A): Combining tissue- or cell-type-specific p-values py; =
20(—|Sk|) using the ACAT method.

CT-Q and CT-M require the cross-tissue correlation matrix Rg with elements [rs];» = corr(bzt Z, b;t, Z)

= bZtszk,r/\/(bztRz bii)(b], Rzby,r), which can be computed in O(m*n + mn?) time where m is
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0 the number of tissues or cell-types and 7 is the number of eVariants. By contrast, CT-A p-values
s can be computed in O(m) time, since ACAT does not involve the correlation structure. By default,
s GAMBIT implements CT-A; in our analysis of UK Biobank data, CT-M and CT-A generally perform

a2 similarly, while CT-Q tends to detect fewer significant associations (Supplementary Materials).

+» Functional Annotation Data Sources

s« Promoter and Enhancer-Target Annotation Data . To identify regulatory genetic elements
a5 and their putative target genes, we used pre-computed annotation data sets from three existing
ws methods: Joint Effects of Multiple Enhancers (JEME) (Cao et al. 2017), GeneHancer (Fishilevich
a7 et al. 2017), and RoadmapLinks (Y Liu, Sarkar, et al. 2017; Ernst et al. 2011; Kundaje et al.
s 2015). GeneHancer provides a global confidence score between each enhancer element and one
w9 Or more putative target genes, while JEME and RoadmapLinks provide tissue- or cell-type-specific
0 enhancer-target confidence scores. For the latter two data sets, we calculated overall enhancer-target
ssr  confidence scores across tissues and cell types as the soft maximum (LogSumExp function) of tissue-
2 Or cell-type-specific scores for each enhancer-target pair. Descriptive statistics for each enhancer

s annotation dataset are provided in Supplementary Table 2.

s« Tissue-Specific eVariant Annotations and Predictive Weights. To incorporate eVariants in
s gene-based analysis, we used pre-computed tissue-specific predictive weights for eGene expression
s estimated using GTEx v7 (Stranger et al. 2017) from TWAS/FUSION (including elastic net and
7 LASSO models) (Gusev et al. 2016) and PredictDB (Gamazon et al. 2015; AN Barbeira et al.
s 2018). We generated a GAMBIT eWeight annotation files incorporating all available tissues and
w0 cell types for each data resource and predictive model. Descriptive statistics for each eVariant

w0 weight dataset are provided in Supplementary Table 1.
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sr  Coding Variant and Gene Annotations. We annotated coding variants, TSS locations, and
sz UTR variants using TabAnno 419 (Zhan and DJ Liu 2013) and EPACTS (H Kang 2014) based on

s GENCODE v14 (Harrow et al. 2012).

= Simulation Procedures

395 Here, we describe procedures to simulate GWAS summary statistics using real genotype data
ws Or LD estimates. We begin by defining summary statistics and deriving their distribution. We next
a7 outline procedures to simulate GWAS summary statistics under the desired distribution. Finally,
w8 we describe procedures to simulate configurations of causal genes, causal variants, and effect sizes

w9 using real functional genomic annotation data.

w0 Simulating GWAS Summary Statistics. We simulated GWAS traits under the model

Y:1n ()+G,8+€,

w0 where Y € R”" is a quantitative trait for a GWAS sample of size n, 1, is the n X 1 vector of 1’s
« and By € R is the trait intercept, G € R is the centered and scaled genotype matrix where each
ws column has mean O and variance 1, 3 € R™1 is a vector of causal genetic effects, and € € R" is an
we Li.d. trait residual with E(g;) = 0 and Var(g;) = o2

405 The total trait variance is

&

Var(Y;) = Var []E(Y,-| G’i)] +E [Var(Yil éi)] =1’ +0?

w6 where the genetic variance 72 = Var(él.Tﬁ) = BTRM, and R = Var(G)) is the genotype correlation
«7 (LD) matrix. Here, we treat the genetic effects 3 as a constant vector rather than a random variable,

ws and write E(-) rather than E(-|3) to simplify notation. In addition, we fix 8y = 0 and o2 = 1 — 72
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«s here and elsewhere (without loss of generality). By fixing the residual variance o2 = 1 — 72, we

«0 can interpret 72 as the trait heritability, i.e. the proportion of trait variance due to genetic effects.
a1 Single-variant GWAS association analysis aims to detect marginal associations between trait
sz and genotypes at individual variants rather than multiple variants jointly. The marginal effect of

3  variant k is
— COV()]i’ Gik) — E

VVar(Giz)

s where Ry is k" row (or column) of the LD matrix R. We note that a; quantifies a statistical

(GG B) = R 3,

ay -

s1s association (marginal covariance) between variant k genotypes and trait, which is a function of
ss both B and causal effects By for variants k£’ in LD with k. The single-variant association test

s7  statistic corresponding to the null hypotheses Hy : a; = 0 is

A A

425 5

se(a 1 (A}% —4?)

n—2 k

. ~ P R =5 P
ss  where @ = ﬁGZY — a; and 0'3 = anl 2 (Y = Y,)? > 1.

419 We can write the vector of single-variant association statistics for variants k = 1,2,...,m as
~—1/21 ~
Z =(Z1,Z2,... Zw)" = (n—1)'’D 121 aty
n
N 1/2m il
= n1/2D I/ZRB + (l’l _ 1)1/2D l/Z_GT€
n

w0 where R, = nITl(}T(} is the sample LD matrix, and Disanmxm diagonal matrix with Dix =
2 A

421 m(&g - d/]%). Note that D ~ I, if the proportion of trait variance accounted for by each

w2 individual variant is small (e.g., < 1%). If trait residuals € are i.i.d. normal with mean O and

«s variance 1, then
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Z ~ Ny (D7 "R, D RD ™).

424 We simulated GWAS summary statistics by calculating R from the European subset of the
25 1000 Genomes Project panel, and replacing D by its asymptotic expected value D = E(nh_{Eo D) with
w2s elements Dyy = 1 — a]%. Because D 5 D, Slutsky’s theorem implies that test statistics calculated
« using D are asymptotically equivalent to those using D, which is acceptable when the GWAS

28 sample size n is large.

29 Simulating Genetic Effects at Causal Loci. We used empirical functional annotation data to
a0 simulate causal genetic effects 3 under realistic genetic architectures. For each simulated causal
s locus, we selected a causal gene by sampling a single CCDS protein-coding gene, and defined
sz proximal genes as any gene with TSS within 1 Mbp of the causal gene TSS. We then simulated
s single-variant GWAS summary statistics for all variants associated with any causal and proximal
s¢  genes by proximity (< 1 Mbp) or functional annotations (e.g., eQTL variants).

435 We simulated causal genetic effects under 5 scenarios: 0) no association (null model), 1) coding
ss  association, 2) enhancer association, 3) eGene association, and 4) UTR association. For coding
w7 and UTR associations, we first selected the number of causal variants M* = ;[ (ﬁjz. > 0) from a
ss  Poisson distribution with rate parameter 4 = M /4 truncated to 1 < M™* < M, where M is the total
a9 number of coding (or UTR) variants for the causal gene, and randomly selected M™* causal variants
w0 from the total set of M coding (or UTR) variants for the causal gene. This procedure results in
a1 ~25% of all coding (or UTR variants) having non-zero causal effects, while ensuring that at least
w2 one variant is causal. For enhancer associations, we similarly simulated the number of causal
«s  enhancers M™ from a Poisson distribution with rate parameter A = M /4 , where M is the number of

«s enhancers mapped to the causal gene, and selected causal enhancers using a categorical distribution
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«s  with probability weights derived from confidence scores between enhancer elements and the causal
«s  gene. For eGene associations, we selected a single causal tissue at random, and simulated causal
w7 effect sizes proportional to precomputed eVariant weights for the causal gene and tissue. Because
1 eVariant weights are noisy in practice, we used simulated eVariant weights @ ~ Ny (w, %R_l)

s in place of the original eVariant weight vector w in TWAS gene-based tests, where N is the GTEx

w0 V7 sample size for the causal tissue.

s The UK Biobank Resource

452 We used GWAS summary statistics (single-variant association effect size estimates, standard
s3  errors, and p-values) for a set of 1,403 traits in the UK Biobank (Bycroft et al. 2018) cohort
4 calculated using SAIGE (Zhou et al. 2018). Genotype data were imputed using the Haplotype
sss  Reference Consortium panel (McCarthy et al. 2016), and filtered to include only variants with
s imputed MAC > 20 in the UK Biobank. We selected a subset of 189 traits for primary analysis
»7 by including only traits with effective sample size > 5,000, and > 1 single-variant association
sss p-value <2.5e-8. For our analysis of empirical power, we selected a subset of 128/189 traits by
w9 iteratively pruning pairs of correlated traits. Beginning with the most highly correlated pair of traits,
w0 we retained the trait with the larger number of significant independent single-variant associations
s (in the case of ties, we selected the trait with the most detailed description), and repeated this
w2 procedure until the maximum pairwise correlation-squared between traits was <0.10. For our
w3 analysis of concordance with benchmark genes, we first selected a subset of 47 traits including
w4 only traits with > 1 single-variant association p-value < 5e-10, excluding benign neoplasms, and
w5 including at most a single trait within each trait category. We identified > 1 relevant benchmark

ws  genes for 25 of the original 47 traits.
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« Selection of Benchmark Genes

468 To identify benchmark genes for each of the traits selected from the UK Biobank, used the
w9 ClinVar (Landrum et al. 2015) and Human Phenotype Ontology (HPO) databases (Kohler et al.
w0 2016). The HPO database explicitly links genes to traits, while the ClinVar database links traits
s to variants. To identify benchmark genes from ClinVar, we extracted protein-altering variants
w2 (frameshift, missense, nonsense, splice site, or stop-loss variants), and excluded variants with
w3 unknown or ambiguous molecular consequence (e.g., intergenic and intronic variants). Despite
w4 including only ClinVar genes with coding associations, we expect to capture some genes for which
a5 both rare coding variants and common regulatory variants contribute to disease risk. For each
s UK Biobank trait, we extracted all protein-altering ClinVar variants +/- 1 Mbp of a genome-wide
«7  significant UK Biobank variant, and manually selected ClinVar traits equivalent or closely related
w8 to the corresponding UK Biobank trait. We then annotated genes associated with one or more
a9 relevant ClinVar trait as a ClinVar benchmark gene. We identified benchmark genes from the HPO
s0 database by manually matching keywords between UK Biobank and HPO traits. A complete list of
st HPO/ClinVar traits and benchmark genes for each UK Biobank trait is provided in Supplementary

w2 Materials.

«~ Data Access

s« GAMBIT Software: https://github.com/corbing/GAMBIT

s UK Biobank SAIGE Summary Statistics: ftp://share.sph.umich.edu/UKBB_SAIGE_HRC/
s  €QTL Annotation Data Sources

sz PredictDB: http://predictdb.org/

s ' TWAS/FUSION: http://gusevlab.org/projects/fusion/#reference-functional-data

9 Enhancer Annotation Data Sources
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w0 RoadmapLinks: www.biolchem.ucla.edu/labs/ernst/roadmaplinking
s JEME: http://yiplab.cse.cuhk.edu.hk/jeme/

w2 GeneHancer: https://www.genecards.org/
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- Supplementary Tables and Figures

Supplementary Table 1: Descriptive Statistics for e€QTL Annotation Data Sets
TWAS/FUSION PredictDB

Elastic Net | LASSO | Elastic Net
No. Tissues 48 48 48
Total No. eVariants 766,885 | 451,186 | 1,437,864
Total No. eGenes 25418 | 25,634 25,844
Mean No. eGenes per eVariant 3.11 1.88 3.26
Mean No. Tissues per eVariant 4.90 2.98 4.38
Mean No. Tissues per eGene 9.17 9.19 9.62
Mean No. eVariants per eGene 93.77 33.17 181.16

Supplementary Table 2: Descriptive Statistics for Enhancer-to-Target Gene Annotation Data Sets

RoadmapLinks JEME | GeneHancer
Total No. Regulatory Elements 1,285,355 | 235,242 209,691
Total No. Target Genes 18,931 18,357 79,782
Total Mbp Spanned 257.1 247.8 331.2
Mean No. Genes per Element 1.3 2.7 34
Mean No. Elements per Gene 89.2 35.1 8.8
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- Supplementary Figures

Supplementary Figure 1: GWAS Simulations: ROC and Precision-Recall Curves
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Receiver Operating Characteristic (ROC; top) and Precision-Recall (bottom) curves for each gene-based testing
approach (curve color) when either coding, eQTL, enhancer, or UTR variants are causal (plot columns) given locus
heritability h% =0.05%. To aggregate results across loci and simulation replicates, we use standardized scores for
each method calculated by dividing gene-based scores (e.g., -log;-p-values) by the maximum value at the
corresponding locus within each replicate. This procedure ensures that curves reflect performance ranking genes at
each locus individually. We obtained similar results using the quantile rank of gene-based scores within each locus for
each method rather than dividing by the maximum value.
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Supplementary Figure 2: UK Biobank: Sensitivity and Specificity of Gene Ranking Materials and
Methods
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ROC and Precision-Recall curves for each gene-based association or ranking method across benchmark loci present in
both HPO and ClinVar (54 loci in total). To aggregate results across benchmark loci and UK Biobank traits, we use
standardized scores for each method calculated by dividing gene-based scores (e.g., -log;,-p-values) by the maximum
value at the corresponding locus. This procedure ensures that curves reflect performance ranking genes at each locus
individually. We obtained similar results using the quantile rank of gene-based scores within each locus for each
method rather than dividing by the maximum value.

40


https://doi.org/10.1101/732404
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/732404; this version posted August 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Supplementary Figure 3: Most Significant Annotation Class for Benchmark vs. Other Genes

. Benchmark Genes . Other Genes

iiiia

Coding CT-TWAS dTSS Enhancers
Most Significant Annotation Class

0.5

0.4

Frequency
o
w

©
(V)

—_

0.

0.0

Most significant single-annotation test (x-axis) for genes with one or more gene-based p-value < 5e-6. The proportion
of benchmark genes (the union of HPO and ClinVar gene lists) and other genes (not present in either benchmark genes
list) for which the indicated annotation class is most significant is shown on the y-axis with 95% confidence intervals.
Benchmark genes are strongly enriched for coding associations (odds ratio = 5.03, p-value = 1.3e-16), which is
expected due to the selection criteria used to construct benchmark gene lists (described in Materials and Methods).
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