

1 **Effects of dietary NFC/NDF on rumen microbiomes**
2 **of Karakul sheep based on Three Generations of**
3 **Full-length Amplifiers sequencing**

4 Xuanxuan Pu¹, Xuefeng Guo^{1,2*}, Chenyu Jiang¹, Junfeng Liu^{1,2}, Xiuping Zhang^{1,2}, Sujiang
5 Zhang^{1,2}, Long Cheng³, Anshan Shan⁴

6 1 College of Animal Science, Tarim University, Alar 843300, Xinjiang, PR China

7 2 Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production
8 and Construction Group, Alar 843300, Xinjiang, PR China

9 3 Faculty of Veterinary & Agricultural Sciences, Dookie Campus, The University of Melbourne,
10 Victoria 3647, Australia

11 4 Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China

12

13

14 The research was supported by the National Natural Science Foundation Project (31760680) and
15 Xinjiang Production and Construction Group with the young and middle-aged innovation talents
16 fund (No. 2016BC001).

17

18

19 * Corresponding authors: gxfdky@126.com.

20

21

22

23

24

25

26 **Abstract**

27 An study was was conducted to investigate the effects of dietary(non fibrous carbohydrate)
28 NFC/(neutral detergent fiber)NDF on ruminal bacteria in Karakul sheep. Twelve Karakul sheep
29 were assigned randomly to four dietary treatments of NFC/NDF (0.78, 1.23, 1.61 and 2.00
30 respectively) as group 1, 2, 3 to 4. The experiment lasted for four periods, period I (1~18 d), II
31 (19~36 d), III (37~54 d) and IV (55~72 d). Ruminal digesta were collected consecutively for three
32 days to measure pH and bacteria per period. The results indicated that the average ruminal pH and
33 amounts of OTUs were decreased with the increase of dietary NFC/NDF for four periods. At
34 phylum level, Bacteroidetes and Firmicutes were the predominant bacteria of four periods,
35 Bacteroidetes were decreased, while the relative abundance of Firmicutes was increased with
36 dietary NFC/NDF for four periods, but the difference wasn't significant ($P>0.05$). At genus level,
37 the most relative abundance genus was unidentified-Lachnospiraceae which reached the highest in
38 group 3 for four periods, but the difference wasn't significant ($P>0.05$). Conclusion: ruminal pH
39 and bacteria were decreased with the increase of dietary NFC/NDF and the most dominant
40 bacteria were not change with dietary NFC/NDF and periods in Karakul sheep.

41 **Introduction**

42 Rumen plays an important role in the growth and production of ruminants and it contains a large
43 number of rumen microorganisms (*Bacteria*, *Protozoa*, *Eukarya* and *Archaea*[1-3]). Rumen
44 microorganisms breakdown food to provide volatile fatty acids, bacterial protein, and so on to the
45 host animal[4]. Yang et al.[5] confirmed that 80% of the starch, 50% of the fibre and 60% of the
46 organic matter in the diet were fermented in the rumen to provide energy for the host. Meanwhile,
47 after a long-term selection and evolution, rumen microbiomes and the host have formed a
48 symbiotic relationship to maintain the host's health[6]. Dietary regulation has an important effect
49 on rumen fermentation[7-9] and microbiome[10-11]. Wei et al.[12] showed that with the increase
50 of dietary NFC/NDF, ruminal pH decreased significantly, furthermore the composition of rumen
51 microbial flora also changed, and the total number of rumen bacteria decreased in goats. However,
52 there are scarce studies on rumen microbiome structure changes with dietary NFC/NDF in
53 Karakul sheep and the rumen is very complex in which microbiome may change again with
54 prolong of periods. NDF plays an important role in dry matter intake (DMI) and feed
55 digestibility[13-14], and NFC in diets is another factor that affect DMI, Hall et al. reported that
56 NFC would be degraded rapidly in the rumen[14]. The development of technology makes it more
57 accurate to study on rumen microbiomes, Three Generation of Full-length Amplifiers sequencing
58 is one of them, which can improve the resolution of species identification, and improve the
59 accuracy of microbial species composition identification in the samples[15-16]. In this
60 experiment, ruminal pH and microbiome were measured for four periods to investigate effects of
61 dietary NFC/NDF on ruminal microbiome in Karakul sheep.

62 **Materials and Methods**

63 **Animals and Dietary composition**

64 All experimental procedures were approved by Tarim University Animal Care and Use
65 Committee, and humane animal care were followed throughout the experiment. Twelve Karakul
66 sheep with similar age and weight (35.3 ± 3.3 kg) were fitted with permanent fistula and were
67 randomly assigned into four dietary treatments of NFC/NDF (0.78, 1.23, 1.61, 2.00 respectively)
68 as group 1, 2, 3 and group 4, each group with three replicates. They all received vaccines for
69 parasites before the adaption period, and were fed meeting the standards for raising meat and
70 sheep in the People's Republic of China[17]. All sheep were housed individually in metabolic
71 cages ($1.2\text{ m} \times 1.5\text{ m}$) and fed the experimental diet individually twice a day at 9:00 a.m. and 8:00
72 p.m with free access to water. The ingredients and nutrient level of the diet were shown in S1
73 Table.

74 **The experimental design and sample collection**

75 The experiment lasted for 72 d including four periods, including period I (1~18 d), II (19~36 d),
76 III (37~54 d) and IV (55~72 d). Each period lasted for 18 d. The first 15 d for adaption and 3 d for
77 samples, feed intake and defecation rule were studied in the adaption period. The ruminal digesta
78 were sampled consecutively before morning feeding for three days, the sheep of one group were
79 collected together for 50 mL, and then, were stored in -80 °C to investigate on rumen
80 microorganisms. Meanwhile, the ruminal pH was measured after feeding of 0, 1, 3, 6 and 9 h
81 using pH meter (FE22).

82 **DNA Extraction, PCR and Pacio sequencing**

83 The total genetic DNA was extracted using QIAamp Fast DNA Stool Mini Kit (QIAGEN,
84 Shanghai) according to the illustration and the extracted DNA was detected by 1% agarose gel.
85 The V1-V9 regions of 16S rDNA were amplified by PCR from the extracted DNA using the
86 universal primers: F, 5'-AGAGTTGATCCTGGCTCAG-3'; R,
87 5'-GNTACCTTGTACGACTT-3' (synthesized by Biological engineering co., Ltd). PCR was
88 carried out in triplicate 50- μ L reactions which containing 2 μ L Primer Mix (1uM), 5 ng gDNA, 1
89 μ L Trans Fastpfu, 10 μ L 5 \times Buffer, 5 μ L 5 \times StimuLate, 5 μ L dNTPs (2.5mM each), 27 μ L NFW.
90 Thermocycling parameters were as follows: 2 min predenaturation at 95 °C; 35 cycles of
91 denaturation at 95 °C for 30 s, Annealing at 60 °C for 40 s, extension at 72 °C for 90 s; and a Final
92 extension at 72 °C for 10 min. The production was detected by 2% agarose gel. PCR products
93 was purified with Gel Extraction Kit (QIAGEN, Shanghai), and the productions were sequenced
94 on PacBio platform.

95 **The sequence analysis**

96 The 16S rDNA reads were firstly processed to get clean reads by discarding the reads that are
97 shorter than 1340 bp, longer than 1640 bp, and not matching the expected barcodes. Using Uparse
98 software [18] to cluster all Clean Reads of all samples. Operational taxonomic units (OTUs) were
99 formed at the similarity of 97%[19]. The OTUs were annotated by the Mothur and SILVA
100 (<http://www.arb-silva.de/>) [20] according to the reference taxonomy provided by SSUrRNA
101 database[21]. The OTUs were analyzed by Qiime pipeline (Version 1.9.1) to calculate the richness
102 and diversity indices i e. observed OTUs, Chao1, Shannon, Simpson, ACE.

103 **Statistical Analyses**

104 The results of pH were expressed as means using SPSS 17.0. Comparisons between groups were
105 performed with ANOVA followed by Duncan test. The difference of ruminal bacteria was
106 measured and expressed using SPSS 17.0. As well, and the differences were considered to be
107 significant at $P<0.05$.

108 **Results**

109 **pH**

110 The average pH of 0, 1, 3, 6, 9 h after feeding for four periods were shown in Table 1, the pH was
111 that: group 1> group 2> group 3> group 4 for four periods. There was no significant difference
112 between four groups in period I ($P>0.05$), while there was significant difference between four
113 groups in period II, III and IV ($P<0.05$), which showed that the ruminal pH decreased
114 significantly as the dietary NFC/NDF increased.

115 **Table 1. Effects of dietary NFC/NDF on ruminal pH**

116 **Extraction DNA of rumen bacteria**

117 The DNA extraction results were shown in Fig. 1. The main band was clear and there was no
118 concentrated band below 500 bp, which indicated that the purity of DNA was well and it could
119 meet the requirement of sequencing.

120 **Fig. 1. Extraction DNA of rumen bacteria**

121 **The analysis of basic sequencing data**

122 The OTU number of each group in one period was shown in Venn graph as Fig. 2. The result

123 showed that the OTUs was that: group 1> group 2 > group 3> group 4 for four periods, which
124 showed that the diversity of rumen microbiome decreased with the increase of NFC/NDF, and the
125 number of each group became more stable with prolong of periods

126 **Fig. 2. Vene graph of OTUs in Karakur sheep**

127 **The analysis of OTU Alpha diversity**

128 The Alpha diversity is a kind of analysis in the diversity of microbiome, which involves the
129 abundance index of Chao1[22] and ACE[23] and the diversity index of Shannon and Simpson[24].
130 Before diversity analysis, the dilution curve was drawn by R software (Version 2.15.3) to detect
131 whether the obtained data could fully reflect the distribution of rumen fluid flora in Karakul sheep.

132 **OTU dilution curve**

133 As showed in Fig. 3, the dilution curve of each group keep increasing with the increase of the
134 depth of sequencing, which is indicated that new bacteria had been found. The results showed that
135 the sequencing quantity of each sample could be used to analyze the diversity of flora.

136 **Fig. 3. OTU dilution curve of bacteria in the rumen of Karakul sheep**

137 **Sample diversity index**

138 The results of Alpha diversity were shown in Table 2. The results showed that there was some
139 difference in the number, richness and diversity of rumen bacterial species in different dietary of
140 NFC/NDF.

141 **Table 2. Analysis of Alpha diversity of rumen liquid samples at 0.03 distance**

142 Structural analysis of rumen microbiome

143 At phyla level, seventeen different phyla were detected. The S2 table and Fig. 4 showed that the
144 main phylum microbiome didn't change with the dietary NFC/NDF and periods, and
145 Bacteroidetes (52%~72%) and Firmicutes (19%~46%) was the main microbiome for four periods.
146 The relative abundance of Tenericutes was 3% to 8% and the others was less than 1%. Fig. 5 was
147 composed by four main dominant phylum to investigate effects of NFC/NDF on their relative
148 abundance, the abundance of Bacteroidets and Proteobacteria were that: group 1> group 2> group
149 3> group 4 for four periods, but the difference wasn't significant($P>0.05$). While the abundance of
150 Firmicutes was that : group 4> group 3> group 2> group 1, the difference wasn't
151 significant($P>0.05$) as well. The abundance of Tenericutes reached the highest in group 4 for four
152 periods.

153 **Fig. 4. The column chart of the main dominant phylum in Karakul sheep**

154 **Fig. 5(a~d) . Effects of dietary NFC/NDF on relative abundance (% reads) of rumen phylum**
155 **in Karakul Sheep**

156 At the genus level, a total of 77 genera were obtained from sequence alignment. It can be seen
157 from S3 Table and Fig. 6. The main genus microbiome didn't change with the dietary NFC/NDF
158 and periods. The highest relative abundance of genus was a kind of semi-cellulose degrading
159 bacteria, *unidentified-Lachnospiraceae* (1.86%~16.68%). The following relative abundance of
160 genus was *Succinivlasticum* (0.12%~17.03%). Fig. 7 was composed by four main dominant genus
161 to investigate effects of dietary NFC/NDF on their relative abundance, the abundance of
162 *Succinivlasticum* was that: group 2> group 1> group 3> group 4, and the difference wasn't

163 significant ($P>0.05$). The relative abundance of *unidentified-Lachnospiraceae*, *Anaeroplasma* and
164 *unidentified-Bacteroidales* reached the highest in group 3 for four periods, and the difference
165 wasn't significant ($P>0.05$) as well.

166 **Fig. 6. The column chart of the main dominant genus in Karakul sheep**

167 **Fig. 7(a~d) . Effects of dietary NFC/NDF on relative abundance (% reads) of rumen genus**
168 **in**

169 **Discussion**

170 **Effects of dietary NFC/NDF on ruminal pH**

171 pH is the directest index affecting rumen fermentation[25] and diets are key factors affecting pH.
172 The results showed that the ruminal average pH decreased with the increase of NFC/NDF for four
173 periods, which was approved with T.Ma et al.[26]. Agle et al. [27] and Pina et al. [28] also
174 reported that with adding of concentration, ruminal pH decreased. This is mainly due to that the
175 increase content of NFC resulted in the increase of VFA, while the low content of NDF resulted in
176 the decreased rumination in sheep and decreased saliva to the rumen. Thus, the average pH of
177 group IV was significantly lower than the other groups. The results were consistent with other
178 studies[29-30]. Yang et al [31] pointed out that when pH was lower than 6.0 for a long time, the
179 sheep would be in a long-term pathological state. The results showed that the average pH in group
180 IV was near to 6.0 , it may have negative effects on Karakul sheep, and needs to be further
181 verified.

182 **Effects of dietary NFC/NDF on rumen bacteria in Karakul**

183 **sheep**

184 Diets have crucial effects on rumen microorganisms, Jin et al. [32] showed that the number and
185 diversity of rumen bacteria in goats feed under high grain (71.5%) diet were lower than those with
186 high forage diet (0% grain). In this study, the results showed that the rumen bacteria diversity in
187 Karakul sheep decreased with the increase of dietary NFC/NDF, which was consistent with the
188 results of Liu [33], However Yong et al. [34] showed that there was no significant difference in
189 the number of rumen bacteria when the sheep were fed with different ratio of forage to
190 concentration diets, which might be caused by the difference of diets and species.

191 Roughage is the main feed source for ruminants, and rumen bacteria play a crucial role in the
192 utilization of roughage. Research showed that diets with easily fermentable carbohydrates would
193 decrease fiber degradation[35], resulting the imbalance of cellulolytic bacterial species.

194 Bacteroidetes play an important role in the degradation of non-fiber substances and Firmicutes
195 mainly degrade fiber substances. A large number of studies have shown that Bacteroidetes and
196 Firmicutes are the most dominant flora in the gastrointestinal tract of mammals[36-39]. Li et al.

197 [40] showed that when the calves were fed with two kinds of NFC/NDF diets, Bacteroidetes and
198 Firmicutes were still the main dominant flora. In this study, the results showed that the relative
199 abundance of Bacteroidetes and Firmicutes in different dietary NFC/NDF were still the main

200 dominant phylum. Some results showed that the abundance of bacteria in the same sample would
201 be different if the gene region was sequenced different[41], In our experiment, the region of
202 V1-V9 was sequenced and the results showed that the relative abundance of rumen bacteroidetes

203 decreased with the increase of dietary NFD/NDF in Karakul sheep, which was consistent with
204 Ellison[42]. However, when Kim et al. [43] researched on the content of Bacteroidetes in beef

205 cattle by sequencing V1-V3 region, the content of Bacteroidetes in high forage group was
206 significantly lower than that of high proportion cereal group, which may be due to the difference
207 of species differences and the sequence regions measured. In addition, the degradation rate of dry
208 matter and organic matter was higher in group 3, 4 than which in group 1, 2 (the results were
209 found previously by our team) so other bacteria except Bacteroidetes in Karakul sheep might have
210 digested non-fiber substances and needs to be further studied.

211 Improving the fiber degradation rate is very important for ruminants. Bacteria and fungi play a
212 crucial role in the decomposition and utilization of cellulose. In this study, the relative abundance
213 of Firmicutes reached the highest when the dietary of NFC/NDF were 1.61 and 2.00, which was
214 consistent with the results that had done before (The result was that: the NDF degradation rate in
215 dietary NFC/NDF of 1.61 was the highest). *Unidentified-Lachnospiraceae* was the most dominant
216 genus and its relative abundance reached the highest in group 3 for four periods, which further
217 identified the results that: NDF degradation rate in dietary NFC/NDF of 1.61 was the highest.

218 In addition, there were many unidentified bacteria in the rumen of Karakul sheep, which might
219 mean that there were some new species in Karakul sheep and needs to be further studied.

220 **Conclusions**

221 The ruminal pH and total diversity of rumen bacteria decreased with the increase of dietary
222 NFC/NDF. The most dominant phylum, genus and species didn't change with dietary NFC/NDF
223 and the ruminal bacteria became more stable with prolong of periods in Karakul sheep.

224 **Acknowledgments**

225 We are grateful for other tutors and classmates in our department that helped in the experiment.

226 **Author contributions**

227 Contributed reagents/materials/analysis/ tools: X.G.; Performed the experiments: X.P; Analyzed
228 the data: X.P; Writing- original draft: X.P.; Writing–review editing: X.P., X.G., C.J., J.L., X.Z.,
229 S.Z., C.L., and A.S..

230 **Supporting information**

231 **S1 Table. The ingredients and nutrient composition of the diet (% of DM).** ①The premix
232 provided the following per kg of diets: VA 1800 IU, VD3 600 IU, VE 30 mg, Fe 65 mg, Se 0.15
233 mg, I 0.6 mg, Cu 10 mg, Mn 28 mg, Zn 45 mg, Cu 12 mg. ②Nutrition level was a calculated
234 value. ③NFC= (1NDFCPFatAsh) × 100%.

235 **S2 Table Effects of dietary NFC/NDF on relative abundance of phylum in Karakul sheep**

236 Period I (1~18 d), II (19~36 d), III (37~54 d) and IV (55~72 d) and Group 1, 2, 3, 4 means four
237 groups of sheep treated with four dietary levels of NFC/NDF (0.78, 1.23, 1.61, 2.00 respectively).
238 The same as below.

239 **S3 Table Effects of dietary NFC/NDF on relative abundance of genus in Karakul sheep**

240 **References**

- 241 1. Elizabeth M Ross, Peter J Moate, Carolyn R Bath, et al. (2012) High throughput whole rumen
242 metagenome profiling using untargeted massively parallel sequencing[J]. BMC Genetics. 53.
- 243 2. Kumar, S, Indugu N, Vecchiarelli B, Pitta, DW (2015) Associative patterns among anaerobic
244 fungi, methanogenic archaea, and bacterial communities in response to changes in diet and

- 245 age in the rumen of dairy cows[J]. FRONTIERS IN MICROBIOLOGY..
- 246 3. Hespell RB, Akin DE, Dehority BA (1997). In: Mackie RI, White BA, Isaacson R (eds)
- 247 Gastrointestinal microbiology, vol 2. New York: Chapman and Hall. pp. 59–186
- 248 4. Deng W, Xi DM, Mao H, et al. (2008) The use of molecular techniques based on ribosomal
- 249 RNA and DNA for rumen microbial ecosystem studies:a review[J].Molecular Biology
- 250 Reports. Vol. 35(No.2): 265-274.
- 251 5. Shuo Yang (2018) Effects of Feeding Types and Breeds on Rumen Methanogens and Related
- 252 Microflora in Inner Mongolia Cashmere Goats[D]. Inner Mongolia Agriculture University.
- 253 6. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily
- 254 conserved responses to the gut microbiota[J]. Proceedings of the National Academy of
- 255 Science of the United States of America. Vol. 101(No.13): 4596-4601.
- 256 7. ZHANG Jianxun, LIU Jiangbo, XUE Bai (2013) Forage to Concentrate Ratio: Effects on
- 257 Rumen Fermentation in Nanjiang Brown Goats in Vitro[J]. Journal of animal nutrition,
- 258 25(04): 870-877.
- 259 8. Corley R N, Murphy M R (2004) An in vitro technique for measuring the production rate of
- 260 volatile fatty acids in the rumen under dynamic conditions[J]. Small Ruminant Res, 54(3):
- 261 219-225.
- 262 9. Song SD, Chen GJ, Guo CH, Rao KQ, Gao YH, Peng ZL, et al. (2018) Effects of exogenous
- 263 fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth
- 264 performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black

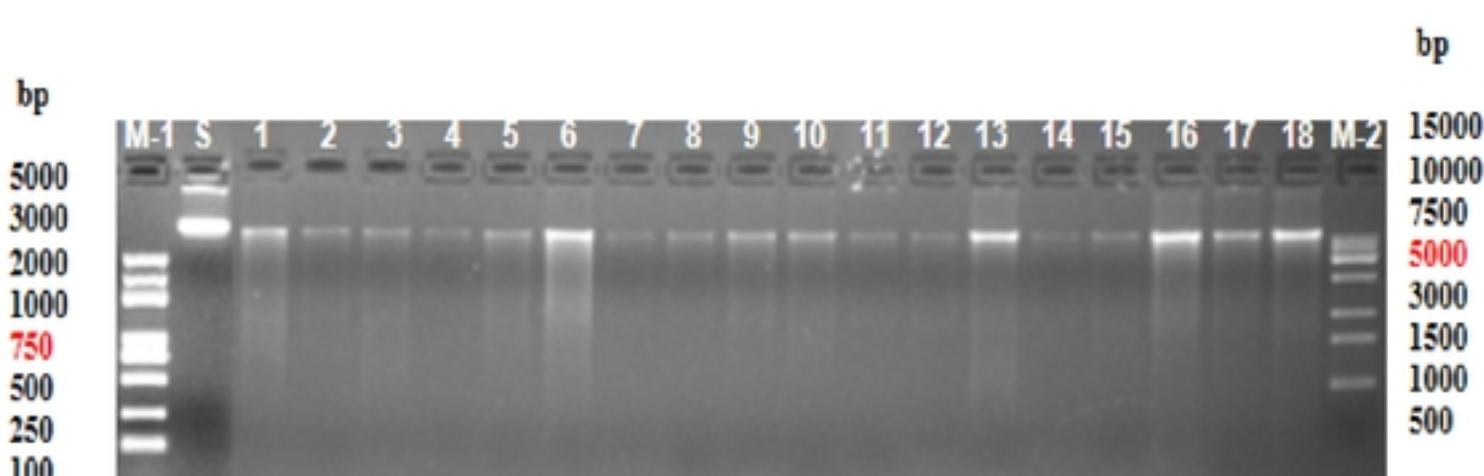
- 265 goats[J].Animal Feed Science and Technology, 170-177.
- 266 10. Kumar S, Indugu N, Vecchiarelli B, Pitta DW (2015) Associative patterns among anaerobic
267 fungi, methanogenic archaea, and bacterial communities in response to changes in diet and
268 age in the rumen of dairy cows[J]. FRONTIERS IN MICROBIOLOGY.
- 269 11. Han X, Yang Y, Yan H, Wang X, Qu L, Chen Y (2015) Rumen Bacterial Diversity of 80 to
270 110-Day-Old Goats Using 16S rRNA Sequencing[J]. PLoS ONE.2015, Vol. 10(No.2):
271 e0117811.
- 272 12. Wei Deyong, Zhu Weiyun, Mao Shengyong (2012) Effects of dietary NFC/NDF ratios on
273 rumen fermentation and rumen microbial flora in goats [J]. China Agricultural Science, 45
274 (07): 1392/1398.
- 275 13. Bowman J G P, Sowell B F, Surber L M M, Daniels T K (2004) Nonstructural carbohydrate
276 supplementation of yearling heifers and range beef caws[J]. Anim. Sci. 82, 2724–2733.
- 277 14. Hall M B (2003) Challenges with nonfiber carbohydrate methods[J]. Journal of Animal
278 Science. Vol. 81(NO.12): 3226-3232.
- 279 15. DeSantis T Z, et al. (2006) NAST: a multiple sequence alignment server for comparative
280 analysis of 16S rRNA genes. Nucleic acids research 34. suppl 2: W394-W399.
- 281 16. Ondov Brian D, Nicholas H, Bergman and Adam M. Phillippy (2011) Interactive
282 metagenomic visualization in a Web browser. BMC bioinformatics 12. 1: 385.
- 283 17. Agricultural Industry Standard of the people's Republic of China-Meat Sheep feeding

- 284 Standard (NY/T816-2004)[J]. Hunan feed ,2006 (06): 9-15。
- 285 18. Edgar Robert C (2013) UPARSE: highly accurate OTU sequences from microbial
286 amplicon reads. *Nature methods* 10.10 (2013): 996-998.
- 287 19. SIMPSON J M, MCCRACKEN V J, WHITE B A, et al. (1999) Application of
288 denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal
289 microbiota[J]. *Journal of Microbiological Methods*, 36: 167-179.
- 290 20. Wang Qiong et al. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences
291 into the new bacterial taxonomy. *Applied and environmental microbiology* 73.16:
292 5261-5267.
- 293 21. Quast C, Pruesse E, et al. (2013) The SILVA ribosomal RNA gene database project: improved
294 data processing and web-based tools. *Nucl. Acids Res*: D590-D596.
- 295 22. Chao A (1984) Nonparametric-estimation of the number of classes in a population.
296 *Scand. J. Stat.* 11:265–270.
- 297 23. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. *J. Am.*
298 *Stat. Assoc.* 87: 210–217.
- 299 24. Sar C, Santoso B, Mwenya B, Gamo Y, Kobayashi T, Morikawa R, Kimura K, et al.
300 (2004) Manipulation of rumen methanogenesis by the combination of nitrate with β 1-4
301 galacto-oligosaccharides or nisin in sheep[J]. *Animal Feed Science and Technology*.
302 Vol.115(No.1-2): 129-142.
- 303 25. Seon-Ho Kim, Lovelia L Mamuad, Eun-Joong Kim, Ha-Guyn, Sung, Gui-Seck Bae,

- 304 Kwang-Keun Cho, et al. (2018) Effect of different concentrate diet levels on rumen fluid
- 305 inoculum used for determination of in vitro rumen fermentation, methane concentration, and
- 306 methanogen abundance and diversity[J]. Italian Journal of Animal Science. Vol.17(No.2):
- 307 359-367.
- 308 26. Ma T, Tu Y, Zhang NF, Deng KD, Diao QY (2015) Effect of the Ratio of Non-fibrous
- 309 Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility,
- 310 Rumen Fermentation, and Nitrogen Metabolism in Lambs[J]. ASIAN-AUSTRALASIAN
- 311 JOURNAL OF ANIMAL SCIENCES. Vol.28(No.10): 1419-1426.
- 312 27. Agle M, Hristov A N, Zaman S, Schneider C, Ndegwa P M, Vaddella V K (2010) Effect
- 313 of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy
- 314 cows[J]. Journal of Dairy Science. Vol.93(No.9): 4211-4222.
- 315 28. Pina D S, S C Valadares Filho, L O Tedeschi, A M Barbosa, and R F D Valadares (2009)
- 316 Influence of different levels of concentrate and ruminally undegraded protein on
- 317 digestive variables in beef heifers[J]. Anim. Sci. 87: 1058-1067.
- 318 29. Bargo F, Muller LD, Delahoy JE, Cassidy TW (2002) Milk response to concentrate
- 319 supplementation of high producing dairy cows grazing at two pasture allowances[J]. Journal
- 320 of Dairy Science. Vol.85(NO.7): 1777-1792.
- 321 30. Na R, Dong H, Zhu Z, et al. (2013) Effects of Forage Type and Dietary Concentrate to
- 322 Forage Ratio on Methane Emissions and Rumen Fermentation Characteristics of Dairy
- 323 Cows in China[J]. Transactions of the ASABE. Vol. 56(No.3): 1115-1122.

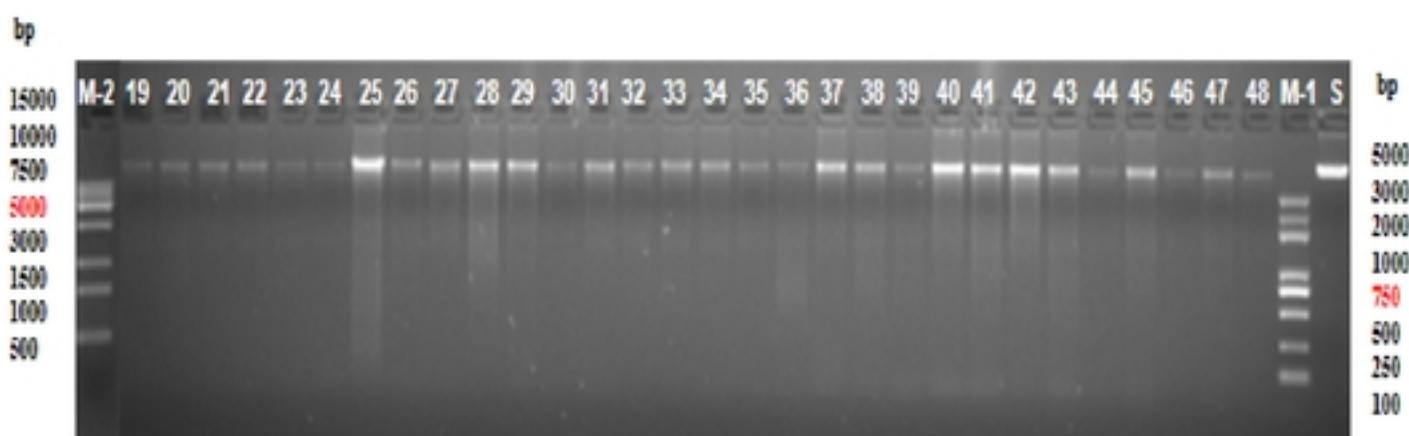
- 324 31. Yang W Z, Beauchemin K A (2006) Effects of physically effective fiber on chewing
325 activity and ruminal pH of dairy cows fed diets based on bar-ley silage[J]. Journal of
326 Dairy Science, 89 (1): 217—228.
- 327 32. Jin Wei, Li Yin, Cheng Yanfen, Mao Shengyong, Zhu Weiyun (2018) The bacterial and
328 archaeal community structures and methanogenic ptential of the cecal microbiota of goats
329 fed with hay and high-grain diets[J]. Antonie van Leeuwenhoek.
- 330 33. Liu J, Xu T, Zhu W, Mao S (2014) High-grain feeding alters caecal bacterial microbiota
331 composition and fermentation and results in caecal mucosal injury in goats. Br J
332 Nutr112(3): 416—427.
- 333 34. Rong Yong, Xianghong Jiang (2018) Effects of Different Ratios of Concentrates and
334 Roughages on Rumen Microbial Protein. Sichuan Animal Husbandry and Veterinary
335 Surgeons, 2018, 45(11): 28-30.
- 336 35. P Mosoni1, F Chaucheyras-Durand, C. Béra-Maillet1, E. Forano1 (2007) Quantification by
337 real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage
338 diet with readily fermentable carbohydrates: effect of a yeast additive[J].Journal of applied
339 microbiology. Vol.103(No.6): 2676-2685.
- 340 36. Singh K M, V B Ahir, A K Tripathi, U V Ramani, M Sajnani, P G Koringa, et al. (2012)
341 Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary
342 study. Molecular biology reports, 39(4): 4841-4848.
- 343 37. Ley R E, Lozupone C A, Hamady M, Knight R, Gordon J I (2008) Worlds within worlds:

- 344 Evolution of the vertebrate gut microbiota(Article)[J]. *Nature Reviews Microbiology*.
- 345 Vol.6(No.10): 776-788.
- 346 38. N Borruel, C Manichanh, K S Burgdorf, M Arumugam, JJ Raes, RQ Li, et al. (2010) A
347 human gut microbial gene catalogue established by metagenomic sequencing[J]. *Nature*,
348 2010, 464 (7285): 59-65.2010
- 349 39. OLIVEIRA M L S, AREAS A P M, CAMPOS I B, et al. (2006) Induction of systemic
350 and mucosal immune response and decrease in *Streptococcus pneumoniae* colonization
351 by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumo-
352 coccal surface antigen A[J]. *Microbes and Infection*, 8(4): 1016–1024.
- 353 40. Lanjie Li, Shuru Cheng, Qiyu Diao, Tong Fu, Yanliang Bi, Anqi Wang, et al. (2017)
354 Effects of diets with different levels of NFC/NDF on rumen fermentation parameters
355 and bacterial community in male calves. *Journal of Livestock and Veterinary Medicine*,
356 48(12): 2347-2357.
- 357 41. Pitta D, S Kumar, B Veiccharelli, N Parmar, B Reddy and C Joshi. (2014) Bacterial
358 diversity associated with feeding dry forage at different dietary concentrations in the
359 rumen contents of Mehshana buffalo (*Bubalus bubalis*) using 16S pyrotags. *Anaerobe*,
360 25: 31-41.
- 361 42. Ellison M J, G C Conant, R. R. Cockrum, K J Austin, H Truong, M Becchi, et al. (2014)
362 Diet alters both the structure and taxonomy of the ovine gut microbial ecosystem. *DNA*
363 *research*, 21(2): 115-125.


- 364 43. Kim M, J Kim, L Kuehn, J Bono, E Berry, N Kalchayanand, et al. (2014) Investigation of
365 bacterial diversity in the feces of cattle fed different diets. *Journal of animal science*,
366 92(2): 683-694.

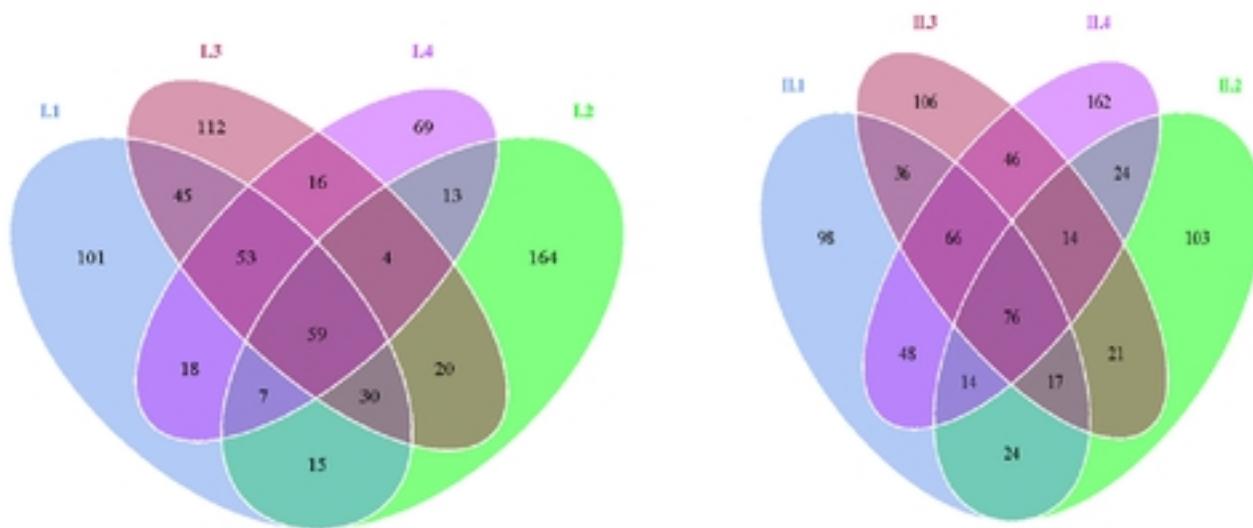
1 **Table 1. Effects of different NFC/NDF on rumen fluid pH**

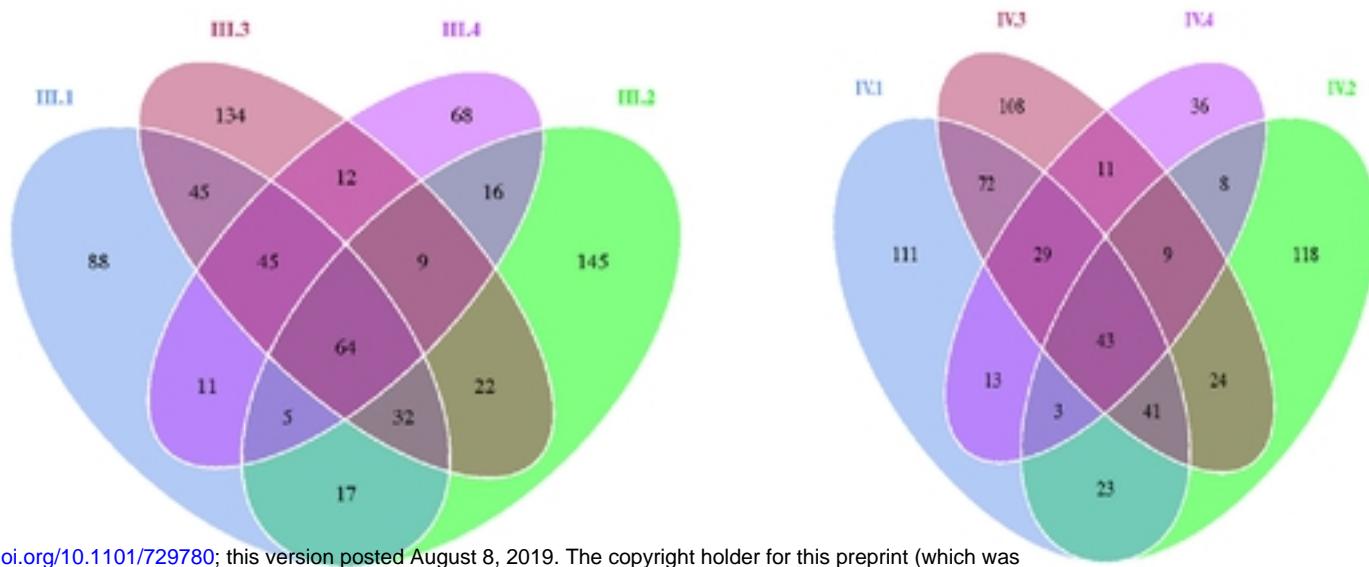
Items	pH				SEM	<i>P</i> -value
	1	2	3	4		
Period I	6.36	6.32	6.26	6.05	0.07	0.507
Period II	6.42a	6.28ab	6.03bc	6.01c	0.06	0.015
Period III	6.68a	6.48ab	6.34bc	6.19c	0.06	0.012
Period IV	6.52a	6.27ab	6.16b	6.05b	0.06	0.016


bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

2 Note: In the same row, values with no letter or the same letter superscripts mean no significant
 3 difference (*P*>0.05), while with different small letter superscripts mean significant difference (*P*
 4 <0.05). Period I (1~18 d), II (19~36 d), III (37~54 d) and IV (55~72 d) and Group 1, 2, 3, 4
 5 means four groups of sheep treated with four dietary levels of NFC/NDF (0.78, 1.23, 1.61, 2.00
 6 respectively). The same as Table 3.

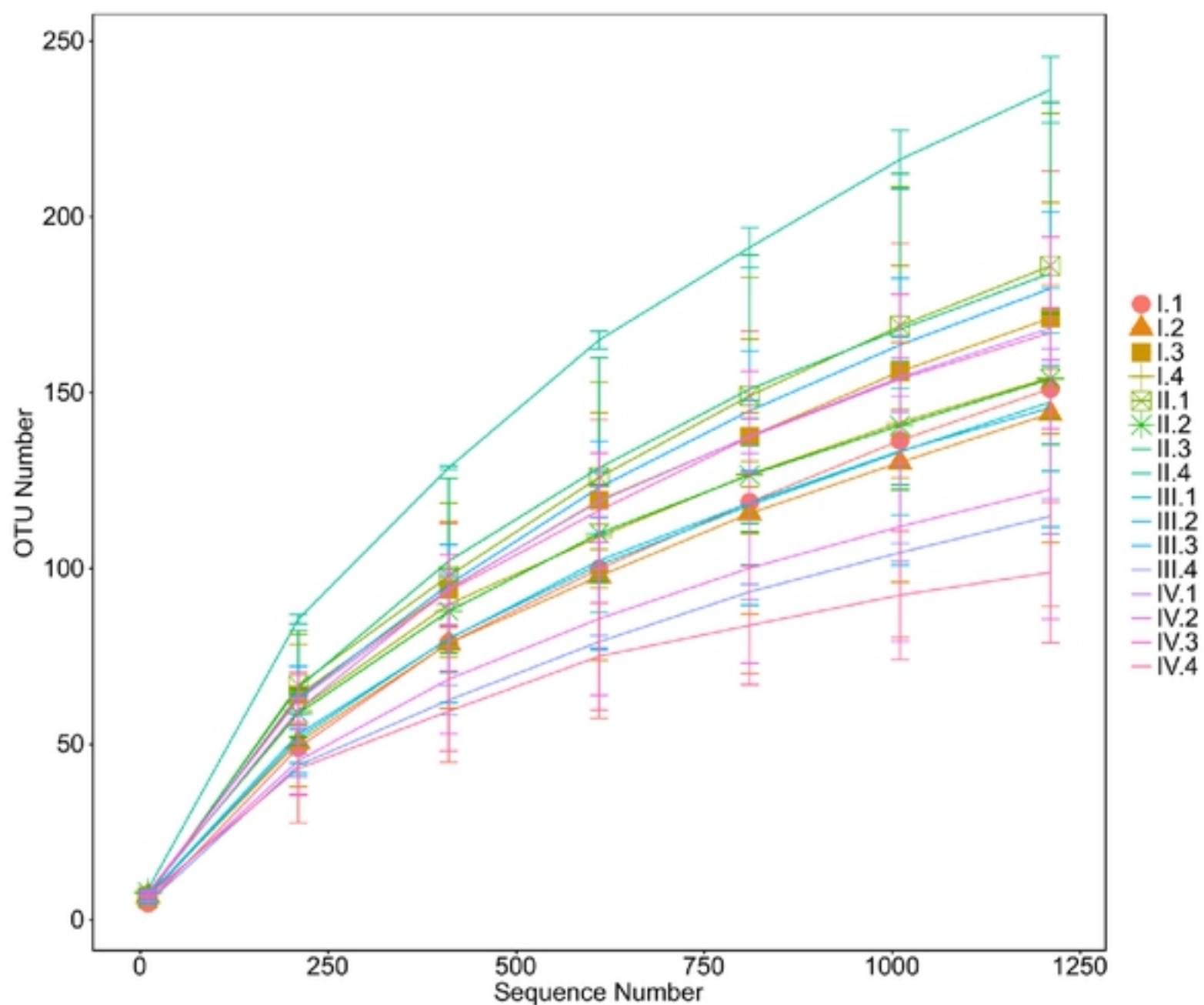
7


8


9

10 **Fig. 1. Extraction of rumen bacterial DNA.** The DNA of forty-eight samples from four periods
 bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was
 not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
 available under aCC-BY 4.0 International license.

11 samples were extracted, the order of 1~3, 4~6, 7~9 and 10~12 means samples in group 1, 2, 3 and
 12 group 4 of period I respectively, each group with three replicates. The following order are as
 13 period I.


14

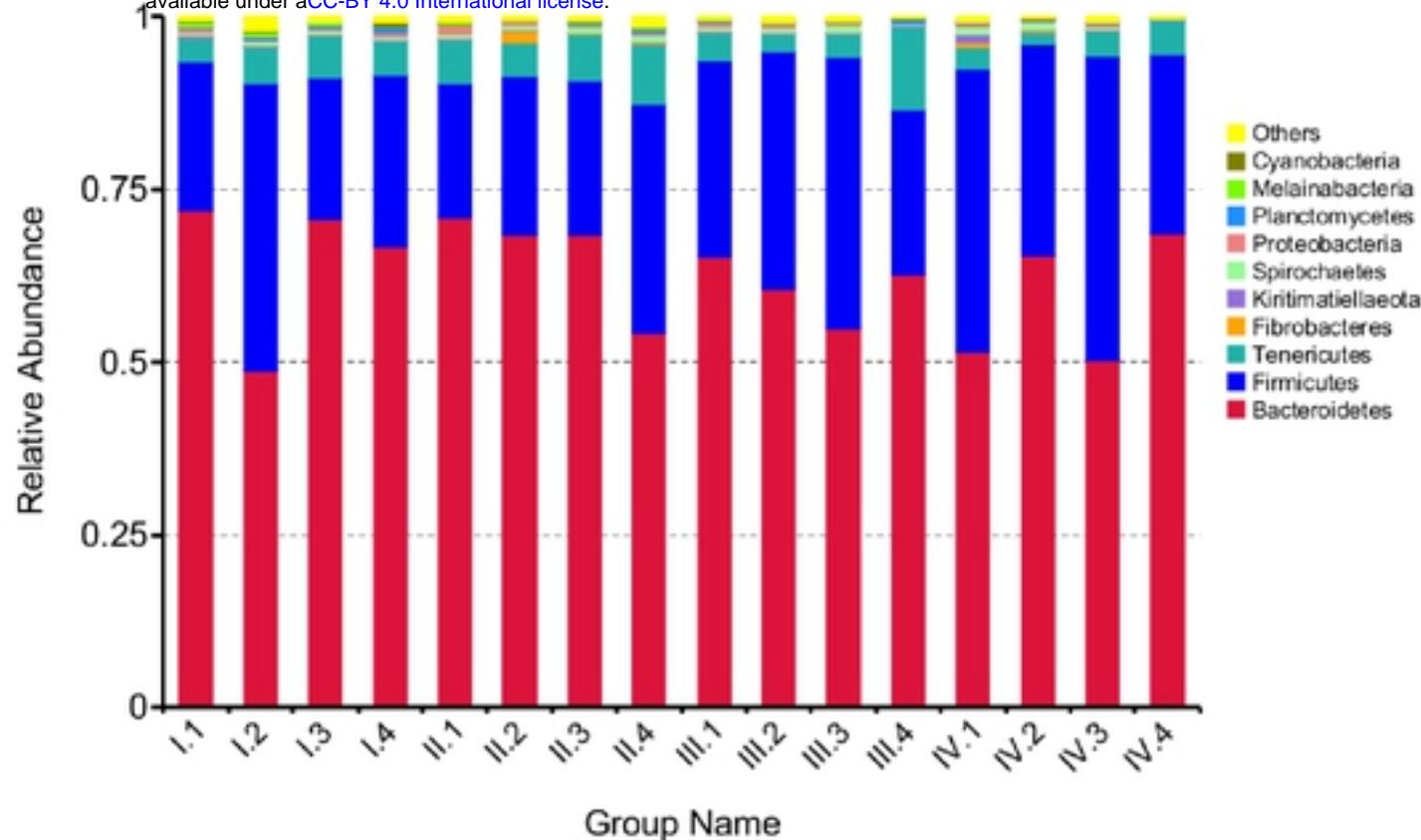
bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

15

16 **Fig. 2. Vene graph of microflora in rumen fluid of Karakul sheep.** The amounts of OTUs in
17 each group were shown and four groups of one period were formed in one Vene graph.

18

19 **Fig. 3. OTU dilution curve of bacteria in the rumen of Karakul sheep.** Rarefaction curves of
20 OTUs clustered at 97% sequence identity across different samples.

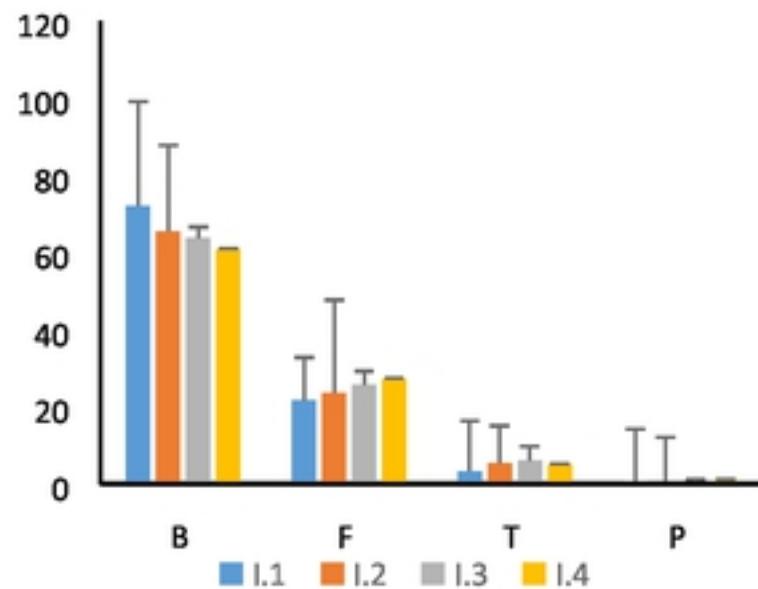

21 **Table 2. Analysis of Alpha diversity of rumen liquid samples at 0.03 distance**

Items		observed_s pecies	Shannon	Simpson	Chao1	ACE
<hr/>						
	1	151	3.488	0.631	295.35	309.08
I	2	144	4.447	0.853	259.414	271.994
	3	171	4.594	0.799	332.167	340.381
	4	154	4.946	0.897	232.5	252.125
<hr/>						
	1	186	4.536	0.787	321.413	357.069
II	2	154	5.088	0.927	246.385	274.676
	3	184	4.865	0.838	315.519	348.306
	4	236	6.127	0.961	399.36	417.33
<hr/>						
	1	147	4.465	0.863	243.969	295.035
III	2	146	4.545	0.874	233.092	263.23
	3	180	5.024	0.906	275.943	318.957
	4	115	3.786	0.798	198.268	208.16
<hr/>						

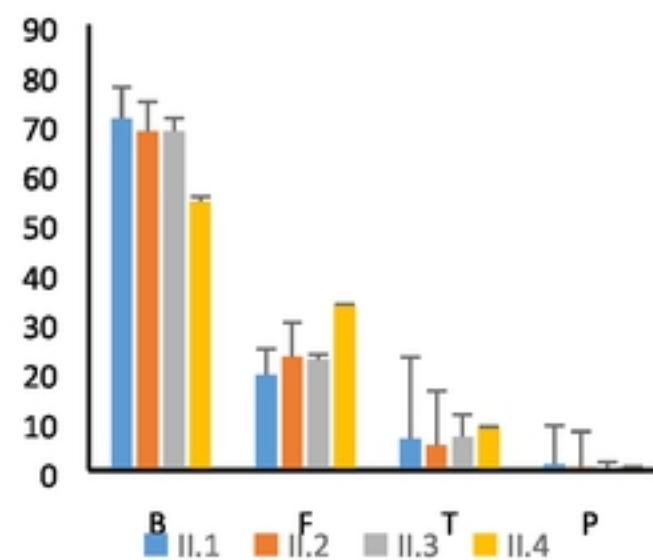
bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

	1	168	4.94	0.899	246.109	288.862
IV	2	122	3.992	0.81	338.777	248.709
	3	167	5.08	0.912	250.554	293.258
	4	99	4.36	0.879	139.488	144.216

bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

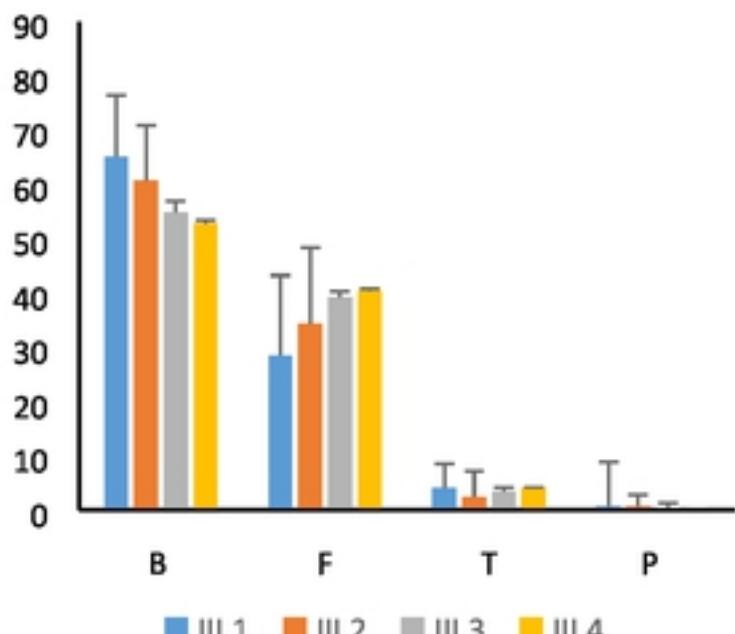


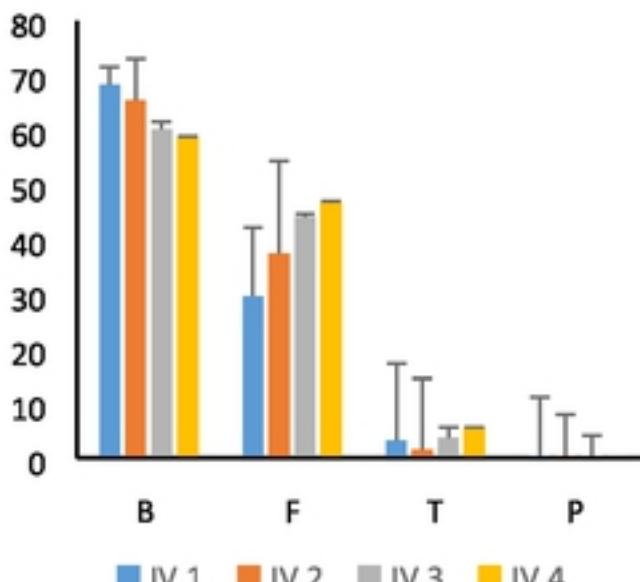
22


23 **Fig. 4. The column chart of the main dominant phylum in Karakul sheep fed with different**
 24 **NFC/NDF diets.** A color-coded bar plot showing the average bacterial phylum distribution across
 25 the different age groups that were sampled.

26 a

b


27

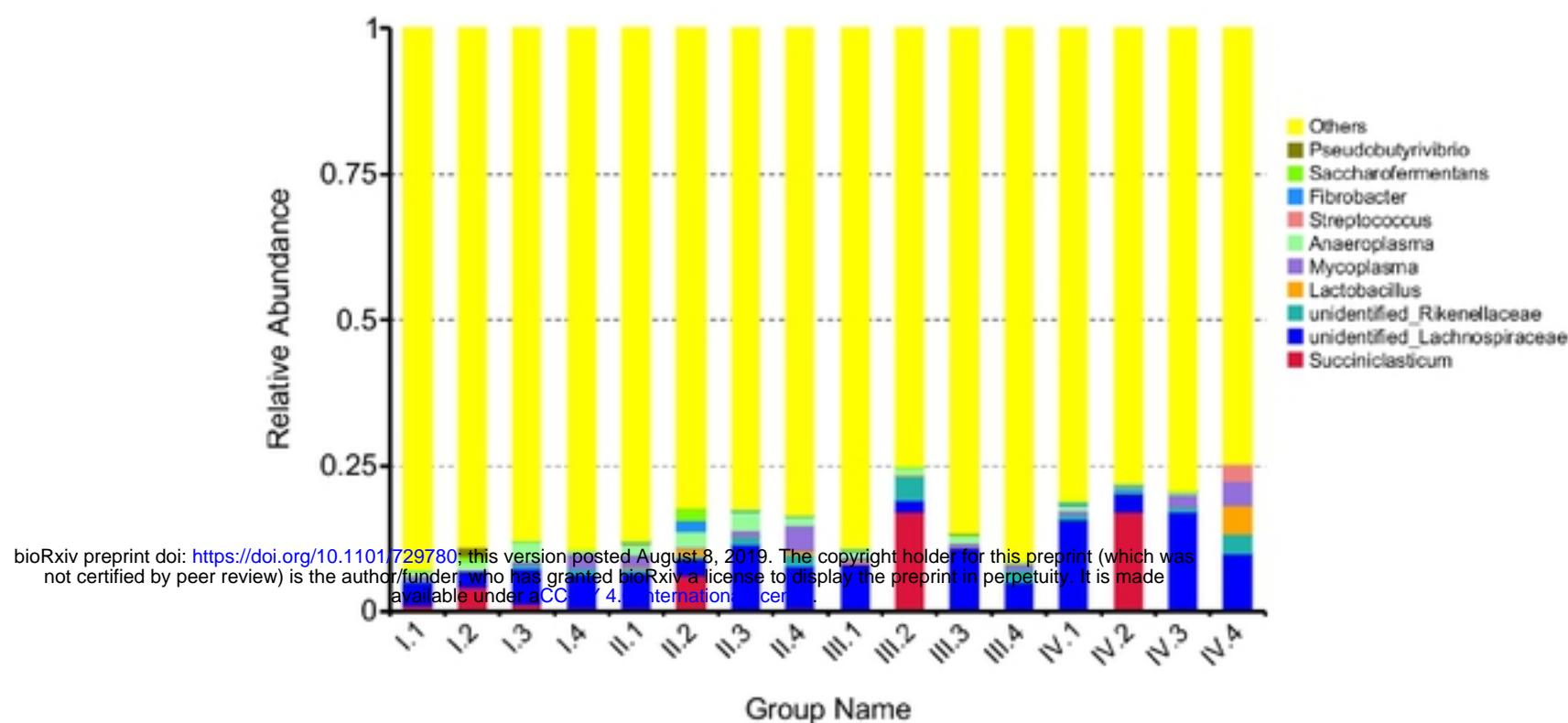

d

bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

28

29

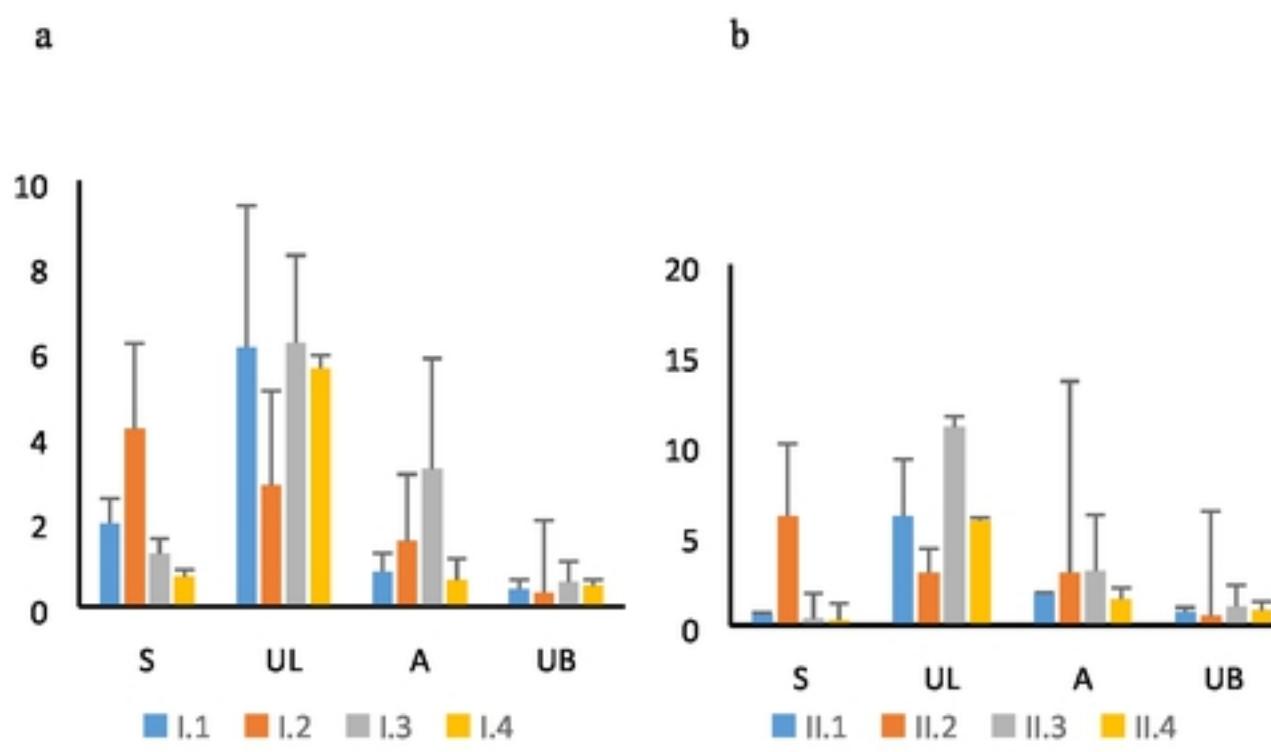
29


30 Fig. 5(a-d) . Effects of different NFC/NDF diets on relative abundance (% reads) of rumen

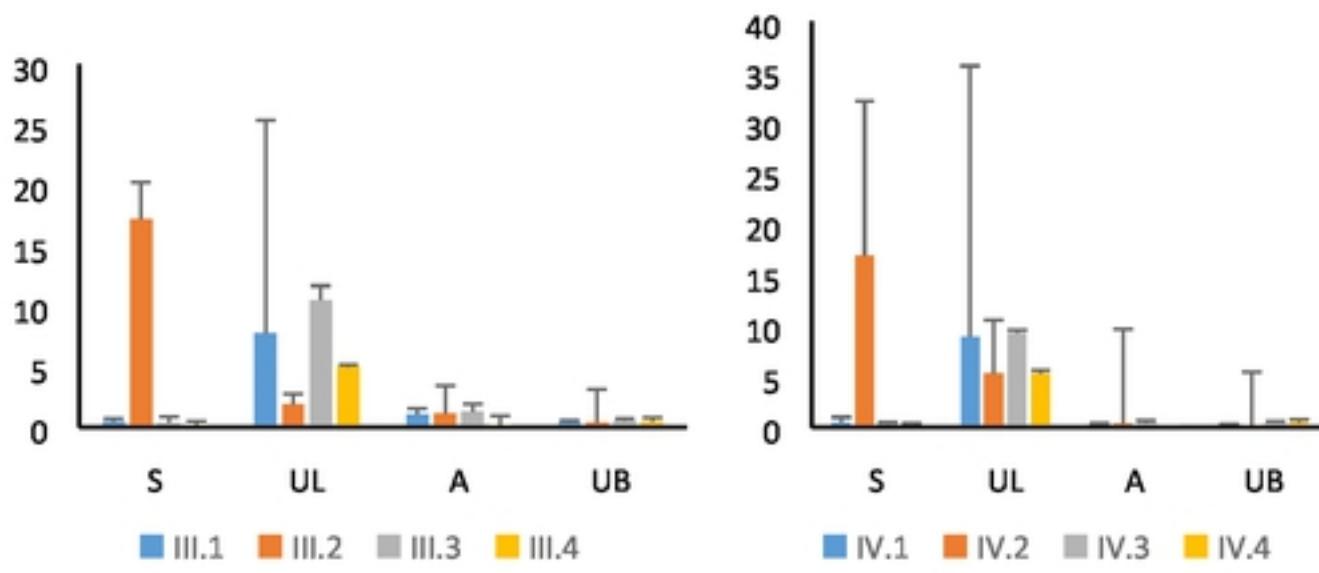
31 phylum in Karakul Sheep

32 Note: B means Bacteroidetes, F means Firmicutes, T means Tenericutes, P means

33 Proteobacteria; a, b, c, d represents the experiment period of I, II, III, IV respectively.


34

35


36 **Fig. 6. The column chart of the main dominant genus in Karakul sheep fed with different**
 37 **NFC/NDF diets. A color-coded bar plot showing the average bacterial genera distribution across**
 38 **the different age groups that were sampled**

39

40

41

42

bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

43 **Fig. 7 (a-d): Effects of different AFC/NDF diets on relative abundance (% reads) of**

44 **rumen genus in Karakul Sheep.** Note: S means *Succinivibacter*, UL means
 45 *unidentified-Lachnospiraceae*, A means *Anaeroplasma*, and UB means *unidentified*
 46 *Bacteroidales*, a, b, c, d represents the experiment period of I, II, III, IV respectively.

47

bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

48

49 Relative abundance of community (%)

50 **Fig. 8. Heat map of the rumen bacteria composition at species level.** The heat map indicates

51 the relative percentage of each species for the different NFC/NDF group sampled.

52 **Table 3. Effects of different NFC/NDF on the relative abundance (%) of cellulose-degrading**

Period I

Species	1	2	3	4	SEM	P-value
<i>Butyrivibrio-fibrisolvens</i>	2.664a	0.466b	2.990a	2.123a	0.371	0.035
<i>Fibrobacter-sp-UWCM</i>	0.027	0.027	0.027	-	0.006	0.441
<i>Ruminococcus-slavefaciens</i>	0.027	0.054	0.051	-	0.038	0.216
<i>Ruminococcus-albus</i>	-	0.055	-	-	0.009	0.052

Period II

Species	1	2	3	4	SEM	P-value
<i>Butyrivibrio-fibrisolvens</i>	2.689a	0.548b	3.123a	2.406a	1.132	0.027
<i>Fibrobacter-sp-UWCM</i>	0.082	0.411	0.027	-	0.350	0.294
<i>Ruminococcus-slavefaciens</i>	-	0.055	0.050	0.027	0.036	0.290
<i>Ruminococcus-albus</i>	0.027	0.055	-	-	0.01	0.561

Period III

Species	1	2	3	4	SEM	P-value
<i>Butyrivibrio-fibrisolvens</i>	6.785a	0.657c	7.687a	3.292b	1.143	<0.01

<i>Fibrobacter-sp-UWCM</i>	0.025	0.027	-	-	0.009	0.596
<i>Ruminococcus-slavefaciens</i>	0.027	0.082	0.055	0.027	0.021	0.627
<i>Ruminococcus-albus</i>	-	-	-	-	-	-

Period IV

bioRxiv preprint doi: <https://doi.org/10.1101/729780>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Species	1	2	3	4	SEM	P-value
<i>Butyrivibrio-fibrisolvens</i>	7.234a	2.301c	8.694a	5.975b	1.581	<0.01
<i>Fibrobacter-sp-UWCM</i>	-	0.082	-	-	0.07	0.441
<i>Ruminococcus-slavefaciens</i>	-	0.082	0.079	-	0.016	0.052
<i>Ruminococcus-albus</i>	-	0.085	-	-	0.013	0.063

54

55