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Abstract 11 

Mathematical models of biochemical reaction networks are central to the exploration of 12 

network dynamics and bridge the gap between experimental measurements and mechanistic 13 

interpretations. However, model parameters are often not available and sparse experimental 14 

data leads to challenges in model calibration and parameter estimation. This can in turn lead to 15 

inaccurate mechanistic interpretations of experimental data and generate poorly conceived 16 

hypotheses for experimental validation. To address this challenge, we evaluate whether a 17 

Bayesian probability-based approach can be used to qualitatively explore biochemical network 18 

execution mechanisms. To test this approach, we explore the parameter space of extrinsic 19 

apoptosis to identify the preferred mode of signal execution. Apoptosis signal processing can 20 

take place either through a mitochondria independent (Type I) mode or a mitochondria 21 

dependent (Type II) mode. We first show that model subnetworks successfully identify the 22 

most likely execution mode for a specific concentration of key molecular regulators. We then 23 

show that changes in molecular regulator concentrations alter the overall reaction flux through 24 

the network shifting modulating signal flow primarily through either a caspase-only pathway or 25 

through the mitochondria. Our work thus demonstrates that Bayesian probability approaches 26 

can be used to explore the dynamic behavior of model biochemical systems even with missing 27 

or sparse data. 28 
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Introduction 30 

Emergent cellular behaviors from complex biochemical network processes are difficult to 31 

characterize due to the complex interplay between system components and their interactions 32 

[1, 2, 3]. Mathematical models of biochemical processes have evolved alongside experimental 33 

measurements to explain observed cellular behaviors and guide hypothesis construction for 34 

further testing [4, 5]. Models of biochemical reaction networks are typically based on the Mass-35 

Action kinetics formalism and built to represent known pathway mechanics with knowledge 36 

garnered from years or even decades of experimentation [6, 7]. Although these models have 37 

yielded important predictions and insights about biochemical network processes, they also 38 

depend on kinetic rate parameters and protein concentrations that are often poorly 39 

characterized or simply unavailable. A typical work-around is to employ model calibration 40 

methods to estimate suitable parameters values via optimization to protein concentration 41 

time-course data, which is often scarce [8, 9, 10]. It has also been shown that vector-based 42 

methods can find multiple parameter sets whereby models agree with experimental data, 43 

based on goodness-of-fit metrics, but the dynamics of the network can exhibit significantly 44 

different execution modes [7, 9]. This poses a challenge for the study of dynamic network 45 

processes as the mode of signal execution can be highly dependent on a specific parameter set 46 

and could in turn lead to inadequate model-based interpretation. Therefore, an approach that 47 

can enable researchers to explore the execution mechanisms of a biochemical process from a 48 

probabilistic perspective, constrained only by available data, would facilitate a rigorous 49 

exploration of network dynamics and accelerate the generation of testable mechanistic 50 

hypotheses [11]. 51 

In this work, we explore whether a Bayesian probability approach can identify network 52 

execution modes in extrinsic apoptosis restricted only by experimental observations. Two 53 

execution modes have been identified for extrinsic apoptosis signaling: a mitochondria 54 

independent (Type I) mode, whereby initiator caspases directly activate effector caspases and 55 

induce cell death, and a mitochondria dependent (Type II) mode whereby initiator caspases 56 

engage the Bcl-2 family of proteins, which eventually lead to effector caspase activation (see 57 

Box 1 for biology details). Most mammalian cells execute apoptosis via the Type II mechanism, 58 

yet the Type I mechanism plays a central role in specific cell types, particularly certain types of 59 

lymphocytes [12]. A significant body of experimental and modeling work has identified key 60 

regulators for Type I vs Type II execution (see Box 1). However, it is still unclear how network 61 

structure and the interplay among multiple regulators can modulate signal execution for either 62 

Type I or Type II modes. A more traditional approach would prescribe intricate and detailed 63 

experimental measurements of cellular response to yield the desired data and improve our 64 

understanding of signal execution. However, the time and cost associated with such 65 

experiments makes it unlikely and at times unfeasible to obtain said data. It is here that we see 66 

Bayesian inference approaches as a complementary alternative to experimentation that can 67 

provide qualitative insights about signal execution mechanisms, by exploring broad parameter 68 

space ranges, subject only to available computer time. 69 
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Here we show that a Bayesian parameter exploration approach, constrained by network 71 

structure or molecular concentrations, can identify the dominant signal execution modes in a 72 

reaction network. Specifically, we demonstrate the dependence of Type I or a Type II cellular 73 

apoptosis execution on  network structure and chemical-species concentrations. We use 74 

Bayesian model evidence as a metric for comparisons of signal flow through different pathways 75 

of the network and subnetworks to identify how regulators affect execution modes. We 76 

introduce two complementary approaches that can be used in tandem to explore signal 77 

execution modulation. We first define a multimodel exploration method to explore multiple 78 

hypothesis about apoptosis execution by deconstructing an established apoptosis network 79 

model into functional subnetworks. We also define a pathway flux method to characterize the 80 

signal flux through specific network pathways within the complete network. Combined, these 81 

two approaches enable us to qualitatively identify key network components and molecular 82 

regulator combinations that shed mechanistic insights about apoptosis execution. Our 83 

approach is generalizable to other mass-action kinetics-based networks where signal execution 84 

modes play important roles in cellular outcomes. The work leverages Nested Sampling 85 

algorithm methods to efficiently calculate Bayesian evidence on high performance computing 86 

(HPC) platforms, both of  which are seldom used in biological applications. In this manner we 87 

are able to carry out the necessary calculations to explore parameter space and estimate the 88 

model evidence within the timespan of days.  89 

Methods 90 

Apoptosis model and simulations 91 

The base model used in this work is a modified version of the Extrinsic Apoptosis Reaction 92 

Model (EARM) from Lopez et al.  (EARM v2.1) [7] . The original EARM was simplified to reduce 93 

complexity in the number of parameters, but still retains the key features of the network for 94 

apoptosis execution. Specifically, we reduced the molecular complexity of mitochondrial outer 95 

membrane permeabilization (MOMP) down to a representative set of Bcl-2 proteins that 96 

capture the behavior of activators, inhibitors, effectors, and sensitizers. We also eliminated 97 

intermediate states for Cytochrome-c and SMAC to streamline effector caspase activation, and 98 

w added an explicit FADD molecule, a part of the death-inducing signaling complex (DISC) to 99 

achieve a more realistic representation of signal initiation. Overall, EARM v2.1 comprised 16 100 

chemical species at non-zero initial concentrations, 50 total chemical species, 62 reactions, and 101 

62 kinetic parameters. The modified model was recalibrated to recapitulate the time-102 

dependent concentration trajectories of truncated Bid, Smac release from the mitochondria, 103 

and cleaved PARP analogous to the approach reported previously [42] (Figure S1). The modified 104 

EARM was partitioned into six sub-models, encoded in PySB, and are summarized in Figure 2. 105 

All simulations were run using the mass-action kinetics formalism as a system of Ordinary 106 

Differential Equations (ODEs) using the VODE integrator in SciPy, within the PySB modeling 107 

framework. All data results, representative models, and software are distributed with open-108 

source licensing and can be found in the GitHub repository https://github.com/LoLab-VU/BIND.  109 

 110 
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Bayesian evidence estimation 113 

Bayesian evidence is the normalizing term in a Bayesian calculation and provides a measure for 114 

model comparison with regard to their fit to experimental data. It is expressed as: 115 

𝑃(𝐷|𝑀) = ∫𝐿(𝐷|𝜃,𝑀) 𝑃(𝜃|𝑀) 𝑑𝜃                                                                   (1) 116 

Where 𝑀 is the model under consideration, 𝐷 is the experimental data, 𝜃 is a specific set of 117 

parameter values, 𝐿(𝐷|𝜃,𝑀) is the likelihood function describing the fit of the data to the 118 

model under those parameter values, and 𝑃(𝜃|𝑀) is the prior distribution of parameters. All 119 

evidence estimates were made using the nested sampling method, introduced by Skilling [43]. 120 

This method simplifies the evidence calculation by introducing a prior mass element 𝑑𝑋 =121 

𝑃(𝜃|𝑀)𝑑𝜃 that is estimated by (𝑋𝑖−𝑖 − 𝑋𝑖) where 𝑋𝑖 = 𝑒
−𝑖/𝑁, 𝑖 is the current iteration of the 122 

algorithm, and 𝑁 is the total number of live points. The evidence is then written as  123 

𝑍 = ∫𝐿

1

0

𝑑𝑋 ≈∑𝐿𝑖(𝑋𝑖−1 − 𝑋𝑖)

𝑖=1

                                                                       (2) 124 

Initialization of the algorithm is carried out by randomly selecting an initial population of 125 

parameter sets (points in parameter space) from the prior distribution, scoring each one with 126 

the likelihood function, and ranking them from 𝐿ℎ𝑖𝑔ℎ to 𝐿𝑙𝑜𝑤. At each iteration of the algorithm 127 

a new set of parameter values is selected and scored. If that score is higher than 𝐿𝑙𝑜𝑤, then it is 128 

added to the population, at the appropriate rank, and 𝐿𝑙𝑜𝑤 is removed from the population and 129 

added to the evidence sum (2).  130 

Nested sampling software 131 

All evidence estimates in this work are calculated with MultiNest, a nested sampling-based 132 

algorithm designed for efficient evidence calculation on highly multimodel posterior 133 

distributions [44, 45]. MultiNest works by clustering the live points (population of parameter 134 

sets) and enclosing them in ellipsoids at each iteration. The enclosed space then constitutes a 135 

reduced space of admissible parameter sets. This lowers the probability of sampling from low 136 

likelihood areas and evaluating points that will only be discarded. The evidence estimate is 137 

accompanied by an estimate of the evidence error. The algorithm terminates when the 138 

presumed contribution of the highest likelihood member of the current set of live points, 139 

𝐿ℎ𝑖𝑔ℎ𝑋𝑖 is below a threshold. Here, we use a threshold of 0.0001 and a population size and 140 

16,000 unless otherwise noted. See [44, 45], for more details on the MultiNest algorithm. We 141 

use MultiNest with the Python wrapper PyMultiNest [46], which facilitates the integration with 142 

PySB into the parameter sampling pipeline.  143 

Multimodel exploration analysis.  144 

To explore multiple hypotheses for signal execution under different biochemical network 145 

structures, we carried out an analysis inspired in the multi-model inference approach [47, 48]. 146 

We broke down the EARM network into six subnetworks and tested each across increasing 147 

concentrations of the  regulator XIAP for efficacy in achieving apoptosis. We define the 148 

proportion of cleaved PARP, relative to total PARP, as a metric for effective apoptosis 149 

execution. That is, if all PARP has been cleaved, then apoptosis has been completely achieved. 150 

We therefore define an objective function that estimates the amount of cleaved PARP as: 151 
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𝑂𝑏𝑗𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑒𝑙 =
𝑐𝑃𝑎𝑟𝑝

𝑡𝑃𝑎𝑟𝑝
                                                                            (3)                                                                   152 

where 𝑐𝑃𝑎𝑟𝑝 is the amount of PARP that has been cleaved and 𝑡𝑃𝑎𝑟𝑝 is the total amount of 153 

PARP in the system.  154 

When this objective function is substituted into equation (1) in place of the likelihood function, 155 

the evidence calculation produces an expected value, an average over the chosen prior 156 

parameter range for the proportion of PARP that has been cleaved. In this work we compare 157 

the expected values for different subnetworks, pathways, and regulatory conditions only in 158 

qualitative terms and as a relative measure of fit to an outcome represented by the objective 159 

function.  160 

Pathway flux analysis.  161 

We also explored the effect of molecular regulators of Type I vs Type II execution relative to the 162 

apoptosis signal flux through the network as we have done in previous work [49]. Briefly, signal 163 

flux is defined as the chemical reaction flux in units of molecules per unit time, that traverses 164 

through a given pathway. In the apoptosis network there are two potential pathways that can 165 

lead to Caspase-3 activation and subsequently PARP cleavage. In the direct caspase pathway 166 

initiator caspases represented here as “Caspase-8” directly cleave and activate the effector 167 

caspases represented here as “Caspase-3”.  By contrast, in the mitochondrial pathway, effector 168 

caspases are activated via the apoptosome, and are dependent on mitochondrial outer 169 

membrane permeabilization (MOMP). Therefore, the dominant pathway responsible for 170 

Caspase-3 activation defines the route of the signal. To estimate the flux through the Type I vs 171 

Type II pathway, we define an objective function as: 172 

𝑂𝑏𝑗𝑝𝑎𝑡ℎ𝑤𝑎𝑦 =∑
∑ 𝐶3𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑡
0

∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0

𝑇

𝑡=0

× (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1)                                 (4) 173 

where 𝑡 represents time in seconds, ∑ 𝐶3𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑡
0  is the amount of Caspase-3 activated via the 174 

target pathway up to time t, ∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0  is the total Caspase-3 activated up to time t, 175 

and ∑ 𝐶3𝑐𝑎𝑠𝑝𝑎𝑠𝑒
𝑡
0 /∑ 𝐶3𝑡𝑜𝑡𝑎𝑙

𝑡
0  is the proportion of activated Caspase-3 that was produced via 176 

the target pathway up to time 𝑡. (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1) is the total PARP that has been cleaved, 177 

and activated, by Caspase-3 from time 𝑡 − 1 to time 𝑡.Thus, at any given time t we can estimate 178 

the amount of Caspase-3 that has been activated through a specific pathway. Multiplication of 179 

these two terms returns an estimate for the amount of PARP cleaved via the specific pathway 180 

at time t. Summing over T then returns an estimate for the total apoptosis signal flowing 181 

through the target pathway. Like the PARP cleavage objective function, the signal flux objective 182 

substituted into equation (1) produces an estimate of the average flux over a defined prior 183 

distribution. We estimated this quantity over increasing concentrations of the of the molecular 184 

regulator XIAP, but also at high and low levels of the DISC components FADD and Caspase-8. 185 

The total signal flux was estimated by summing the evidence estimates for the flux through 186 

either the direct caspase or mitochondrial pathway.  187 

Parameter ranges and initial conditions. 188 

The prior distribution takes the form of a set of parameter ranges, one for each reaction rate 189 

parameter. The chosen ranges span four orders of magnitude around generic reaction rates 190 
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deemed plausible [4] and are specific to the type of reaction taking place. The ranges of 191 

reaction rate parameters, in Log10 space, are 1st order forward: [-4.0, 0.0], 2nd order forward: [-192 

8.0, -4.0], 1st order reverse: [-4.0, 0.0], catalysis: [-1.0, 3.0]. These ranges were also used in 193 

calibration of the base model. Initial conditions were either gleaned from the literature [50, 51] 194 

or taken from a previous model of extrinsic apoptosis [7]. Because the baseline model was 195 

designed to concur with Type II apoptotic data (see above), literature derived initial conditions 196 

were based on Type II Jurkat or Hela cell lines (Table S1).  197 

Bayes factors. 198 

Evidence estimates are often used to select between two competing models by calculating the 199 

Bayes factor (i.e. the ratio of their evidence values). This provides a measure of confidence for 200 

choosing one model over another. We can likewise use trends in evidence values to produce 201 

trends in Bayes factors that provide additional insights into the dynamical relationship between 202 

pathways. To facilitate construction of Bayes factor trends with a continuous and symmetric 203 

range, the we calculated Bayes factors as: 204 

𝐵𝑓 =  

{
 

 −
𝑍2
𝑍1
+ 1  𝑖𝑓 𝑍1 < 𝑍2

𝑍1
𝑍2
− 1  𝑖𝑓 𝑍1 > 𝑍2

 205 

where 𝑍1 and 𝑍2 are the evidence estimates for two pathways under comparison.  206 

Computational resources 207 

Because of the high computational workload necessary for this analysis, a wide range of 208 

computational resources were used. The bulk of the work was done on the ACCRE cluster at 209 

Vanderbilt University which has more than 600 compute nodes running Intel Xeon processors 210 

and a Linux OS. As many as 300 evidence estimates were run in parallel on this system. 211 

Additional resources included two local servers, also running Intel processors and a Linux OS, as 212 

well as a small local four node cluster running Linux and AMD Ryzen 1700 processors. A 213 

detailed breakdown of CPU time can be found in the results section. In all evidence estimates 214 

for 14 different networks/initial conditions were made across the range of XIAP concentrations. 215 

We estimate all 14 runs would take ~9 days each on a typical university server with 32 cores/64 216 

threads.  217 

 218 

 219 

 220 

 221 

 222 

 223 
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Results 225 

Overview: A Bayesian evidence approach to explore mechanistic hypotheses. 226 

Our overarching goal is to understand the mechanisms and dynamics of biochemical networks 227 

responsible for cellular commitment to fate, given incomplete or unavailable data. We take a 228 

Bayesian probability approach to study model subnetworks and specific model pathways as 229 

summarized schematically in Figure 1 to estimate the evidence for signaling execution 230 

mechanisms given a set of experimental data and existing priors.  231 

In the Multimodel Exploration Analysis (Figure 1, left path), the network model is deconstructed 232 

into biologically relevant subnetworks and the probability of each subnetwork achieving 233 

apoptosis, under various regulatory conditions, is estimated via Bayesian evidence. This differs 234 

from traditional model selection and multimodel inference applications where models are 235 

typically ranked based on their fit to experimental data and high-ranking models may be 236 

averaged to obtain a composite model [47, 48, 52, 53, 54, 55]. Here, we already have a model 237 

that captures key features of  programmed cell death execution. Instead, we use the 238 

differences in evidence to construct a composite picture of mechanistic evidence for apoptosis 239 

execution. To achieve this, we first tailor the objective function to represent signal execution 240 

strength, as measured by cleaved PARP concentration at the end of the simulation. The 241 

evidence derived from this objective function therefore describes the likelihood that the signal 242 

is effectively transmitted through the (sub)network. It should be noted that Bayesian evidence 243 

inherently incorporates model complexity as the objectives are integrated over normalized 244 

prior distributions [44, 52, 56]. As we will see, comparison of changes in signal strength through 245 

relevant subnetworks allows inferences to be made on the effect of the perturbed network 246 

regulator as well as various network components on the overall dynamics of the system. We 247 

focus primarily on understanding how Bayesian evidence for the caspase pathway  compares to 248 

that of the complete network as these are most relevant for the analysis of Type I/II execution 249 

modes. This analysis will inform on how network components contribute to overall signal 250 

execution and provide mechanistic insights about the sensitivity of PARP cleavage to 251 

subnetwork components.  252 

In the Pathway Flux Analysis (Figure 1, right path), we retain the complete network structure 253 

but instead tailor the objective functions to measure biochemical reaction flux, as described in 254 

the Methods section, through either the direct caspase or mitochondrial pathways. We 255 

primarily consider the influence of the apoptosis inhibitor XIAP on regulatory dynamics and 256 

phenotypic fate but also consider the regulatory effect of the death inducing signaling complex 257 

(DISC) and the anti-apoptotic protein Bcl-2, all of which have been found to be relevant to Type 258 

I vs Type II execution in different cell types [13, 14]. This analysis will inform on how molecular 259 

regulators modulate biochemical flux through the network and their influence on apoptosis 260 

completion as measured by PARP cleavage.  261 

Decomposition of the extrinsic apoptosis network and reductive analysis of the effects of 262 

XIAP 263 

To investigate the effect of network substructures on apoptosis signaling, we build a composite 264 

description of system dynamics by observing variations in signal throughput, represented by 265 

evidence values for PARP cleavage, between subnetworks (Figure 2A-F) relative to changes in 266 
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regulatory conditions. We consider relative changes in the evidence values as the number of 267 

XIAP molecules is increased where a higher evidence value indicates a stronger signal over the 268 

prior range of parameter values. XIAP was varied from 0 to 200,000 molecules per cell in 269 

increments of 250 to explore how changes in XIAP affect the likelihood of apoptosis execution. 270 

For subnetworks that include the mitochondrial pathway, Bcl-2 (an anti-apoptotic) was reduced 271 

or eliminated, to explore Type I vs Type II activity independent of inhibitors that could confound 272 

signal throughput, and more closely simulate a cells that is “primed” for death [56]. All other 273 

initial values were fixed at the levels shown in supplementary Table S1. In the absence of XIAP 274 

all six subnetworks have evidence estimates greater than 0.98, (Figure 2 A: 0.993, B: 0.998, C: 275 

0.992, D: 0.981, E: 0.998, F: 0.981, Table S2) indicating that they can all capture a biological 276 

process that leads to PARP cleavage across the allowed range of parameters, as expected. We 277 

further explore how XIAP can modulate Type I/II apoptosis execution for a chosen subnetwork .  278 

The results in Jost et al. [14] imply that the cellular level of XIAP determines the preferred 279 

apoptosis pathway with higher levels specific to Type II cells and lower levels specific to Type I. 280 

To hypothesize a possible mechanistic explanation for this behavior we compared the 281 

computed the Bayesian evidence values, over increasing concentrations of XIAP, for the direct 282 

caspase activation network against both the complete network and the mitochondrial network 283 

(Figures 2A and G green; 2E and G orange; 2F G blue respectively). . This mimics reported 284 

experimental strategies to study Type I/II phenotypes and allows us to gauge the effect of XIAP 285 

on networks with and without a mitochondrial component [13, 35].  286 

As XIAP levels increase we see differential effects on all subnetworks in the form of diverging 287 

evidence estimates, indicating differences in the efficacy of XIAP induced apoptotic inhibition. 288 

The evidence values for the isolated caspase pathway (Figure 2G green) diverges from the 289 

complete network (Figure 2G orange) and mitochondrial pathway (Figure 2 blue) showing a 290 

steeper initial decline that diminishes as XIAP continues to increase. PARP cleavage evidence 291 

values for the caspase pathway falls to 0.5 at an XIAP level of roughly 32,000. However, the 292 

complete network and mitochondrial pathways require XIAP levels nearly threefold higher with 293 

the evidence value reaching 0.5 at around 92,000 and 95,000 respectively.  294 

Because the direct caspase activation pathway (Figures 2G green) is representative of the Type I 295 

phenotype, the disproportionate drop in its evidence of PARP cleavage as XIAP concentration 296 

increases is consistent with experimental evidence showing XIAP-induced transition from a 297 

Type I to a Type II execution mode [14]. The complete network, containing the full 298 

mitochondrial subnetwork, and mitochondrial only pathway are also affected by XIAP but 299 

exhibits resistance to its anti-apoptotic effects, a difference that is most prominent  at 300 

moderate levels of the inhibitor. This suggests a growing dependence on mitochondrial 301 

amplification for effective apoptosis as XIAP increases from low to moderate levels. At higher 302 

levels of XIAP the evidence values for the caspase pathway level off and the gap between it and 303 

the two mitochondrial containing networks narrows. The disproportionate effect of XIAP 304 

inhibition of apoptosis on the caspase pathway suggests that the mechanism for XIAP induced 305 

transition to a Type II pathway can be attributed to differential inhibition of the apoptotic signal 306 

through the isolated caspase pathway vs a network with mitochondrial involvement. 307 
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We note here that the small differences in evidence values between the various networks 308 

should not be surprising since every subnetwork being considered is capable of carrying 309 

apoptosis to completion, as measured by PARP cleavage. Thus, we should not expect evidence 310 

differences that would rule out any model under a model selection criterion. The log-evidence 311 

version of Figure 2G along with estimated errors generated by MultiNest are displayed in Figure 312 

S2.   313 

The next two highest trends in evidence values after that of the direct caspase network (Figure 314 

2G green) belong to the networks representing direct caspase activation plus mitochondrial 315 

activation and mitochondrial activation alone (Figures 2G purple and 2G brown). For most of 316 

the range with XIAP below 100,000 these two networks have largely overlapping evidence 317 

trajectories, despite the fact that the former has twice as many paths carrying the apoptotic 318 

signal. Near an XIAP level of 100,000 the two trends diverge as the decrease in evidence values 319 

for the mitochondrial activation only network accelerates. This could be explained by XIAP 320 

overwhelming the Apoptosome at these higher levels. The apoptosome is an apoptosis inducing 321 

complex (via Caspase-3 cleavage) consisting of Cytochrome C, APAF-1, and Caspase-9, and is an 322 

inhibitory target of XIAP. As XIAP increases past 125,000 the mitochondrial activation only 323 

evidence values fall below even the solo direct caspase values, possibly due to the two-pronged 324 

inhibitory action of XIAP at both the Apoptosome and Caspase-3. An interesting observation 325 

here is that the addition of the direct caspase pathway to the mitochondrial activation pathway 326 

does not appear to increase the likelihood of achieving apoptosis for lower values of XIAP. 327 

Evidence values for the network representing direct caspase activation plus mitochondrial 328 

inhibition of XIAP are in red in  Figure 2G. Below an XIAP level of 100,000 these values are 329 

consistently above the evidence values for the network of the direct caspase plus mitochondrial 330 

activation. Note that while direct caspase activation does not appear to increase the likelihood 331 

of achieving apoptosis when added to the mitochondrial activation pathway (Figure 2G purple) 332 

the amplification of the direct caspase activation via mitochondrial inhibition of XIAP leads to a 333 

higher likelihood than solo activation through the mitochondria. This suggests the possibility 334 

that the primary mechanism for mitochondrial apoptotic signal amplification, under some 335 

conditions, may be inhibition of XIAP, with direct signal transduction a secondary mechanism. 336 

Above an XIAP level of 100,000, the direct caspase with XIAP inhibition values drop to levels 337 

roughly in line with the values for direct caspase activation plus mitochondrial activation, 338 

possibly due to the fact that Smac, the mitochondrial export that inhibits XIAP, is also set to 339 

100,000 molecules per cell. Both, however, remain more likely to attain apoptosis than direct 340 

caspase activation alone. 341 

The two subnetworks with the highest evidence values for apoptotic signal execution are the 342 

complete network and the isolated mitochondrial pathway (Figures 2E orange and 2F blue). As 343 

previously mentioned, both of these networks contain the full mitochondrial pathway implying 344 

that this pathway supports resistance to XIAP inhibition of apoptosis. Between XIAP levels of 0 345 

to 100,000 the two trends track very closely, with the mitochondrial only pathway showing a 346 

slight but consistent advantage for apoptosis execution. The average difference between an 347 

XIAP level of 20,000 and 80,000 is roughly 0.014, meaning we expect the average PARP 348 

cleavage to favor the mitochondrial only pathway by about 1.4 percentage points, which may 349 

seem unremarkable. Context matters however, and the context here is that the complete 350 
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network has potentially twice the bandwidth for the apoptotic signal, namely the addition of 351 

the more direct caspase pathway. Together, this raises the possibility that under some 352 

conditions the caspase pathway is not a pathway but a sink for the apoptotic signal. In such a 353 

scenario, the signal through the caspase pathway would get lost as Caspase-3 is degraded by 354 

XIAP. Not until the signal through the mitochondrial pathway begins inhibiting XIAP could the 355 

signal proceed. Around the 100,000 level of XIAP the evidence trend for the mitochondrial 356 

pathway crosses below that for the complete network. This could be due to the parity with 357 

Smac, components of the Apoptosome, or a combination of the two. 358 

Apoptosis signal strength drives signal route through the network 359 

The results in Scaffidi et al. [13] indicate a strong phenotypic dependence on the strength of the 360 

apoptosis signal. Here we examine hypotheses made in that work and the interplay between 361 

the DISC and XIAP regulatory axes.  We once again increase XIAP from 0 to 200,000 molecules 362 

in increments of 250, but this time at a low number of DISC complexes by lowering the initial 363 

values of both the scaffold protein FADD and the initiator Caspase-8, from 130,000 to 100 364 

molecules per cell. In addition to the Multimodel Exploration Approach used in the previous 365 

section, we also use the Pathway Flux Approach using the flux objective function (see 366 

Methods). In this way we attain a holistic view of network dynamics that incorporates both, 367 

network structure and flux cross-talk from all possible pathways. Additional analysis of caspase 368 

and mitochondrial pathway signal flux over a range of values for both XIAP and BCL-2 is 369 

displayed in Figure S3 and interpreted in Text S1.  370 

Figure 3A displays the PARP cleavage evidence values along with their low DISC counterparts. 371 

Two things are immediately apparent. The PARP cleavage evidence values for the caspase 372 

pathway at low number of DISC is lower across the entire range of changes in the number of 373 

XIAP molecules. The complete network on the other hand shows almost no difference in low 374 

DISC conditions at lower values of XIAP. This supports the hypothesis that mitochondrial 375 

involvement is necessary to overcome weak DISC formation and that low number of DISC likely 376 

constitutes a Type II trait [13].  377 

Figures 3B and 3C show evidence values for flux through the caspase pathway and complete 378 

network for high and low number of DISC, respectively. At higher DISC values, signal flux 379 

through the caspase pathway is consistently higher than the flux through the mitochondrial 380 

pathway. At lower DISC values the signal flux through the mitochondrial pathway exceeds the 381 

flux through the caspase pathway. Our results shed interesting mechanistic observations in the 382 

context of a previously proposed hypothesis stating that mitochondrial activation is 383 

downstream of caspase activation in Type I cells and upstream in Type II cells. If a weaker initial 384 

apoptosis cue does indeed push the signal through the mitochondrial pathway the initial 385 

activation of Caspase-8 would be weak and the amplifying activity of the mitochondria would 386 

ramp up the signal before Caspase-8 could directly activate Caspase-3. On the other hand, 387 

strong initial activation that pushes the signal through the caspase pathway would have the 388 

opposite effect. Also notable is the nearly identical trajectories of the total signal flux through 389 

the low and high DISC models. The average difference over the range of XIAP was only 0.011 390 

(Table S3). This is consistent with observations that both Type I and Type II cells respond equally 391 

well to receptor mediated apoptosis.[13]  392 
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Overall these results set up three mechanistic explanations for apoptosis execution. On one 393 

end, high DISC formation and low XIAP results in the independence of apoptosis from the 394 

mitochondrial pathway. This behavior is consistent with Type I cells like the SKW6.4 cell lines 395 

[13]. On the other end of the spectrum is the case with low DISC formation (and by construction 396 

low Caspase-8 activity) and near complete dependence on the mitochondrial pathway. Such 397 

behavior is consistent with Type II cells like Jurkat [13]. In between these two extremes is the 398 

case where DISC formation, and subsequent Caspase-8 activation, is high but apoptosis is still 399 

dependent on mitochondrial activity. Such behavior is consistent with MCF-7 cell that are 400 

known to have traits of both phenotypes [13].  401 

Bayes factor trends and XIAP influence on Type I/II apoptosis phenotype 402 

Model selection methods typically calculate the evidence ratios, or Bayes factors to choose a 403 

preferred model and estimate the confidence of that choice [58, 59]. When comparing the 404 

changes in the evidence of an outcome as regulatory conditions change, the changes in the 405 

evidence ratios can provide additional information about changing network dynamics under 406 

regulatory perturbations. To characterize the effect of XIAP on the choice of apoptotic 407 

phenotype, Type I or II, we calculated the evidence ratios (Figure 4A), for each value of XIAP 408 

between the caspase pathway and both the complete network and mitochondrial pathway  409 

with a fully active mitochondrial pathway. In these calculations, the denominator represents 410 

the caspase pathway so that higher values favor a need for mitochondrial involvement. An 411 

interesting feature of both the complete and mitochondrial evidence ratio trends is the peak 412 

and reversal at a moderate level XIAP (Figure 4B). This reflects the initially successful inhibition 413 

of the caspase pathway that decelerates relatively quickly as XIAP increases, and a steadier rate 414 

of increased inhibition on networks that incorporate the mitochondrial pathway. The ratios 415 

peak between 45,000 and 50,000 molecules of XIAP (more than double the value of its target 416 

molecule Caspase-3 at 21,000) and represent the optimal level of XIAP for the requirement of 417 

the mitochondrial pathway and attainment of a Type II execution. Given the near monotonic 418 

decline of the evidence trends of both pathways, representing increasing suppression of 419 

apoptosis, the peak and decline in the evidence ratios could represent a shift toward complete 420 

apoptotic resistance. Our results therefore complement the observations in Aldridge et al. 421 

where a similar outcome was observed experimentally [60]. 422 

A common technique to study apoptosis is to knockdown Bid, overexpress Bcl-2, or otherwise 423 

shut down MOMP induced apoptosis through mitochondrial regulation. This strategy was used 424 

in Jost et al. [14] to study the role of XIAP in apoptosis and in the work of Aldridge et al. to 425 

explore Type I vs Type II execution in different cell lines [59]. Taking a similar approach, we set 426 

Bcl-2 levels to 328,000 molecules per cell, in line with experimental findings [47], to suppress 427 

MOMP activity and recreated the evidence and ratios landscapes (Figures 4C and 4D, Table S5). 428 

Under these conditions the evidence trend for the mitochondrial pathway drops well below 429 

that of the caspase pathway, which is reflected in the Bayes factor trend as a shift into negative 430 

values and indicating that the caspase pathway is favored. The evidence trend for the complete 431 

network under MOMP inhibition is shifted closer to that for the caspase pathway at higher 432 

concentrations of XIAP but the Type II pathway continues to dominate throughout the full 433 

range of XIAP. The peak for the associated Bayes factor trend is flattened as the number of XIAP 434 

increases, suggesting that increasing XIAP levels are less likely to induce a transition to a Type II 435 
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phenotype in a system with an already hampered mitochondrial pathway. We note that 436 

complete inhibition of MOMP would result in uninformative mitochondrial pathway evidence 437 

values. The evidence trend for the complete network would be indistinguishable from that for 438 

the caspase pathway alone and the complete/caspase ratio trend would simply flatline. 439 

However, our analysis shows that isolation of active biologically relevant subnetworks and 440 

direct comparison under changing molecular regulator conditions using trends in Bayesian 441 

evidence enables the extraction of information regarding the pathway interactions and 442 

differential network dynamics. 443 

Precision vs computational cost 444 

Increasing the precision of the evidence estimates, and tightening the evidence trendlines, is 445 

accomplished by increasing the number of live points in the nested sampling algorithm. The 446 

trade-off is an increase in the number of evaluations required to reach the termination of the 447 

algorithm and an accompanying increase in total computation time. Figures 5A and 5B display 448 

the required number of evaluations for the caspase pathway and complete network at 449 

population sizes of 500, 1000, 2000, 4000, 8000, and 16,000, when run with the PARP cleavage 450 

objective function. For both models the number of evaluations roughly doubles for every 451 

doubling in population size. Of note here is the higher number of required evaluations for the 452 

lower parameter model. The caspase pathway has only 22 parameters and required an average 453 

of 64,612 evaluations at a population size of 16,000 while the complete network, with its 56 454 

parameters required only 53,652 evaluations, on average (Table S6). Figures 5C and 5D are the 455 

average estimated errors calculated by the MultiNest algorithm over each population size for 456 

the caspase and complete networks respectively. As expected, error estimates fall roughly as 457 

𝑛−1/2 [61], signifying clear diminishing returns as the number of live points is increased. The 458 

average CPU process times, as estimated by Python’s time.clock() method, are given in 459 

Figures 5E and 5F for the caspase and complete networks respectively. Despite the greater 460 

number of required evaluations for the caspase network the average clock times for the 461 

complete network is significantly higher. At a population of 16,000 the caspase network had an 462 

average clock time of 11,964 seconds compared to 76,981 for the complete network. The 463 

difference is due to the greater simulation time for the much larger complete model. 464 

Ultimately, the choice of population size for the methods we have laid out here will depend on 465 

the networks to be compared, the objective function, and how well the evidence trends must 466 

be resolved in order to make inferences about network dynamics. For example, at a population 467 

size of 500 the evidence trend for the caspase pathway is clearly discernable from the 468 

mitochondrial pathway and the complete network, but the latter two are largely overlapping 469 

(Figure S4A). At higher population levels, however, two distinct mitochondrial and complete 470 

trends become apparent (Figure SK). If Bayes factor trends are desired then the choice of 471 

population size must take into consideration the amplification of the noise from both trends 472 

(see Figures S4(B, D, F, H, J, L) for complete/caspase Bayes factor trends).  473 

 474 

 475 
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Discussion 476 

Characterizing information flow in biological networks, the interactions between various 477 

pathways or network components, and shifts in phenotype upon regulatory perturbations is 478 

standing challenge in molecular biology. Although comparative analysis of signal flow within a 479 

network is possible with current computational methods, the dependence of physicochemical 480 

models on unknown parameters makes the computational examination of each network 481 

component highly dependent on costly experimentation.  482 

To take advantage of the enormous amount of existing knowledge encoded in these 483 

physicochemical networks without the dependence on explicit parameter values we take a 484 

probabilistic approach to the exploration of changes in network dynamics. By integrating an 485 

objective function that represents a simulated outcome over parameter distributions we obtain 486 

the likelihood of attaining that outcome given the available information about the signaling 487 

pathways. Qualitative exploration of network behavior for various in silico experimental setups 488 

and regulatory conditions are then attainable without explicit knowledge of every parameter 489 

value. We demonstrate the utility of the method when applied to the regulation of extrinsic 490 

apoptosis. Networks that incorporate an active mitochondrial pathway displayed a higher 491 

resistance to apoptotic inhibition from increasing levels of XIAP, consistent with experimental 492 

evidence that XIAP induces a Type II phenotype [14]. Also in line with experimental evidence 493 

[13] are the results that suggest low/high signal initiation is consistent with Type II/I phenotype 494 

respectively and that both types achieve apoptosis equally well. 495 

A potential limitation of a Bayesian approach to study network dynamics could be the 496 

computational cost. A number of factors affect the run time of the algorithm including size of 497 

the model, the objective function, and the desired precision. Fortunately, reducing the 498 

resolution (the number of sets of initial values for which an evidence value is estimated) and 499 

the precision (the population size) can drastically reduce the cost and in many cases the 500 

method will still be viable. One aspect of the method that is severely restrictive is the number 501 

of model components that can be varied in the same run since the computational cost 502 

increases exponentially with each additional variable. Reasonable parameter ranges must also 503 

be chosen. Information regarding the parameters can be incorporated into the evidence 504 

calculations by adjusting the range and shape of the priors. Here we used generic but 505 

biologically plausible ranges with uniform distributions and produced results that were 506 

qualitatively consistent with previous experimental results. We note, however, that our results 507 

make mechanistic inferences from model experiments given existing data over a period of 508 

weeks rather than the months or years that would be required to attain this information with 509 

experimental approaches. Our results therefore support Bayesian approaches as a suitable 510 

complement to experimentation and a shift from purely deterministic models with a single 511 

optimum parameter set to a probabilistic understanding of mechanistic models of cellular 512 

processes.  513 

 514 

 515 
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Conclusions 516 

In this paper we have developed a probabilistic approach to the qualitative analysis of the 517 

network dynamics of physicochemical models. It is designed to incorporate all available 518 

knowledge of the reaction topology, and the parameters on that topology, and calculate the 519 

likelihood of achieving an outcome of interest. Inferences on network dynamics are then made 520 

by repeating this calculation under changing regulatory conditions and various in silico 521 

experiments. We tested the method against a model of the extrinsic apoptosis system and 522 

produced results that were consistent with several lines of experimental research. To our 523 

knowledge this is the first attempt at a probabilistic analysis of network dynamics for 524 

physicochemical models. We believe this method will prove valuable for the large-scale 525 

exploration of those dynamics, particularly when parameter knowledge and data are scarce.  526 
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Figures Legends: 700 

Figure 1. General workflow for the analysis of network dynamics using trends in Bayesian evidence. The target 701 
network is first deconstructed into all relevant subnetworks. A model for each subnetwork and each incrementing 702 
set of regulatory conditions is then created and passed to an algorithm for estimation the Bayesian model 703 
evidence. The evidence is calculated on a user-defined objective function, describing signal transduction through 704 
the network, and over a range of parameter values (the prior). The evidence trends over changing regulatory 705 
conditions are then compared to make  qualitative inferences regarding network dynamics. In an alternative 706 
method, the full model is retained, but the objective function is targeted to different pathways. Inferences on 707 
network dynamics can again be made from the trends in the evidence calculations. 708 

 709 

Figure 2. Extrinsic apoptosis subnetworks and Bayesian evidence for achieving apoptosis. (A) The direct caspase 710 
subnetwork. (B) The direct caspase + mitochondrial activation subnetwork. (C) The direct caspase + mitochondrial 711 
inhibition of XIAP subnetwork network. (D) The mitochondrial activation subnetwork. (E) The complete network. 712 
(F) the mitochondrial subnetwork. (G) The trends in Bayesian evidence for each of the networks in (A)-(F) over a 713 
range of values the apoptosis inhibitor XIAP and for an objective function that computes the proportion of PARP 714 
cleavage (a proxy for cell death) at the end of a simulated run. 715 

 716 

Figure 3. Evidence values for PARP cleavage and pathway flux at low and high DISC values. (A) Evidence values 717 
for PARP cleavage for the caspase pathway and complete network under both low and high DISC conditions (100 718 
and 130,000 molecules per cell of FADD and Caspase-8 respectively). (B) Signal flux through both pathways as well 719 
as the total signal flux for high DISC values. (C) Signal flux through both pathways as well as the total signal flux for 720 
low DISC values. 721 

 722 

Figure 4. Evidence ratio trends under increasing levels of the apoptotic inhibitor XIAP for an inhibited and 723 
uninhibited mitochondrial pathway. (A) Evidence trends for the caspase pathway (green), mitochondrial pathway 724 
(blue), and complete network (orange) with no MOMP inhibition. (B) Trends for the mitochondria/caspase (blue) 725 
and the complete/caspase (orange) evidence ratios from the trends in (A). (C) Evidence trends for the caspase 726 
pathway (green), mitochondrial pathway (blue), and complete network (orange) with MOMP inhibitory protein 727 
BCL-2 at 328,000 mol. per cell. (D) Trends for the mitochondria/caspase (blue) and the complete/caspase (orange) 728 
evidence ratios from the trends in (C). 729 

 730 

Figure 5. Precision vs. computational cost. (A) and (B) Average number of evaluations before termination of the 731 
MultiNest algorithm over a range of population sizes for the caspase pathway and complete network respectively. 732 
(C) and (D) Average of error estimates from MultiNest for each population size and the caspase and complete 733 
networks. (E) and (F) Average estimated CPU  clock time over each population size for the caspase and complete 734 
networks respectively. *MultiNest was unable to estimate the error at XIAP = 0. 735 

 736 
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Box 1. Extrinsic apoptosis execution.  738 

Extrinsic apoptosis is a receptor mediated process for programmed cell death. The Type I/II phenotypes for the 739 
extrinsic apoptosis system were first described by Scaffidi et al. [13]. In that work they examined several cell lines 740 
and classified them into those that required the mitochondrial pathway to achieve apoptosis (Type II) and those 741 
that don’t (Type I). They made several interesting conclusions. They found that Type II cells had relatively weak 742 
DISC formation, that both phenotypes responded equally well to receptor mediated cell death, that there was a 743 
delay in caspase activation in Type II cells, and that caspase activation happened upstream of mitochondrial 744 
activation in Type I cells and downstream in Type II. More recently, XIAP has also been put forth as a critical 745 
regulator in the choice of apoptotic phenotype. In Jost et al. [14] they examined hepatocytes (Type II cells) and 746 
lymphocytes (Type I cells) under different conditions to examine the role XIAP plays in Type I/II determination. 747 
They made several observations upon Fas ligand or Fas-antibody induced apoptosis such as higher levels of XIAP in 748 
Type II cells and higher caspase effector activity in XIAP/Bid deficient mice versus apoptosis resistant Bid-only 749 
knockouts. In all, they concluded that XIAP is the key regulator that determines the choice of pathway. 750 

Extrinsic apoptosis is initiated when a death inducing member of the tumor necrosis factor (TNF) superfamily of 751 
receptors (FasR, TNFR1, etc.) is bound by its respective ligand (FasL, TNF-α, etc.), setting off a sequence 752 
biochemical events that result in the orderly deconstruction of the cell [15]. The first stage of this sequence is the 753 
assembly of the DISC at the cell membrane ① and the subsequent activation of Caspase-8. Upon ligand binding 754 
and oligomerization of a receptor such as FasR or TRAIL, an adapter protein, like FADD (Fas-associated protein with 755 
death domain), is recruited to the receptors cytoplasmic tail [16, 17, 18]. FADD, in turn, recruits Caspase-8 via their 756 
respective death effector domains (DEDs), thus completing DISC formation [17, 18]. Other DISC components could 757 
also be included here, such as the regulator cFlip [19]. Once recruited, proximal Procaspase-8 monomers dimerize, 758 
inducing their autoproteolytic activity and producing active Caspase-8 [20, 21, 22]. 759 

After Caspase-8 activation the apoptotic signal can progress down two distinct pathways that both lead to the 760 
activation of Caspase-3 and the ensuing proteolysis of downstream targets. One pathway consists of a caspase 761 
cascade in which active Caspase-8 directly cleaves and activates Caspase-3 ② [23], while another, more complex 762 
pathway is routed through the mitochondria. In the mitochondrial pathway Caspase-8 cleaves the pro-apoptotic 763 
Bcl-2 family protein Bid in the cytosol, which then migrates to the mitochondria ③ where it initiates 764 
mitochondrial outer membrane permeabilization (MOMP) and the release of pro-apoptotic factors that lead to 765 
Caspase-3 activation [24, 25]. 766 

MOMP has its own set of regulators that govern the strength of apoptotic signaling through the mitochondria ④. 767 
After Caspase-8 activated Bid, (tBid), migrates to the mitochondria it activates proteins in the outer mitochondrial 768 
membrane, such as Bax, that subsequently self-aggregate into membrane pores and allow exportation of 769 
Cytochrome-c and Smac/DIABLO to the cytosol [26]. Bid and Bax are examples of pro-apoptotic proteins from the 770 
Bcl-2 family, all of which share BH domain homology [27]. Other members of this family act as MOMP regulators; 771 
the anti-apoptotic Bcl-2, for example, binds and inhibits both Bid and Bax while the pro-apoptotic Bad similarly 772 
binds and inhibits its target, Bcl-2 [28, 29, 30, 31]. Many other pro- and anti-apoptotic members of the Bcl-2 family 773 
have been discovered and together regulate MOMP [32]. 774 

Regardless of which pathway is chosen, the intermediate results are Caspase-3 activation and subsequent cleavage 775 
of PARP ⑧, a proxy for cell death in the analyses here [33, 34]. XIAP (X-linked inhibitor of apoptosis protein) is an 776 
inhibitor of Caspase-3 and has been proposed to be a key regulator in determining the Type I/II apoptotic 777 
phenotype of a cell [35]. XIAP sequesters Caspase-3 but also contains a ubiquitin ligase domain that directly targets 778 
Caspase-3 for degradation. The inhibitor also sequesters and inhibits the Caspase-3 activating Caspase-9 residing 779 
within the apoptosome complex [36, 37, 38]. Apoptosome formation is initiated by Cytochrome-c exported from 780 
the mitochondria during MOMP ⑤. Cytochrome-c induces the protein APAF-1 to oligomerize and subsequently 781 
recruit and activate Caspase-9, thus forming the complex [39]. Another MOMP export, the protein Smac/DIABLO 782 
⑥, binds and inhibits XIAP, working in tandem with Cytochrome-c to oppose XIAP and carry out the apoptosis 783 
inducing activity of the Type II pathway [40]. Finally, Procaspase/Caspase-6 constitutes a feed forward loop 784 
between Caspase-3 and Caspase-8 ⑦ [41]. 785 
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Figures: 787 

Figure 1. 788 
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Figure 2. 790 
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Figure 3. 792 
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Figure 4. 798 
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Figure 5. 805 
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Box 1. 810 
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 812 

Box 1: Schematic of apoptotic signal flow through Type I and II pathways. 
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