

Top-down control of water intake by the endocannabinoid system

4 Zhe Zhao^{1,2}, Edgar Soria-Gomez^{1,2,3}, Marjorie Varilh^{1,2}, Francisca Julio-Kalajzic^{1,2},
5 Astrid Cannich^{1,2}, Adriana Castiglione^{1,2}, Léonie Vanhoutte^{1,2}, Alexia Duveau^{1,2},
6 Philippe Zizzari^{1,2}, Anna Beyeler^{1,2}, Daniela Cota^{1,2}, Luigi Bellocchio^{1,2,*}, Arnau
7 Busquets-Garcia^{1,2,4,*}, Giovanni Marsicano^{1,2,*}

8
9 ¹ INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale
10 U1215, F33077 Bordeaux, France.

11 ²University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité
12 Neuronale U1215, F33077 Bordeaux, France.

13 ³ IKERBASQUE Basque Foundation for Science, University of the Basque Country
14 UPV/EHU, Achucarro Basque Center for Neuroscience.

15 ⁴ Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar
16 Medical Research Institute, Barcelona, Spain.

19 Correspondence should be addressed to:

20 Giovanni Marsicano DVM, PhD

21 NeuroCentre Magendie.

22 INSERM U1215 Université Bordeaux

23 Group Endocannabinoids and Neuroadaptation

24 146 rue Léo-Saignat 33077 Bordeaux Cedex- France

25 Tel: +33 (0)5 5757 3756 Fax: +33 (0)5 5757 3669

26 giovanni.marsicano@inserm.fr

28 **Abstract**

29 **Water intake is regulated by neocortical top-down circuits, but their identity**
30 **and the cellular mechanisms involved are scantily known. Here, we show that**
31 **endogenous activation of type-1 cannabinoid receptors (CB₁) promotes water**
32 **intake and that endocannabinoid modulation of excitatory projections from the**
33 **anterior cingulate cortex to the basolateral amygdala is sufficient to guarantee**
34 **physiological drinking. These data reveal a new circuit involved in the**
35 **homeostatic control of water intake.**

36

37 Water intake is crucial for maintaining body fluid homeostasis and animals'
38 survival¹. Complex brain processes trigger thirst and drinking behavior, which arise
39 upon losing blood volume (i.e. extracellular dehydration) or increasing blood
40 osmolality (i.e. intracellular dehydration)¹. However, the central mechanisms
41 promoting water intake are still poorly understood. In the brain, the anterior wall of the
42 third ventricle formed by the subfornical organ (SFO), the median preoptic nucleus,
43 and the organum vasculosum of the lamina terminalis (OVLT) constitutes the primary
44 structure sensing thirst signals and promoting water intake^{2,3}. These subcortical
45 regions are connected with the neocortex¹. In particular, insular and anterior cingulate
46 cortices (IC and ACC, respectively) have been shown to receive indirect projections
47 from the SFO and OVLT in rats⁴, and water consumption after dehydration decreases
48 ACC activity in humans⁵. Furthermore, recent evidence shows that stimulation of the
49 anterior part of IC promotes drinking behavior, whereas stimulation of the posterior
50 part exerts the opposite effect⁶. These studies highlight the importance of cortical
51 regions in the regulation of water intake^{1,4-6}.

52 Type-1 cannabinoid receptors (CB₁) are widely and abundantly expressed in the
53 central nervous system where they modulate a variety of functions, including feeding
54 behavior⁷⁻⁹. However, the role of CB₁ receptors in the control of water intake is still a
55 matter of debate, since pharmacological activation or blockade of CB₁ receptors
56 produced contradictory results in drinking behavior experiments^{10,11}. In this study, we
57 identified a novel and specific cortical circuit where CB₁ receptors modulate water
58 intake.

59 To examine the role of CB₁ receptors in the control of water intake, we first tested
60 CB₁ knockout mice (CB₁-KO)¹² under different experimental conditions. No significant
61 difference was observed between CB₁ wild-type (CB₁-WT) and CB₁-KO littermates in
62 daily water intake (**Supplementary Fig. 1a**). However, CB₁-KO mice drank less than
63 WT littermates after 24-hour water deprivation (**Fig. 1a, Supplementary Fig. 1b**),
64 without any change in food intake (**Supplementary Fig. 1c**), indicating that CB₁
65 receptors participate in water deprivation-induced drinking behavior. Water
66 deprivation triggers both intracellular and extracellular dehydration that can lead to
67 water intake through different pathways¹. To discriminate the impact of CB₁ receptor
68 signaling on either of these mechanisms, we first applied systemic (intraperitoneal, IP)
69 or intracerebroventricular (ICV) injections of sodium chloride (NaCl), which are known
70 to induce water intake by mimicking intracellular dehydration¹. As compared to
71 wild-type littermates, mice lacking CB₁ receptors displayed a lower water intake
72 induced by both IP or ICV NaCl administration (**Fig. 1b, c, Supplementary Fig. 1d**).
73 Extracellular dehydration promotes the production of angiotensin II (ANG), which can
74 induce drinking behavior and salt appetite¹. Thus, to mimic this condition, mice
75 received ICV injections of ANG. Notably, the ANG-induced water intake was blunted
76 in CB₁-KO mice (**Fig. 1d**), indicating that endocannabinoid signaling controls drinking
77 behavior induced by both intracellular and extracellular dehydration mechanisms.
78 Importantly, the acute systemic pharmacological blockade of CB₁ receptors
79 decreased drinking under water deprivation and NaCl injections (**Fig. 1e, f**), indicating
80 that endocannabinoid signaling is required at the moment of drinking and that the

81 phenotype of *CB₁*-KO mice is not due to the long-lasting deletion of the gene¹³.
82 Concomitantly with the abundant brain expression, *CB₁* receptors are also present in
83 peripheral organs⁷, suggesting that peripheral control of body water levels or blood
84 osmolality might underlie the endocannabinoid-dependent regulation of water intake.
85 However, measurements of body water composition and blood osmolality did not
86 reveal any difference between *CB₁*-KO mice and *CB₁*-WT littermates
87 (**Supplementary Fig. 1e, f**). Altogether, these results indicate that endogenous
88 activation of *CB₁* receptors contributes to drinking behavior induced by both
89 intracellular and extracellular dehydration conditions, likely through central
90 mechanisms.

91 *CB₁* receptors are expressed in many different brain regions and in distinct cell
92 types^{7,8,13}. To identify the specific cell-type involved in *CB₁* receptor-dependent
93 control of water intake, we used conditional mutant mice carrying deletion of the *CB₁*
94 gene in specific cell types, such as cortical glutamatergic neurons (Glu-*CB₁*-KO)^{14,15},
95 forebrain GABAergic neurons (GABA-*CB₁*-KO)^{14,15}, glial fibrillary acidic
96 protein-positive cells (mainly astrocytes, GFAP-*CB₁*-KO)^{14,16} and dopamine receptor
97 D₁-positive cells (D₁-*CB₁*-KO)^{14,17}. All these cell types have been implicated in the
98 control of water intake¹⁻³. Surprisingly, however, none of these mutant lines displayed
99 significant phenotypes in drinking behavior induced by water deprivation or NaCl
100 injections (**Supplementary Fig. 2a-h**).

101 It is particularly puzzling how global, but not cell type-specific, *CB₁* deletion can
102 impact water intake. This may be due to the redundancy of *CB₁* receptor-dependent

103 pathways controlling a function as vital as water intake. In this context, despite the
104 general necessary role of the endocannabinoid system in controlling drinking
105 behavior, this redundancy would decrease the specific *necessity* of selected
106 subpopulations of CB₁ receptors. This, however, does not exclude that CB₁
107 receptor-dependent control of specific cell populations might play *sufficient* roles in
108 controlling stimulated water intake. To address this possibility, we adopted a rescue
109 approach and we used mice carrying specific and exclusive re-expression of the CB₁
110 protein in specific cell types (Stop-CB₁ mice approach)^{18,19}. A “floxed-stop” cassette
111 prevents the expression of CB₁ receptors in the stop-CB₁ mutant line, similarly as in
112 global CB₁-KO mice. Viral or transgenic expression of the Cre recombinase, however,
113 induces the re-expression of the CB₁ receptors in particular brain regions and/or cell
114 types over a “knockout-like” background^{18,19}.

115 First, we verified that Stop-CB₁ mice displayed the same impaired water intake as
116 CB₁-KO mice and that global re-expression of the CB₁ protein is able to fully rescue
117 water intake under deprivation and NaCl injections (CB₁-RS for CB₁ "rescued"; **Fig.**
118 **1g,h**)^{18,19}. Re-expression of CB₁ protein in GABAergic neurons (GABA-CB₁-RS
119 mice)¹⁸, which include the large majority of brain CB₁ receptors^{7,8,13}, did not rescue
120 drinking behavior either after water deprivation or IP NaCl injection (**Supplementary**
121 **Fig. 2i, j**). Interestingly, however, re-expression of CB₁ receptors in cortical
122 glutamatergic neurons (Glu-CB₁-RS)¹⁹, which represents a minority of the receptor in
123 the brain^{7,8,13}, significantly rescued water intake induced by water deprivation, by
124 systemic or central injection of NaCl, or by ICV ANG administration (**Fig. 1i-l**). These

125 data indicate that the presence of CB₁ receptors in cortical glutamatergic neurons is
126 sufficient to promote water intake induced by different conditions.

127 Amongst other neocortical areas, the insular cortex (IC) has been directly shown
128 to regulate water intake⁶. Therefore, we tested whether specific re-expression of CB₁
129 receptors in this brain region might rescue the impairment of water intake observed in
130 Stop-CB₁ mice. Multiple local injections of an adeno-associated virus expressing Cre
131 recombinase (AAV-Cre) into the IC of Stop-CB₁ mice resulted in a consistent CB₁
132 re-expression in both anterior and posterior portions of this brain region (IC-CB₁-RS;
133 **Supplementary Fig. 3a-e**). However, this manipulation did not rescue the water
134 intake associated with lack of CB₁ receptor protein (**Supplementary Fig. 3f,g**).
135 Recent evidence points to the idea that the anterior and posterior parts of the IC play
136 opposite roles in the control of drinking behavior⁶. In particular, activation of neurons
137 located in the anterior IC (aIC) increases water intake, whereas the same
138 manipulation of the posterior IC (pIC) exerts the opposite effect⁷. Considering that
139 activation of CB₁ receptors generally reduces neuronal activity¹⁰, we reasoned that
140 endocannabinoid control of the pIC leads to decreased neuronal activity and
141 promotes drinking behavior. To test this possibility, we re-expressed the CB₁ protein
142 exclusively in the pIC of Stop-CB₁ mice (pIC-CB₁-RS, **Supplementary Fig. 4a,b and**
143 **3e**), where the lack of the receptor should logically induce a reduction of drinking.
144 However, also this partial re-expression did not rescue the phenotype of Stop-CB₁
145 mice (**Supplementary Fig. 4c,d**), strongly suggesting that CB₁ receptors in this brain
146 region do not play a major role in water intake.

147 Recent studies suggest that the anterior cingulate cortex (ACC) might participate
148 in the regulation of water intake^{1,4,5}. Using a similar approach as above, we generated
149 ACC-CB₁-RS mice, in which the CB₁ protein is re-expressed only in ACC principal
150 neurons (**Fig. 2a-c**). Notably, ACC-CB₁-RS mice displayed significantly higher water
151 intake than Stop-CB₁ littermates (ACC-CB₁-SS) both after water deprivation and IP
152 NaCl injection (**Fig. 2d,e**), indicating that the presence of CB₁ receptors in principal
153 neurons of the ACC is sufficient to promote drinking behavior induced by water
154 deprivation and NaCl treatment.

155 As the ACC is a heterogeneous structure targeting multiple downstream regions,
156 we next aimed at identifying which CB₁-positive projections from ACC are responsible
157 for the stimulation of drinking behavior. First, we mapped the ACC neuronal
158 projections interested by our local viral treatments. The injection of an
159 AAV-CaMKIIα-GFP virus into the ACC revealed that principal neurons of this
160 neocortical region project to many brain areas, including the basolateral amygdala
161 (BLA), the claustrum (Cl), the medial caudate putamen, the lateral habenula
162 (**Supplementary Fig. 5 and video 1**). In order to analyze the expression of
163 presynaptic CB₁ receptors in these ACC projections, we evaluated the distribution of
164 the CB₁ protein in ACC-CB₁-RS mice. Interestingly, CB₁ receptors were mainly
165 present in the claustrum, the BLA, as well as in the ectorhinal and perirhinal cortices
166 (**Fig. 2f-h, Supplementary video 2**). Recent evidence actually indicates that BLA is
167 involved in the control of drinking behavior^{6,20}. We therefore asked whether CB₁
168 receptors expressed in ACC to BLA projections (ACC-BLA) are sufficient to promote

169 water intake (**Fig. 3a**). To obtain selective rescue of the CB₁ protein in ACC-BLA
170 terminals, we used a retrograde viral approach in the Stop-CB₁ mice. The injection of
171 a retrograde AAV (rAAV2-retro) expressing flippases coupled to blue fluorescent
172 protein (rAAV2-retro-FLIPo-EBFP) into the BLA of Stop-CB₁ mice was associated
173 with the simultaneous infusion of another AAV carrying a FLIPo-dependent
174 expression of Cre recombinase (AAV-FRT-iCre) into the ACC (**Fig. 3b**). These
175 combinatorial viral manipulations resulted in a strong re-expression of CB₁ protein in
176 ACC-BLA projecting neurons of Stop-CB₁ mice (ACC-BLA-CB₁-RS mice; **Fig. 3c-e**).
177 Strikingly, after water deprivation and IP NaCl injection, ACC-BLA-CB₁-RS mice
178 consumed significantly more water than control mice (**Fig. 3f,g**), revealing the key
179 role of CB₁ receptor-dependent control of drinking in this specific brain circuit.

180 This study reveals an unforeseen circuit mechanism for top-down control of a
181 fundamental life function such as water intake. Specifically, general CB₁ receptor
182 activity is necessary to promote water intake, and its control of ACC principal neurons
183 impinging onto BLA is sufficient to promote drinking behavior. These data highlight
184 the complexity of brain control of water intake and underline the importance of
185 top-down regulatory circuits in these processes.

186

187 **References**

- 188 1. Gizowski, C. & Bourque, C.W. The neural basis of homeostatic and anticipatory
189 thirst. *Nat. Rev. Nephrol.* **14**, 11-25 (2018).
- 190 2. Oka, Y., Ye, M. & Zuker, C.S. Thirst driving and suppressing signals encoded by
191 distinct neural populations in the brain. *Nature* **520**, 349-352 (2015).

192 3. Abbott, S.B., Machado, N.L., Geerling, J.C. & Saper, C.B. Reciprocal Control of
193 Drinking Behavior by Median Preoptic Neurons in Mice. *J. Neurosci.* **36**, 8228-8237
194 (2016).

195 4. Hollis, J.H., McKinley, M.J., D'Souza, M., Kampe, J. & Oldfield, B.J. The trajectory
196 of sensory pathways from the lamina terminalis to the insular and cingulate cortex: a
197 neuroanatomical framework for the generation of thirst. *Am. J. Physiol. Regul. Integr.*
198 *Comp. Physiol.* **294**, R1390-1401 (2008).

199 5. Saker, P., Farrell, M.J., Egan, G.F., McKinley, M.J. & Denton, D.A. Influence of
200 anterior midcingulate cortex on drinking behavior during thirst and following satiation.
201 *Proc. Natl. Acad. Sci. U S A* **115**, 786-791 (2018).

202 6. Wang, L., et al. The coding of valence and identity in the mammalian taste system.
203 *Nature* **558**, 127-131 (2018).

204 7. Piazza, P.V., Cota, D. & Marsicano, G. The CB₁ Receptor as the Cornerstone of
205 Exostasis. *Neuron* **93**, 1252-1274 (2017).

206 8. Busquets-Garcia, A., Bains, J. & Marsicano, G. CB₁ Receptor Signaling in the
207 Brain: Extracting Specificity from Ubiquity. *Neuropsychopharmacology* **43**, 4-20
208 (2018).

209 9. Bellocchio, L., et al. Bimodal control of stimulated food intake by the
210 endocannabinoid system. *Nat. Neurosci.* **13**, 281-283 (2010).

211 10. Abel, E.L. Cannabis: effects on hunger and thirst. *Behavioral biology* **15**, 255-281
212 (1975).

213 11. Ruginsk, S.G., Vechiato, F.M., Uchoa, E.T., Elias, L.L. & Antunes-Rodrigues, J.

214 Type 1 cannabinoid receptor modulates water deprivation-induced homeostatic
215 responses. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **309**, R1358-1368 (2015).

216 12. Marsicano, G., et al. The endogenous cannabinoid system controls extinction of
217 aversive memories. *Nature* **418**, 530-534 (2002).

218 13. Busquets-Garcia, A., et al. Dissecting the cannabinergic control of behavior: The
219 where matters. *BioEssays* **37**, 1215-1225 (2015).

220 14. Marsicano, G., et al. CB₁ cannabinoid receptors and on-demand defense against
221 excitotoxicity. *Science* **302**, 84-88 (2003).

222 15. Monory, K., et al. The endocannabinoid system controls key epileptogenic circuits
223 in the hippocampus. *Neuron* **51**, 455-466 (2006).

224 16. Han, J., et al. Acute cannabinoids impair working memory through astroglial CB₁
225 receptor modulation of hippocampal LTD. *Cell* **148**, 1039-1050 (2012).

226 17. Monory, K., et al. Genetic dissection of behavioural and autonomic effects of
227 Delta(9)-tetrahydrocannabinol in mice. *PLoS. Biol.* **5**, e269 (2007).

228 18. Remmers, F., et al. Addressing sufficiency of the CB₁ receptor for
229 endocannabinoid-mediated functions through conditional genetic rescue in forebrain
230 GABAergic neurons. *Brain. Struct. Funct.* **222**, 3431-3452 (2017).

231 19. Ruehle, S., et al. Cannabinoid CB₁ receptor in dorsal telencephalic glutamatergic
232 neurons: distinctive sufficiency for hippocampus-dependent and
233 amygdala-dependent synaptic and behavioral functions. *J. Neurosci.* **33**,
234 10264-10277 (2013).

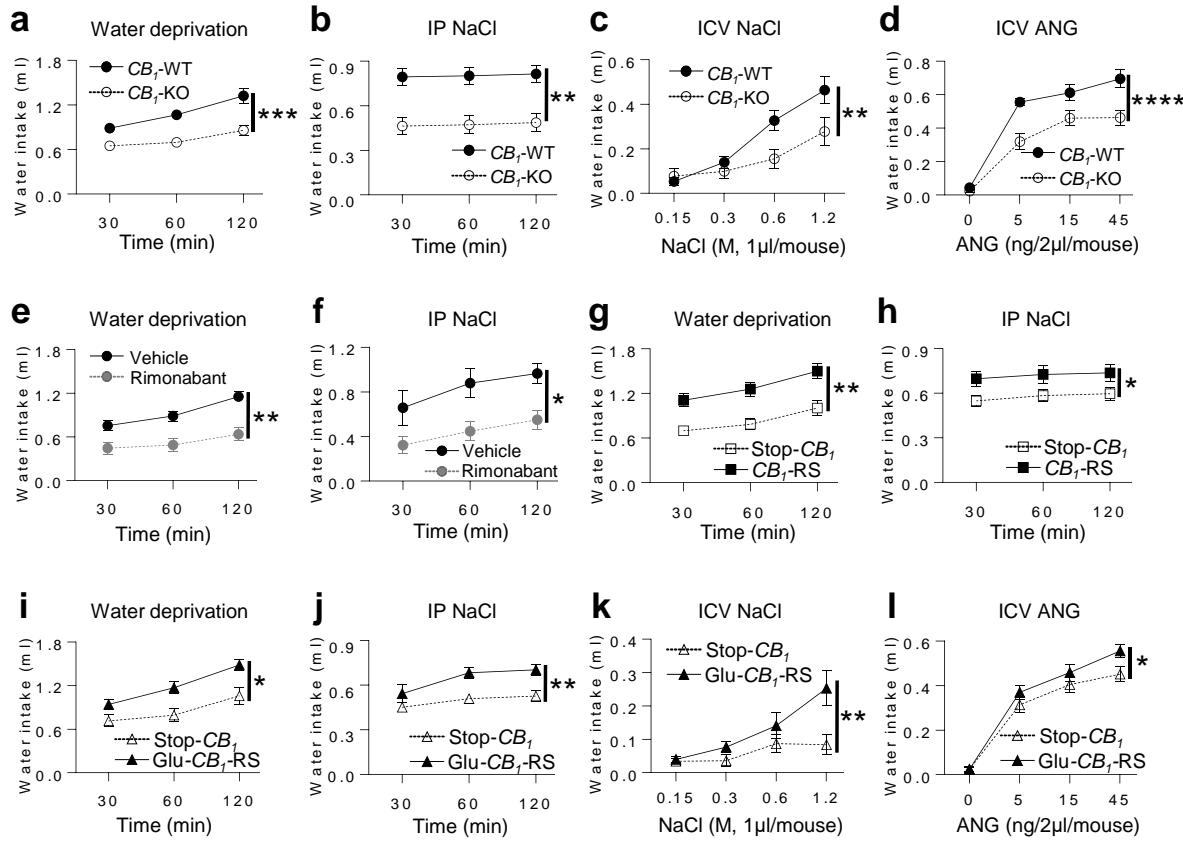
235 20. Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S.A. & Tonegawa, S. Basolateral to

236 Central Amygdala Neural Circuits for Appetitive Behaviors. *Neuron* **93**, 1464-1479
237 e1465 (2017).

238

239 **Author contributions**

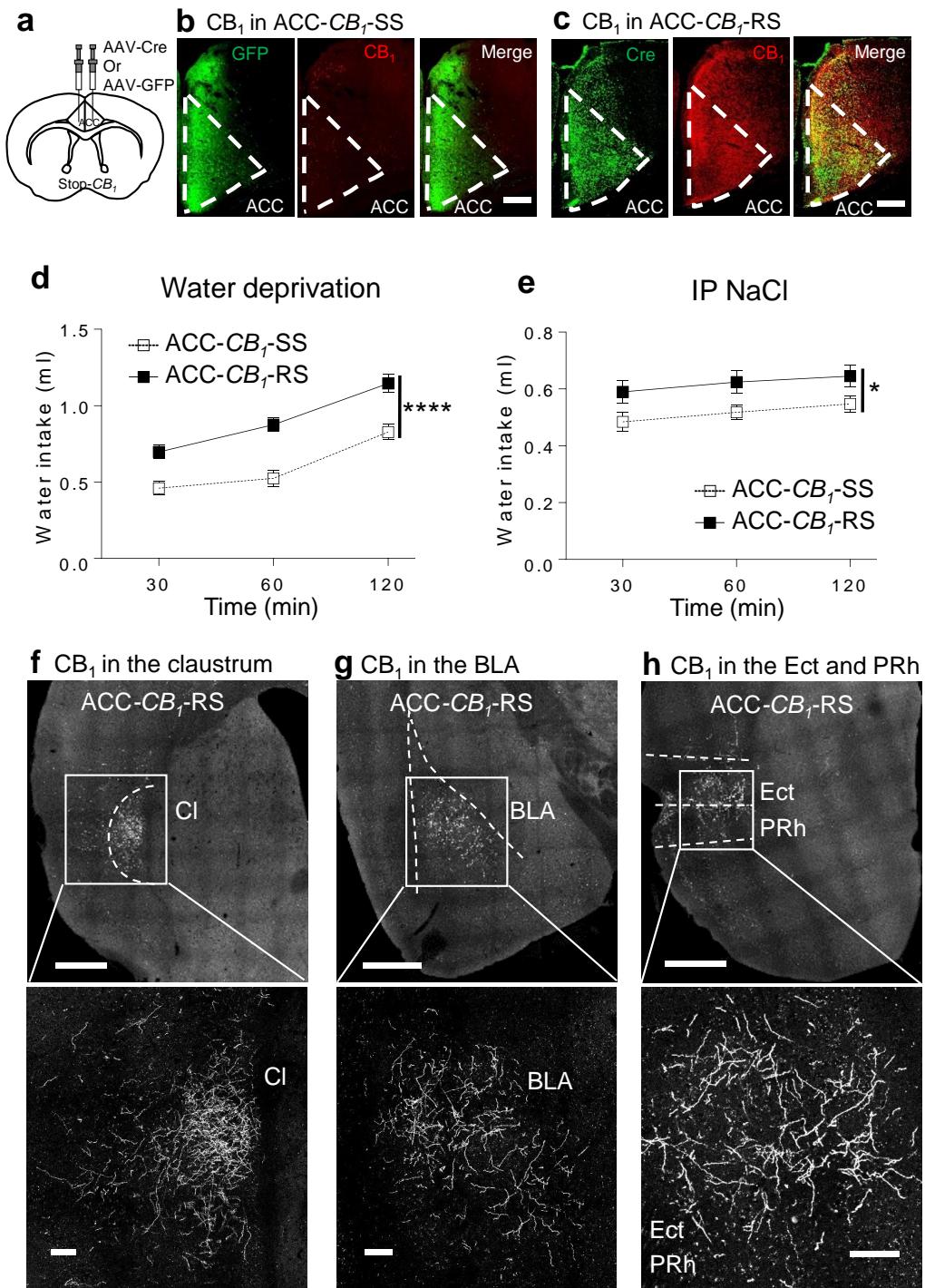
240 Z.Z. and G.M. conceived the project. Z.Z. and G.M. designed the experiments and
241 analyzed data with the input of E.S., L.B., and A.B. Z.Z. performed the experiments
242 and collected data. Z.Z., L.B., and G.M. wrote the manuscript. M.V. and F.J.
243 performed immunohistochemistry experiments. A.C., A.C., L.V., A.D., and P.Z.
244 assisted in performing experiments. A.B. and D.C. discussed the study. All authors
245 read and edited the manuscript.


246

247 **Acknowledgments**

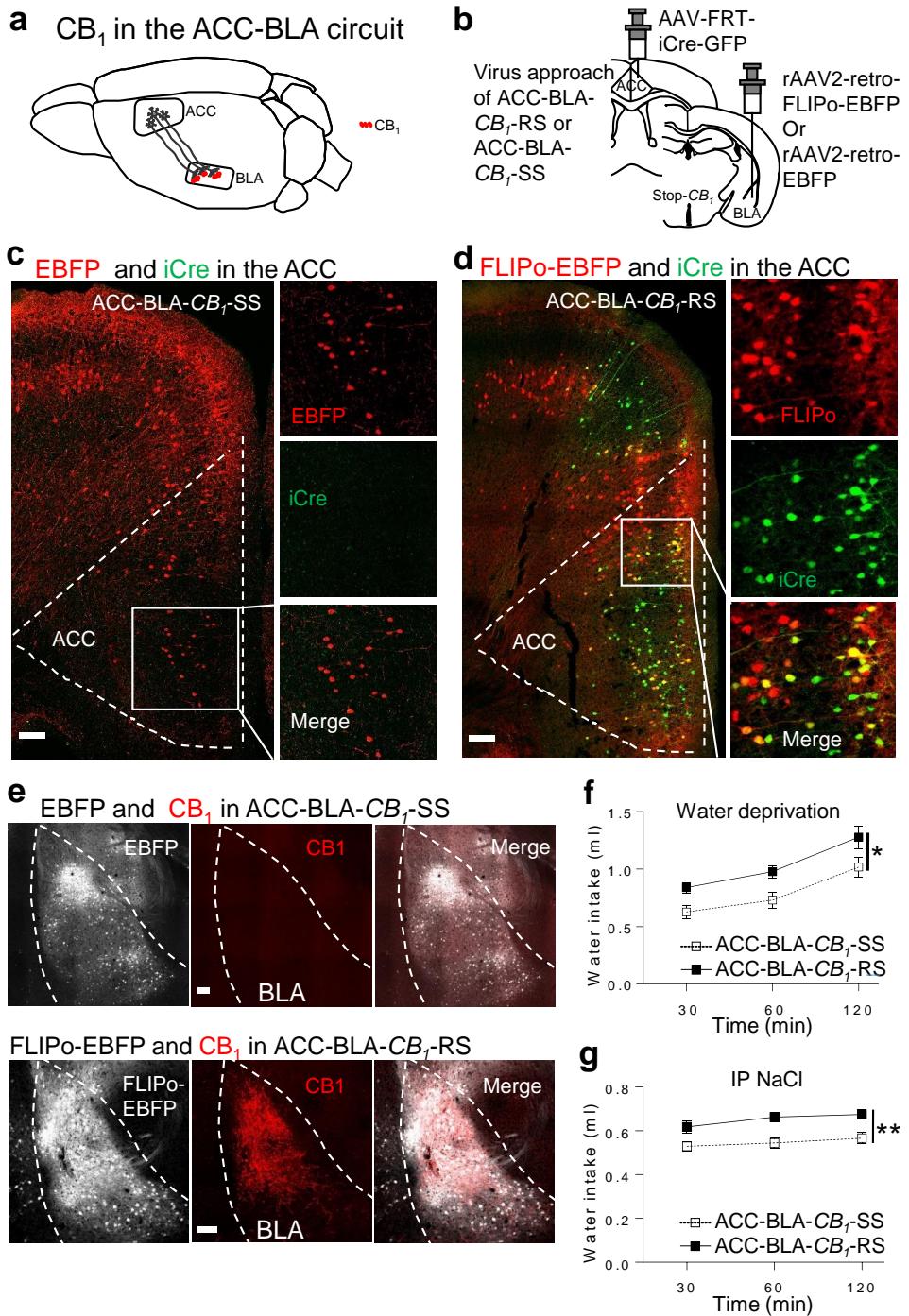
248 We thank the animal facility and the genotyping platform of the NeuroCentre
249 Magendie (INSERM U1215 Unit) for providing assistance in the animal breeding,
250 maintenance and genotyping. We also thank Drs. Aude Panatier and Stéphane Oliet
251 of NeuroCentre Magendie for providing the Osmometer. We thank the Bordeaux
252 Imaging Center, a service unit of the CNRS-INSERM and Bordeaux University,
253 member of the national infrastructure France BioImaging supported by the French
254 National Research Agency (ANR-10-INBS-04), for providing the confocal microscope
255 (Leica TCS SP8), the slide scanner (Nanoozoomer 2.0HT, Hamamatsu Photonics
256 France), and Imaris software (Imaris, Oxford instrument, UK), the help of Sébastien
257 Marais is acknowledged. HHMI Janelie farm research campus is acknowledged for

258 providing the rAAV2-retro helper. We thank the Viral Vector Facility (VVF) of
259 Neuroscience Center Zurich (ZNZ) for providing the rAAV2-retro-FLIPo-EBFP and the
260 rAAV2-retro-EBFP viral vectors. We also thank Dr. Karl Deisseroth from Stanford
261 University, Stanford, CA for providing the plasmid of AAV-CaMKII α -GFP. This work is
262 supported by the China Scholarship Council (to Z.Z.), INSERM (to G.M., D.C., A.B.),
263 Nouvelle Aquitaine Region (to D.C., G.M.), European Research Council (Endofood,
264 ERC-2010-StG-260515 and CannaPreg, ERC-2014-PoC-640923, MiCaBra,
265 ERC-2017-AdG-786467, to G.M.), Fondation pour la Recherche Medicale (FRM,
266 DRM20101220445, to G.M.), the Human Frontiers Science Program, Region
267 Aquitaine, Agence Nationale de la Recherche (ANR, NeuroNutriSens
268 ANR-13-BSV4-0006, ORUPS ANR-16-CE37-0010-01 and CaCoVi
269 ANR-18-CE16-0001-02, to G.M.) and BRAIN ANR-10-LABX-0043, to G.M.
270


Figure 1

271 **Figure 1.** Global deletion of CB_1 decreases water intake induced by different
272 dehydrations, whereas re-expression of CB_1 in cortical glutamatergic neurons is
273 sufficient to promote water intake. **a-d**, Cumulative water intake of CB_1 -WT (Black
274 circles) and CB_1 -KO (Open circles) mice after 24-hour water deprivation (CB_1 -WT
275 n=10, CB_1 -KO n=8), IP 1M NaCl, 10ml/kg body weight (CB_1 -WT n=10, CB_1 -KO n=8),
276 ICV NaCl (CB_1 -WT n=13, CB_1 -KO n=10), and ICV ANG (CB_1 -WT n=11, CB_1 -KO
277 n=13). **e-f**, Cumulative water intake induced by 24-hour water deprivation (Vehicle
278 n=9, Rimonabant n=10) or IP 1.5M NaCl, 10ml/kg body weight (Vehicle n=6,
279 Rimonabant n=7) after systemic blockade of CB_1 receptors (Rimonabant, 3mg/kg,
280 gray circles; Vehicle, black circles). **g-h**, Cumulative water intake induced by 24-hour
281 water deprivation (Stop- CB_1 n=9, CB_1 -RS n=12), IP 1M NaCl, 10ml/kg body weight
282 (Stop- CB_1 n=9, CB_1 -RS n=11) in Stop- CB_1 (Open squares) and CB_1 -RS (Black
283 squares) mice. **i-l**, Cumulative water intake induced by 24-hour water deprivation
284 (Stop- CB_1 n=11, Glu- CB_1 -RS n=11), IP 1M NaCl, 10ml/kg body weight (Stop- CB_1 ,
285 n=11, Glu- CB_1 -RS n=11), ICV NaCl (Stop- CB_1 n=13, Glu- CB_1 -RS n=11), and ICV
286 ANG (Stop- CB_1 n=15, Glu- CB_1 -RS n=13) in Stop- CB_1 (Open triangles) and
287 Glu- CB_1 -RS (Black triangles) mice. All data are showed as mean \pm s.e.m, and were
288 statistically analyzed by the two-way repeated measures ANOVA, *P < 0.05, **P <
289 0.01, ***P < 0.001, ****P < 0.0001.

290


Figure 2

291 **Figure 2.** Re-expression of CB₁ in the ACC is sufficient to promote water intake. **a**,
292 Schematic representation of CB₁ rescue approach in the ACC of Stop-CB₁ mice. **b-c**,
293 CB₁ (red) immunostaining in the ACC of ACC-CB₁-SS and ACC-CB₁-RS, respectively.
294 Scale bar, 200 μ m. **d-e**, Cumulative water intake of ACC-CB₁-SS (Open squares) and
295 ACC-CB₁-RS (Black squares) mice after 24-hour water deprivation (ACC-CB₁-SS
296 n=17, ACC-CB₁-RS n=20) or IP 1M NaCl, 10ml/kg body weight (ACC-CB₁-SS n=18,
297 ACC-CB₁-RS n=20). **f-h**, Presynaptic CB₁ receptors located in the Cl, BLA and
298 Ect/PRh in a ACC-CB₁-RS mouse. Scale bar, 500 μ m and 100 (Amplified images) μ m.
299 All data are showed as mean \pm s.e.m, and were statistically analyzed by the two-way
300 repeated measures ANOVA, *P < 0.05, ****P < 0.0001.

301

Figure 3

302 **Figure 3.** CB₁ receptors located in ACC-BLA is sufficient to promote water intake. **a**,
303 Schematic representation of CB₁ receptors located in the ACC-BLA circuit. **b**, Viral
304 approach to specifically rescue CB₁ in the ACC-BLA circuit. **c**, EBFP (pseudo red)
305 and iCre-GFP (green) in ACC sections of ACC-BLA-CB₁-SS. Scale bar, 100 μ m. **d**,
306 FLIPo-EBFP (pseudo red) and iCre-GFP (green) in ACC section of ACC-BLA-CB₁-RS.
307 Scale bar, 100 μ m. **e-f**, CB₁ (red) immunostaining in BLA section of ACC-BLA-CB₁-SS
308 and ACC-BLA-CB₁-RS. Scale bar, 100 μ m. **g-h**, Cumulative water intake of
309 ACC-BLA-CB₁-SS (Open squares) and ACC-BLA-CB₁-RS (Black squares) mice after
310 24-hour water deprivation (ACC-BLA-CB₁-SS n=10) and 1M IP NaCl, 10ml/kg body
311 weight (ACC-BLA-CB₁-SS n=12). All data are showed as mean \pm s.e.m, and were
312 statistically analyzed by the two-way repeated measures ANOVA, *P < 0.05, **P <
313 0.01.
314

315 **Supplementary information for: Top-down control of water intake by the**
316 **endocannabinoid system**

317 Zhe Zhao^{1,2}, Edgar Soria-Gómez^{1,2,3}, Marjorie Varilh^{1,2}, Francisca Julio-Kalajzić^{1,2},
318 Astrid Cannich^{1,2}, Adriana Castiglione^{1,2}, Léonie Vanhoutte^{1,2}, Alexia Duveau^{1,2},
319 Philippe Zizzari^{1,2}, Anna Beyeler^{1,2}, Daniela Cota^{1,2}, Luigi Bellocchio^{1,2,*}, Arnau
320 Busquets-Garcia^{1,2,4,*}, Giovanni Marsicano^{1,2,*}

321
322 ¹ INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale
323 U1215, F33077 Bordeaux, France.

324 ² University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité
325 Neuronale U1215, F33077 Bordeaux, France.

326 ³ IKERBASQUE Basque Foundation for Science, University of the Basque Country
327 UPV/EHU, Achucarro Basque Center for Neuroscience.

328 ⁴ Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar
329 Medical Research Institute, Barcelona, Spain.

330 * Senior author

331
332 Correspondence should be addressed to:
333 Giovanni Marsicano DVM, PhD
334 NeuroCentre Magendie,
335 INSERM U1215 Université Bordeaux
336 Group Endocannabinoids and Neuroadaptation
337 146 rue Léo-Saignat 33077 Bordeaux Cedex- France
338 Tel: +33 (0)5 5757 3756 Fax: +33 (0)5 5757 3669
339 giovanni.marsicano@inserm.fr
340

341 **Contents:**

342 **Supplementary online methods**

343 **Supplementary figures 1-5**

344 **Supplementary tables 1-2**

345 **Supplementary videos 1-2**

346

347 **Supplementary online methods**

348 **Mice.** All experiments were approved by the Committee on Animal Health and Care
349 of INSERM and the French Ministry of Agriculture and Forestry. The authorizing
350 number from the ethical committee is 15493. Maximal efforts were made to reduce
351 the suffering and the number of used mice. All behavioral experiments were
352 performed during the light phase and animals were kept in individual cages under
353 standard conditions in a day/night cycle of 12/12 hours (lights on at 7 am). Male
354 wild-type C57BL/6n mice purchased from Janvier (France) were used for the
355 pharmacological experiments. All the used mutant mice were generated and
356 identified in previous studies, e.g. global CB₁ knockout (CB₁-KO) mice¹², deletion of
357 CB₁ receptors is specific in cortical glutamatergic Nex positive neurons
358 (Glu-CB₁-KO)^{14,15}, forebrain GABAergic Dlx5/6 positive neurons (GABA-CB₁-KO)^{14,15},
359 astrocytes (GFAP-CB₁-KO)^{14,16}, and dopamine receptor type 1 positive neurons
360 (D₁-CB₁-KO)^{14,17}. The stop-CB₁ mice^{18,19} (lack of CB₁), global re-expression of CB₁
361 receptors (CB₁-RS)^{18,19}, re-expression of CB₁ receptors is specific in forebrain
362 GABAergic Dlx5/6 positive neurons (GABA-CB₁-RS)¹⁸ and cortical glutamatergic Nex

363 positive neurons (Glu-CB₁-RS)¹⁹. The mice used in this study were 7-10 weeks old at
364 the beginning of the experiments.

365 **Water intake assays.** Water intake was observed at 30, 60 and 120 minutes after
366 24-hour water deprivation and intraperitoneal (IP) injection of 1M sodium chloride
367 (NaCl, VWRV0241) with 10ml/kg body weight. In the pharmacological experiments,
368 Rimonabant (3mg/kg, 9000484, Cayman Chemical Company US) and vehicle (4%
369 ethanol, 4% Cremophor, 92% saline) were injected half an hour prior to the water
370 intake test of the water deprivation or IP injection of 1.5 M NaCl with 10ml/kg body
371 weight. For the mice of ICV injection, water intake was observed at 30 minutes after
372 intracerebroventricular (ICV) injection of Angiotensin II (ANG, Bachem, H-1705.0025)
373 and NaCl. We started to test water intake 7 days after the ICV cannula implantation.
374 ICV injection was once a day in each mouse. In the progressive ANG dose-response
375 experiments, we did ICV injections of saline, 5 ng, 15 ng, and 45 ng ANG (2 μ l/mouse)
376 in different days. Then, we start the ICV NaCl injection 3 days after the last ICV ANG
377 injection, ICV injection was once a day in each mouse. In the progressive NaCl
378 dose-response experiments, we did ICV NaCl injections of 0.15M, 0.3M, 0.6M, and
379 1.2M NaCl (1 μ l/mouse) in the different days. In order to make sure that mice were
380 drinking normally before the treatments, each mouse was observed the daily water
381 intake during the experiments.

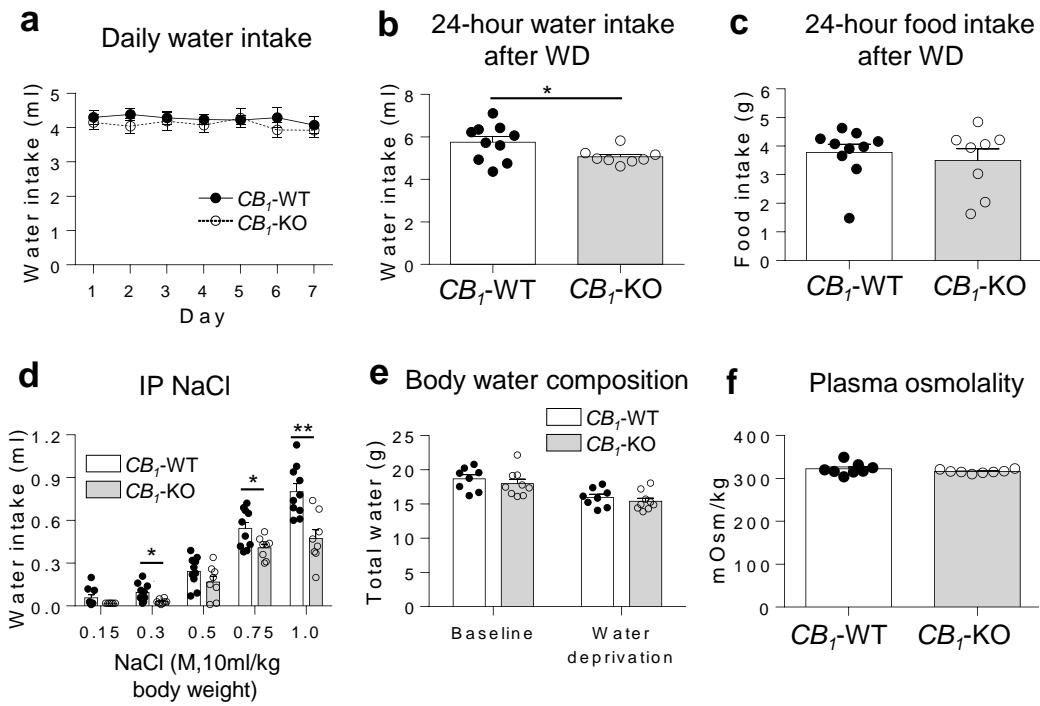
382 **Body water composition analysis.** The basal body water composition test was
383 performed in mice by using a mouse-specific nuclear magnetic resonance whole
384 body composition analyzer (EchoMRITM-900, EchoMedical Systems, Houston, TX).

385 Mice were placed in a specific chamber without strong movements, each readout was
386 done within 1 minute. Mice were put back to home cages after the test.

387 **Plasma osmolality analysis.** Plasma osmolality was tested by Osmometer 3320
388 (Advanced Instruments, France). Facial vein blood collection was applied in this
389 experiment. Blood was collected and put in the Micro tube 1.3 ml K3E (SARSTEDT,
390 41.1395.005), then blood samples were remained in room temperature for 30 minutes.
391 By using a refrigerated centrifuge (VWR Micro Star 17R), blood samples were
392 centrifuged with 4000 rpm for 15 minutes at 4°C. Following centrifugation, the plasma
393 was immediately transferred to a clean eppendorf tube and put on the ice for the
394 osmolality test.

395 **Surgery and viral administration.** Mice were anesthetized by isoflurane (5%
396 induction, then, 2% during the surgery) and placed on a stereotaxic apparatus (Model
397 900, KOPF instruments, CA, USA) with a mouse adaptor and lateral ear bars. For
398 viral vectors delivery, AAV vectors were loaded in a glass pipette and fused by a
399 pump (UMP3-1, World Precision Instruments, FL, USA). AAV-GFP (Hybrid AAV1/2, 5
400 x 10E10 vg/ml), AAV-Cre-GFP (Hybrid AAV1/2, 4.5 x 10E10 vg/ml) were injected into
401 the insula (IC) (200nl/side, 100nl/min). The coordinate of anterior IC injection is AP
402 +1.2mm, ML ± 3.0mm, DV 3.5mm, and the coordinate of posterior IC injection is AP
403 -0.3mm, ML ± 3.7mm, DV 4.0mm. AAV-CaMKIIα-GFP (Hybrid AAV1/2, >1 x 10E10
404 vg/ml) or AAV-CaMKIIα-Cre-HA (Hybrid AAV1/2, >1 x 10E10 vg/ml. The plasmids
405 were provided by Karl Deisseroth, Stanford University, Stanford, CA) were injected
406 into the anterior cingulate cortex (ACC) (200nl/side, 100nl/min). The coordinate of

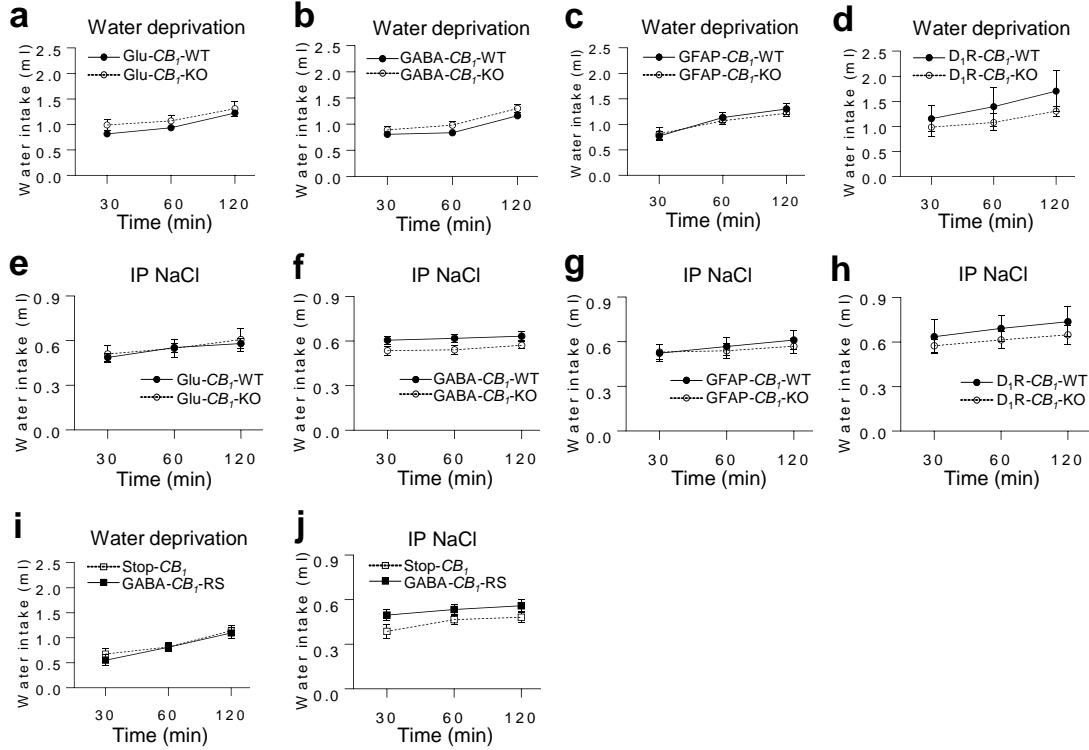
407 ACC injection is AP +0.6mm, ML \pm 0.3mm, DV 2.0mm, For the ACC-BLA-CB₁-RS or
408 ACC-BLA-CB₁-SS mice, the AAV-FRT-iCre-GFP (Addgene #24593, ZNZ VVF v245,
409 6.3 \times 10E12 vg/ml) was injected into ACC with the coordinates mentioned above in
410 both group mice (200nl/side, 100nl/min). The rAAV2-retro-FLIPo-EBFP (Addgene
411 #60663, ZNZ VVF v151, 6.4 \times 10E12 vg/ml) or rAAV2-retro-EBFP (ZNZ VVF v140,
412 4.1 \times 10E12 vg/ml) were injected into the BLA with the coordinates AP -1.6mm, ML
413 \pm 3.3mm, DV 4.9 mm (150nl/side, 100nl/min). AAV-FRT-iCre-GFP,
414 rAAV2-retro-FLIPo-EBFP, and rAAV2-retro-EBFP were produced by the Viral Vector
415 Facility (VVF) of the Neuroscience Center Zurich (ZNZ). The re-expression of CB₁
416 receptors was verified by the immunohistochemistry in all the mice used in the
417 behavioral experiments. Above coordinates were according to the mouse brain in
418 stereotaxic coordinates by Paxinos and Franklin, 2001 (Second edition).


419 **Immunohistochemistry and imaging.** After the behavioral experiment, mice were
420 anesthetized with pentobarbital (Exagon, 400 mg/kg body weight), transcardially
421 perfused first with the phosphate-buffered solution (PBS, 0.1M, pH 7.4), then fixed by
422 4% formaldehyde. After brain extraction, serial brain coronal sections were cut at 40
423 μ m and collected in PBS at room temperature (RT). Sections were permeabilized in a
424 blocking solution of 4% donkey serum, 0.3% Triton X-100 and 0.02% sodium azide
425 prepared in PBS for 1 hour at RT. For the CB₁ immunohistochemistry, free-floating
426 sections were incubated with goat CB₁ receptors polyclonal primary antibodies
427 (CB₁-Go-Af450-1; 1:2000, Frontier Science Co. ShinKO-nishi, Ishikari, Hokkaido,
428 Japan) for 48 hours at 4°C. The antibody was prepared in the blocking solution. After

429 three washes, the sections were incubated with a secondary antibody anti-goat Alexa
430 Fluor 555 (A21432, 1:500, Fisher Scientific) for 2 hours at RT and then washed in
431 PBS at RT. For the HA immunohistochemistry, it is similar with the CB₁. Sections
432 were incubated in anti-HA tag monoclonal antibody (1:1000, Fisher Scientific,
433 2-2.2.14) for 18 hours at 4°C and in secondary antibody anti-mouse Alexa Fluor 488
434 (A21202, 1:500, Fisher Scientific) for 2 hours at RT. All sections were mounted, dried
435 and cover slipped. The sections were analyzed with a Nanozoomer microscope
436 (Hamamatsu, Japan) and Leica SP8 confocal microscope (Leica, Germany). Images
437 were analyzed by Image J (NIH). For the mouse brain reconstruction, images were
438 collected by Nanazoomer, Z-stack images were made by Image J, and the 3D
439 reconstruction and videos were made by Imaris software (Imaris, Oxford instrument,
440 UK).

441 **Statistics.** Data handling and statistical analysis were performed using Microsoft
442 Excel and GraphPad Prism 6 software. For the dose-response experiments of ICV
443 NaCl and ICV ANG, and body water composition data were statistically analyzed by
444 two-way analysis of variance (ANOVA). For the water intake test with several time
445 points, data were statistically analyzed by the two-way repeated measures ANOVA.
446 The data of IP NaCl dose response and plasma osmolality were statistically analyzed
447 by two-tailed Student's t-test. P values of ≤ 0.05 were considered statistically
448 significant at a confidence interval of 95%. For detailed statistical analysis, see
449 statistical tables (Supplementary tables 1-2).

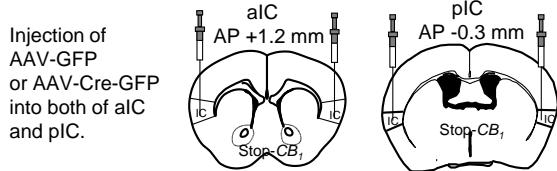
450


Supplementary Figure 1

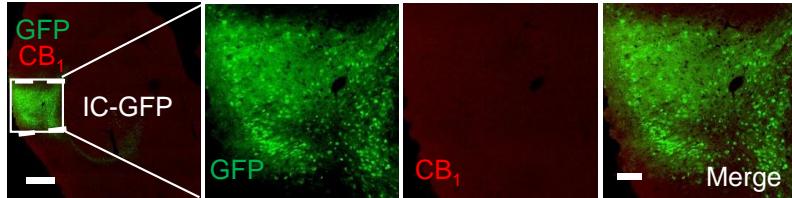
451 **Supplementary figure 1.** Decrease of stimulated water intake in *CB₁*-KO mice is
452 independent of food intake, body water composition, and plasma osmolality. **a**, Daily
453 water intake of *CB₁*-WT (Black circles, n=9) and *CB₁*-KO (Open circles, n=8). **b**,
454 Water intake in 24 hours after 24-hour water deprivation in *CB₁*-WT (White, n=10) and
455 *CB₁*-KO (Gray, n=8) mice. **c**, Food intake in 24 hours after 24-hour water deprivation
456 in *CB₁*-WT (White, n=10) and *CB₁*-KO (Gray, n=8) mice. **d**, Water intake in 1 hour
457 after IP NaCl, 10ml/kg body weight at different doses in *CB₁*-WT (White, n=10) and
458 *CB₁*-KO (Gray, n=8) mice. **e**, Body water composition test in *CB₁*-WT (White, n=8)
459 and *CB₁*-KO (Gray, n=9) mice. **f**, Blood plasma osmolality test in *CB₁*-WT (White, n=8)
460 and *CB₁*-KO (Gray, n=8) mice. All data are showed as mean \pm s.e.m. Data of IP NaCl
461 dose response and 24-hour water intake after water deprivation were statistically
462 analyzed by two-tailed Student's t-test. * P < 0.05, ** P < 0.01.

463

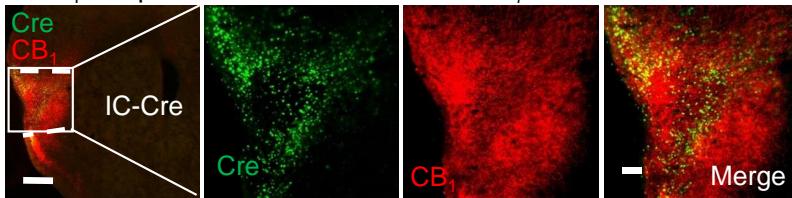
Supplementary Figure 2

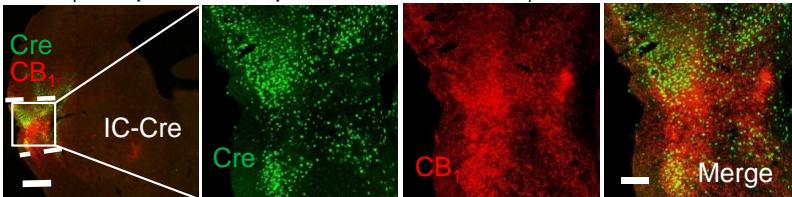

464 **Supplementary figure 2.** Deletion or re-expression of CB₁ receptors in specific cell
465 types did not affect water intake.

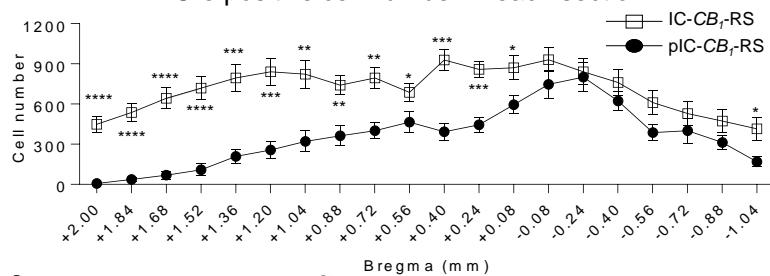
466 **a-d**, Cumulative water intake after 24-hour water deprivation in Glu-CB₁-WT (Black
467 circles, n=18) and Glu-CB₁-KO (Open circles, n=11), GABA-CB₁-WT (Black circles,
468 n=6) and GABA-CB₁-KO (Open circles, n=10), GFAP-CB₁-WT (Black circles, n=7)
469 and GFAP-CB₁-KO(Open circles, n=11), D₁-CB₁-WT (Black circles, n=5) and
470 D₁-CB₁-KO(Open circles, n=7). **e-h**, Cumulative water intake after IP 1M NaCl,
471 10ml/kg body weight in Glu-CB₁-WT (Black circles, n=18) and Glu-CB₁-KO (Open
472 circles, n=11), GABA-CB₁-WT (Black circles, n=6) and GABA-CB₁-KO (Open circles,
473 n=10), GFAP-CB₁-WT (Black circles, n=7) and GFAP-CB₁-KO (Open circles, n=11),
474 D₁-CB₁-WT (Black circles, n=5) and D₁-CB₁-KO(Open circles, n=7). **i**, Cumulative
475 water intake after 24-hour water deprivation in stop-CB₁ (Open squares, n=8) and
476 GABA-CB₁-RS (Black squares, n=8). **j**, Cumulative water intake after IP NaCl,
477 10ml/kg body weight in stop-CB₁ (Open squares, n=10) and GABA-CB₁-RS (Black
478 squares, n=8). All data are showed as mean \pm s.e.m, and were statistically analyzed
479 by the two-way repeated measurements ANOVA.

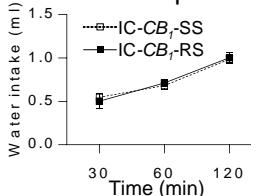

480

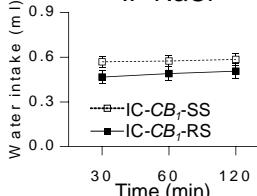
Supplementary Figure 3


a The approach to re-expression of CB₁ in the entire IC.


b GFP in the IC of IC-CB₁-SS (control)

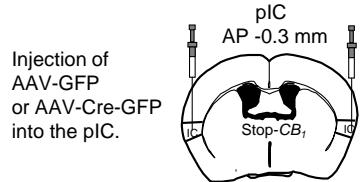

c CB₁ receptors in the anterior IC of IC-CB₁-RS


d CB₁ receptors in the posterior IC of IC-CB₁-RS

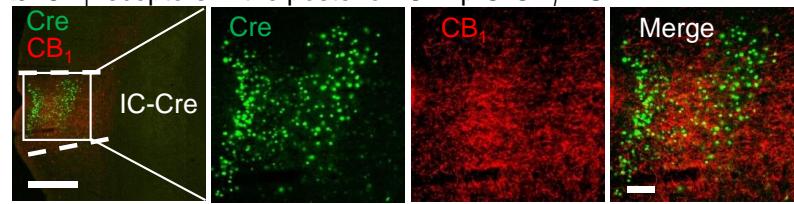

e Cre positive cell number in each section

f Water deprivation

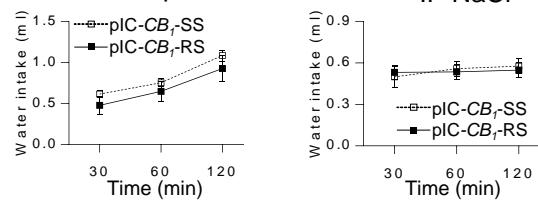
g IP NaCl

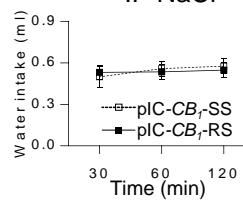


481 **Supplementary figure 3.** Re-expression of CB₁ in the entire IC did not affect
482 stimulated water intake. **a**, Schematic representation of CB₁ rescue approach in the
483 entire IC of Stop-CB₁ mice. **b-d**, CB₁ (red) immunostaining in the IC of IC-CB₁-SS and
484 IC-CB₁-RS, respectively. Scale bar, 500 μ m and 100 (Amplified images) μ m. **e**, Cre
485 positive cell number in sequential brain sections of the IC-CB₁-RS (Open squares,
486 n=9) and pIC-CB₁-RS (Black circles, n=8; the pIC data in the supplementary Figure 4).
487 **f-g**, Cumulative water intake of IC-CB₁-SS (Open squares) and IC-CB₁-RS (Black
488 squares) mice after 24-hour water deprivation (IC-CB₁-SS n=8, IC-CB₁-RS n=8) or IP
489 1M NaCl, 10ml/kg body weight (IC-CB₁-SS n=9, IC-CB₁-RS n=9). All data are showed
490 as mean \pm s.e.m. The data of Cre positive cell number were statistically analyzed by
491 the two-tailed Student's t-test. * P < 0.05, ** P < 0.01, *** P < 0.001 **** P < 0.0001.

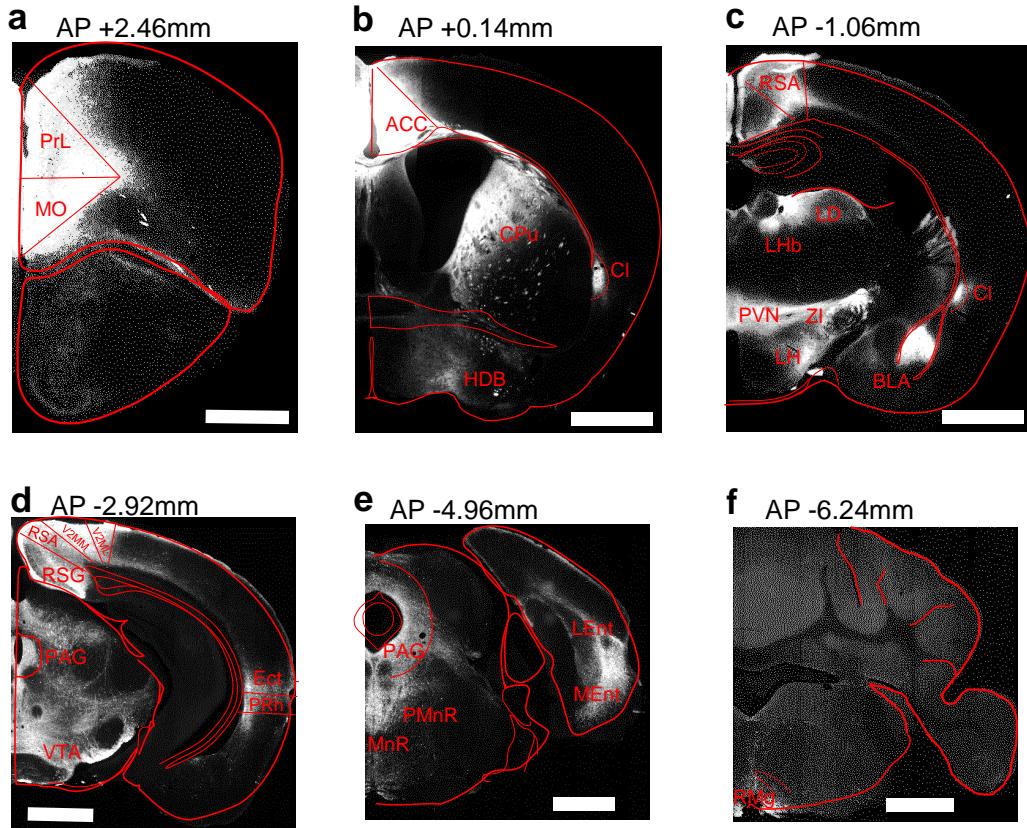

492

Supplementary Figure 4


a The approach to re-expression of CB₁ in the pIC.


b CB₁ receptors in the posterior IC in pIC-CB₁-RS

c Water deprivation



d IP NaCl

493 **Supplementary figure 4.** Re-expression of CB₁ in the posterior IC did not affect
494 stimulated water intake. **a**, Schematic representation of CB₁ rescue approach in the
495 posterior IC of Stop-CB₁ mice. **b**, CB₁ (red) immunostaining in the IC of pIC-CB₁-RS.
496 Scale bar, 500μm and 100 (Amplified images) μm. **c-d**, Cumulative water intake of
497 pIC-CB₁-SS (Open squares) and pIC-CB₁-RS (Black squares) mice after 24-hour
498 water deprivation (pIC-CB₁-SS n=9, pIC-CB₁-RS n=7) or IP 1M NaCl, 10ml/kg body
499 weight (pIC-CB₁-SS n=9, pIC-CB₁-RS n=8). All data are showed as mean ± s.e.m,
500 and were statistically analyzed by the two-way repeated measurements ANOVA.

Supplementary Figure 5

501 **Supplementary figure 5.** Brain-wide ACC neural projections revealed by injection of
502 AAV-CaMKII α -GFP into the ACC. **a**, Brain section at AP+2.46mm, PrL (Prelimbic
503 cortex), MO (Medial orbital cortex). **b**, Brain section at AP+0.14mm, CPu (Caudate
504 putamen), Cl (Claustrum), HDB (nucleus of the horizontal limb of the diagonal band).
505 **c**, Brain section at AP-1.06mm, RSA (retrosplenial agranular cortex), LD (laterodorsal
506 thalamic nucleus), LHb (Lateral habenula), PVN (paraventricular hypothalamic
507 nucleus), ZI (zona incerta), LH (lateral hypothalamic area), BLA (basolateral
508 amygdala). **d**, Brain section at AP-2.92mm, RSA (retrosplenial agranular cortex),
509 RSG (retrosplenial granular cortex), V2MM (secondary visual cortex, mediomedial
510 area), V2ML (secondary visual cortex, mediolateral area), PAG (periaqueductal gray),
511 VTA (ventral tegmental area), Ect (ectorhinal cortex), PRh (perirhinal cortex). **e**, Brain
512 section at AP-4.96mm, PAG (periaqueductal gray), MnR (median raphe nucleus),
513 PMnR (paramedian raphe nucleus), LEnt (lateral entorhinal cortex), MEnt (medial
514 entorhinal cortex). **f**, Brain section at AP-6.24mm, RMg (raphe magnus nucleus).
515 Scale bar of a-f, 1 mm.

516

Supplementary table 1

Figure	Experiment, sample, size (n)	Analysis (post-hoc test)	Factors analyzed	F-ratios	P values
1a	Water deprivation <i>CB₁</i> -WT (10) <i>CB₁</i> -KO (8)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 32) = 2.254	P = 0.1213
				Time F (2, 32) = 18.59	P < 0.0001
				Genotype F (1, 16) = 19.49	P = 0.0004
1b	IP 1M NaCl 10ml/kg <i>CB₁</i> -WT (10) <i>CB₁</i> -KO (8)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 32) = 0.7755	P = 0.4689
				Time F (2, 32) = 111.1	P < 0.0001
				Genotype F (1, 16) = 16.02	P = 0.0010
1c	ICV NaCl <i>CB₁</i> -WT (13) <i>CB₁</i> -KO (10)	Two-way ANOVA	Genotype and dose	Interaction F (3, 84) = 2.776	P = 0.0463
				Dose F (3, 84) = 19.55	P < 0.0001
				Genotype F (1, 84) = 9.189	P = 0.0032
1d	ICV ANG <i>CB₁</i> -WT (11) <i>CB₁</i> -KO (13)	Two-way ANOVA	Genotype and dose	Interaction F (3, 88) = 3.292	P = 0.0243
				Dose F (3, 88) = 79.76	P < 0.0001
				Genotype F (1, 88) = 33.11	P < 0.0001
1e	Water deprivation C57BL/6 Vehicle (9) C57BL/6 Rimonabant 3mg/kg (10)	Two-way repeated measures ANOVA	Drug and time	Interaction F (2, 34) = 6.461	P = 0.0042
				Time F (2, 34) = 53.81	P < 0.0001
				Drug F (1, 17) = 14.97	P = 0.0012
1f	IP 1.5M NaCl 10ml/kg C57BL/6 Vehicle (6) C57BL/6 Rimonabant 3mg/kg (7)	Two-way repeated measures ANOVA	Drug and time	Interaction F (2, 22) = 0.9549	P = 0.4002
				Time F (2, 22) = 27.89	P < 0.0001
				Genotype F (1, 11) = 7.492	P = 0.0193
1g	Water deprivation Stop- <i>CB₁</i> (9) <i>CB₁</i> -RS (12)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 40) = 1.343	P = 0.2726
				Time F (2, 40) = 80.70	P < 0.0001
				Genotype F (1, 20) = 13.66	P = 0.0014
1h	IP 1M NaCl 10ml/kg Stop- <i>CB₁</i> (10) <i>CB₁</i> -RS (11)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 38) = 0.1556	P = 0.8564
				Time F (2, 38) = 14.88	P < 0.0001
				Genotype F (1, 19) = 4.395	P = 0.0497
1i	Water deprivation Glu- <i>CB₁</i> -SS (11) Glu- <i>CB₁</i> -RS (11)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 40) = 5.614	P = 0.0071
				Time F (2, 40) = 103.9	P < 0.0001
				Genotype F (1, 20) = 7.918	P = 0.0107
1j	IP 1M NaCl 10ml/kg Glu- <i>CB₁</i> -SS (11) Glu- <i>CB₁</i> -RS (11)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 40) = 2.098	P = 0.1360
				Time F (2, 40) = 14.26	P < 0.0001
				Genotype F (1, 20) = 9.155	P = 0.0067

1k	ICV NaCl Glu-CB ₁ -SS (13) Glu-CB ₁ -RS (11)	Two-way ANOVA	Genotype and dose	Interaction F (3, 84) = 3.132	P = 0.0298
				Dose F (3, 84) = 8.909	P < 0.0001
				Genotype F (1, 84) = 11.41	P = 0.0011
1l	ICV ANG Glu-CB ₁ -SS (15) Glu-CB ₁ -RS (13)	Two-way ANOVA	Genotype and dose	Interaction F (3, 104) = 1.026	P = 0.3845
				Dose F (3, 104) = 100.8	P < 0.0001
				Genotype F (1, 104) = 6.506	P = 0.0122
2d	Water deprivation ACC-CB ₁ -SS (17) ACC-CB ₁ -RS (20)	Two-way repeated mesures ANOVA	Genotype and time	Interaction F (2, 70) = 3.598	P = 0.0325
				Time F (2, 70) = 182.5	P < 0.0001
				Genotype F (1, 35) = 20.47	P < 0.0001
2e	IP 1M NaCl 10ml/kg ACC-CB ₁ -SS (18) ACC-CB ₁ -RS (20)	Two-way repeated mesures ANOVA	Genotype and time	Interaction F (2, 72) = 0.1684	P = 0.8454
				Time F (2, 72) = 26.92	P < 0.0001
				Genotype F (1, 36) = 4.432	P = 0.0423
3f	Water deprivation ACC-BLA-CB ₁ -SS (10) ACC-BLA-CB ₁ -RS (12)	Two-way repeated mesures ANOVA	Genotype and time	Interaction F (2, 40) = 0.2143	P = 0.8080
				Time F (2, 40) = 59.32	P < 0.0001
				Genotype F (1, 20) = 7.133	P = 0.0147
3g	IP 1M NaCl 10ml/kg ACC-BLA-CB ₁ -SS (10) ACC-BLA-CB ₁ -RS (12)	Two-way repeated mesures ANOVA	Genotype and time	Interaction F (2, 40) = 1.556	P = 0.2235
				Time F (2, 40) = 16.58	P < 0.0001
				Genotype F (1, 20) = 10.28	P = 0.0044

517 **Supplementary table 1.** Statistical details related to figures 1-3.

Supplementary table 2

Supplementary figure	Experiment, sample, size (n)	Analysis (post-hoc test)	Factors analyzed	F-ratios	P values
1a	Daily water intake <i>CB₁</i> -WT (9) <i>CB₁</i> -KO (8)	Two-way ANOVA	Genotype and day	Interaction F (6, 105) = 0.2138	P = 0.9717
				Days F (6, 105) = 0.3389	P = 0.9149
				Genotype F (1, 105) = 2.150	P = 0.1455
1b	Water intake in a day after water deprivation <i>CB₁</i> -WT (10) <i>CB₁</i> -KO (8)	Unpaired <i>t-test</i>			P = 0.0500
1c	Food intake in a day after water deprivation <i>CB₁</i> -WT (10) <i>CB₁</i> -KO (8)	Unpaired <i>t-test</i>			P = 0.5666
1d	IP NaCl dose response <i>CB₁</i> -WT (10) <i>CB₁</i> -KO (8)	Unpaired <i>t-test</i>			Saline P=0.1243
					0.3M P=0.0130
					0.5M P=0.1721
					0.75M P=0.0226
					1M P=0.0010
1e	Body water composition <i>CB₁</i> -WT (8) <i>CB₁</i> -KO (9)	Two-way ANOVA		Interaction F (1, 30) = 0.01329	P = 0.9090
				Days F (1, 30) = 23.10	P < 0.0001
				Genotype F (1, 30) = 1.242	P = 0.2739
1f	Plasma osmolality <i>CB₁</i> -WT (8) <i>CB₁</i> -KO (8)	Unpaired <i>t-test</i>			P = 0.2496
2a	Water deprivation Glu- <i>CB₁</i> -WT (18) Glu- <i>CB₁</i> -KO (11)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 54) = 1.410	P = 0.2529
				Time F (2, 54) = 109.5	P < 0.0001
				Genotype F (1, 27) = 1.673	P = 0.2068
2b	Water deprivation GABA- <i>CB₁</i> -WT (6) GABA- <i>CB₁</i> -KO (10)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 28) = 0.7316	P = 0.4901
				Time F (2, 28) = 119.7	P < 0.0001
				Genotype F (1, 14) = 2.026	P = 0.1766
2c	Water deprivation GFAP- <i>CB₁</i> -WT (7) GFAP- <i>CB₁</i> -KO (11)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 32) = 0.8915	P = 0.4200
				Time F (2, 32) = 46.29	P < 0.0001
				Genotype F (1, 16) = 0.07548	P = 0.7870

2d	Water deprivation D1R-CB ₁ -WT (5) D1R-CB ₁ -KO (7)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 20) = 0.6907	P = 0.5128
				Time F (2, 20) = 9.770	P = 0.0011
				Genotype F (1, 10) = 0.7693	P = 0.4010
2e	IP 1M NaCl 10ml/kg Glu-CB1-WT (18) Glu-CB1-KO (11)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 54) = 0.4799	P = 0.6215
				Time F (2, 54) = 13.36	P < 0.0001
				Genotype F (1, 27) = 0.06145	P = 0.8061
2f	IP 1M NaCl 10ml/kg GABA-CB ₁ -WT (6) GABA-CB ₁ -KO (10)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 28) = 0.6378	P = 0.5360
				Time F (2, 28) = 10.47	P = 0.0004
				Genotype F (1, 14) = 2.738	P = 0.1202
2g	IP 1M NaCl 10ml/kg GFAP-CB ₁ -WT (7) GFAP-CB ₁ -KO (11)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 32) = 3.281	P = 0.0506
				Time F (2, 32) = 22.50	P < 0.0001
				Genotype F (1, 16) = 0.06804	P = 0.7975
2h	IP 1M NaCl 10ml/kg D1R-CB ₁ -WT (5) D1R-CB ₁ -KO (7)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 20) = 0.1803	P = 0.8364
				Time F (2, 20) = 7.256	P = 0.0043
				Genotype F (1, 10) = 0.5358	P = 0.4810
2i	Water deprivation Stop-CB ₁ (8) GABA-CB ₁ -RS (8)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 28) = 0.8169	P = 0.4520
				Time F (2, 28) = 56.11	P < 0.0001
				Genotype F (1, 14) = 0.2042	P = 0.6583
2j	IP 1M NaCl 10ml/kg Stop-CB ₁ (10) GABA-CB ₁ -RS (8)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 32) = 1.099	P = 0.3454
				Time F (2, 32) = 15.22	P < 0.0001
				Genotype F (1, 16) = 2.626	P = 0.1246
3e	Cre positive cell number IC-CB ₁ -RS (9) pIC-CB ₁ -RS (8)	Unpaired t-test	Bregema(mm)	+2.00	P < 0.0001
				+1.84	P < 0.0001
				+1.68	P < 0.0001
				+1.52	P < 0.0001
				+1.36	P = 0.0002
				+1.20	P = 0.0003
				+1.04	P = 0.0021
				+0.88	P = 0.0024
				+0.72	P = 0.0016
				+0.56	P = 0.0425
				+0.40	P = 0.0001
				+0.24	P = 0.0001
				+0.08	P = 0.0296
				-0.08	P = 0.1974
				-0.24	P = 0.7861

				-0.40	P = 0.2704
				-0.56	P = 0.0629
				-0.72	P = 0.3328
				-0.88	P = 0.1490
				-1.04	P = 0.0229
3f	Water deprivation IC-CB ₁ -SS (8) IC-CB ₁ -RS (8)	Two-way repeated measures ANOVA	Genotype and time	Interaction F (2, 28) = 0.5276	P = 0.5958
				Time F (2, 28) = 73.13	P < 0.0001
				Genotype F (1, 14) = 4.499e-015	P > 0.9999
				Interaction F (2, 32) = 2.137	P = 0.1346
3g	IP 1M NaCl 10ml/kg IC-CB ₁ -SS (9) IC-CB ₁ -RS (9)	Two-way repeated measures ANOVA	Genotype and time	Time F (2, 32) = 13.32	P < 0.0001
				Genotype F (1, 16) = 2.095	P = 0.1671
				Interaction F (2, 28) = 0.2249	P = 0.8000
4c	Water deprivation pIC-CB ₁ -SS (9) pIC-CB ₁ -RS (7)	Two-way repeated measures ANOVA	Genotype and time	Time F (2, 28) = 70.61	P < 0.0001
				Genotype F (1, 14) = 1.216	P = 0.2888
				Interaction F (2, 45) = 0.1708	P = 0.8435
4d	IP 1M NaCl 10ml/kg pIC-CB ₁ -SS (9) pIC-CB ₁ -RS (8)	Two-way repeated measures ANOVA	Genotype and time	Time F (2, 45) = 0.3459	P = 0.7095
				Genotype F (1, 45) = 0.02060	P = 0.8865

518 **Supplementary table 2.** Statistical details related to supplementary figures 1-4.

519

520 **Supplementary Video 1.** Whole-brain mapping of ACC neural projections by
521 injection of AAV-CaMKIIα-GFP into ACC.

522 **Supplementary Video 2.** Whole-brain mapping of CB₁ receptors' distribution in
523 ACC-CB₁-RS mice.