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ABSTRACT 34 

In barley (Hordeum vulgare L.), lateral branches called tillers contribute to grain yield 35 

and define shoot architecture, but genetic control of tiller number and developmental rate are not 36 

well characterized. The primary objectives of this work were to examine relationships between 37 

tiller number and other agronomic and morphological traits and identify natural genetic variation 38 

associated with tiller number and rate, and related traits. We grew 768 lines from the USDA 39 

National Small Grain Core Collection in the field and collected data over two years for tiller 40 

number and rate, and agronomic and morphological traits. Our results confirmed that spike row-41 

type and days to heading are correlated with tiller number, and as much as 28% of tiller number 42 

variance is attributed to these traits. In addition, negative correlations between tiller number and 43 

leaf width and stem diameter were observed, indicating trade-offs between tiller development 44 

and other vegetative growth. Thirty-three quantitative trait loci (QTL) were associated with tiller 45 

number or rate. Of these, 40% overlapped QTL associated with days to heading and 22% 46 

overlapped QTL associated with spike row-type, further supporting that tiller development is 47 

influenced by these traits. Despite this, some QTL associated with tiller number or rate, 48 

including the major QTL on chromosome 3H, were not associated with any other traits, 49 

suggesting that tiller number can be modified independently of other important agronomic traits. 50 

These results enhance our knowledge of the genetic control of tiller development in barley, 51 

which is important for optimizing tiller number and rate for yield improvement. 52 
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INTRODUCTION 54 

Grasses form modified lateral branches called tillers that develop from axillary meristems 55 

(AXM) located in leaf axils near the base of the plant. Barley shoot architecture is largely 56 

defined by the number and vigor of tillers, which have the capacity, like the main shoot, to form 57 

grain-bearing inflorescences called spikes that contribute to grain yield (Cannell 1969). 58 

However, merely increasing tiller number may not increase grain yield because it has been 59 

associated with decreased seed number and seed weight, and increased lodging (Stoskopf and 60 

Reinbergs 1966; Simmons et al. 1982; Benbelkacem et al. 1984). Furthermore, tiller number is a 61 

complex trait influenced by photoperiod sensitivity, spike row-type, and environmental 62 

variables, including water and nitrogen availability and planting density (Turner et al. 2005; 63 

Alqudah and Schnurbusch 2014; Liller et al. 2015; Alqudah et al. 2016). Therefore, a more 64 

comprehensive understanding of the genetic basis of shoot architecture and relationships with 65 

other agronomic traits is important for altering barley shoot architecture for increased grain yield. 66 

Tiller development (tillering) in barley has been characterized in several high and low 67 

tillering mutants, and five genes regulating tillering have been isolated and characterized to date. 68 

LOW NUMBER OF TILLERS 1 (LNT1) encodes a BEL-like homeodomain transcription factor 69 

homologous to Arabidopsis BELLRINGER (BLR) and mutations in LNT1 result in reduced tiller 70 

number (Dabbert et al. 2010). UNICULME4 (CUL4) is homologous to Arabidopsis BLADE-ON-71 

PETIOLE (BOP) genes and encodes a protein with a BROAD COMPLEX, TRAMTRACK, 72 

BRIC-À-BRAC (BTB)-ankyrin domain; and cul4 mutants produce very few primary tillers and 73 

no secondary tillers (Tavakol et al. 2015). The eligulum-a (eli-a) mutant, was identified as a 74 

suppressor of the uniculm2 (cul2) mutant phenotype (Okagaki et al. 2018). Typically, cul2 75 

mutants do not produce any tillers, but when combined with eli-a alleles, they develop at least 76 
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one tiller. ELI-A encodes a conserved protein that may be a transposon, and, despite their ability 77 

to inhibit the uniculm phenotype in cul2 mutants, single mutants with strong eli-a alleles are low 78 

tillering and typically produce about half as many tillers as non-mutants (Okagaki et al. 2018). In 79 

contrast, mutations in INTERMEDIUM-C (INT-C) and MANY NODED DWARF (MND) 4/6 80 

result in high tillering phenotypes. INT-C is an ortholog of the branching inhibitor TEOSINTE 81 

BRANCHED1 (TB1) in maize and encodes a TB1, CYCLOIDEA (CYC), PROLIFERATING 82 

CELL NUCLEAR ANTIGEN FACTOR1/2 (TCP) transcription factor. Loss-of-function int-c 83 

mutants have intermediate spike row-type (between 2-row and 6-row) and a moderate high 84 

tillering phenotype (Lundqvist and Lundqvist 1988; Ramsay et al. 2011). MND 4/6 encodes a 85 

cytochrome P450 in the CYP78A family homologous to rice PLASTOCHRON1 (PLA1), and 86 

pla1 and mnd mutants both exhibit high rates of lateral organ initiation (Miyoshi et al. 2004; 87 

Mascher et al. 2014). 88 

Quantitative trait loci (QTL) associated with tiller number have been found in coincident 89 

locations with genes regulating photoperiod sensitivity or spike row-type (Laurie et al. 1995; 90 

Karsai et al. 1997; Wang and Chee 2010; Naz et al. 2014; Alqudah et al. 2016; Nice et al. 2017). 91 

Photoperiod sensitivity in barley is largely determined by variation in PHOTOPERIOD-H1, an 92 

ortholog of Arabidopsis PSEUDO RESPONSE REGULATOR 7 (PRR7).  Plants with a dominant 93 

allele (Ppd-H1) are typically photoperiod sensitive and flower in response to long days, and 94 

plants with recessive alleles (ppd-H1) are typically photoperiod insensitive (Turner et al. 2005; 95 

Digel et al. 2015). Photoperiod sensitivity in barley is also influenced by variation in other genes, 96 

including VERNALIZATION-H3 (VRN-H3) (Yan et al. 2006; Faure et al. 2007; Loscos et al. 97 

2014), VRN-H1 (Zitzewitz et al. 2005; Loscos et al. 2014), several CONSTANS-like genes 98 

(Campoli et al. 2012a; Mulki and von Korff 2016), and the barley ortholog of Antirrhinum 99 
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CENTRORADIALIS (HvCEN) (Comadran et al. 2012). Photoperiod sensitivity impacts tiller 100 

number through influencing the timing and duration of shoot elongation, as tillering typically 101 

stops shortly after shoot elongation begins (García del Moral and García del Moral 1995; 102 

Miralles 2000). The influence of spike row-type on tiller number is usually attributed to a finite 103 

pool of resources that can be allocated to different developmental processes (Kirby and Jones 104 

1977). Barley spikelets contain three florets, one central and two lateral, all of which are fertile 105 

and produce seeds in six-row barley (6-rows); whereas in two-row barley (2-rows) only the 106 

central floret is fertile. As a consequence of increased lateral spikelet fertility, 6-rows produce 107 

more, often smaller seeds than 2-rows, and they also tend to produce fewer tillers (Alqudah and 108 

Schnurbusch 2014, 2015; Liller et al. 2015). Spike row-type is primarily determined by variation 109 

in SIX-ROWED SPIKE 1 (VRS1), which encodes a homeodomain leucine zipper protein 110 

(Komatsuda et al. 2007), or VRS4, which encodes an ortholog of the maize transcription factor 111 

RAMOSA2 (Koppolu et al. 2013), both of which are inhibitors of lateral spikelet development. 112 

Plants with dominant VRS1 or VRS4 alleles are typically 2-rows, whereas plants with recessive 113 

alleles are typically 6-rows. Variation in other genes that influence inflorescence morphology, 114 

including VRS3 (van Esse et al. 2017; Bull et al. 2017) and INTERMEDIUM genes (Lundqvist 115 

and Lundqvist 1988; Ramsay et al. 2011), have also been shown to influence tiller number 116 

(Liller et al. 2015).  117 

To date, most studies on the genetic control of tillering in barley have used forward 118 

genetics, as with the previously mentioned tillering mutants, or bi-parental mapping approaches 119 

(e.g. Arifuzzaman et al., 2014; Gyenis et al., 2007), which limit detection of natural genetic 120 

variation and the number of alleles that can be examined.  However, a recent genome-wide 121 

association study identified QTL associated with tiller number at five developmental stages in a 122 
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mapping panel of diverse spring barley accessions, and they showed genetic interactions between 123 

tiller number and spike row-type and photoperiod sensitivity (Alqudah et al. 2016). However, as 124 

this study was conducted in a greenhouse, the number of tillers that could be achieved, especially 125 

by high tillering accessions, was likely limited compared to field-grown barley. 126 

In our study, a mapping panel consisting of 384 2-row and 384 6-row spring barley 127 

accessions from the National Small Grain Core Collection was examined. To increase tillering 128 

capacity, the panel was grown in the field and data on tiller number and rate and agronomic and 129 

morphological traits were obtained. To identify genetic variation associated with tiller number 130 

and developmental rate, the panel was genotyped using Genotyping-By-Sequencing (GBS) and a 131 

50K SNP array (Bayer et al. 2017). Our objectives were to (1) quantify the genetic interactions 132 

between tillering and spike row type and photoperiod sensitivity; (2) identify potential trade-offs 133 

between tiller number and agronomic and yield-related traits; and (3) genetically map natural 134 

genetic variation associated with tillering and characterize the extent to which it overlaps genetic 135 

variation associated with related traits.  136 
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MATERIALS AND METHODS 138 

Line Selection, Field Design, and Growing Conditions 139 

A diversity panel containing 768 accessions (Table S1) from the National Small Grains 140 

Core Collection was developed for phenotypic analyses and genome-wide association studies 141 

(GWAS). The panel, split equally between 2-rows and 6-rows, was selected first by including the 142 

parents of a barley nested association mapping (NAM) population (Hemshrot et al., 2019; Smith, 143 

unpublished results) and then based on their contribution to polymorphism information content 144 

(PIC), as determined by Muñoz-Amatriaín et al. (2014). All accessions grown in 2014 and 2015 145 

were the same except for seven lines that did not flower in 2014 were replaced with different 146 

lines in 2015.  147 

The panel was grown in the field in St. Paul, MN in 2014 and 2015 in a Type 2 modified 148 

augmented design (Lin et al. 1983; Lin and Poushinsky 1985; May et al. 1989) containing 56 149 

blocks, with one half containing 2-rows and the other half containing 6-rows (Figure S1). 150 

Individual blocks contained 15 rectangular 1.5 m by 0.3 m plots (five plots by three plots), with 151 

the central plot always containing a primary repeated check, cv. Conlon for 2-rows and cv. 152 

Rasmussen for 6-rows (Figure S1). Eight, randomly chosen blocks also contained two repeated 153 

secondary checks, assigned randomly to plots within the block. PI584962 and PI614939 were 154 

used as secondary checks for 2-rows, and PI327860 and CIho7153 were used as secondary 155 

checks for 6-rows. All other plots contained one of the 768 accessions from the mapping panel. 156 

To confirm trait correlations with tiller number and other traits from the 2014 and 2015 trials, in 157 

2016, 54 lines split equally between 2-rows and 6-rows, were randomly chosen from NAM 158 

parent accessions grown in both years using the sample function in R (Table S1). The 54 159 
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accessions and the primary checks Conlon and Rasmussen were grown in a complete, 160 

randomized block design with three replicates.  In all years, adjacent plots of non-vernalized 161 

winter wheat separated plots containing barley to control weeds, prevent shading, and allow 162 

space for lodging. Plots containing barley were machine planted with 30 seeds per plot and one 163 

week after emergence were thinned to ten plants per 1.5 m-long plot with regular spacing 164 

between plants.  165 

Phenotyping, trait value adjustment, and phenotypic analyses 166 

Vegetative traits measured included tiller number, plant height, leaf width (2015 only), 167 

and stem diameter (2014 and 2015 only). In 2014 and 2015, tillers were counted on the same 168 

plants (ten in 2014 and five in 2015) per row weekly, beginning at two weeks past-emergence 169 

(2WPE) and ending at 7WPE. Productive tillers, tillers with grain-bearing spikes at plant 170 

maturity, were counted after grain filling when plants first showed signs of senescence 171 

(yellowing of awns and flag leaves). Tillering rate was calculated by dividing the maximum tiller 172 

number by the time in weeks that maximum tiller number occurred. Other metrics of tillering 173 

rate were determined by calculating the differences between mean tiller number between two 174 

consecutive weeks and by calculating the slope of a line fit to mean tiller number between at 175 

least three consecutive weeks. Leaf width (2015 only) and plant height were measured at the 176 

same time that productive tillers were counted. Plant height was calculated as the mean height 177 

(cm) of the tallest shoots of all plants from soil level to the top of the spike, not including the 178 

awns. Leaf width was calculated as the mean width (mm) at the widest point of the second leaf 179 

below the flag leaf on the tallest shoot of all plants. This leaf was chosen because it was 180 

consistently green at maturity. The tallest stem of all individual plants in a row were harvested 181 

after senescence and dried in an oven at 37 °C for 72 hours. Dried stems were scanned, and the 182 
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diameters (mm) were measured at the widest point of the last internode (below the peduncle) and 183 

averaged for each accession using Image J software (version 1.50). 184 

Inflorescence-related traits included spike row-type, seeds per spike, spike length, and 185 

50-kernel weight. Spikes from the tallest shoots of five plants were harvested after senescence 186 

and dried in an oven at 37 °C for 72 hours. Spike length was measured from the base to the tip of 187 

the spike, not including awns. All seeds from the five spikes were removed by hand and counted; 188 

and mean seeds-per-spike was calculated. All seeds from the five spikes were pooled together, 189 

and 50-kernel weight was calculated as the total mass (g) divided by the total number of seeds 190 

multiplied by 50.   191 

Days to heading was recorded when spikes on at least half of the shoots in a row were at 192 

least 50% emerged from the boot. Lodging was scored after senescence but before spikes were 193 

harvested, based on a scale of one to five, with one being completely upright and five being 194 

completely prostrate.  195 

Trait values were adjusted using two different methods developed by Lin et al. (1983) 196 

specifically for Type 2 modified augmented designs and then assessed before and after 197 

correction to determine whether adjustment reduced heterogeneity of checks. One method, based 198 

on row and column averages of primary checks (Method 1 – M1), is better for correcting values 199 

when the field varies across plot rows and/or columns (Lin et al. 1983). Another method, based 200 

on linear regression of primary and secondary checks (Method 3 – M3), is better for correcting 201 

values when the field varies in many directions. M1 adjusted trait values (M1AdjValue) were 202 

calculated using the following equation: 203 

M1AdjValue = RawValue – Check1RowAve – Check1ColAve + 2Check1Ave 204 
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Check1RowAve and Check1ColAve were the averages of all primary check trait values in the same 205 

block row and block column, respectively, as the raw trait value being adjusted. Check1Ave was 206 

the average of all primary check values. Method 3 adjusted trait values (M3AdjValue) were 207 

calculated using the following equation: 208 

M3AdjValue = RawValue – SlopeAllChecks(Check1Block – Check1Ave) 209 

SlopeAllChecks was the slope resulting from linear regression of primary check trait values versus 210 

the average secondary check trait values within the same block, and Check1Block is the value of 211 

the primary check in the same block as the raw trait value. Appropriateness of correction and 212 

selection of a correction method was based on two criteria (Lin and Poushinsky 1983, 1985; Lin 213 

et al., 1983; May et al., 1989). First, ANOVA in R (version 3.4.4) using primary check trait 214 

values was used to test for block row and column effects (Table S2). Second, relative efficiency 215 

of correction was calculated by dividing the average variance of raw secondary check trait values 216 

by the average variance of adjusted secondary check trait values, and values greater than one 217 

indicated that correction reduced variance due to heterogeneity in the field (Table S2). Raw trait 218 

values (Table S3) were used for phenotypic analyses to prevent individual trait adjustments from 219 

affecting trait correlations, and raw or adjusted (if applicable) trait values were used for genome-220 

wide association mapping (Table S4). 221 

All statistical analyses and data visualizations were performed in R. Broad-sense 222 

heritability (H
2
) was estimated using 2014 and 2015 raw trait values by two-way ANOVA with 223 

the following model: Trait ~ Year + Line. Genetic variance was calculated as the difference 224 

between the line sum of squares and the residual sum of squares divided by two (for two years – 225 

2014 and 2015), and heritability was calculated by dividing genetic variance by the sum of 226 

genetic variance and the residual sum of squares divided by two (Table 1 and Table S5). 227 
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Estimates were based on lines that had trait data in both years, which varied depending on the 228 

trait, and the number of lines used for each trait estimate is included in Table 1 and Table S5. 229 

Trait heritability was also estimated with 2016 raw trait values using rep instead of year in the 230 

two-way ANOVA model (Table S5).  231 

One-way ANOVA was performed followed by a Tukey-Kramer test for pairwise 232 

comparison of trait means between different year, spike row-type, and photoperiod sensitivity 233 

groups; and the multcompLetters function (multcompView, version 0.1-7) was used to assign 234 

letters designating whether groups were significantly different based on false discovery rate 235 

(FDR)-adjusted p-values from the Tukey-Kramer test. Pearson and Spearman rank correlations 236 

between traits were calculated using the rcorr function (Hmisc, version 4.1-1) (Table 2 and Table 237 

S6). A distance matrix was calculated based on average weekly (two to seven weeks past-238 

emergence) and productive tiller number, and principal coordinates analysis (PCoA) of the 239 

distance matrix was performed using the cmdscale R function. The first and second principal 240 

coordinates based on tiller number were used as traits in association mapping (Table S4). 241 

For multiple linear regression (MLR) analyses, the following model was fit using the lm 242 

function in R with tiller number as the response variable and other traits as predictor variables 243 

(File S1): 244 

Tiller Number = βIntercept + βDays to Heading + βSeeds Per Spike + βFifty Kernel Weight +  245 

βLeaf Width + βPlant Height + βStem Diameter 246 

Before model fitting, lines with missing values for any of the traits included in the model were 247 

removed. The order of predictor variables in the MLR model was chosen based on relative 248 

contribution to R
2
, which was calculated using the “lmg” method (adapted Lindeman et al., 249 
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1980) from the boot.relimp function (relaimpo, version 3.3-2; Groemping, 2006). Next, the 250 

boot.stepAIC function (bootStepAIC, version 1.2-0) was used to choose a best-fit model by 251 

fitting the model 1000 times using forward and backward selection to choose predictor variables 252 

in the model. The final model was refit and outliers were removed based on Cook’s distance. 253 

Lines with the highest Cook’s distance were removed iteratively, and the model was refit until 254 

the R
2
 value of the model did not improve significantly. Predictor variables were checked for 255 

collinearity using the vif function (car, version 3.0-0) to ensure none of the variables had a 256 

Variance Inflation Factor (VIF) that indicated excessive correlation of predictor variables (VIF > 257 

5). After all outlier lines were removed and the model was refit, the boot.relimp function was 258 

used to calculate relative proportion of total variance explained (contribution to R
2
 of the entire 259 

model) by individual predictor variables.  260 

Genotyping, Linkage Disequilibrium, and Population Structure Analysis 261 

Lines were genotyped using GBS and a barley 50K iSelect SNP array (Bayer et al. 2017).  262 

DNA was extracted from seedling leaf tissue using a Mag-Bind® Plant DNA Plus kit (Omega 263 

Bio-tek, Norcross, GA), following the manufacturer’s instructions, and genomic DNA was 264 

quantified using a Quant-iT™ PicoGreen® dsDNA Assay Kit (Thermo Fisher Scientific, 265 

Waltham, MA). For GBS, reduced representation libraries were created according to Poland et 266 

al. (2012) using Pst1-Msp1 restriction enzymes. Libraries were sequenced using a HiSeq 2500 267 

system (Illumina, San Diego, CA) to obtain single-end 125 bp reads. SNP calling was performed 268 

using the TASSEL 5 GBS Version 2 Pipeline using 64 base kmers and a minimum kmer count of 269 

five. Reads were aligned to the Morex reference genome assembly using the “aln” algorithm in 270 

the Burrows-Wheeler Aligner (BWA, version 0.7.10) (Mascher et al. 2017; Beier et al. 2017). 271 

Genotyping using barley 50K iSelect BeadChip kits (Illumina) was performed according to the 272 
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manufacturer’s instructions, and SNPs were scored in GenomeStudio (version 2.0.2, Illumina) 273 

using manually curated clusters developed by Bayer et al. (2017). GBS and 50K SNP datasets 274 

were filtered individually based on percent missing data and percent heterozygosity. All filtering 275 

and imputing steps were performed using TASSEL 5. For the first round of filtering, GBS SNPs 276 

were removed if more than 50% of calls were missing or heterozygous and the minor allele 277 

frequency (MAF) was less than 0.03, and 50K array SNPs were eliminated if they contained 278 

more than 20% missing or heterozygous calls and a MAF less than 0.03. The GBS and 50K SNP 279 

datasets were then merged and missing data was imputed using the LD-kNNi imputation method 280 

in TASSEL 5 (sites = 20, Taxa = 5, maxLDDistance = -1). The merged, imputed SNP dataset 281 

was filtered again for missing data, eliminating SNPs and lines with more than 5% 282 

missing/heterozygous data. Lines were also filtered for missing data, and twenty-six lines with 283 

more than 5% missing/heterozygous SNP calls were excluded from association mapping and 284 

other genetic analyses. Three lines were removed from all genetic analyses because the spike 285 

row-type did not match what was recorded in GrainGenes (https://wheat.pw.usda.gov), GRIN 286 

(https://npgsweb.ars-grin.gov), and Muñoz-Amatriaín et al. (2014) (see notes in Table S1). SNPs 287 

were then tagged using the Tagger feature in Haploview (version 4.1) (Barrett et al. 2005) with 288 

an R
2
 cutoff of 0.95, resulting in 69,607 tagged SNPs for 747 lines (Table S7). 289 

To analyze chromosomal linkage disequilibrium (LD) decay, pairwise R
2
 values between 290 

all SNPs within a chromosome were calculated using TASSEL 5, and the background LD level 291 

was calculated as the 95
th

 percentile of significant (pDiseq < 0.01) R
2
 values for all SNP pairs >= 292 

50 cM apart, the distance at which the recombination rate is 0.5 for loci on the same 293 

chromosome. A non-linear model described by Hill and Weir (1988) was fit to all significant 294 

pairwise R
2
 values and their corresponding distances using the nls function in R, and the decay 295 
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distance was calculated as the distance at which the non-linear model intersected with 296 

background LD level (Marroni et al. 2011) (File S2, S3). LD decay distances were calculated for 297 

individual chromosomes using physical and POPSEQ positions (Mascher et al. 2013; Beier et al. 298 

2017) of tagged SNPs (Table S8). Based on LD decay distances, which were less than 1 cM for 299 

all chromosome (Table S8), a genetic distance of +/- 2 cM was chosen as a cutoff for including 300 

significant SNPs in the same quantitative trait loci (QTL) to account for regions with higher LD. 301 

To assess intrachromosomal patterns of LD for candidate gene analysis (as in Figure S8), 302 

pairwise comparisons were made between SNPs in 100 SNP windows. R
2
 values were ordered 303 

by mean position, and the R
2
 values and mean positions of 4950 pairwise comparisons (unique 304 

number of pairwise comparisons for 100 SNPs) were averaged and plotted as a line graph and a 305 

curve was fit using local regression (LOESS) (File S4).  306 

Population structure was analyzed using the program STRUCTURE (version 2.3.4) 307 

(Pritchard et al. 2000). A set of 701 SNPs for STRUCTURE analysis (Table S9) were chosen by 308 

selecting SNPs from individual chromosomes from the final tagged SNP dataset that were at 309 

least as far apart as the calculated genetic decay distance (Table S8). Results from ten individual 310 

STRUCTURE runs for K 1-10 were analyzed using STRUCTURE Harvester (Earl and von 311 

Holdt 2012). The optimum number of subpopulations was chosen based on delta K (ΔK), which 312 

was calculated by STRUCTURE Harvester using equations from Evanno et al. (2005). 313 

Genome-wide Association Mapping 314 

Genome-wide association mapping analysis was performed using compressed mixed 315 

linear models from the GAPIT R package (Genome Association and Prediction Integrated Tool, 316 

version 2.0) (Lipka et al. 2012) with the final imputed and filtered set of 69,607 SNP tags (Table 317 

S7) and raw and corrected (if applicable based on Table S2) phenotypic data (Table S4). The 318 
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MAF cutoff was 0.03 for all lines (n=727-740, depending on the trait) and 0.05 for subsets based 319 

on spike row-type or PPD-H1 alleles (n=305-437, depending on the subset and trait). The model 320 

selection feature of GAPIT was used to choose the optimum number of principal components for 321 

each individual trait to account for population structure, and the optimal compression level 322 

determined by GAPIT was used. The percentage of genetic variance explained by individual 323 

SNPs was calculated as the difference between R
2
 of models with the SNP and without the SNP.  324 

Information about all significant SNPs, including allelic effect size, percent variance explained, 325 

and nearest gene information is included in Table S10. 326 

Data Availability 327 

 All data necessary for reproducing results are available within supplemental tables, which 328 

are available in FigShare. Table S1 contains information about all accessions, including 329 

collection site, improvement status, spike row-type, and STRUCTURE subpopulation 330 

assignment. Table S7 contains all SNP markers used for association mapping, and Table S9 331 

contains all SNP markers used for STRUCTURE analysis. Raw trait data used for phenotypic 332 

analyses is included in Table S3, and trait data used for association mapping is included in Table 333 

S4. Supplemental figures and R scripts for multiple linear regression and LD analyses (Files S1-334 

S4) are also available in FigShare. 335 

RESULTS AND DISCUSSION 336 

Tiller number in the two- and six-row diversity panel 337 

In 2014 and 2015, 761 lines were grown in the field, and data were collected for weekly 338 

and productive tiller number, days to heading, plant height, stem diameter, leaf width (2015 339 

only), seeds per spike, fifty kernel weight, and lodging (2015 only) (Table S3). Fifty-four lines 340 
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that were grown in 2014 and 2015 were also grown in 2016 in three complete, randomized 341 

blocks, and data for weekly and productive tiller number, days to heading, plant height, seeds per 342 

spike, and fifty kernel weight were collected (Table S3). Phenotypic data were analyzed in all 343 

lines and in subsets of lines based on spike row-type and PPD-H1 alleles. Tiller number data 344 

from 2014 and 2015 are summarized in Table 1, and all trait data from all years are summarized 345 

in Table S5.  346 

Genetic variance for tiller number was significant (p-value < 0.0001) in 2014, 2015, and 347 

2016 for most time points (Table 1, Table S5).  In both years for all line subsets, variance was 348 

highest for maximum tiller number and tiller number measured at later time points (5-7WPE), 349 

and it decreased for productive tiller number (Table 1). Tiller number at 6WPE, the time point at 350 

which maximum tiller number occurred on average for all lines, also had the highest heritability 351 

estimate (0.53) of all tiller counts. Decreased heritability from 6WPE to productive tiller number 352 

was likely due to variability in tiller survival, which appears to be strongly influenced by 353 

environment as genetic variance for percent productive tillers was not significant (Table S5). 354 

Heritability estimates for tillering traits were lower than other traits measured (Table S5). 355 

Tiller number was compared using data for the 54 lines (27 2-rows and 27 6-rows) grown 356 

in all three years. Due to waterlogging in the field early in development in 2014, the onset of 357 

tiller development was delayed and maximum and productive tiller number was much lower than 358 

2015 and 2016 (Figure 1A,B). By 2WPE in 2014, 25.4% of all lines grown had not yet 359 

developed at least one tiller per plant on average, whereas all lines grown in 2015 had developed 360 

at least one tiller per plant by 2WPE. Maximum tiller number was not significantly different 361 

between 2015 and 2016, but productive tiller number was lower in 2016 than 2015 due to lower 362 

tiller survival (Figure 1B). Despite differences between years, they all followed a similar trend 363 
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where average tiller number increased linearly until 5WPE, after which it either slowed or began 364 

decreasing (Figure 1A). 365 

Average plant height, stem diameter (measured in 2014 and 2015 only), seeds-per-spike, 366 

and fifty kernel weight followed a similar trend as productive tiller number across the three 367 

years, where trait values were highest in 2015 and lowest in 2014 (Figure 1C). In years when 368 

plants developed more productive tillers on average, they were also taller with thicker stems, 369 

more seeds per spike, and heavier seeds on average (Figure 1C), indicating that productive tiller 370 

number is correlated with overall plant fitness.  371 

Days to heading and spike row type explain a large proportion of variance in tiller number 372 

Consistent with previous studies (Liller et al. 2015; Alqudah et al. 2016), our results 373 

support the observations that spike row-type and photoperiod response influence tiller number. 374 

However, these previous studies have not attempted to quantify the extent that these traits 375 

influence tiller number, nor have they assessed the simultaneous effects of both traits on tiller 376 

number. To gain a better understanding of these relationships, we examined tiller number in 761 377 

lines in relation to days to heading, PPD-H1 genotype, and spike row-type.  378 

Spike row-type has been shown to influence tiller number as well as other traits like seed 379 

number and weight, and leaf area (Alqudah and Schnurbusch 2014, 2015; Liller et al. 2015). As 380 

expected, average tiller number was higher in 2-rows than 6-rows in 2014 and 2015 (Table 1). 381 

Duration of tiller development was also slightly longer for 2-rows than 6-rows in both years, and 382 

a lower percentage of tillers were productive in 6-rows compared to 2-rows in both years (Figure 383 

S2A). As commonly observed, most 2-rows also had thinner stems, narrower leaves, and longer 384 

spikes with fewer, heavier seeds than 6-rows (Figure S2B). Despite the difference in average 385 
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tiller number, productive tiller number distributions in 2-rows and 6-rows largely overlapped 386 

(Figure S2C). Furthermore, some 6-rows produced as many tillers as high tillering 2-rows, and 387 

some 2-rows produced as few tillers as low tillering 6-rows (Figure S2C). 388 

In earlier studies, variation in PPD-H1 was shown to influence days to heading, leaf size, 389 

tiller number, and tillering duration (Turner et al. 2005; Alqudah et al. 2016, 2018; Digel et al. 390 

2016). One SNP included in this study, BK_14, is 308 bp upstream of PPD-H1 and has been 391 

previously shown to be in complete or near-complete LD with a SNP in the CONSTANS (CO), 392 

CO-like, and TOC1 (CCT) domain of Ppd-H1 and is a likely causal variant underlying 393 

photoperiod sensitivity differences (Turner et al. 2005; Digel et al. 2016). LD analysis indicated 394 

that all SNPs in PPD-H1 and several that flanked it were in high LD (Figure S3). Therefore, 395 

BK_14 was used to distinguish lines as having the photoperiod sensitive Ppd-H1 (G) allele or the 396 

photoperiod insensitive ppd-H1 (A) allele, and correlation of PPD-H1 alleles and tiller number 397 

was assessed separately in 2-rows and 6-rows. We found that 2-row accessions carrying ppd-H1 398 

had more tillers than 2-rows carrying Ppd-H1, but tiller number was not significantly different 399 

between 6-rows carrying the two PPD-H1 alleles (Figure S4A). Interestingly, days to heading 400 

explained a larger proportion of variance in multiple linear regression (MLR) models of tiller 401 

number in 6-rows than 2-rows in both years (Figure S4B), suggesting that variation in other 402 

genes that influence photoperiod sensitivity could affect tiller number more strongly than PPD-403 

H1 in this 6-row germplasm. 404 

The large number of lines included in this study allowed us to characterize and quantify 405 

percent variance in tiller number explained by both spike row-type and photoperiod sensitivity 406 

simultaneously. Only data from 2015 was used for these analyses because more traits were 407 

measured in 2015 and variance in tiller number was higher than in 2014, as shown by higher 408 
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standard deviation in tiller number (Table 1). In addition, photoperiod response was represented 409 

by days to heading in these analyses, and spike row-type was represented by seeds per spike in 410 

MLR models for all lines.  411 

MLR models with tiller number as the response variable and other traits as predictor 412 

variables indicated that days to heading and spike row type explained a high proportion of 413 

variance in tiller number (Figure 2A). Together they explained 28% of the total variance in 414 

maximum tiller number and 12% of the total variance in productive tiller number (Figure 2A). 415 

Interestingly, a very small proportion of variance in productive tiller number was explained by 416 

days to heading (1.9%) (Figure 2A), probably due to variability in tiller survival between lines. 417 

Average differences in tiller survival represented by percent productive tillers between 2-rows 418 

and 6-rows (Figure S2A) could explain why seeds per spike accounted for a larger proportion of 419 

variance in productive tiller number than maximum tiller number. 420 

 Principal coordinates (PCo) analysis based on tiller number throughout development and 421 

productive tiller number also indicated that a large proportion of variance in tiller number was 422 

explained by days to heading and spike row-type. Groups based on spike row-type and days to 423 

heading were more strongly correlated than any other single trait with PCo1 (R=0.59, p< 2.2e-424 

16), which explained 86% of the total variance in the PCo model (Figure 2B). Furthermore, 425 

although 6-rows produced fewer tillers on average than 2-rows, maximum tiller number in late 426 

heading 6-rows (>60 days) was not significantly different from earlier heading 2-rows (<60 427 

days), indicating that high tiller number can be achieved in late heading 6-rows (Figure 2C). 428 

Trade-offs between tillering and other traits 429 
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Tiller number and other traits were compared to evaluate trade-offs associated with high 430 

tiller number. Because spike row-type influences tiller number and other traits, trade-offs were 431 

assessed separately in 2-row and 6-row subsets and using 2015 data only for the same reasons as 432 

previously described. Results of MLR modeling indicated minor trade-offs between tiller number 433 

and other vegetative traits. Leaf width and stem diameter explained a significant proportion of 434 

variance in productive and maximum tiller number MLR models (Figure 3A), and their 435 

coefficients were consistently negative, indicating a tendency for leaf width and stem diameter to 436 

decrease as tiller number increased. Both traits were also weakly, negatively correlated with 437 

productive tiller number (Table 2 and Table S6).   438 

We considered the possibility that larger trade-offs or trade-offs that were not indicated 439 

by correlations or MLR modeling could be identified by comparing traits in lines with very 440 

different tillering capacities. Therefore, 2-rows and 6-rows were split into 10
th

 and 90
th

 percentile 441 

groups based on maximum and productive tiller number (Figure 3B).  Despite at least 2.5-fold or 442 

higher change in average tiller number between percentile groups (Figure 3B), very few traits 443 

were significantly different between percentile groups. Stem diameter was lower in high tillering 444 

6-rows (90
th

 percentile, maximum and productive) than low tillering 6-rows (10
th

 percentile, 445 

maximum and productive) but was not significantly different between high and low tillering 2-446 

rows (Figure 3C). Fifty kernel weight was also lower and lodging severity increased in high 447 

tillering 6-rows (90
th

 percentile, maximum) than low tillering 6-rows (10
th

 percentile, maximum), 448 

but they were not significantly different between high and low tillering 2-rows (Figure 3C). 449 

Interestingly, the trend in percent productive tillers between percentiles based on maximum tiller 450 

number was reversed in percentiles based on productive tiller number (Figure 3D). This suggests 451 

that tiller survival had a major impact on final productive tiller number in 2015 and that variation 452 
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in tiller survival may alleviate trade-offs between tiller number and other traits. Overall, our 453 

results suggest that trade-offs between tiller number and other traits were very minor and were 454 

slightly more pronounced in 6-rows than 2-rows, but, in general, there were no major trade-offs 455 

between tiller number and other traits independent of spike row-type. 456 

It is likely that lower tiller number in 6-rows than 2-rows is due to a trade-off with seeds 457 

per spike, which is inherently higher in 6-rows (Figure S2B). However, there was no evidence 458 

from our study that more seeds per spike within 2-row or 6-row groups was associated with 459 

lower tiller number. Overall, results from this study indicated that trade-offs between tiller 460 

number and seeds per spike probably only exist if the difference in seeds per spike is very large, 461 

as it is between 2-rows and 6-rows. 462 

Few studies have described trade-offs between tiller number and other traits in barley or 463 

other small grain crops, and the results have been inconsistent. For example, Kebrom et al. 464 

(2012) reported that removing tillers in wheat could induce development of larger spikes with 465 

more seeds. However, another study examined yield and yield-related traits in barley under 466 

different seeding densities over two years and found that there was no trade-off between tillers 467 

per plant and seeds per spike (Stoskopf and Reinbergs 1966). They found that the seeding 468 

density at which seeds per spike was highest was the same density at which productive tiller 469 

number per plant was highest. Furthermore, when they compared 20 high-yielding lines and 20 470 

low-yielding lines, they found that average seeds per spike was higher in high-yielding lines but 471 

that average tiller number was not different. 472 

Natural genetic variation associated with tillering 473 
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Population structure was characterized in all lines in the diversity panel prior to 474 

association mapping. As with the entire NSGC collection, population structure analysis of all 475 

lines in the diversity panel using STRUCTURE resulted in five subpopulations, corresponding to 476 

those described in Muñoz et al. (2014), that were distinguished primarily by spike row-type, 477 

collection location, and improvement status (Figure S5 and Table S1). Days to heading and tiller 478 

number did not vary by improvement status (landraces versus cultivars) in Subpopulations (SP) 479 

1, 3, and 4 (Figure S6). SP2 and SP5 were not compared because they almost exclusively 480 

contained landraces (Figure S5). Tiller number was higher in SP3 than SP1 or SP4 (Figure S6), 481 

but this was likely due to the fact that SP3 contained primarily 2-rows while SP1 and SP4 482 

contained primarily 6-rows. 483 

Genome-wide association mapping was performed using 2014 and 2015 raw or adjusted 484 

(if applicable based on Table S2) phenotypic data for all tillering traits, days to heading, and 485 

spike row-type. Tillering QTL included SNPs significantly associated with tiller number, rate of 486 

tillering, and tillering principal coordinates. Tiller number included 2-7WPE, productive, and 487 

maximum tiller number. Thirty-seven QTL were associated with tillering traits in 2014 and 488 

2015, (Table 3); however, only four were identified in both years, one on 2H at 56.82-58.76 cM 489 

(2H-58), one on 5H at 47.89-48.10 cM (5H-48), and two on 7H at 31-33.67 cM (7H-33) and 490 

70.16-70.54 cM (7H-70) (Table 3, Figure 4A). These four tillering QTL accounted for a very 491 

small proportion of variance in tillering traits (Table S10), while the QTL that explained the most 492 

variance in tiller number were not detected in both years, one on 2H at 13.72 – 23.24 cM (2H-493 

19) in 2014, and one on 3H at 35.39 cM (3H-135) in 2015 (Figure S7). The 2H-19 QTL 494 

overlapped the PPD-H1 locus and was associated with tiller number, tillering rate, and tillering 495 

PCo1 in all lines and with tiller number and tillering rate in 2-rows (Figure S7). For many 496 
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tillering traits in 2014, 2H-19 was the only QTL identified (Figure S7), and the allelic effect size 497 

for tiller number measurements ranged from 1.1-1.5 tillers (Table S10). The 3H-135 QTL was 498 

associated with tiller number, tillering rate, and tillering PCo1 in all lines and Ppd-H1 lines, and 499 

with tiller number and tillering rate in 6-rows (Figure S7). For many tillering traits in 2015, 3H-500 

135 was the only QTL identified, and the allelic effect size for tiller number measurements 501 

ranged from 1.5-4 tillers (Table S10).  502 

Measuring tiller number throughout development provided opportunities to identify QTL 503 

associated with tillering rate, and to compare the number of QTL associated with tillering at 504 

different time points. Fourteen out of 23 and six out of 14 tillering QTL were associated only 505 

with tillering rate, and not tiller number, in 2014 and 2015, respectively (Table 3). Tiller number 506 

at later time points (5-7WPE, maximum, and productive) was associated with more QTL than at 507 

earlier time points (Figure S7). No QTL were associated with tiller number at 2WPE in either 508 

year; and no QTL were associated with tillering rate early in development (2-4 WPE) in 2014 509 

(Figure S7), possibly due to low phenotypic variance during seedling development (Table 2).  510 

Grouping lines based on their PPD-H1 genotype and spike row-type allowed us to 511 

identify QTL that were not identified in all lines, and to observe that there was virtually no 512 

overlap in QTL detected in 2-rows and 6-rows or Ppd-H1 and ppd-H1 lines. In 2014, very few 513 

(four out of the 23) QTL associated with tillering were uniquely identified in all lines, whereas 514 

ten unique tillering QTL were identified in ppd-H1 lines (Figure S7). Two QTL were uniquely 515 

identified in 2-rows and one was uniquely identified in 6-rows in 2014 (Table 3). No unique 516 

QTL were identified in Ppd-H1 lines in 2014 (Table 3). In 2015, more QTL were identified in all 517 

lines than in any other group. All of the tillering QTL identified in 6-rows were also identified in 518 

all lines, and despite high phenotypic variance in 2015, no QTL were associated with tillering in 519 
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2-rows, possibly due to low allele frequency and the presence of many small effect loci that 520 

influence tillering. Including the Ppd-H1 group enabled identification of three unique QTL 521 

(Table 3). In addition to identifying unique QTL within each year, including groups based on 522 

spike row-type and Ppd-H1 genotype also enabled detection of three of the four QTL that were 523 

associated with tillering in both years. Only one of the four tillering QTL identified in both years, 524 

2H-58, was identified in all lines in both years (Table 3).  525 

Interestingly, three of the four QTL identified in both years in this study were also 526 

identified in a study by Alqudah et al. (2016) (2H-58, 5H-48, and 7H-70), which measured tiller 527 

number throughout development in a greenhouse-grown diversity panel, suggesting that these 528 

three QTL consistently influence tiller number under different environmental conditions. In total, 529 

ten of the 33 tillering QTL identified in this study were also identified in the Alqudah et al. study 530 

– relatively few considering the large number of QTL identified between the two studies. This 531 

modest overlap could be attributed to differences in overall tillering capacity between 532 

greenhouse-grown and field-grown barley, as field-grown barley has more potential to reach 533 

higher tillering capacities under favorable conditions. This could also explain the low overlap 534 

between the two years in our study, as tillering capacities differed greatly between the two years. 535 

It is also possible that the different diversity panels used in our study and the Alqudah et al. study 536 

harbor different alleles that influence tiller number. Therefore, growing different mapping panels 537 

under different environmental conditions is probably necessary to capture the full extent of 538 

natural genetic variation underlying tiller development.  539 

Overlap of natural genetic variation associated with tillering, days to heading, and spike 540 

row-type 541 
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Because tiller number was correlated with days to heading and spike row-type, we 542 

expected to see some overlap between QTL associated with these traits. In 2014, nine of 23 543 

tillering QTL were also associated with row-type and/or heading, and in 2015, seven out of 14 544 

tillering QTL were also associated with row-type and/or heading (Figure 4A). However, if all 545 

QTL associated with heading regardless of year were included, overlap between tillering QTL 546 

and heading QTL, especially in 2014, was much more extensive (Figure 4B). Incidentally, there 547 

was very little overlap between row-type QTL and heading QTL in either year (Figure 4B). Only 548 

one tillering QTL, 2H-58, which was the only one associated with tillering in all lines in both 549 

years, was also the only one associated with heading and row-type in both years (Figure 4A).  550 

Interestingly, all four of the tillering QTL identified in 2014 and 2015 overlapped genes 551 

that have been previously shown to influence heading or circadian rhythm in barley, and all of 552 

them were also associated with heading in this study (Figure 4A). HvCEN 553 

(HORVU2Hr1G072750, 58.7 cM) is located in the 2H-58 QTL interval (Table 3) and was shown 554 

in a recent study that characterized 23 independent HvCEN mutants to influence flowering time, 555 

the number of spikelets per spike, and tiller number (Bi et al. 2019). Variation in HvCEN was 556 

also associated with days to heading in earlier studies (Comadran et al. 2012; Loscos et al. 557 

2014). As previously mentioned, QTL in this region were identified for tiller number, days to 558 

heading, and spike row-type in all lines in both years. Although variation in HvCEN affects the 559 

number of spikelets per spike, there is no evidence that it affects the number of fertile florets per 560 

spikelet, so it is likely that another gene in this region is associated with spike row-type. 561 

HvMADS15, a MADS-box gene homologous to APETALA1/FRUITFULL 562 

(HORVU2Hr1G063800, 58.76 cM) is a more likely candidate because its expression is nearly 563 

undetectable in spike row-type vrs3/int-c double mutants, indicating a role in spike row-type 564 
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determination (Zwirek et al. 2019). VRS3 encodes a histone demethylase, and mutants have an 565 

intermediate spike row-type like int-c mutants (van Esse et al. 2017; Bull et al. 2017). The 5H-566 

48 QTL overlaps HvELF4-like (HORVU5Hr1G060000, 48.4 cM), a homolog of Arabidopsis 567 

EARLY FLOWERING 4 that is a likely candidate for environmental adaptation selection in 568 

barley landraces (Russell et al. 2016). HvFT1/VRN-H3 (HORVU7Hr1G024610, 33.67 cM), an 569 

ortholog of Arabidopsis FLOWERING LOCUS T (FT), is located in the 7H-33 QTL interval and 570 

is an important regulator of flowering time in barley. Russell et al. (2016) found that HvFT1 was 571 

more strongly associated with latitude in landraces than any other flowering gene, indicating its 572 

importance for adaptation, and variation in HvFT1 was associated environmental adaptation and 573 

days to heading in other studies as well (Casas et al., 2011; Loscos et al., 2014; Maurer et al., 574 

2015). The fourth QTL identified in both years for tillering rate and heading, 7H-70, co-localized 575 

with a probable ortholog (HORVU7Hr1G070870, 70.8 cM), based on sequence homology and 576 

circadian expression pattern, of the partially redundant circadian genes in Arabidopsis, 577 

CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) 578 

(Campoli et al. 2012b).           579 

We found that more tillering QTL colocalized with days to heading QTL than with spike 580 

row-type QTL (Figure 4B), and surprisingly, no tillering QTL overlapped the VRS1 locus or 581 

other VRS loci in either year, despite significant differences in all tillering traits between 2-rows 582 

and 6-rows in both years. This could be due to the extensive overlap in tiller number 583 

distributions between 2-rows and 6-rows that was previously mentioned (Figure S2C).  584 

Tillering QTL do not overlap known tillering genes 585 

As previously described, mutations influencing tiller number have been identified and 586 

several mutated genes have been characterized. Interestingly, none of the QTL in our study 587 
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overlapped known tillering genes or mutants. The Alqudah et al. study (2016) identified tillering 588 

QTL that mapped near the low tillering gene CUL4 (3H, 137.74), but they did not identify other 589 

QTL overlapping known tillering genes. The 3H-135 QTL in our study mapped near CUL4; 590 

however, it is an unlikely candidate gene because LD decays below background levels between 591 

3H-135 and CUL4 at 137.71 cM (Figure S8). The nearest gene to 3H-135 592 

(HORVU3Hr1G103960, 135.39 cM) encodes an epoxide hydrolase that is more highly 593 

expressed in developing tillers than any other tissues based on expression data from Barlex 594 

(barlex.barleysequence.org). Another potential candidate gene in this region is homologous to 595 

PLASTOCHRON3/GOLIATH (HORVU3Hr1G104570, 135.39 cM), which encodes a glutamate 596 

carboxypeptidase that regulates plastochron length in rice (Kawakatsu et al. 2009 p. 3). A 597 

plastochron is the time interval between formation of successive leaf primordia (McMaster 598 

2005), and PLASTOCHRON mutants are characterized by an increased rate of leaf development. 599 

Leaves develop in a phytomer unit that also contains an axillary bud (McMaster 2005), so 600 

reduced plastochron (faster leaf development) could also result in higher tiller number under 601 

favorable environmental conditions. For example, mutations in MND4/6, a gene homologous to 602 

rice PLASTOCHRON1, causes a high tillering phenotype (Mascher et al. 2014).  603 

The low tillering mutants cul2, cul4, als, and lnt1 are deficient in axillary meristem 604 

initiation and maintenance and produce few, if any primary axillary buds (AXB) and no 605 

secondary AXB (Babb and Muehlbauer 2003 p. 2; Dabbert et al. 2009, 2010; Tavakol et al. 606 

2015). Primary AXB form in leaf axils of the main shoot, and secondary AXB form in leaf axils 607 

of tillers that develop from primary AXB. Natural variation in primary AXB number has not 608 

been assessed, but it is possible that variance in tiller number is influenced more by genes 609 

regulating initiation of higher level (secondary, tertiary, etc.) AXB and outgrowth of tillers. 610 
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Genomewide association studies on the number of secondary and tertiary AXB and outgrowth of 611 

tillers, could be a useful way to identify new natural genetic variation for tiller development in 612 

barley. 613 

CONCLUSIONS 614 

Tillering is a complex trait influenced by environment, other traits, and many small effect 615 

loci. Based on results of this study it appears that plants utilize resources and make more grain 616 

bearing spikes when conditions are favorable, without sacrificing other components of yield, like 617 

seed number or weight. In addition, our results and other studies indicate that genetic variation 618 

associated with days to heading and spike row-type consistently influences tiller number across 619 

different environments. However, identifying genetic variation associated with tiller number in 620 

different environments will be essential for gaining a full understanding of the genetic control of 621 

tiller development and may be useful for identifying variation suited for adaptation to specific 622 

environments.  623 
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Figure 1. Overview of tiller development (tillering) and other traits. A) Progression of 

average tiller number throughout the growing season for 54 lines grown in 2014, 2015, and 2016. 

B) Box plots summarizing tillering traits for 54 lines grown in all three years. Diamonds 

represent mean trait values, and letters indicate whether groups are significantly different based 

on FDR-adjusted p-values from ANOVA in conjunction with Tukey Test. C) Box plots 

summarizing non-tillering traits show similar relationship between years as average productive 

tiller number. 

Figure 2. Days to heading and spike row-type explained a large proportion of variance in 

tiller number in 2015. A) Bar plots showing percent variance explained by predictor variables 

in multiple linear regression models of maximum and productive tiller number for all lines. 

White numbers on bars represent percent variance explained by individual predictor variables. 

Traits shaded in red and blue are positively and negatively associated with tiller number, 

respectively. Numbers beside bars are total percent variance explained (R
2
) of the entire model. 

Seeds per spike was included in the model as a proxy for spike row-type (2-row or 6-row). B) 

Principal coordinates (PCo) analysis based on weekly and productive tiller number 

measurements for all lines. Percent variance explained by PCo 1 and 2 is shown on axes. Strong 

correlation between PCo 1 and groups based on spike row-type (2-row or 6-row) and days to 

heading (R=0.59, p < 2.2e-16) indicates that these traits explain a large proportion of variance in 

tiller number. C) Comparison of mean tiller number at six weeks past emergence (WPE) between 

groups based on spike row-type and days to heading.  

Figure 3. Minor trade-offs between tiller number and other traits in 2015.  A) Percent 

variance explained by predictor variables in multiple linear regression models of maximum tiller 

number in 2-rows and 6-rows in 2015. White numbers on bars represent percent variance 
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explained by individual predictor variables (< 2% if number is not shown). Traits shaded in red 

and blue are positively and negatively associated with tiller number, respectively. Numbers 

beside bars are total percent variance explained (R
2
) of the entire model. B) (Left) Representative 

density plot on left illustrates assignment of 2-row and 6-row lines into percentile groups based 

on maximum and productive tiller number. (Right) Comparison of tiller number in percentile 

groups based on maximum and productive tiller number. Diamonds represent mean trait values, 

and letters indicate whether groups were significantly different (Tukey Test, FDR-adjusted p-

value < 0.01). C) Box plots showing traits that were significantly different between percentile 

groups based on maximum and productive tiller number. D) Box plots of percent productive 

tillers (tillers that survive and form grain-bearing spikes). 

Figure 4. Most quantitative trait loci (QTL) associated with tillering overlapped QTL 

associated with days to heading and/or spike row-type. (A) Genetic positions on all 

chromosomes of significant SNPs (+/- 2 cM) associated with tillering, days to heading, and spike 

row-type. Only heading and row-type QTL that overlapped tillering QTL are shown. (B) Venn 

diagrams showing the number of tillering QTL in 2014 and 2015 that overlapped QTL associated 

with days to heading and spike row-type. 
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Table 1. Summary statistics for tillering traits measured in 2014 and 2015. 

Trait Lines 
Number  
of Lines 

Mean 
Standard 
Deviation p-value

a
 H

2
 

2014 2015 2014 2015 

Tiller 
Number  
2WPE 

All 756 1.58 3.13 0.81 0.74 2.0E-09 0.35 

2-Row 375 1.84 3.38 0.83 0.76 0.032 0.17 

6-Row 381 1.31 2.88 0.70 0.62 3.7E-03 0.24 

Ppd-H1 324 1.40 3.03 0.74 0.67 7.1E-05 0.35 

ppd-H1 432 1.72 3.21 0.83 0.77 5.3E-05 0.31 

Tiller 
Number  
3WPE 

All 756 3.39 8.00 1.63 2.26 6.4E-07 0.30 

2-Row 375 3.77 9.27 1.66 2.13 0.168 0.09 

6-Row 381 3.00 6.75 1.52 1.58 0.047 0.16 

Ppd-H1 324 3.06 7.44 1.56 1.93 6.3E-04 0.30 

ppd-H1 432 3.63 8.42 1.65 2.39 3.9E-03 0.23 

Tiller 
Number  
4WPE 

All 756 5.66 12.98 2.33 3.58 6.2E-11 0.38 

2-Row 375 6.08 14.13 2.26 3.47 9.4E-04 0.28 

6-Row 381 5.24 11.85 2.34 3.33 2.7E-06 0.37 

Ppd-H1 324 5.17 12.40 2.26 3.46 1.1E-07 0.44 

ppd-H1 432 6.03 13.42 2.32 3.61 3.0E-04 0.28 

Tiller 
Number  
5WPE 

All 756 7.11 19.27 2.98 6.28 3.0E-16 0.45 

2-Row 375 7.53 21.51 2.98 5.76 6.0E-06 0.37 

6-Row 381 6.68 17.06 2.92 5.98 1.8E-11 0.50 

Ppd-H1 324 6.39 17.75 2.88 6.10 2.3E-11 0.52 

ppd-H1 432 7.64 20.40 2.94 6.17 1.1E-05 0.34 

Tiller 
Number  
6WPE 

All 756 7.21 19.97 3.28 6.73 4.4E-25 0.53 

2-Row 375 7.99 22.47 3.29 6.14 3.4E-08 0.43 

6-Row 381 6.45 17.51 3.10 6.38 1.3E-15 0.56 

Ppd-H1 324 6.16 18.22 3.03 6.40 4.1E-15 0.58 

ppd-H1 432 8.00 21.28 3.25 6.68 3.1E-09 0.43 

Tiller 
Number  
7WPE 

All 756 6.72 18.98 3.31 6.54 2.1E-22 0.51 

2-Row 375 7.53 21.90 3.31 6.07 1.8E-06 0.38 

6-Row 381 5.92 16.11 3.11 5.67 3.7E-15 0.55 

Ppd-H1 324 5.60 17.13 3.03 5.87 5.4E-12 0.54 

ppd-H1 432 7.56 20.37 3.26 6.68 9.0E-09 0.42 

Tiller 
Number  

Maximum 

All 756 8.01 20.90 3.45 6.88 6.3E-22 0.50 

2-Row 375 8.69 23.44 3.42 6.22 1.2E-06 0.39 

6-Row 381 7.34 18.40 3.34 6.59 3.1E-15 0.56 

Ppd-H1 324 6.95 19.29 3.24 6.71 4.2E-14 0.57 

ppd-H1 432 8.81 22.11 3.38 6.76 1.5E-07 0.39 

Tiller 
Number  

Productive 

All 744 6.14 13.17 3.14 4.29 4.7E-13 0.41 

2-Row 372 6.96 15.43 3.14 4.13 4.3E-03 0.24 

6-Row 372 5.32 10.90 2.92 3.09 9.9E-05 0.32 

Ppd-H1 314 4.92 11.98 2.47 3.38 6.8E-05 0.35 

ppd-H1 430 7.04 14.04 3.27 4.66 3.4E-05 0.32 

a
p-values indicate significance of genetic variance based on 2-way ANOVA. 
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Table 2. Pearson’s correlation coefficients for tillering traits versus other traits for lines grown in each year. 

Non-significant (p>0.01) are denoted by n.s. 

 

Line Subset Seeds per Spike Spike Row Type Fifty Kernel Weight Days to Heading Ppd-H1 Genotype Plant Height Stem Diameter 

2014 2015 2016 2014 2015 2016 2014 2015 2016 2014 2015 2016 2014 2015 2016 2014 2015 2016 2014 2015 

Maximum Tiller Number 

All n.s. -0.32 -0.35 -0.18 -0.36 -0.37 n.s. n.s. n.s. 0.39 0.46 0.74 0.27 0.20 0.34 0.42 n.s. n.s. 0.15 -0.30 

2-Row 0.13 n.s. n.s. --- --- --- n.s. -0.14 -0.64 0.27 0.42 0.80 0.33 0.26 0.69 0.42 n.s. n.s. 0.22 n.s. 

6-Row n.s. n.s. n.s. --- --- --- n.s. -0.22 n.s. 0.48 0.52 0.68 n.s. n.s. n.s. 0.44 n.s. n.s. 0.21 -0.21 

Ppd-H1 0.15 n.s. n.s. n.s. n.s. n.s. n.s. n.s. -0.52 0.43 0.49 0.55 --- --- --- 0.39 n.s. n.s. n.s. -0.26 

ppd-H1 -0.15 -0.43 -0.68 -0.19 -0.46 -0.62 n.s. 0.14 n.s. 0.26 0.37 0.73 --- --- --- 0.37 n.s. n.s. n.s. -0.34 

 Productive Tiller Number 

All -0.14 -0.50 -0.45 -0.22 -0.52 -0.57 0.12 0.28 0.53 0.45 n.s. n.s. 0.29 0.23 n.s. 0.37 n.s. n.s. n.s. -0.38 

2-Row 0.14 n.s. n.s. --- --- --- n.s. n.s. n.s. 0.28 n.s. n.s. 0.32 0.16 n.s. 0.42 n.s. n.s. 0.15 -0.15 

6-Row n.s. n.s. n.s. --- --- --- n.s. n.s. n.s. 0.59 n.s. n.s. 0.15 n.s. n.s. 0.37 n.s. n.s. n.s. -0.24 

Ppd-H1 n.s. -0.39 n.s. n.s. -0.42 n.s. n.s. 0.15 0.57 0.51 n.s. n.s. --- --- --- 0.32 n.s. n.s. n.s. -0.34 

ppd-H1 -0.19 -0.48 -0.55 -0.20 -0.52 -0.65 0.18 0.32 0.54 0.32 n.s. n.s. --- --- --- 0.34 n.s. n.s. n.s. -0.43 

 Percent Productive Tillers 

All -0.19 -0.17 n.s. -0.21 -0.15 n.s. 0.19 0.23 0.50 0.27 -0.42 -0.77 0.15 n.s. n.s. 0.10 n.s. n.s. n.s. -0.12 

2-Row n.s. -0.15 n.s. --- --- --- 0.19 0.21 0.77 n.s. -0.44 -0.84 0.14 -0.18 -0.73 0.14 n.s. n.s. n.s. n.s. 

6-Row n.s. n.s. n.s. --- --- --- n.s. 0.16 n.s. 0.38 -0.44 -0.78 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Ppd-H1 n.s. -0.26 n.s. n.s. -0.25 -0.53 n.s. 0.21 0.69 0.24 -0.58 -0.80 --- --- --- n.s. n.s. n.s. -0.19 n.s. 

ppd-H1 -0.20 -0.13 n.s. -0.21 n.s. n.s. 0.27 0.26 n.s. 0.24 -0.33 -0.76 --- --- --- 0.12 n.s. n.s. n.s. -0.16 

 Tillering Rate: Maximum Tiller number / Tillering Duration (Weeks) 

All n.s. -0.22 -0.34 n.s. -0.28 -0.44 n.s. n.s. n.s. 0.20 0.50 0.67 0.19 0.16 0.37 0.44 n.s. n.s. 0.24 -0.25 

2-Row 0.14 n.s. n.s. --- --- --- n.s. -0.16 -0.63 0.14 0.49 0.79 0.26 0.26 0.70 0.43 n.s. n.s. 0.28 n.s. 

6-Row 0.14 n.s. n.s. --- --- --- n.s. -0.20 n.s. 0.25 0.53 0.52 n.s. n.s. n.s. 0.46 n.s. n.s. 0.30 -0.21 

Ppd-H1 0.17 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.23 0.56 0.58 --- --- --- 0.42 n.s. n.s. 0.25 -0.20 

ppd-H1 n.s. -0.35 -0.68 n.s. -0.40 -0.71 n.s. n.s. n.s. n.s. 0.41 0.60 --- --- --- 0.41 n.s. n.s. 0.19 -0.31 
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Table 3. Quantitative trait loci (QTL) associated with tillering in 2014 and 2015. 

Chrom Position cM Position Mb Candidate Gene 
2014  

All 
2014  

2-Row 
2014  

6-Row 
2014  

Ppd-H1 
2014  

ppd-H1 
2015  

All 
2015  

2-Row 
2015  

6-Row 
2015  

Ppd-H1 
2015  

ppd-H1 

1H 44.01 39306516 NA --- --- --- --- N-- --- --- --- --- --- 

1H 80.27 492231577 NA --- --- --- --- --- -R- --- --- --- -R- 

2H 8.1 14055173 NA --- --- --- --- -R- --- --- --- --- --- 

2H 13.72-23.24 18658962-31111153 Ppd-H1 NRP NR- --- --- --- --- --- --- --- --- 

2H 43.09 54263832 NA N-- --- --- --- --- --- --- --- --- --- 

2H 47.46-51.59 70305728-94010493 FT4 --- --- --- --- --- NR- --- --- --- -R- 

2H 56.82-58.76 170753050-500471658 CEN or AP1 -R- --- --- -R- --- NR- --- --- --- NR- 

2H 67.75 631099978 CO4 --- --- --- --- --- -R- --- --- --- --- 

2H 86.67 671627122-671718762 NA --- --- --- --- --- --- --- --- NR- --- 

2H 90.15 678954955 NA --- --- -R- --- --- --- --- --- --- --- 

2H 94.15 682607357 NA --- -R- --- --- --- --- --- --- --- --- 

2H 139.93 749156584 NA --- --- --- --- -R- --- --- --- --- --- 

3H 36.95 32875005 NA --- --- --- --- -R- --- --- --- --- --- 

3H 46.40-46.73 87626129-93522710 FT2 or GI --- --- --- --- --- -R- --- --- --- --- 

3H 53.78 491541454 NA -R- --- --- -R- --- --- --- --- --- --- 

3H 75.22 582897121 FDL4 --- --- --- --- --- NR- --- --- --- --- 

3H 104.41 627260793-631633600 GA20ox3 --- --- --- --- -R- --- --- --- --- --- 

3H 108.74 633415954 sdw1 --- --- --- --- -R- --- --- --- --- --- 

3H 135.39 666048593-667646315 NA --- --- --- --- --- NPR --- NR- NPR --- 

4H 26.04 10017450 NA N-- --- N-- --- --- --- --- --- --- --- 

4H 51.53 421390780-422326469 PRR59, FDL5, or FKF1 N-- --- --- --- --- --- --- --- --- --- 

4H 115.23-116.20 640426479-641157608 FT5 -R- --- --- --- NR- --- --- --- --- --- 

5H 0.32 1131874 NA --- --- --- --- --- N-- --- --- --- --- 
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5H 32.04 23902955 NA N-- --- --- --- --- --- --- --- --- --- 

5H 38.45 29447751 NA --- --- --- --- --- --- --- --- -R- --- 

5H 47.89-48.10 405622321-437381309 ELF4 --- --- --- --- -R- -R- --- --- --- --- 

5H 139.63 624883939 NA N-- --- --- --- --- --- --- --- --- --- 

5H 148.01 635782594 NA --- --- --- --- --- --- --- --- N-- --- 

6H 63.46 469166692 NA --- --- --- --- -R- --- --- --- --- --- 

7H 8.76 11333756-11334135 Brh1 or Grd5 --- --- --- --- NR- --- --- --- --- --- 

7H 31.00-33.67 37988653-42121652 Vrn-H3 --- -R- --- --- -R- -R- --- --- --- --- 

7H 38.50-38.96 43145614-45702908 NA --- --- --- --- -R- --- --- --- --- --- 

7H 70.16-70.54 196348803-285713945 LHY --- -R- --- --- --- -R- --- --- --- --- 

Letters designate whether QTL were detected for tiller number (N), tillering rate (R), or tillering principal coordinate 1 (P). QTL detected in both 

years are in bold. 
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