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Abstract

Mathematical models of biochemical reaction networks are central to the exploration of
network dynamics and bridge the gap between experimental measurements and mechanistic
interpretations. However, model parameters are often not available and sparse experimental
data leads to challenges in model calibration and parameter estimation. This can in turn lead to
inaccurate mechanistic interpretations of experimental data and generate poorly conceived
hypotheses for experimental validation. To address this challenge, we evaluate whether a
Bayesian probability-based approach can be used to qualitatively explore biochemical network
execution mechanisms. To test this approach, we explore the parameter space of extrinsic
apoptosis to identify the preferred mode of signal execution. Apoptosis signal processing can
take place either through a mitochondria independent (Type |) mode or a mitochondria
dependent (Type Il) mode. We first show that model subnetworks successfully identify the
most likely execution mode for a specific concentration of key molecular regulators. We then
show that changes in molecular regulator concentrations alter the overall reaction flux through
the network shifting modulating signal flow primarily through either a caspase-only pathway or
through the mitochondria. Our work thus demonstrates that Bayesian probability approaches
can be used to explore the dynamic behavior of model biochemical systems even with missing
or sparse data.
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Introduction

Emergent cellular behaviors from complex biochemical network processes are difficult to
characterize due to the complex interplay between system components and their interactions
[1, 2, 3]. Mathematical models of biochemical processes have evolved alongside experimental
measurements to explain observed cellular behaviors and guide hypothesis construction for
further testing [4, 5]. Models of biochemical reaction networks are typically based on the Mass-
Action kinetics formalism and built to represent known pathway mechanics with knowledge
garnered from years or even decades of experimentation [6, 7]. Although these models have
yielded important predictions and insights about biochemical network processes, they also
depend on kinetic rate parameters and protein concentrations that are often poorly
characterized or simply unavailable. A typical work-around is to employ model calibration
methods to estimate suitable parameters values via optimization to protein concentration
time-course data, which is often scarce [8, 9, 10]. It has also been shown that vector-based
methods can find multiple parameter sets whereby models agree with experimental data,
based on goodness-of-fit metrics, but the dynamics of the network can exhibit significantly
different execution modes [7, 9]. This poses a challenge for the study of dynamic network
processes as the mode of signal execution can be highly dependent on a specific parameter set
and could in turn lead to inadequate model-based interpretation. Therefore, an approach that
can enable researchers to explore the execution mechanisms of a biochemical process from a
probabilistic perspective, constrained only by available data, would facilitate a rigorous
exploration of network dynamics and accelerate the generation of testable mechanistic
hypotheses [11].

In this work, we explore whether a Bayesian probability approach can identify network
execution modes in extrinsic apoptosis restricted only by experimental observations. Two
execution modes have been identified for extrinsic apoptosis signaling: a mitochondria
independent (Type |) mode, whereby initiator caspases directly activate effector caspases and
induce cell death, and a mitochondria dependent (Type |I) mode whereby initiator caspases
engage the Bcl-2 family of proteins, which eventually lead to effector caspase activation (see
Box 1 for biology details). Most mammalian cells execute apoptosis via the Type Il mechanism,
yet the Type | mechanism plays a central role in specific cell types, particularly certain types of
lymphocytes [12]. A significant body of experimental and modeling work has identified key
regulators for Type | vs Type Il execution (see Box 1). However, it is still unclear how network
structure and the interplay among multiple regulators can modulate signal execution for either
Type | or Type Il modes. A more traditional approach would prescribe intricate and detailed
experimental measurements of cellular response to yield the desired data and improve our
understanding of signal execution. However, the time and cost associated with such
experiments makes it unlikely and at times unfeasible to obtain said data. It is here that we see
Bayesian inference approaches as a complementary alternative to experimentation that can
provide qualitative insights about signal execution mechanisms, by exploring broad parameter
space ranges, subject only to available computer time.
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71  Here we show that a Bayesian parameter exploration approach, constrained by network

72  structure or molecular concentrations, can identify the dominant signal execution modes in a
73  reaction network. Specifically, we demonstrate the dependence of Type | or a Type Il cellular
74  apoptosis execution on network structure and chemical-species concentrations. We use

75  Bayesian model evidence as a metric for comparisons of signal flow through different pathways
76  of the network and subnetworks to identify how regulators affect execution modes. We

77  introduce two complementary approaches that can be used in tandem to explore signal

78  execution modulation. We first define a multimodel exploration method to explore multiple

79  hypothesis about apoptosis execution by deconstructing an established apoptosis network

80 model into functional subnetworks. We also define a pathway flux method to characterize the
81  signal flux through specific network pathways within the complete network. Combined, these
82  two approaches enable us to qualitatively identify key network components and molecular

83  regulator combinations that shed mechanistic insights about apoptosis execution. Our

84  approach is generalizable to other mass-action kinetics-based networks where signal execution
85  modes play important roles in cellular outcomes. The work leverages Nested Sampling

86  algorithm methods to efficiently calculate Bayesian evidence on high performance computing
87  (HPC) platforms, both of which are seldom used in biological applications. In this manner we
88 are able to carry out the necessary calculations to explore parameter space and estimate the
89  model evidence within the timespan of days.

90 Methods

91  Apoptosis model and simulations

92  The base model used in this work is a modified version of the Extrinsic Apoptosis Reaction

93  Model (EARM) from Lopez et al. (EARM v2.1) [7]. The original EARM was simplified to reduce

94  complexity in the number of parameters, but still retains the key features of the network for

95  apoptosis execution. Specifically, we reduced the molecular complexity of mitochondrial outer

96 membrane permeabilization (MOMP) down to a representative set of Bcl-2 proteins that

97  capture the behavior of activators, inhibitors, effectors, and sensitizers. We also eliminated

98 intermediate states for Cytochrome-c and SMAC to streamline effector caspase activation, and

99  w added an explicit FADD molecule, a part of the death-inducing signaling complex (DISC) to
100 achieve a more realistic representation of signal initiation. Overall, EARM v2.1 comprised 16
101  chemical species at non-zero initial concentrations, 50 total chemical species, 62 reactions, and
102 62 kinetic parameters. The modified model was recalibrated to recapitulate the time-
103  dependent concentration trajectories of truncated Bid, Smac release from the mitochondria,
104  and cleaved PARP analogous to the approach reported previously [42] (Figure S1). The modified
105 EARM was partitioned into six sub-models, encoded in PySB, and are summarized in Figure 2.
106  All simulations were run using the mass-action kinetics formalism as a system of Ordinary
107  Differential Equations (ODEs) using the VODE integrator in SciPy, within the PySB modeling
108 framework. All data results, representative models, and software are distributed with open-
109  source licensing and can be found in the GitHub repository https://github.com/LoLab-VU/BIND.

110
111
112
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113  Bayesian evidence estimation
114  Bayesian evidence is the normalizing term in a Bayesian calculation and provides a measure for
115  model comparison with regard to their fit to experimental data. It is expressed as:

116 P(D|M) = fL(Dw,M) P(0|M) d6 )

117  Where M is the model under consideration, D is the experimental data, 8 is a specific set of
118  parameter values, L(D|6, M) is the likelihood function describing the fit of the data to the

119  model under those parameter values, and P(8|M) is the prior distribution of parameters. All
120  evidence estimates were made using the nested sampling method, introduced by Skilling [43].
121  This method simplifies the evidence calculation by introducing a prior mass element dX =
122 P(6|M) d6 that is estimated by (X;_; — X;) where X; = e~'/V, i is the current iteration of the

123 algorithm, and N is the total number of live points. The evidence is then written as
1

0 i=1

125 Initialization of the algorithm is carried out by randomly selecting an initial population of

126  parameter sets (points in parameter space) from the prior distribution, scoring each one with
127  the likelihood function, and ranking them from Ly; 45 to L;y,. At each iteration of the algorithm
128  anew set of parameter values is selected and scored. If that score is higher than L,,,,, then it is
129  added to the population, at the appropriate rank, and L;,,, is removed from the population and
130 added to the evidence sum (2).

131  Nested sampling software

132 All evidence estimates in this work are calculated with MultiNest, a nested sampling-based
133 algorithm designed for efficient evidence calculation on highly multimodel posterior

134  distributions [44, 45]. MultiNest works by clustering the live points (population of parameter
135  sets) and enclosing them in ellipsoids at each iteration. The enclosed space then constitutes a
136  reduced space of admissible parameter sets. This lowers the probability of sampling from low
137  likelihood areas and evaluating points that will only be discarded. The evidence estimate is
138 accompanied by an estimate of the evidence error. The algorithm terminates when the

139  presumed contribution of the highest likelihood member of the current set of live points,

140 LpignX; is below a threshold. Here, we use a threshold of 0.0001 and a population size and
141 16,000 unless otherwise noted. See [44, 45], for more details on the MultiNest algorithm. We
142  use MultiNest with the Python wrapper PyMultiNest [46], which facilitates the integration with
143 PySB into the parameter sampling pipeline.

144  Multimodel exploration analysis.

145  To explore multiple hypotheses for signal execution under different biochemical network

146  structures, we carried out an analysis inspired in the multi-model inference approach [47, 48].
147  We broke down the EARM network into six subnetworks and tested each across increasing
148  concentrations of the regulator XIAP for efficacy in achieving apoptosis. We define the

149  proportion of cleaved PARP, relative to total PARP, as a metric for effective apoptosis

150  execution. That is, if all PARP has been cleaved, then apoptosis has been completely achieved.
151  We therefore define an objective function that estimates the amount of cleaved PARP as:
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cParp

152 Objmuitimoder = tParp -

153  where cParp is the amount of PARP that has been cleaved and tParp is the total amount of
154  PARP in the system.

155  When this objective function is substituted into equation (1) in place of the likelihood function,
156  the evidence calculation produces an expected value, an average over the chosen prior

157  parameter range for the proportion of PARP that has been cleaved. In this work we compare
158 the expected values for different subnetworks, pathways, and regulatory conditions only in
159  qualitative terms and as a relative measure of fit to an outcome represented by the objective
160  function.

161  Pathway flux analysis.

162  We also explored the effect of molecular regulators of Type | vs Type Il execution relative to the
163  apoptosis signal flux through the network as we have done in previous work [49]. Briefly, signal
164  fluxis defined as the chemical reaction flux in units of molecules per unit time, that traverses
165  through a given pathway. In the apoptosis network there are two potential pathways that can
166 lead to Caspase-3 activation and subsequently PARP cleavage. In the direct caspase pathway
167 initiator caspases represented here as “Caspase-8” directly cleave and activate the effector

168  caspases represented here as “Caspase-3”. By contrast, in the mitochondrial pathway, effector
169  caspases are activated via the apoptosome, and are dependent on mitochondrial outer

170  membrane permeabilization (MOMP). Therefore, the dominant pathway responsible for

171  Caspase-3 activation defines the route of the signal. To estimate the flux through the Type | vs
172 Type Il pathway, we define an objective function as:

T
Zg C3pathway
26 €3 total

174  where t represents time in seconds, Y5 C3pathway is the amount of Caspase-3 activated via the
175  target pathway up to time t, .5 C3;,¢q is the total Caspase-3 activated up to time t,

176  and X} C3caspase / 35 C34o1a1 is the proportion of activated Caspase-3 that was produced via
177  the target pathway up to time t. (cParp; — cParp;_,) is the total PARP that has been cleaved,
178  and activated, by Caspase-3 from time t — 1 to time t.Thus, at any given time t we can estimate
179  the amount of Caspase-3 that has been activated through a specific pathway. Multiplication of
180 these two terms returns an estimate for the amount of PARP cleaved via the specific pathway
181  attime t. Summing over T then returns an estimate for the total apoptosis signal flowing

182  through the target pathway. Like the PARP cleavage objective function, the signal flux objective
183  substituted into equation (1) produces an estimate of the average flux over a defined prior

184  distribution. We estimated this quantity over increasing concentrations of the of the molecular
185  regulator XIAP, but also at high and low levels of the DISC components FADD and Caspase-8.
186  The total signal flux was estimated by summing the evidence estimates for the flux through

187  either the direct caspase or mitochondrial pathway.

173 Objpathway = X (cParp; — cParp;_1) (4)

t=0

188  Parameter ranges and initial conditions.
189  The prior distribution takes the form of a set of parameter ranges, one for each reaction rate
190 parameter. The chosen ranges span four orders of magnitude around generic reaction rates
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191  deemed plausible [4] and are specific to the type of reaction taking place. The ranges of

192  reaction rate parameters, in Logio space, are 15t order forward: [-4.0, 0.0], 2" order forward: [-
193 8.0, -4.0], 1%t order reverse: [-4.0, 0.0], catalysis: [-1.0, 3.0]. These ranges were also used in

194  calibration of the base model. Initial conditions were either gleaned from the literature [50, 51]
195  or taken from a previous model of extrinsic apoptosis [7]. Because the baseline model was

196  designed to concur with Type Il apoptotic data (see above), literature derived initial conditions
197  were based on Type Il Jurkat or Hela cell lines (Table S1).

198  Bayes factors.

199  Evidence estimates are often used to select between two competing models by calculating the
200  Bayes factor (i.e. the ratio of their evidence values). This provides a measure of confidence for
201  choosing one model over another. We can likewise use trends in evidence values to produce
202  trends in Bayes factors that provide additional insights into the dynamical relationship between
203  pathways. To facilitate construction of Bayes factor trends with a continuous and symmetric
204  range, the we calculated Bayes factors as:

( Z, .
A +1if7Z,< Z,

205 Bf = { le

k 7.~ 1ifZ,> 7,

2

206  where Z; and Z, are the evidence estimates for two pathways under comparison.
207  Computational resources
208  Because of the high computational workload necessary for this analysis, a wide range of
209  computational resources were used. The bulk of the work was done on the ACCRE cluster at
210  Vanderbilt University which has more than 600 compute nodes running Intel Xeon processors
211 and a Linux OS. As many as 300 evidence estimates were run in parallel on this system.
212 Additional resources included two local servers, also running Intel processors and a Linux OS, as
213  well as a small local four node cluster running Linux and AMD Ryzen 1700 processors. A
214  detailed breakdown of CPU time can be found in the results section. In all evidence estimates
215  for 14 different networks/initial conditions were made across the range of XIAP concentrations.
216  We estimate all 14 runs would take ~9 days each on a typical university server with 32 cores/64
217  threads.

218
219
220
221
222
223

224
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225 Results

226  Overview: A Bayesian evidence approach to explore mechanistic hypotheses.

227  Our overarching goal is to understand the mechanisms and dynamics of biochemical networks
228  responsible for cellular commitment to fate, given incomplete or unavailable data. We take a
229  Bayesian probability approach to study model subnetworks and specific model pathways as
230 summarized schematically in Figure 1 to estimate the evidence for signaling execution

231  mechanisms given a set of experimental data and existing priors.

232  In the Multimodel Exploration Analysis (Figure 1, left path), the network model is deconstructed
233 into biologically relevant subnetworks and the probability of each subnetwork achieving

234 apoptosis, under various regulatory conditions, is estimated via Bayesian evidence. This differs
235  from traditional model selection and multimodel inference applications where models are

236  typically ranked based on their fit to experimental data and high-ranking models may be

237  averaged to obtain a composite model [47, 48, 52, 53, 54, 55]. Here, we already have a model
238  that captures key features of programmed cell death execution. Instead, we use the

239  differences in evidence to construct a composite picture of mechanistic evidence for apoptosis
240  execution. To achieve this, we first tailor the objective function to represent signal execution
241  strength, as measured by cleaved PARP concentration at the end of the simulation. The

242  evidence derived from this objective function therefore describes the likelihood that the signal
243 s effectively transmitted through the (sub)network. It should be noted that Bayesian evidence
244  inherently incorporates model complexity as the objectives are integrated over normalized

245  prior distributions [44, 52, 56]. As we will see, comparison of changes in signal strength through
246  relevant subnetworks allows inferences to be made on the effect of the perturbed network

247  regulator as well as various network components on the overall dynamics of the system. We
248  focus primarily on understanding how Bayesian evidence for the caspase pathway compares to
249  that of the complete network as these are most relevant for the analysis of Type I/l execution
250  modes. This analysis will inform on how network components contribute to overall signal

251  execution and provide mechanistic insights about the sensitivity of PARP cleavage to

252  subnetwork components.

253  Inthe Pathway Flux Analysis (Figure 1, right path), we retain the complete network structure
254  but instead tailor the objective functions to measure biochemical reaction flux, as described in
255 the Methods section, through either the direct caspase or mitochondrial pathways. We

256  primarily consider the influence of the apoptosis inhibitor XIAP on regulatory dynamics and

257  phenotypic fate but also consider the regulatory effect of the death inducing signaling complex
258  (DISC) and the anti-apoptotic protein Bcl-2, all of which have been found to be relevant to Type
259  lvs Type Il execution in different cell types [13, 14]. This analysis will inform on how molecular
260  regulators modulate biochemical flux through the network and their influence on apoptosis
261  completion as measured by PARP cleavage.

262  Decomposition of the extrinsic apoptosis network and reductive analysis of the effects of

263  XIAP

264  To investigate the effect of network substructures on apoptosis signaling, we build a composite
265  description of system dynamics by observing variations in signal throughput, represented by
266  evidence values for PARP cleavage, between subnetworks (Figure 2A-F) relative to changes in
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267  regulatory conditions. We consider relative changes in the evidence values as the number of
268  XIAP molecules is increased where a higher evidence value indicates a stronger signal over the
269  prior range of parameter values. XIAP was varied from 0 to 200,000 molecules per cell in

270  increments of 250 to explore how changes in XIAP affect the likelihood of apoptosis execution.
271  For subnetworks that include the mitochondrial pathway, Bcl-2 (an anti-apoptotic) was reduced
272  or eliminated, to explore Type | vs Type Il activity independent of inhibitors that could confound
273 signal throughput, and more closely simulate a cells that is “primed” for death [56]. All other
274  initial values were fixed at the levels shown in supplementary Table S1. In the absence of XIAP
275  all six subnetworks have evidence estimates greater than 0.98, (Figure 2 A: 0.993, B: 0.998, C:
276 0.992, D:0.981, E: 0.998, F: 0.981, Table S2) indicating that they can all capture a biological

277  process that leads to PARP cleavage across the allowed range of parameters, as expected. We
278  further explore how XIAP can modulate Type /Il apoptosis execution for a chosen subnetwork .

279  Theresults in Jost et al. [14] imply that the cellular level of XIAP determines the preferred

280  apoptosis pathway with higher levels specific to Type Il cells and lower levels specific to Type I.
281  To hypothesize a possible mechanistic explanation for this behavior we compared the

282  computed the Bayesian evidence values, over increasing concentrations of XIAP, for the direct

283  caspase activation network against both the complete network and the mitochondrial network
284  (Figures 2A and G green; 2E and G orange; 2F G blue respectively). . This mimics reported

285  experimental strategies to study Type I/Il phenotypes and allows us to gauge the effect of XIAP
286  on networks with and without a mitochondrial component [13, 35].

287  As XIAP levels increase we see differential effects on all subnetworks in the form of diverging
288  evidence estimates, indicating differences in the efficacy of XIAP induced apoptotic inhibition.
289  The evidence values for the isolated caspase pathway (Figure 2G green) diverges from the

290 complete network (Figure 2G orange) and mitochondrial pathway (Figure 2 blue) showing a
291  steeper initial decline that diminishes as XIAP continues to increase. PARP cleavage evidence
292  values for the caspase pathway falls to 0.5 at an XIAP level of roughly 32,000. However, the

293  complete network and mitochondrial pathways require XIAP levels nearly threefold higher with
294  the evidence value reaching 0.5 at around 92,000 and 95,000 respectively.

295  Because the direct caspase activation pathway (Figures 2G green) is representative of the Type |
296 phenotype, the disproportionate drop in its evidence of PARP cleavage as XIAP concentration
297  increases is consistent with experimental evidence showing XIAP-induced transition from a

298 Type |l to a Type Il execution mode [14]. The complete network, containing the full

299  mitochondrial subnetwork, and mitochondrial only pathway are also affected by XIAP but

300 exhibits resistance to its anti-apoptotic effects, a difference that is most prominent at

301 moderate levels of the inhibitor. This suggests a growing dependence on mitochondrial

302 amplification for effective apoptosis as XIAP increases from low to moderate levels. At higher
303 levels of XIAP the evidence values for the caspase pathway level off and the gap between it and
304 the two mitochondrial containing networks narrows. The disproportionate effect of XIAP

305 inhibition of apoptosis on the caspase pathway suggests that the mechanism for XIAP induced
306 transition to a Type Il pathway can be attributed to differential inhibition of the apoptotic signal
307 through the isolated caspase pathway vs a network with mitochondrial involvement.
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308 We note here that the small differences in evidence values between the various networks

309 should not be surprising since every subnetwork being considered is capable of carrying

310 apoptosis to completion, as measured by PARP cleavage. Thus, we should not expect evidence
311  differences that would rule out any model under a model selection criterion. The log-evidence
312  version of Figure 2G along with estimated errors generated by MultiNest are displayed in Figure
313 S2.

314  The next two highest trends in evidence values after that of the direct caspase network (Figure
315  2G green) belong to the networks representing direct caspase activation plus mitochondrial

316  activation and mitochondrial activation alone (Figures 2G purple and 2G brown). For most of
317  therange with XIAP below 100,000 these two networks have largely overlapping evidence

318 trajectories, despite the fact that the former has twice as many paths carrying the apoptotic
319  signal. Near an XIAP level of 100,000 the two trends diverge as the decrease in evidence values
320 for the mitochondrial activation only network accelerates. This could be explained by XIAP

321  overwhelming the Apoptosome at these higher levels. The apoptosome is an apoptosis inducing
322  complex (via Caspase-3 cleavage) consisting of Cytochrome C, APAF-1, and Caspase-9, and is an
323  inhibitory target of XIAP. As XIAP increases past 125,000 the mitochondrial activation only

324  evidence values fall below even the solo direct caspase values, possibly due to the two-pronged
325 inhibitory action of XIAP at both the Apoptosome and Caspase-3. An interesting observation
326  here is that the addition of the direct caspase pathway to the mitochondrial activation pathway
327 does not appear to increase the likelihood of achieving apoptosis for lower values of XIAP.

328  Evidence values for the network representing direct caspase activation plus mitochondrial

329 inhibition of XIAP are in red in Figure 2G. Below an XIAP level of 100,000 these values are

330 consistently above the evidence values for the network of the direct caspase plus mitochondrial
331  activation. Note that while direct caspase activation does not appear to increase the likelihood
332  of achieving apoptosis when added to the mitochondrial activation pathway (Figure 2G purple)
333  the amplification of the direct caspase activation via mitochondrial inhibition of XIAP leads to a
334  higher likelihood than solo activation through the mitochondria. This suggests the possibility
335 that the primary mechanism for mitochondrial apoptotic signal amplification, under some

336  conditions, may be inhibition of XIAP, with direct signal transduction a secondary mechanism.
337  Above an XIAP level of 100,000, the direct caspase with XIAP inhibition values drop to levels
338  roughly in line with the values for direct caspase activation plus mitochondrial activation,

339  possibly due to the fact that Smac, the mitochondrial export that inhibits XIAP, is also set to
340 100,000 molecules per cell. Both, however, remain more likely to attain apoptosis than direct
341  caspase activation alone.

342  The two subnetworks with the highest evidence values for apoptotic signal execution are the
343 complete network and the isolated mitochondrial pathway (Figures 2E orange and 2F blue). As
344  previously mentioned, both of these networks contain the full mitochondrial pathway implying
345 that this pathway supports resistance to XIAP inhibition of apoptosis. Between XIAP levels of O
346  to 100,000 the two trends track very closely, with the mitochondrial only pathway showing a
347  slight but consistent advantage for apoptosis execution. The average difference between an
348  XIAP level of 20,000 and 80,000 is roughly 0.014, meaning we expect the average PARP

349 cleavage to favor the mitochondrial only pathway by about 1.4 percentage points, which may
350 seem unremarkable. Context matters however, and the context here is that the complete

10
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351  network has potentially twice the bandwidth for the apoptotic signal, namely the addition of
352  the more direct caspase pathway. Together, this raises the possibility that under some

353  conditions the caspase pathway is not a pathway but a sink for the apoptotic signal. In such a
354  scenario, the signal through the caspase pathway would get lost as Caspase-3 is degraded by
355  XIAP. Not until the signal through the mitochondrial pathway begins inhibiting XIAP could the
356  signal proceed. Around the 100,000 level of XIAP the evidence trend for the mitochondrial
357  pathway crosses below that for the complete network. This could be due to the parity with
358  Smac, components of the Apoptosome, or a combination of the two.

359  Apoptosis signal strength drives signal route through the network

360 The results in Scaffidi et al. [13] indicate a strong phenotypic dependence on the strength of the
361 apoptosis signal. Here we examine hypotheses made in that work and the interplay between
362  the DISC and XIAP regulatory axes. We once again increase XIAP from 0 to 200,000 molecules
363  inincrements of 250, but this time at a low number of DISC complexes by lowering the initial
364  values of both the scaffold protein FADD and the initiator Caspase-8, from 130,000 to 100

365 molecules per cell. In addition to the Multimodel Exploration Approach used in the previous
366  section, we also use the Pathway Flux Approach using the flux objective function (see

367  Methods). In this way we attain a holistic view of network dynamics that incorporates both,
368  network structure and flux cross-talk from all possible pathways. Additional analysis of caspase
369 and mitochondrial pathway signal flux over a range of values for both XIAP and BCL-2 is

370 displayed in Figure S3 and interpreted in Text S1.

371  Figure 3A displays the PARP cleavage evidence values along with their low DISC counterparts.
372  Two things are immediately apparent. The PARP cleavage evidence values for the caspase

373  pathway at low number of DISC is lower across the entire range of changes in the number of
374  XIAP molecules. The complete network on the other hand shows almost no difference in low
375  DISC conditions at lower values of XIAP. This supports the hypothesis that mitochondrial

376  involvement is necessary to overcome weak DISC formation and that low number of DISC likely
377  constitutes a Type |l trait [13].

378  Figures 3B and 3C show evidence values for flux through the caspase pathway and complete
379  network for high and low number of DISC, respectively. At higher DISC values, signal flux

380 through the caspase pathway is consistently higher than the flux through the mitochondrial

381  pathway. At lower DISC values the signal flux through the mitochondrial pathway exceeds the
382  flux through the caspase pathway. Our results shed interesting mechanistic observations in the
383  context of a previously proposed hypothesis stating that mitochondrial activation is

384  downstream of caspase activation in Type | cells and upstream in Type Il cells. If a weaker initial
385  apoptosis cue does indeed push the signal through the mitochondrial pathway the initial

386  activation of Caspase-8 would be weak and the amplifying activity of the mitochondria would
387 ramp up the signal before Caspase-8 could directly activate Caspase-3. On the other hand,

388  stronginitial activation that pushes the signal through the caspase pathway would have the
389  opposite effect. Also notable is the nearly identical trajectories of the total signal flux through
390 thelow and high DISC models. The average difference over the range of XIAP was only 0.011
391 (Table S3). This is consistent with observations that both Type | and Type Il cells respond equally
392  well to receptor mediated apoptosis.[13]
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393  Overall these results set up three mechanistic explanations for apoptosis execution. On one

394  end, high DISC formation and low XIAP results in the independence of apoptosis from the

395  mitochondrial pathway. This behavior is consistent with Type | cells like the SKW6.4 cell lines
396  [13]. On the other end of the spectrum is the case with low DISC formation (and by construction
397 low Caspase-8 activity) and near complete dependence on the mitochondrial pathway. Such
398  behavior is consistent with Type Il cells like Jurkat [13]. In between these two extremes is the
399 case where DISC formation, and subsequent Caspase-8 activation, is high but apoptosis is still
400 dependent on mitochondrial activity. Such behavior is consistent with MCF-7 cell that are

401  known to have traits of both phenotypes [13].

402  Bayes factor trends and XIAP influence on Type I/Il apoptosis phenotype

403  Model selection methods typically calculate the evidence ratios, or Bayes factors to choose a
404  preferred model and estimate the confidence of that choice [58, 59]. When comparing the
405 changes in the evidence of an outcome as regulatory conditions change, the changes in the
406  evidence ratios can provide additional information about changing network dynamics under
407  regulatory perturbations. To characterize the effect of XIAP on the choice of apoptotic

408 phenotype, Type | or Il, we calculated the evidence ratios (Figure 4A), for each value of XIAP
409 between the caspase pathway and both the complete network and mitochondrial pathway
410  with a fully active mitochondrial pathway. In these calculations, the denominator represents
411  the caspase pathway so that higher values favor a need for mitochondrial involvement. An

412  interesting feature of both the complete and mitochondrial evidence ratio trends is the peak
413  and reversal at a moderate level XIAP (Figure 4B). This reflects the initially successful inhibition
414  of the caspase pathway that decelerates relatively quickly as XIAP increases, and a steadier rate
415  of increased inhibition on networks that incorporate the mitochondrial pathway. The ratios
416  peak between 45,000 and 50,000 molecules of XIAP (more than double the value of its target
417  molecule Caspase-3 at 21,000) and represent the optimal level of XIAP for the requirement of
418 the mitochondrial pathway and attainment of a Type Il execution. Given the near monotonic
419  decline of the evidence trends of both pathways, representing increasing suppression of

420 apoptosis, the peak and decline in the evidence ratios could represent a shift toward complete
421  apoptotic resistance. Our results therefore complement the observations in Aldridge et al.

422  where a similar outcome was observed experimentally [60].

423 A common technique to study apoptosis is to knockdown Bid, overexpress Bcl-2, or otherwise
424  shut down MOMP induced apoptosis through mitochondrial regulation. This strategy was used
425  inJost et al. [14] to study the role of XIAP in apoptosis and in the work of Aldridge et al. to

426  explore Type | vs Type Il execution in different cell lines [59]. Taking a similar approach, we set
427  Bcl-2 levels to 328,000 molecules per cell, in line with experimental findings [47], to suppress
428  MOMP activity and recreated the evidence and ratios landscapes (Figures 4C and 4D, Table S5).
429  Under these conditions the evidence trend for the mitochondrial pathway drops well below
430 that of the caspase pathway, which is reflected in the Bayes factor trend as a shift into negative
431  values and indicating that the caspase pathway is favored. The evidence trend for the complete
432  network under MOMP inhibition is shifted closer to that for the caspase pathway at higher

433  concentrations of XIAP but the Type Il pathway continues to dominate throughout the full

434  range of XIAP. The peak for the associated Bayes factor trend is flattened as the number of XIAP
435 increases, suggesting that increasing XIAP levels are less likely to induce a transition to a Type Il
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436  phenotype in a system with an already hampered mitochondrial pathway. We note that

437  complete inhibition of MOMP would result in uninformative mitochondrial pathway evidence
438  values. The evidence trend for the complete network would be indistinguishable from that for
439  the caspase pathway alone and the complete/caspase ratio trend would simply flatline.

440 However, our analysis shows that isolation of active biologically relevant subnetworks and
441  direct comparison under changing molecular regulator conditions using trends in Bayesian
442  evidence enables the extraction of information regarding the pathway interactions and

443  differential network dynamics.

444  Precision vs computational cost

445  Increasing the precision of the evidence estimates, and tightening the evidence trendlines, is
446  accomplished by increasing the number of live points in the nested sampling algorithm. The
447  trade-off is an increase in the number of evaluations required to reach the termination of the
448  algorithm and an accompanying increase in total computation time. Figures 5A and 5B display
449  the required number of evaluations for the caspase pathway and complete network at

450  population sizes of 500, 1000, 2000, 4000, 8000, and 16,000, when run with the PARP cleavage
451  objective function. For both models the number of evaluations roughly doubles for every

452  doubling in population size. Of note here is the higher number of required evaluations for the
453  |ower parameter model. The caspase pathway has only 22 parameters and required an average
454  of 64,612 evaluations at a population size of 16,000 while the complete network, with its 56
455  parameters required only 53,652 evaluations, on average (Table S6). Figures 5C and 5D are the
456  average estimated errors calculated by the MultiNest algorithm over each population size for
457  the caspase and complete networks respectively. As expected, error estimates fall roughly as
458  n~Y2[61), signifying clear diminishing returns as the number of live points is increased. The
459  average CPU process times, as estimated by Python’s time.clock() method, are given in
460  Figures 5E and 5F for the caspase and complete networks respectively. Despite the greater

461 number of required evaluations for the caspase network the average clock times for the

462  complete network is significantly higher. At a population of 16,000 the caspase network had an
463  average clock time of 11,964 seconds compared to 76,981 for the complete network. The

464  difference is due to the greater simulation time for the much larger complete model.

465  Ultimately, the choice of population size for the methods we have laid out here will depend on
466  the networks to be compared, the objective function, and how well the evidence trends must
467  be resolved in order to make inferences about network dynamics. For example, at a population
468  size of 500 the evidence trend for the caspase pathway is clearly discernable from the

469  mitochondrial pathway and the complete network, but the latter two are largely overlapping
470  (Figure S4A). At higher population levels, however, two distinct mitochondrial and complete
471  trends become apparent (Figure SK). If Bayes factor trends are desired then the choice of

472  population size must take into consideration the amplification of the noise from both trends
473  (see Figures S4(B, D, F, H, J, L) for complete/caspase Bayes factor trends).

474

475
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476  Discussion

477  Characterizing information flow in biological networks, the interactions between various

478  pathways or network components, and shifts in phenotype upon regulatory perturbations is
479  standing challenge in molecular biology. Although comparative analysis of signal flow within a
480 network is possible with current computational methods, the dependence of physicochemical
481  models on unknown parameters makes the computational examination of each network

482  component highly dependent on costly experimentation.

483  To take advantage of the enormous amount of existing knowledge encoded in these

484  physicochemical networks without the dependence on explicit parameter values we take a

485  probabilistic approach to the exploration of changes in network dynamics. By integrating an
486  objective function that represents a simulated outcome over parameter distributions we obtain
487  the likelihood of attaining that outcome given the available information about the signaling
488  pathways. Qualitative exploration of network behavior for various in silico experimental setups
489  and regulatory conditions are then attainable without explicit knowledge of every parameter
490 value. We demonstrate the utility of the method when applied to the regulation of extrinsic
491  apoptosis. Networks that incorporate an active mitochondrial pathway displayed a higher

492  resistance to apoptotic inhibition from increasing levels of XIAP, consistent with experimental
493  evidence that XIAP induces a Type Il phenotype [14]. Also in line with experimental evidence
494  [13] are the results that suggest low/high signal initiation is consistent with Type Il/I phenotype
495  respectively and that both types achieve apoptosis equally well.

496 A potential limitation of a Bayesian approach to study network dynamics could be the

497  computational cost. A number of factors affect the run time of the algorithm including size of
498 the model, the objective function, and the desired precision. Fortunately, reducing the

499  resolution (the number of sets of initial values for which an evidence value is estimated) and
500 the precision (the population size) can drastically reduce the cost and in many cases the

501 method will still be viable. One aspect of the method that is severely restrictive is the number
502 of model components that can be varied in the same run since the computational cost

503 increases exponentially with each additional variable. Reasonable parameter ranges must also
504  be chosen. Information regarding the parameters can be incorporated into the evidence

505 calculations by adjusting the range and shape of the priors. Here we used generic but

506  biologically plausible ranges with uniform distributions and produced results that were

507 qualitatively consistent with previous experimental results. We note, however, that our results
508 make mechanistic inferences from model experiments given existing data over a period of
509  weeks rather than the months or years that would be required to attain this information with
510 experimental approaches. Our results therefore support Bayesian approaches as a suitable
511 complement to experimentation and a shift from purely deterministic models with a single
512  optimum parameter set to a probabilistic understanding of mechanistic models of cellular

513  processes.

514

515
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516 Conclusions

517 Inthis paper we have developed a probabilistic approach to the qualitative analysis of the

518 network dynamics of physicochemical models. It is designed to incorporate all available

519 knowledge of the reaction topology, and the parameters on that topology, and calculate the
520 likelihood of achieving an outcome of interest. Inferences on network dynamics are then made
521 by repeating this calculation under changing regulatory conditions and various in silico

522  experiments. We tested the method against a model of the extrinsic apoptosis system and

523  produced results that were consistent with several lines of experimental research. To our

524  knowledge this is the first attempt at a probabilistic analysis of network dynamics for

525  physicochemical models. We believe this method will prove valuable for the large-scale

526  exploration of those dynamics, particularly when parameter knowledge and data are scarce.

527
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700  Figures Legends:

701 Figure 1. General workflow for the analysis of network dynamics using trends in Bayesian evidence. The target
702 network is first deconstructed into all relevant subnetworks. A model for each subnetwork and each incrementing
703 set of regulatory conditions is then created and passed to an algorithm for estimation the Bayesian model

704 evidence. The evidence is calculated on a user-defined objective function, describing signal transduction through
705 the network, and over a range of parameter values (the prior). The evidence trends over changing regulatory

706 conditions are then compared to make qualitative inferences regarding network dynamics. In an alternative

707 method, the full model is retained, but the objective function is targeted to different pathways. Inferences on
708 network dynamics can again be made from the trends in the evidence calculations.

709

710 Figure 2. Extrinsic apoptosis subnetworks and Bayesian evidence for achieving apoptosis. (A) The direct caspase
711 subnetwork. (B) The direct caspase + mitochondrial activation subnetwork. (C) The direct caspase + mitochondrial
712 inhibition of XIAP subnetwork network. (D) The mitochondrial activation subnetwork. (E) The complete network.
713 (F) the mitochondrial subnetwork. (G) The trends in Bayesian evidence for each of the networks in (A)-(F) over a
714 range of values the apoptosis inhibitor XIAP and for an objective function that computes the proportion of PARP
715 cleavage (a proxy for cell death) at the end of a simulated run.

716

717 Figure 3. Evidence values for PARP cleavage and pathway flux at low and high DISC values. (A) Evidence values
718 for PARP cleavage for the caspase pathway and complete network under both low and high DISC conditions (100
719 and 130,000 molecules per cell of FADD and Caspase-8 respectively). (B) Signal flux through both pathways as well
720 as the total signal flux for high DISC values. (C) Signal flux through both pathways as well as the total signal flux for
721 low DISC values.

722

723 Figure 4. Evidence ratio trends under increasing levels of the apoptotic inhibitor XIAP for an inhibited and

724 uninhibited mitochondrial pathway. (A) Evidence trends for the caspase pathway (green), mitochondrial pathway
725 (blue), and complete network (orange) with no MOMP inhibition. (B) Trends for the mitochondria/caspase (blue)
726 and the complete/caspase (orange) evidence ratios from the trends in (A). (C) Evidence trends for the caspase
727 pathway (green), mitochondrial pathway (blue), and complete network (orange) with MOMP inhibitory protein
728 BCL-2 at 328,000 mol. per cell. (D) Trends for the mitochondria/caspase (blue) and the complete/caspase (orange)
729 evidence ratios from the trends in (C).

730

731 Figure 5. Precision vs. computational cost. (A) and (B) Average number of evaluations before termination of the
732 MultiNest algorithm over a range of population sizes for the caspase pathway and complete network respectively.
733 (C) and (D) Average of error estimates from MultiNest for each population size and the caspase and complete
734 networks. (E) and (F) Average estimated CPU clock time over each population size for the caspase and complete
735 networks respectively. *MultiNest was unable to estimate the error at XIAP = 0.

736
737
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738 Box 1. Extrinsic apoptosis execution.

739 Extrinsic apoptosis is a receptor mediated process for programmed cell death. The Type I/1l phenotypes for the
740 extrinsic apoptosis system were first described by Scaffidi et al. [13]. In that work they examined several cell lines
741 and classified them into those that required the mitochondrial pathway to achieve apoptosis (Type 1) and those
742 that don’t (Type ). They made several interesting conclusions. They found that Type Il cells had relatively weak
743 DISC formation, that both phenotypes responded equally well to receptor mediated cell death, that there was a
744 delay in caspase activation in Type Il cells, and that caspase activation happened upstream of mitochondrial

745 activation in Type | cells and downstream in Type Il. More recently, XIAP has also been put forth as a critical

746 regulator in the choice of apoptotic phenotype. In Jost et al. [14] they examined hepatocytes (Type Il cells) and
747 lymphocytes (Type | cells) under different conditions to examine the role XIAP plays in Type I/ll determination.
748 They made several observations upon Fas ligand or Fas-antibody induced apoptosis such as higher levels of XIAP in
749 Type Il cells and higher caspase effector activity in XIAP/Bid deficient mice versus apoptosis resistant Bid-only
750 knockouts. In all, they concluded that XIAP is the key regulator that determines the choice of pathway.

751 Extrinsic apoptosis is initiated when a death inducing member of the tumor necrosis factor (TNF) superfamily of
752 receptors (FasR, TNFR1, etc.) is bound by its respective ligand (FasL, TNF-q, etc.), setting off a sequence

753 biochemical events that result in the orderly deconstruction of the cell [15]. The first stage of this sequence is the
754 assembly of the DISC at the cell membrane @ and the subsequent activation of Caspase-8. Upon ligand binding
755 and oligomerization of a receptor such as FasR or TRAIL, an adapter protein, like FADD (Fas-associated protein with
756 death domain), is recruited to the receptors cytoplasmic tail [16, 17, 18]. FADD, in turn, recruits Caspase-8 via their
757 respective death effector domains (DEDs), thus completing DISC formation [17, 18]. Other DISC components could
758 also be included here, such as the regulator cFlip [19]. Once recruited, proximal Procaspase-8 monomers dimerize,
759 inducing their autoproteolytic activity and producing active Caspase-8 [20, 21, 22].

760 After Caspase-8 activation the apoptotic signal can progress down two distinct pathways that both lead to the
761 activation of Caspase-3 and the ensuing proteolysis of downstream targets. One pathway consists of a caspase
762 cascade in which active Caspase-8 directly cleaves and activates Caspase-3 @ [23], while another, more complex
763 pathway is routed through the mitochondria. In the mitochondrial pathway Caspase-8 cleaves the pro-apoptotic
764 Bcl-2 family protein Bid in the cytosol, which then migrates to the mitochondria @ where it initiates

765 mitochondrial outer membrane permeabilization (MOMP) and the release of pro-apoptotic factors that lead to
766 Caspase-3 activation [24, 25].

767 MOMP has its own set of regulators that govern the strength of apoptotic signaling through the mitochondria @
768 After Caspase-8 activated Bid, (tBid), migrates to the mitochondria it activates proteins in the outer mitochondrial
769 membrane, such as Bax, that subsequently self-aggregate into membrane pores and allow exportation of

770 Cytochrome-c and Smac/DIABLO to the cytosol [26]. Bid and Bax are examples of pro-apoptotic proteins from the
771 Bcl-2 family, all of which share BH domain homology [27]. Other members of this family act as MOMP regulators;
772 the anti-apoptotic Bcl-2, for example, binds and inhibits both Bid and Bax while the pro-apoptotic Bad similarly
773 binds and inhibits its target, Bcl-2 [28, 29, 30, 31]. Many other pro- and anti-apoptotic members of the Bcl-2 family
774 have been discovered and together regulate MOMP [32].

775 Regardless of which pathway is chosen, the intermediate results are Caspase-3 activation and subsequent cleavage
776 of PARP , a proxy for cell death in the analyses here [33, 34]. XIAP (X-linked inhibitor of apoptosis protein) is an
777 inhibitor of Caspase-3 and has been proposed to be a key regulator in determining the Type I/l apoptotic

778 phenotype of a cell [35]. XIAP sequesters Caspase-3 but also contains a ubiquitin ligase domain that directly targets
779 Caspase-3 for degradation. The inhibitor also sequesters and inhibits the Caspase-3 activating Caspase-9 residing
780 within the apoptosome complex [36, 37, 38]. Apoptosome formation is initiated by Cytochrome-c exported from
781 the mitochondria during MOMP @ Cytochrome-c induces the protein APAF-1 to oligomerize and subsequently
782 recruit and activate Caspase-9, thus forming the complex [39]. Another MOMP export, the protein Smac/DIABLO
783 @, binds and inhibits XIAP, working in tandem with Cytochrome-c to oppose XIAP and carry out the apoptosis
784 inducing activity of the Type Il pathway [40]. Finally, Procaspase/Caspase-6 constitutes a feed forward loop

785 between Caspase-3 and Caspase-8 @ [41].
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810 Box 1.

Box 1: Schematic of apoptotic signal flow through Type | and Il pathways.

Ligand
\
\

Mitochondrial Outer Membrane

@
cl2

T - i ] *@
,

[ Bax
Cytosol
v (s

-

(5) Greer”

,
Parp cleavage @

\_

811

812


https://doi.org/10.1101/732396
http://creativecommons.org/licenses/by-nc-nd/4.0/

