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ABSTRACT

Few studies have addressed the evolutionary history of tree species from African savannahs at
large geographic scales, particularly in the southern hemisphere (Zambezian region). Afzelia
(Fabaceae: Caesalpinioideae) contains economically important timber species, including two
species widely distributed in African savannahs: A. africana in the Sudanian region and A.
gquanzensis in the Zambezian region. To characterize the population genetic diversity and
structure of these two species across their distribution ranges, we used nuclear microsatellites
(simple sequence repeats, SSRs) and genotyping-by-sequencing (GBS) markers. Six SSR loci
were genotyped in 241 A. africana and 113 A. quanzensis individuals, while 2,800 and 3,841
high-quality single nucleotide polymorphisms (SNPs) were identified in 30 A. africana and 12 A.
gquanzensis individuals, respectively. Both species appeared to be outcrossing (selfing rate ~
0%). The spatial genetic structure was consistent with isolation-by-distance expectations based
on both SSR and SNP data, suggesting that gene dispersal is spatially restricted in both species
(bLg ssry= -0.005 and -0.007 and b4 snp)= -0.008 and -0.006 for A. africana and A. quanzensis,
respectively). Bayesian clustering of SSR genotypes failed to identify genetic structure within
species. In contrast, SNP data resolved intraspecific genetic clusters in both species, illustrating
the higher resolving power of GBS at shallow levels of divergence. However, the clusters
identified by SNPs revealed low levels of differentiation and no clear geographical entities.
These results suggest that, although gene flow has been restricted over short distances in both
species, populations have remained connected throughout the large, continuous Savannah
landscapes. The absence of clear phylogeographic discontinuities, also found in a few other
African savannah trees, indicates that their distribution ranges have not been significantly
fragmented during past climate changes, in contrast to patterns commonly found in African

rainforest trees.

Keywords: SSRs; genotyping-by-sequencing; population structure; kinship; IBD; savannah;

Afzelia
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73 1. INTRODUCTION

74

75  Studies on the population genetic structure of African trees have largely focused on rainforest

76 species (Hardy et al., 2013; Dainou et al., 2014 & 2016; Duminil et al., 2015; lkabanga et al.,

77  2017; Demenou et al., 2018; Monthe et al., 2018). In contrast, the evolutionary history of trees

78  from the drier Sudanian and Zambezian regions, situated respectively North and South of the

79  Guineo-Congolian rainforest (APPENDIX 5), is still largely undocumented. In these

80  phytogeographic regions, trees occur in savannah, woodlands, dry forests or gallery forests,

81 thus, in vegetation types that cover a wide range of density in tree cover. Therefore, we can

82  expect that the response to climate change and gene flow in these vegetation types differs from

83  those occurring in the rainforests. The climatic changes of the Pleistocene have had a significant

84 impact on the savannah vegetation; however, they did not necessarily lead to fragmentation as

85  usually assumed for the African rainforests (Maley, 1996). During the dry and cold glacial

86  periods, savannahs expanded in the tropical regions in detriment of rainforest, which survived in

87  fragmented refugia. At extreme latitudes the savannah lost ground to the advances of steppes or

88  desert (Lioubimtseva et al., 1998). Conversely, during the humid interglacial periods, savannahs

89  have been replaced by rainforests in the tropics, but were able to expand northwards and

90 southwards at extreme latitudes (Quézel, 1965; Lézine, 1989; Waller & Salzmann, 1999;

91 Salzmann et al., 2002; Vincens et al., 2006; Watrin et al., 2009). In the absence of evidence of

92  past fragmentation, we may expect that widespread savannah trees exhibit only weak or no

93  genetic discontinuities within species.

94

95  To our knowledge, only five savannah tree species have been genetically investigated in Africa

96  using population genetics approaches at large scales. Three of the species occur in the

97  Sudanian savannah (Northern Hemisphere): the shea tree Vitellaria paradoxa (Allal et al., 2011;

98 Logossa et al., 2011), the African Mahogany Khaya senegalensis (Sexton et al., 2015), and the

99  Locust Bean Parkia biglobosa (Lompo et al., 2018). The other two species exhibit a Sudano-
100  Zambezian distribution (Northern and Southern Hemispheres): the baobab, Adansonia digitata
101  (Tsyetal., 2009; Kyndt et al., 2009) and the Arabic gum species Acacia senegal (Odee et al.,
102  2012; Lyam et al., 2018). Within the Sudanian savannah, weak genetic structure was detected in
103 K. senegalensis and A. digitata, while moderate differentiation was found in A. senegal. For V.
104 paradoxa and P. biglobosa significant genetic structure was detected in the Sudanian savannabh,
105 although in both cases large genetically homogeneus clusters were spread in central west Africa

106  (Logossa et al., 2011; Lompo et al., 2018). Within the Zambezian domain, significant population
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107  genetic structure was detected for A. senegal, but not for A. digitata. Regional studies of

108  Syzygium guineense (Zigelski et al., 2019; restricted to part of its Zambezian distribution) and V.
109 paradoxa in Ghana revealed very weak genetic structure (Lovett et. al, 2000).

110

111  Afzelia (Fabaceae) is a palaetropical genus represented by seven species in Africa, including
112  two savannah and four rainforest species, as well as one putative species which is currently
113  poorly characterized (Brummit et al., 2007). The genus also harbours four species in South-East
114  Asia (Donkpegan et al., 2014). The two African savannah species are widely distributed in Sub-
115 Saharan Africa and occur in allopatry (Donkpegan et al., 2014): Afzelia africana Sm. ex Pers
116  occurs in the Sudanian region (from Senegal to Sudan; Aubréville 1968; Geerling 1982) and
117  Afzelia quanzensis Welw. in the Zambezian region (from southern Somalia to northern South
118  Africa). Recently, it has been shown that the two savannah species are diploid, as opposed to
119 the rainforest species, which are tetraploid (Donkpegan et al., 2015). In a recent phylogenetic
120  study of African species of Afzelia, the genus was estimated to have emerged in open habitats
121  (woodland and savannah) during the early to mid-Miocene (c. 20 to 14.5 Ma), whereas A.

122 quanzensis and A. africana originated during the mid or late Miocene (c. 14.5 Ma to 8 Ma,

123  Donkpegan et al., 2017). African Afzelia species are intensively logged for their timber

124  (Donkpegan et al., 2014). However, the population genetic structure and evolutionary processes
125  within the savannah species have not been investigated at a large geographic scales, despite
126 the fact that genetic information may be useful for the development of sustainable management
127  strategies for conservation and timber production (Lowe and Allendorf, 2010). Nuclear Simple
128  Sequence Repeats (NSSR, also called microsatellites) markers revealed low genetic diversity in
129  populations of A. quanzensis at small spatial scales, suggesting a limited evolutionary potential
130 inthis species (Jinga et al., 2016; Jinga & Ashley, 2018). In SE Asia large-scale population

131  genetic studies have been performed on A. xylocarpa using SSR markers (Pakkad et al., 2009;
132  Pakkad et al., 2014). In addition to genetic diversity, the spatial genetic structure between

133 individuals or populations can inform on the evolutionary processes operating in a species and
134  can thus be of interest for conservation management (Frankham et al., 2017). Among different
135  metrics used to estimate relatedness between individuals (Frankham et al., 2017), the kinship
136 coefficient is the most commonly used in tests for isolation by distance and to estimate the

137  spatial extent of gene flow.

138

139  Population genetics studies in tropical trees have mostly used SSRs. Recent technological

140  advances in high-throughput sequencing allow sequencing large portions of the genome in non-
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141  model organisms at a reasonable cost, thus offering increased resolution for the characterization
142  of population genetic patterns and the inference of evolutionary processes (Ekblom & Galindo
143  2011). In this study, we use nuclear microsatellites (SSRs, Donkpegan et al., 2015) and single
144  nucleotide polymorphisms (SNPs) derived from Genotyping by Sequencing (GBS) to investigate
145  the population genomic processes in the two savannah species of Afzelia across their

146  distribution ranges. This study addresses the following questions: (1) Does the genetic variation
147  at large geographic scales reveal discrete gene pools and/or a pattern of isolation-by-distance
148  within each species? (2) Do species show contrasting levels of genetic diversity and effective
149  population size, or signatures of demographic change compatible with past bottlenecks and/or
150  population growth? Our main objectives are to: (i) estimate the genetic diversity and population
151  genetic structure of A. africana and A. quanzensis, using nuclear SSRs and SNPs, (ii)

152  characterize the relatedness pattern between individuals in each species to test for isolation by
153  distance, and (iii) understand the origin of these patterns using methods for demographic

154  inference. Using SNP data on widespread savannah species, this paper is one of the first

155  population genomic studies of tropical woodland trees distributed across western and southern
156  Africa.

157

158 2. MATERIALS AND METHODS

159

160  2.1. Study species

161  Afzelia africana (Detarioideae, Fabaceae) occurs in the Sudanian region both in dry savannah
162  and in dry forests (Aubréville, 1959, Ahouangonou et al., 1995; Gerard & Louppe, 2011). It can
163  also occur in semi-deciduous forests, but at very low densities (Satabié, 1994). It has a wide
164  ecological amplitude but it prefers areas with > 900 mm annual rainfall and grows at elevations
165  of up to 1400 m and can reach up to 20 m in height. The fruiting period lasts six to eight months
166  and fruits may persist on trees for the following six months (Bationo et al., 2001; Ouédraogo-
167 Koné et al., 2008). Afzelia quanzensis occurs in the savannahs of Zambezian region, from

168  Somalia to Angola and the north of South Africa. It has been reported in semi-deciduous coastal
169  forests in Kenya (Brummitt et al., 2007) but also in dry forests, usually in deep sandy soils and
170  also on rocky ridges (Jacana, 1997). The species is drought resistant but frost sensitive. It is a
171  deciduous, medium to large-sized tree, 12-15 m high (reaching 35 m under ideal conditions,
172  Coates-Palgrave, 2002). Afzelia species are hermaphrodite and pollinated by insects (e.g. bees,
173  Kato et al. 2008; Ariwaodo and Harry-Asobara 2015). They have large dehiscent woody pods
174  containing characteristic black and red seeds (Jacana, 1997; Gerhardt and Todd, 2009).
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175  Squirrels predate the seeds while monkeys, rodents (Proechimys spp.), and birds (mainly

176 hornbills) act as dispersers (Van Wyk & Van Wyk, 1997; Gathua, 2000; Bationo et al., 2001;
177  Gerard & Louppe, 2011).

178

179  2.2. Sampling and DNA extraction

180  Plant tissue samples were collected directly in the field or in herbaria (National Herbarium of the
181  Netherlands (herbarium code WAG of the Index Herbariorum), the Botanical Garden of Meise
182  (BR) and Université Libre de Bruxelles (BRLU) in Belgium), recording the geographic

183  coordinates of individual sampling locations. Our sampling is representative of the known

184  distribution ranges of the two species, in the Sudanian and Congolian biogeographic regions for
185 A africana and in the Somalian, Zambezian and South African regions for A. quanzensis

186 (APPENDIX 5). We sampled 241 A. africana individuals from 41 West and Central African

187 locations and 113 A. quanzensis individuals from 24 East African locations (APPENDIX 1 & 2).
188  Fresh cambium or leaves were silica-dried in the field to avoid DNA fragmentation. Total DNA
189  was extracted using the NucleoSpin plant kit (Macherey-Nagel, Diren, Germany) or the DNeasy
190 96 Plant Kit (QIAGEN, GMbH, Germany) for the fresh material. For herbarium material, a CTAB
191  protocol was used (Doyle and Doyle, 1987).

192  2.3. Genotyping of SSRs and SNPs

193  Six microsatellite markers isolated from A. bipindensis were amplified in two PCR multiplexes in
194  all samples according to a previously published protocol (Donkpegan et al. 2015). Amplified
195 fragments were separated on an ABI 3730 sequencer (Applied Biosystems, Lennik, The

196 Netherlands) and sized using the Genemapper software in comparison with the SYBR Safe
197  (Invitrogen, Merelbeke, Belgium) size standard.

198

199  Genotyping by Sequencing (GBS) was performed for a subset of individuals (39 A. africana and
200 14 A. quanzensis individuals) at the Institute for Genomic Diversity and Computational Biology
201  Service Unit at Cornell University (Ithaca, NY) according to a published protocol (Elshire et al.
202  2011). To select the best enzyme for the GBS protocol, one microgram of DNA of Afzelia

203  bipindensis was used to build test libraries using three different enzymes: ApeKl (4.5-base

204  cutter), EcoT22l and Pstl (both 6-base cutters). Libraries were checked for appropriate fragment
205  sizes (<500bp) and distribution on an Experion automatic electrophoresis system (Bio-Rad,
206  Laboratories, CA, USA). The enzyme EcoT22I, giving appropriate fragment sizes (<500bp) was

207  selected. To limit the risk of uneven coverage across loci and samples when applying GBS data
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208 to organisms with large genome sizes, we built and sequenced two independent libraries per
209 individual, or pooled several DNA extracts per individual. Before library construction, DNA
210  extracts were purified using a ZR-96 DNA Clean up kit (Zymo Research, Orange, CA), DNA
211  quality was checked on a 1.5% agarose gel and DNA quantity was measured with Qbit HS
212 (Invitrogen, USA). Overall, 95 GBS libraries were built corresponding to 154 DNA extractions
213  obtained from 53 individuals of Afzelia. All libraries were sequenced together on one Illlumina
214  lane (HiSeq2000 San Diego, CA, USA), using 100-bp Single Read chemistry.

215
216  We used Sabre (https://github.com/najoshi/sabre) to demultiplex barcoded reads. After

217  demultiplexing, sequence quality was evaluated with FastQC version 0.11.15 (Andrews, 2010).
218 Low quality bases and adapter contamination were removed with TRIMMOMATIC version 0.33
219  (Bolger et al., 2014) with the following options: ILLUMINACLIP 2:30:10, LEADING 3, TRAILING
220 3, SLIDINGWINDOW 4:15, MINLEN 36.

221  First, a de novo assembly of GBS reads was carried out (including sequence reads of tetraploid
222  African Afzelia species A. bella, A. pachyloba and A. bipindensis) using pyRAD v.3.0.2 software
223  (Eaton & Ree, 2013) to produce a catalogue of GBS loci (3749 contigs, approximate length of
224  100bp per contig). This catalogue was used as a reference for mapping the reads of all

225 individuals using BWA 0.7.5a-r405 (Li & Durbin 2009). The resulting alignments were converted
226  to BAM format and reads were realigned around indels using SAMtools 0.1.17 (Li et al. 2009).
227  The resulting BAM files were used as input for HaplotypeCaller algorithm of Genome Analysis
228  Toolkit (GATK) v3.7 with standard parameters, to detect polymorphisms in each sample into a
229  VCF format including SNPs and INDELs (DePristo et al. 2011). VCFtools

230 (http://vcftools.sourceforge.net/) was used to remove indel variation, and retain only biallelic

231  variants (SNPs) with < 60% missing data within each species.
232  2.4. Data analysis

233  Population genetics parameters at geographic populations level: In order to characterize
234  the diversity within each species at SSRs, we computed the allelic richness (N,), the effective
235  number of alleles (N_,) following Nielsen et al. (2003), the observed heterozygosity (Ho), the
236  expected heterozygosity (Hg), the inbreeding coefficient (F) and the genetic differentiation based
237  on allele identity with the statistic Fst using SPAGeDi 1.5a (Hardy, 2015). Permutation tests
238  were used to test whether F or Fst deviated from expectations of panmixia in SPAGeDi 1.5a

239  (Hardy, 2015). For these analyses, we considered for both species, only populations sampled for
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240  a minimum of 5 individuals (Table 1). Null allele frequencies were estimated with INEST 1.0
241  (Chybicki & Burczyk, 2009), which also provided a corrected estimation of the inbreeding
242 coefficient F. The selfing rate (S) was estimated in local populations with the largest sample
243  sizes (samples = 25 individuals — Table 1), based on the standardized identity disequilibrium
244  assuming a mixed mating model (i.e. a proportion s of selfing and 1-s of random outcrossing)
245  with standard errors (SE) estimated by jackknifing over loci (Hardy, 2015; David et al., 2007).

246 In order to characterize genomic diversity for each species for the GBS data, we computed
247  nucleotide diversity Pi (17), corresponding to the average number of nucleotide differences per
248  SNP site between pairs of sequences (Nei 1987), using DnaSP v. 5.10.01 software (Librado &
249  Rozas 2009).

250 Population genetic structure: For SSR data, we used the Bayesian clustering method

251 implemented in STRUCTURE 2.3.1 (Falush et al., 2003) to detect any putative genetic

252  discontinuities within A. africana and A. quanzensis separately. We ran STRUCTURE 10 times
253 for each number K of genetic clusters, using K=1-5. We ran 1,000,000 iterations after a burn-in
254  period of 100,000 iterations, using the admixture model with independent allele frequencies
255  between clusters, without considering the population of origin of each individual. We estimated
256  LnP(K) and AK using the Evanno method (Evanno et al., 2005) implemented in STRUCTURE
257 HARVESTER (Earl and vonHoldt 2012) to obtain the most likely value of K. We also used an
258 alternative genetic clustering method implemented in the R package tess3r (Caye et al., 2016),
259  which takes into account spatial information (the sampling location of each individual) to derive
260 individual ancestry estimates. The default values of the program were used and each run

261  (Kr1=r1-5) was replicated 10 times. The optimal value of K was defined by the minimum of the
262  cross-entropy criterion.

263  For GBS-derived SNP data, we performed genetic clustering analysis using the sparse non-
264  negative matrix factorization (SNMF) software, implemented in the R package LEA (Frichot et al.,
265 2014). We also computed a genetic covariance matrix for each species to perform principal
266  components analysis (PCA) using SMARTPCA (Patterson et al., 2006; Price et al., 2006)

267 implemented in the SNPRelate package (Zheng et al., 2012).

268 Isolation by distance: Under Wright's isolation-by-distance (IBD) model, the relatedness
269  between individuals and/or populations is expected to decay linearly with the logarithm of their
270  geographic distance on a two-dimensional scale (Hardy & Vekemans, 1999). To detect IBD

271  within each species at large scales for SSR and SNP data, we calculated the kinship coefficient
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272  Fjbetween individuals i and j using the estimator of Loiselle et al. (1995) implemented in

273  SPAGeDi (Hardy and Vekemans, 2002). Positive and negative F; values indicate whether

274 individuals are more related or less related than the average of two sampled individuals.

275  Pairwise Fj values were regressed on the logarithm of pairwise geographic distance, Ln(d;), and
276  IBD was tested by comparing the regression slope by to its distribution obtained from 10,000
277  permutations of the spatial locations of individuals. To illustrate IBD patterns, F; values were
278 averaged over a set of distance classes (d) according to a geometric progression of eleven

279  boundaries (0-1, 1-2, 2-5, 5-10, 10-50, 50-100, 100-200, 200-500, 500-1000, 1000—-2000
280 and >2000 km) for A. africana and five (2-5, 5-10, 10-300, 300-500, >500 km) for A.

281 quanzensis giving F(d). We used the Sp-statistic (Vekemans & Hardy, 2004) to quantify the

282 strength of the spatial genetic structure: Sp = -big/(1 - F,), where F_ is the mean F; between

283  neighbouring individuals [approximated by F(d < 1 km) for the first distance class].

284 Demographic inference: Using SSR data, the demographic history of each species was

285  assessed with the ‘bottleneck’ statistic T2 implemented in BOTTLENECK 1.2.02 (Piry et al.,
286  1999). This statistic represents an average across loci of the deviation of the actual gene

287  diversity He from the gene diversity expected from the number of alleles in the population

288  assuming mutation-drift equilibrium in a population of constant size. If T2>0, the gene diversity
289  excess reflects a loss of rare alleles possibly caused by recent founder events (bottlenecks),
290  whereas population expansions almost always cause heterozygosity deficiency (T2<0, Cornuet
291 & Luikart 1996). Simulations of the coalescent process were performed under three different
292  mutation models: the infinite allele model (IAM), the stepwise mutation model (SMM), and the
293  two-phase model with 70% of single-step mutations (TPM). The two latter models are

294  considered to be more appropriate for SSR data. One thousand simulations were performed.
295  Significant deviation from equilibrium gene diversity was determined using the Wilcoxon signed
296 rank test, which is the most appropriate test when only few polymorphic loci are analysed (Piry
297 etal., 1999).

298  For the SNPs data, to test for departure from the standard neutral model (SNM) the mean value
299  of Tajima’s D (Tajimal989) over loci was computed and compared with the distribution of mean
300 values from coalescent simulations using DnaSP v.5.10.1 (Librado & Rozas 2009). Tajima’s D
301 statistic measures the standardized difference between nucleotide diversity T and the Watterson
302  estimator 6 per site (Watterson 1975). D is expected to be close to zero under the standard

303  neutral model of population evolution, e.g., under a constant size population. High values of

304 Tajima’s D suggest an excess of common variants, which can be consistent with balancing
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305  selection at the locus level, or with population contraction when detected at the genome level.
306 Negative values of Tajima’s D, on the other hand, indicate an excess of rare variation, consistent
307  with population growth when detected at the genome level, or with positive selection at the locus
308 level (Tajimal989).

309
310 3. RESULTS

311 SSR-based genetic diversity within each species and selfing rate: A total of 67 alleles were
312  detected over all six loci for A. africana and the mean number of alleles per locus was 11.17 and
313 ranged from 4 to 26 alleles. Observed and expected heterozygosity estimates per population
314 ranged from Ho = 0.43 to 0.69 and from He = 0.44 to 0.64, respectively (Table 1). For A.

315 quanzensis, a total of 42 alleles were detected over all six loci and the mean number of alleles
316  perlocus was 7.0 and ranged from 2 to 23 alleles. Observed and expected heterozygosity

317  ranged from Ho = 0.28 to 0.41 and from Heg = 0.46 to 0.52. Inbreeding coefficients were not

318 significantly different from zero in all populations (F = 0) after correcting for null alleles using
319 INEST (APPENDIX 4). The estimated selfing rates S for three populations of A. africana (Lama,
320  Penessouloul and Pendjari) and two of A. quanzensis (Gede and Witu) were close to zero

321 (Table 1), except for Lama population (33%). Fsr statistics revealed low but statistically

322  significant differentiation among populations, with weaker genetic structure in A. africana, Fst =
323  0.045 (P < 0.01) than in A. quanzensis, Fst=0.078 (P < 0.01).

324  GBS-based SNP data: After filtering to retain only biallellic SNPs, we obtained VCF files with
325 8541 SNPs for A. africana and 8730 SNPs for A. quanzensis using the GBS catalogue produced
326  for the genus Afzelia. These files were then filtered to retain polymorphic SNPs within each

327  species to remove SNPs and individuals with = 60% missing data. After applying all filters, we
328 removed nine individuals in A. africana and two in A. quanzensis and obtained VCF files

329  containing 2800 polymorphic SNPs and 30 individuals in A. africana and 3841 polymorphic

330 SNPs and 12 individuals in A. quanzensis. The final set of A. africana genotypes had an average
331 missing data rate of 13.64% per sample with a mean depth of 40X. For A. quanzensis, the

332  missing data rate was 28.48% per sample and 34X for mean depth. Total nucleotide diversity
333  was m=0.00420 and 6=0.01124 in A. africana; 1=0.03326 and 6=0.05094 in A. quanzensis.

334

335  Population genetic structure: The STRUCTURE analyses of SSR data failed to detect

336  population genetic structure at the intraspecific level. For both species, K=11 received the
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337  strongest support (APPENDIX 3). Runs assuming K=[12 to K[ =15 revealed admixed ancestry
338 of individuals with similar contributions of genetic clusters. The inclusion of geographic prior
339 information using tess3r showed similar results, although A. quanzensis displayed somewhat
340  uneven contributions of genetic clusters suggesting weak population substructure (APPENDIX
341  6). Conversely, the two SNPs data showed some evidence of genetic structure. The number of
342 genetic clusters that best described the data was K=3 in A. africana, based on the criterion of
343  minimum cross entropy (Figure 1, APPENDIX 7a). In A. africana only two gene pools occurred
344  widespread across West Africa, without clear geographic pattern and many admixed individuals
345  between these gene pools. The third gene pool was centred on Nigeria. The PCA shows low
346 levels of genetic differentiation (variance explained by PC1 and PC2 are 7.10% and 5.90%,
347  respectively) and highlights the divergence of the Nigeria cluster (Figure 1C). In A. quanzensis,
348 cross entropy values decreased with increasing K up to the maximum number of K tested

349  (K=10) suggesting a stronger population genetic structure in this species (APPENDIX 7b). This
350 s confirmed by the PCA (PC1 and PC2 explain 18.32% and 12.79% of the variance,

351 respectively, Figure 1D). We chose to retain K=2 to represent the highest hierarchical level of
352  genetic structure; higher values of K revealed evidence for additional genetic structuring in the
353  sample. One cluster covered the north-eastern part of the sample range and was mostly

354  represented in coastal Kenya whereas the other one was widespread across the sample range
355 (Fig 1).

356  Patterns of isolation by distance (IBD): Pairwise kinship declined with increasing geographic
357 distance for both types of markers (Figure 2). In both species, kinship for the first distance class
358 (ca. 1000 m for A. africana and 5000 m for A. quanzensis) ranged around 0.05 for SSRs and
359  0.06 for SNPs, and quickly dropped with distance, indicating a signature of isolation by distance.
360  The regression slope b4 was significantly negative in A. africana (b_4= -0.005 for SSRs and -
361 0.008 for SNPs; both P < 0.001) and A. quanzensis (b 4= -0.007 for SSRs and -0.006 for SNPs
362  respectively; both P < 0.001). Overall, similar patterns of IBD were detected for both types of
363  markers in both species.

364

365 Demographic inference in each species: With SSRs, under the three models implemented in
366 BOTTLENECK (IAM, TPM and SMM), both species showed a negative value of T2 and a

367  significant heterozygosity deficiency (P<0.01) for A. africana and for A. quanzensis after

368  Wilcoxon tests (Table 2). These results suggest absence of a recent bottleneck at the species

369 level for both species.
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370  For GBS data, mean Tajima’s D estimates were negative in both species, with values of -2.017
371  (P<0.05) for A. africana and -1.598 (not significant) for A. quanzensis. These results are in

372  agreement with a signature of population expansion in A. africana at the species level, whereas
373 in A. quanzensis, the standard neutral model of constant species-level population size could not
374  be rejected (Table 2).

375

376 4. DISCUSSION

377

378 Large-scale population structure: Our results reveal a pattern of isolation by distance in the
379  two savannah representatives of the genus Afzelia in Africa -A. africana and A. quanzensis-, i.e.,
380 the kinship between individuals decreased with spatial distance. It is worth noting that SSRs and
381 SNPs gave very similar IBD patterns despite large differences in the number of loci and

382  sampling strategies, as observed in previous studies (Yang et al., 2011). The IBD observed

383  probably reflects the limited movement of pollen and seeds. However, the mechanisms of

384 pollination and seed dispersal are not well known in Afzelia. The local movement of seeds would
385  be expected given the fact that the seeds of Afzelia are heavy and also given the observation
386  that small rodents act as dispersers (Cricetomys emini, Epixerus wilsoni, Protoxerus stangeri,
387  Bationo et al., 2001; Evrard, 2015). However, long-distance seed dispersers such as monkeys
388  (Cercopithecus albogularis) and birds -mainly hornbills- (Van Wyk & Van Wyk, 1997; Gathua,
389  2000) have been also reported. The pollination mechanism is even less studied. While large
390 Xylocopa bees (Kato et al., 2008) act as pollination agents in Asian Afzelia, their African

391  congeners Apis mellifera scutellata would not be able to transfer pollen beyond 3.2 km (Dick et
392  al., 2003).

393  While SSRs could not retrieve distinct genetic clusters across the natural range of A. africana in
394  the Sudanian savannah and A. quanzensis in the Zambezian savannah, SNP data revealed
395 genetic groups within species (particularly more pronounced in the latter). However, the genetic
396 clusters identified by SNPs exhibit high levels of admixture and do not correspond to any clearly
397  delimited geographic entities. This structure might thus reflect solely the trend of IBD rather than
398  a history of past population fragmentation. These observations suggest that gene flow has been
399 restricted but populations have remained connected throughout the large, continuous Sudanian
400 or Zambezian savannahs. The higher discriminating power of SNPs over SSRs for detecting
401  genetic clusters has also been reported previously (e.g. Liu et al 2005; Fischer et al., 2017).
402
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403  Different scenarios were tested to reconstruct the demographic history of each species. SSR
404 and SNP data were again congruent in detecting signatures of population expansion. However,
405  our data were not powerful enough to identify if these signatures reflect range expansions (and
406  from which source) or only a demographic expansion without change of distribution. In any case,
407  populations of both savannah species apparently did not experience major disturbances leading
408 to their fragmentation as has been suggested in some other savannah species (Bryja et al.

409  2010; Odee et al. 2012, Sexton et al., 2015).

410

411 Comparison with other tropical trees in Africa: our results reveal no cut clear genetic

412  discontinuities over large distances in the Sudanian and the Zambezian savannahs for A.

413  africana and A. quanzensis, respectively, and are consistent with those observed in other

414  savannah tree species, namely Adansonia digitata and Khaya senegalensis, which showed no
415  geographic discontinuities of the genetic variation, and the moderate levels of differentiation
416  found in Acacia senegal. These results suggest that the African savannahs have not

417  experienced major upheavals leading to their fragmentation (Salzmann et al., 2002; Vincens et
418 al., 2006; Watrin et al., 2009) in contrast to the major fluctuations of the rainforest cover over
419  time (Maley, 1996). The cases of Vitellaria paradoxa (Allal et al., 2011; Logossa et al., 2011) and
420  Parkia biglobosa (Lompo et al., 2018), which show different geographic and genetic clusters in
421  the Sudanian region (but include large genetically homogenous clusters in central west Africa)
422  might be due to their high socio-economic importance in agroforestry systems in savannah

423  parklands because they all produce seeds that are marketed and widely used in human food.
424  Whether their genetic structures have been influenced by human activities remains an open
425  question.

426 Inthe last few years population genetic data have accumulated for a number of African

427  rainforest trees, indicating strong differentiation of the tree populations in Central and West

428  African rainforests for most of the tree species (Hardy, Born et al. 2013, Heuertz, Duminil et al.
429  2014).This genetic structuring cannot be explained by current geographic barriers such as the
430 main mountain chains (Cameroonian Volcanic Line, Cristal Mountains, and Chaillu massif) or
431  major rivers in the region (Sanaga, Dja, and Oougué river). Molecular dating suggests historical
432  isolation of the tree populations, probably led by rainforest fragmentation, during the cold and dry
433  Ice-Age periods of the Pleistocene (<2.58 Myra). These results contrast with the genetic

434  connectivity found for the Afzelia and other savannah tree species over large Sudanian and
435  Zambezian ranges.

436
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437  Local-scale genetic diversity with SSRs: Inbreeding and selfing rates remain very low in adult
438  populations of A. africana and A. quanzensis. Gene diversity parameters for SSRs markers

439  showed a large range of local genetic diversity in our study (A. africana : Hg = 0.46-0.66 and A.
440 quanzensis: He = 0.40-0.66) and in other population-level studies of A. quanzensis from

441  Zimbabwe (He = 0.41-0.51; Jinga & Ashley, 2018), A. africana from Benin (Hg = 0.09-0.88;

442 Houehanou et al., 2019), and the Asian congener A. xylocarpa (Hg = 0.47-0.66; Packkad et al.,
443  2014). Comparable genetic diversity ranges were documented in the investigated African

444  savannah tree species Khaya senegalensis (He = 0.44-0.71; Sexton et al., 2015), Vitellaria

445 paradoxa (Hg = 0.42—-0.62; Allal et al., 2011), Acacia senegal (Hg = 0.63-0.70; Omondi, et al.,
446  2010) and Parkia biglobosa (Hg = 0.61-0.82; Lompo et al., 2018). Much lower levels were

447  documented in Adansonia digitata (He = 0.27-0.35; Kyndt et al., 2009). Despite the high

448 influence of past climate changes and signature of forest fragmentation on rainforest tree

449  species no remarkably lower population genetic diversity is observed: Aucoumea klaineana (Hg
450 =0.38-0.55; Born et al., 2008), Milicia excelsa (He = 0.53—-0.56; Bizoux et al., 2009), Baillonella
451 toxisperma (Hg = 0.56-0.58; Ndiade-Bourobou et al., 2010), Distemonanthus benthamianus (Hg
452  =0.47-0.58; Debout et al., 2011), Greenwayodendron suaveolens (He =0.7-0.8; Pifieiro et al.,
453 2017), Scorodophloeus zenkeri (He =0.50-0.60; Pifieiro et al., 2017), Terminalia superba (Hg =
454  0.51-0.81; Demenou et al., 2018).

455

456 5. CONCLUSION

457  The SSR and SNP-based data analyses of Afzelia species from the African savannahs have
458  shown that both species did not exhibit strong geographic barriers to genetic connectivity across
459 their Sudanian and Zambezian ranges, although isolation by distance patterns indicate restricted
460 gene flow. In this study, both markers provided overall congruent results, although SNP had
461  more resolution power than SSRs for population genetic structure analyses. Demographic

462  analyses with both SNPs and SSRs data suggested demographic expansion. Collectively, these
463  data demonstrate the strong influence that savannah ranges exert on genomic diversity, within
464  across their population range. Thus, there is consistent evidence for the signature of population
465  expansion beginning to accumulate in the genome of these savannah species; in contrast to
466  forest species, which show a long history of fragmentation in most of studied species in Guineo-
467  Congolian rainforest (Hardy et al., 2013).

468

469

470
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749

750 FIGURE LEGENDS

751

752  Figure 1. Genetic structure of African diploid Afzelia species using GBS-based SNPs (N = 30 A.
753  africana with 2800 SNPs; N = 12 A. quanzensis with 3841 SNPs). A) Geographic origin of
754  samples and population genetic structure of A. africana at K=3 (Western Africa) and of A.

755  quanzensis at K=2 (East and Austral Africa), where pie charts represent individual ancestry
756  proportions in the assumed populations, as estimated using SNMF. B) Histograms of individual
757  ancestry proportions for each species, as estimated using sNMF for K=2 to K=5 assumed

758  ancestral populations. C - D) PCA ordinations along the first two PCA axes of (C) A. africana
759 and (D) A. quanzensis, where symbols distinguish SNMF clusters (kO represent samples not
760  assigned to a cluster at g>0.7).

761

762  Figure 2. Spatial genetic structures (kinship-distance curves) of A. africana (square) and A.
763  quanzensis (triangle) based on SSRs (stippled lines) and SNPs (plain lines).
764

765

766 TABLE LEGENDS

767

768 Table 1. Genetic diversity parameters and selfing rate estimates in populations of two Afzelia
769  species. Number of genotyped trees (N), number of alleles per locus (N,), effective number of
770  alleles (Nge), expected (Hg) and observed (Ho) heterozygosity, inbreeding coefficient estimated
771  from heterozygote deficit (F = 1-Ho/Hg), inbreeding coefficient estimated while accounting for null
772  alleles following the method implemented in INEst (Fnun). *p < 0.05 indicates significant

773  deviation from HWE. NC indicates that no estimation was computed by INEst.

774

775  Table 2. An evaluation of alternative demographic models for the total population of both

776  species with SSR and SNP. T2 is the bottleneck statistic of different models; IAM, infinite allele
777  model; TPM, two-phase model; SMM, stepwise mutation model; SNM, standard neutral model;
778  n, number of individuals; 1, nucleotide diversity and K1, K2 and K3 represent the genetic groups
779  defined for each species (see Figure 1). nc, not computed; ns: not significative; * P<0.05; **
780  P<0.01; ***P<0.001
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Table 1. gk
3

Country Populations Latitude Longitude N Na Nae He Ho F Fouy  Selfing (S) 3%
A africana Benin BassilaS 2.4227 9.0037 7 3.00 2.53 0.459 0.595 -0.327* 0 a ‘;‘58
Benin BassilaN1 2.2886 9.0122 9 4.83 471 0.588 0.556 0.059 0 a :ED,%
Benin BassilaN2 2.2737 8.8221 11 4.33 4.28 0.516 0.470 0.094 0 e} gﬁ
Benin BassilaN3 1.5556 9.2671 5 3.67 3.81 0.594 0.558 0.067 0 o} g Cg
Benin Lama 2.1141 6.97694 34 5.00 2.45 0.497 0.434 0.129 0 0.33+0.16 fof'g
Benin Natitingou 1.3808  10.2785 9 450 3.78 0561 0444 0218 0O o =2
Benin ParcW1 11.2962 5.5864 18 5.17 3.69 0.589 0.574 0.026 0 o} 35
Benin ParcW?2 1.2886 6.9592 6 3.17 3.17 0.483 0.528 -0.105 0 o} §§
Benin Pendjari 2.9909 11.5101 25 7.17 4.35 0.641 0.693 -0.083 0 0 %%E
Benin Penessouloul 3.0543 11.4788 32 5.67 3.30 0.483 0.458 0.052 0 0+0.1 gég
Benin Penessoulou2 1.5242 10.9432 8 3.00 2.65 0.442 0.479 -0.092 0 o} ;%g
Togo Notse 1.5071 9.2856 12 4.17 2.99 0.525 0.528 -0.005 0 o} 2§§
Cameroon Ngambetica 1.6583 8.9988 7 3.83 3.08 0.566 0.500 0.125 0 o} Ei’ug
Cameroon  Yoko 12.0073  5.4309 7 3.33 247 0500 0524 -0.052 0 o °5d
A quanzensis Kenya Gede -3.3014  39.9965 31 550 345 0.473 0.409 0.139* 0 0+0.07 RSE
Kenya Witu -2.3837 40.5212 48 6.00 3.23 0.521 0.411 0.212* 0 0+0 %§ 7]
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Table 2.
SSR SNP
T2 model SNM model
IAM TPM SMM n L Tajima’s D
K1 10 0.007 -1.52™
A.africana  -457  -10.8" -21.17 K2 3 0.006 015™
K3 7 0.022 -1.18™
All 30 0.004 -2.02°
Kl 2 nc nc
A. quanzensis -4.47 -8.2"7" -14.17 K2 7 0.012 -0.98"™
All 12 0.033 -1.60™
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