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Abstract

Here we present experimentally-validated computational models of gamma
rhythm and use these to investigate gamma oscillation instability. To this end,
we extracted empirical constraints for PING (Pyramidal Interneuron Network
Gamma) models from monkey single-unit and LFP responses recorded during
contrast variation. These constraints implied weak rather than strong PING,
connectivity between excitatory (E) and inhibitory (l) cells within specific
bounds, and input strength variations that modulated E but not | cells.
Constrained models showed valid behaviours, including gamma frequency
increases with contrast and power saturation or decay at high contrasts. The
route to gamma instability involved increased heterogeneity of E cells with
increasing input triggering a breakdown of | cell pacemaker function. We
illustrate the model’s capacity to resolve disputes in the literature. Our work is
relevant for the range of cognitive operations to which gamma oscillations
contribute and could serve as a basis for future, more complex models.

Keywords: Gamma oscillations, weak-PING model, V1, empirical constraints,
LFP, spikes, synchronization

Introduction

Gamma oscillations are present throughout the cortex (Bastos et al., 2015;
Bosman et al., 2014) and are thought to play an important role in neural
communication and a range of cognitive operations (Bosman et al., 2014; Engel
et al., 2001; Fries, 2015, 2009; Singer, 1995). Improving the understanding of
gamma generating mechanisms has therefore been a central question in
neuroscience in the last decades. Gamma oscillation frequency changes
strongly and monotonically with visual contrast that increases the firing rate of
visual neural pathways (Hadjipapas et al., 2015; Ray and Maunsell, 2010;
Roberts et al., 2013). Gamma power varies nonmonotonically with contrast and
shows saturation or power decay at high contrasts (Roberts et al, 2013,
Hadjipapas et al,2015), which suggests instability in the underlying network
oscillation dynamics. Such a dissociation between frequency and power (see
also (Jia et al., 2013)) and the possible oscillation instability at high contrasts
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provide interesting entry points onto the network mechanisms generating
gamma oscillation under different input firing conditions. The goal of the present
paper was to generate a model that could simultaneously display multiple
empirically observed features, including the frequency increase as well as
power saturation/decay with contrast (input strength). To that aim, we
constrained a gamma generating network model by characteristics of LFP
gamma oscillations as well as spiking data measured as a function of contrast
in monkeys.

We focused on so-called Pyramidal Interneuron Network Gamma (PING)
models, which have provided a good insight into the basic mechanisms of
gamma in V1 and other cortical areas. In the PING model, the excitatory cells
(E cells) are the drivers of the gamma rhythm (Tiesinga and Sejnowski, 2009).
When activated, they stimulate the inhibitory cells (I cells), which in turn provide
inhibitory feedback to the E cells, which restart firing once the decay of inhibition
is overcome by on-going excitation. In the so-called “strong PING” mechanism
(Borgers and Kopell, 2005; Tiesinga and Sejnowski, 2009), both E and | cells
spike in a phase-locked manner at a specific phase in the gamma cycle, with E
spikes locked to a slightly earlier phase than | spikes. In so-called “weak” PING
models, E cells fire irregularly and at a much lower frequency compared to the
LFP population gamma rhythm, with only a sparse random set participating in
each cycle of gamma (Borgers et al., 2005; Lee and Jones, 2013; Wang, 2010;
Whittington et al., 2000). | cells, as in the strong PING model, fire at a rate close
to the LFP gamma frequency. In another class of network models referred to
as the Interneuron Network Gamma (ING) model, the | cell population inhibits
itself, and generates oscillatory firing at a gamma frequency determined by the
time constant that regulates the decay of inhibition (Tiesinga and Sejnowski,
2009). E cells may be passively entrained by the gamma rhythm imposed by
the | cells, leading to a locking of | cells to a slightly earlier phase in the gamma
cycle than E cells.

Neurophysiological recordings in V1 during stimulus contrast manipulations
provide data that permit to increase our understanding of gamma generating
mechanisms. A common finding is that stimulus contrast enhancements yield
nearly linear increases in gamma frequency in LFP recordings (Jia et al., 2013;
Ray and Maunsell, 2010; Roberts et al., 2013) as well as monotonic increases
in spike rate (Hadjipapas et al., 2015). The effect of contrast on gamma
frequency reflects the fact that contrast is a proxy of excitatory drive (E-drive)
(see (Hadjipapas et al., 2015) and references therein). High excitatory drive will
overcome decaying inhibition faster, in turn generating gamma at a higher
frequency. Thus, contrast affects crucial network interactions in PING models.
However, we found gamma power in LFP to saturate or even decrease at high
contrast (Hadjipapas et al., 2015; Roberts et al., 2013). This finding has not
been widely studied and is poorly understood. Some degree of power
decay/saturation was also present in another study in awake monkeys ((Ray
and Maunsell, 2010), see figures 1E, 1H)), although this was not commented
upon by the authors. Power decay at the highest contrasts has also been
observed in anesthetized monkeys by (Jia et al., 2013) in their figure 2C-2D,
but without further discussion of that finding. Another, similar study in
anesthetized monkeys, however, did not observe power decay (Henrie and
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Shapley, 2005). We should note that beyond the possible effects of anesthesia
on power saturation/decay, the stimuli also differed significantly among studies,
possibly explaining differences in results. Nevertheless, when considering the
two studies using awake monkeys (Roberts et al., 2013; Ray and Maunsell,
2010), power saturation or decay appears to be the predominant observation.

PING networks have often been used to model selected aspects of empirical
data, at the cost of producing unrealistic network behavior in other aspects. For
example (Roberts et al., 2013) used a strong PING spiking network model that
replicated the frequency shift and spectral power saturation/decline that they
observed with increased contrast in monkey V1. However, more detailed
analysis of this model, reveals unrealistically high firing rates especially for E
cells (see results). (Eric Lowet et al., 2015) replicated the same results using a
weak PING model with a ring-based topology but applied a long (non-
physiological) synaptic time constant for GABA. (Jia et al., 2013) have
implemented a population firing rate model that captured the frequency shift but
not the power decay as observed in the data. (Mazzoni et al., 2008) using a
PING model captured the behaviour observed in (Henrie and Shapley, 2005)
thus not examining the case of power decay/saturation. Hence, existing models
have focused on specific phenomena of interest while allowing unrealistic
parameters or network behaviour in aspects outside the focus of interest. This
shows that even in relatively simple models, many parameters are unknown
and are set based on practical considerations or by convention.

To arrive at more realistic PING models, a broader range of parameters needs
to be simultaneously constrained by data. To achieve that, we used the
extensive data of (Roberts et al., 2013), as well as an existing dataset , not
previously reported, which showed power saturation or reduction at high
contrasts. Contrary to earlier modelling approaches, we constrained a spatially-
undifferentiated PING network through a combined exploration of multiple
network parameters aimed at approaching a comprehensive set of empirical
spiking and spectral observations. This was done by taking the following steps:
(1) We first characterized the observed gamma LFP spectra in terms of the
parametric effects of E-drive (contrast) on the power and frequency of
spectral distributions. In addition, we took into account parametric effects
of contrast on firing rate, and incorporated estimates of the different firing
rates in E and I cells recorded in other studies (Contreras and Palmer,
2003). The sparse relationship between spiking and the LFP gamma
oscillation limited the category of plausible models to the weak PING
category.
(2) For this limited subset of models, we determined combinations of El and
IE connectivity strengths so that manipulations of input parameters in the
model replicated the empirical effects of contrast on gamma frequency
and power, while also producing realistic neuronal spiking. Within EI/IE
parameter space, specific parameter combinations led to either power
saturation or power decay at high contrasts replicating experimentally-
observed variability between monkeys.
(3) Next, using an example of a validated model characterized by strong
power decline at high contrasts, we showed that both the mean input
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level and heterogeneity of input to E cells have to increase with input
strength (contrast) in order to generate realistic network behaviour.

(4) In further analysis of the requirements of the input to | cells, we
discovered that the input to | cells has to be moderate in magnitude and
should not be modulated by contrast.

(5) Investigating a valid model, we then identified possible mechanisms
underlying the empirically observed power saturation and decline at high
contrast. In the chosen example of a valid model, the power decline was
related to oscillation destabilization at high input strength contrasts (E-
drive). In this destabilization, both E and | populations played a role,
through a mechanism that is distinct from those described in the
literature so far.

(6) Finally, we used the validated model to investigate discrepancies in the
literature concerning the effect of GABA on gamma oscillations such as
frequency and power.

We propose that the model derived in our study will be useful for other modelling
studies, and that our approach to the empirical constraining of PING models
can be expanded when richer empirical datasets become available. As local
gamma networks are the building blocks of larger networks that aim to
understand complex cognition through their interactions, there is considerable
value in improving our models of these building blocks.

RESULTS

1. Weak or strong PING?

We first considered the empirical validity of a strong PING model as used in
(Roberts et al., 2013), with the parameter settings listed in Table 3. Note that
(Roberts et al., 2013) used an LFP proxy based on the firing rate of E cells,
whereas in the present work, we used a membrane potential LFP proxy (see
Methods). The strong PING model, irrespective of the LFP proxy, reproduced
the principal features of the empirical LFP spectral response. Increased
contrast shifted LFP frequencies towards higher values (Figure 1Aa), whereas
after an initial power increase with contrast, a further contrast increase led to
power decay (Figure 1Ab). In the light of the similarity of empirical and
simulated data, one could conclude that a strong PING model provides a
plausible mechanism for the generation of the empirical data.

However, the model unit spiking showed characteristics that were less
plausible. E cells (blue line in Figure 1Ac) showed much higher firing
frequencies than | cells (red line in Figure 1Ac). Moreover, E cells (blue line)
showed firing rates that were higher than the LFP oscillation frequency (black
line), which at high inputs pulled the average spiking rate (magenta line) above
the LFP oscillation. This would be highly surprising, and we therefore verified
monkey LFP and V1 spiking behaviour as a function of contrast in a dataset
used in an earlier paper from our group (Roberts et al., 2013), as well as in an
existing dataset, not previously presented.
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Figure 1: Contrast-dependent Modulation of LFP and spikes in V1
modelled through strong PING and observed in two monkeys (see
Roberts et al., 2013). Aa Strong PING model. Power spectra of model outputs
for different input levels (contrasts, colour code)). A clear frequency shift of
spectral gamma response as a function of contrast is observed. Ab Power as
a function of contrast-strong PING model. From the power spectra in Aa two
parameters are extracted: peak power and peak (power) frequency. Peak
power is plotted as a function of contrast. A nhonmonotonic power modulation
with contrast is observed. Ac Gamma peak frequency (black), average
population spiking rate (E&l cells, denoted as AVG) in magenta, as well as E
cell (EXC) in blue and | cell (INH) in red spiking rate as a function of input
strength (contrast) in a strong PING model. Conventions in Ba-C and Ca-c as
in Aa-c, black line indicates LFP-derived gamma peak frequency and magenta
line indicates empirical average single unit rate. Ba-c Corresponding
observations in monkey S. Ca-c Corresponding observations in monkey O.
Curve width in Aa, Ba, Ca indicates variability (mean + SEM). Spectral
responses in the monkeys were normalized by baseline. Note that slightly
different contrast ranges were used in the two monkeys (see legends). LFP
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data represent averages over 8 contacts x 17 sessions x average 62 trials in
monkey S, and 16 contacts x 45 sessions x average 36 trials in monkey O.
Spiking data come from single units isolated from the same datasets (57 in
monkey S, and 331 in monkey O).

To evaluate the plausibility of the strong PING model, we attempted to classify
single neurons recorded in monkey V1 into excitatory and inhibitory
subcategories based on spike shape. This has been successfully done in
macaque V4 (Nandy et al., 2017; Vinck et al., 2013) and in cat area 17 (Moca
et al., 2014). Spike locking behaviour can be used to distinguish between PING
and ING. For example, the observed phase-lead of excitatory cells over
inhibitory cells in macaque area V4 (Vinck et al., 2013) and cat (Moca et al.,
2014) support PING rather than ING. Likewise, cycle-by-cycle strong locking is
indicative of strong PING, whereas sparse locking of E cell spiking to the LFP
gamma rhythm is indicative of weak PING. Unfortunately, we were unable to
come to a satisfactory classification of the V1 spiking cells in our data.
Nevertheless, the population spiking rate proved to be a valuable tool to
constrain PING models.

Figures 1B and 1C show for two monkeys the LFP spectral and spiking
response to a range of grating contrasts. In the two monkeys, gamma spectra
were contained within a 20-80 Hz frequency range and spectra at low contrast
were characterized by very low power. The spectral response was furthermore
characterized by a saturation or decay in power in the high contrast range
(Figure 1Bb and 1Cb, and a linear increase in LFP gamma frequency (at peak
power) as a function of contrast (black line Figure 1Bc, 1Cc). Population
spiking rate showed a modest, linear increase with contrast (magenta line
Figure 1Bc, 1Cc).

A highly relevant observation in both monkeys was that the population spiking
rate was very low compared to LFP gamma frequency (compare magenta and
black lines in Figures 1Bc, 1Cc). This observation disqualifies the strong PING
model used in (Roberts et al., 2013). Instead, the data suggest a sparse rhythm
in the neural population in which only a subset of neurons participate in the
population oscillation in a given cycle. This idea is in line with the notion of
sparse rhythms and, thus, with a weak-PING model as the underlying gamma
generation mechanism (Borgers et al., 2005; Wang, 2010). The sparseness of
single unit firing with respect to the population oscillation can be characterised
by the ratio between LFP gamma frequency and single unit firing rate. This was
also extracted from the empirical data. To inform the relative firing rates of E
and | neurons as a function of contrast we utilised work by (Contreras and
Palmer, 2003), from where we extracted the relative ratio of I/E firing rates.

In summary, the empirical data allowed us to formulate a set of 5 constraints
for model validation (as illustrated in Figure S1 and described in detail in

Methods - Table 5):
(1) I cells should fire at least 2.5 times more frequently than E cells while
both should increase their output linearly within the contrast range used.
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(2) The LFP gamma peak frequency must be set to values between 2.3 and
6.3 times the average single-unit firing rate, in line with empirical
observations.

(3) The power at the lowest contrast should be smaller than a threshold
value (0.5) and the maximum power should be greater than a threshold
value (1.0); These constraints were applied respectively to capture the
qualitative observation that at low contrasts gamma power is low, and to
ensure that a gamma oscillation indeed exists in the model outputs.

(4) In the power-to-input function, the flank to the left of the peak should be
less steep than the right flank.

(5) LFP oscillations should fall within the gamma range (15-80Hz).

2. Empirically Constrained Weak PING Models

We constructed a spatially undifferentiated weak PING model, which was
thought to represent the local network in V1 in a much-simplified manner. The
network was comprised of 100 Hodgkin-Huxley type cells; 80 excitatory cells
and 20 inhibitory cells. These were randomly connected, whereby all possible
connections (E to | (El), | to E (IE), I to I(ll), E to E (EE)) occurred with a certain
probability (Figure 2A). Synapses were modeled by a voltage-dependent
model, representing fast excitatory and inhibitory currents with realistic time
courses. Both populations received a noisy external excitatory input reflecting
the LGN afferent input. To obtain weak PING the E cell frequency input current
(f-1) curve and the synaptic conductances were adjusted to facilitate sparse
firing of E cells (see Methods for details).

The crucial connectivity parameters to achieve oscillations in PING models are
the El and IE connection probabilities (Buzsaki and Wang, 2012; Lee and
Jones, 2013). We applied a 2-dimensional parameter manipulation, in which
the El and IE connection probabilities were manipulated systematically. The
resulting model outputs were evaluated against our 5 constraints in order to
select valid connectivity parameters. In Figure 2B, each coordinate (IE, El)
corresponds to a different set of connection probabilities. The output of the
simulated models for each coordinate was processed to extract the model
output observables that corresponded to the empirical constraints. The values
of these model observables are color-coded in the surface plots in Figure 2Ba-
d. Only networks that simultaneously satisfied all criteria were considered
empirically valid and are indicated with a diamond (networks exhibiting power
decay) or square symbol (networks exhibiting power saturation) in the panels
in Figure 2B. These panels correspond to the following criteria (see Methods
for quantitative details): Criterion #1: | cells fire more frequently than E cells
(Figure 2Ba); Criterion #2: the LFP oscillation frequency is higher than the
population firing rate (Figure 2Bb); Criterion #3: Maximum power is greater
than a threshold value (Figure 2Bc); Criterion #4: LFP peak power rise is faster
than its decay (Figure 2Bd.). Note that Criterion #5, stipulating that oscillations
must be in the gamma range (15-80 Hz), was satisfied for all but one set of
connection probabilities ((El 0.1, IE 0.1), and is not illustrated in Figure 2B.
Three cases of networks with different behaviour are illustrated in Figure 2C-
E. The first is a non-valid network (El 0.1, IE 0.1) with very low overall power
(panel C), the second a valid network (El 0.6, IE 0.7) exhibiting fast decay
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(panel D), and thirdly a valid network (El 0.7, IE 0.3) exhibiting saturation (panel
E). In all three models, and in line with weak PING, neurons fired sparsely, |
cells exhibited a higher firing rate than E cells, and the LFP oscillation frequency
was higher than the average firing rate of the neurons. The network shown in
Figure 2C was invalid due to the weak El and IE connectivity. Note that model
parameters including (but not limited to) El and IE connectivities could be set
to simulate network outputs not showing power saturation or decay (data not
shown), but here we focused on constructing valid simulations for the empirical
data in our own hands.

Going beyond these three examples, we report the following general
observations: All tested network parameter sets for EI and IE connection
probabilities for networks were valid with respect to Criterion #1 (I cells fire more
frequently than E cells) and #2 (LFP oscillation frequency is higher than the
population spiking rate). However, changes in El and IE connection
probabilities distinguished valid from invalid models based on the other 3
criteria. Notably, valid models were not a few, but rather many, which within a
broad range of El and IE connection probabilities reproduced power decay
(diamonds in Figure 2B) or power saturation (squares in Figure 2B) at high
contrast. In addition, the models exhibiting saturation and decay occupied
separate regions in the EI/IE parameter space. Specifically, when the sum of
El and IE connection probabilities was greater than 1, decay was observed;
when this sum was less than 1, saturation was observed. When this sum was
equal to 1 both cases were observed for different El and |IE parameter
combinations. In summary, the described validation process indicated the
importance of a specific relative ratio between EIl and IE connection
probabilities for the network to exhibit realistic (empirically valid) behaviour. In
the following sections we used a specific valid instantiation (in terms of
connection probability parameters) defined as the default weak PING for further
investigations (see Table 3 for parameter settings).
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Figure 2: Weak-PING Model Validation. (A) Network Diagram of PING
network. The model contained regular-spiking E cells (blue) and fast-spiking |
cells (red) modelled as Hodgkin-Huxley type single compartment neuron
models. Connections within and between populations were set randomly
(through voltage-dependent synapses) with a certain probability of connection
(El, IE, EE, Il). The LGN afferent input was modelled in terms of Poisson spike
trains. The strength of input to the excitatory cells was varied as per
conductance magnitude to represent stimulus contrast-dependent input,
illustrated by the black arrows of different weight. Input to | cells was of the
same magnitude across all contrasts as illustrated by a single black arrow. (B)
Parametric Exploration for E-to-l and I-to-E connection probabilities.
Panels/Colour surfaces correspond to the following criteria (a) #1c, (b) #2, (c)
#3b (d) #5 as listed in Table 4, across all possible ElI and IE connection
probabilities explored here. The horizontal and vertical axes correspond to IE
and El probabilities of connection. Each coordinate (IE, El) corresponds to a
weak PING model with its connection probabilities varied. The output of this
model was processed to extract the model output observables that
corresponded to the empirical constraints listed above. Valid networks
(satisfying simultaneously all criteria) are denoted by a diamond symbol for
networks exhibiting power decay and with a square for networks exhibiting
power saturation. Colour intensity signifies the value of the criterion in each
figure. (C)-(E). Examples of valid and non-valid weak PING networks.
Same conventions as in figure 1. All results plotted as mean + SEM. LFP
spectral response in three representative networks illustrating the LFP power
spectrum for shifting contrasts (left), the peak power as extracted from the
spectral response per each contrast (middle) and the peak gamma frequency
and average firing rate of all the cells superimposed (right). In the first column
power spectra shown in hotter colors correspond to higher contrast stimulation,
bluer colors correspond to lower contrast conditions. A non-valid network (C) is
shown which failed to generate oscillations with high enough power and two

9


https://doi.org/10.1101/729707
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/729707; this version posted August 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

valid networks showing a frequency-dependent spectral shift with contrast (left),
a non-monotonic power rise and either decay (D) or saturation (E) with
increased contrast (middle).

3. Input Requirements: To obtain realistic behaviour both the mean input
strength and heterogeneity across E cells must be modulated by
contrast

In the in-vivo organism there is a complex afferent system whereby V1
superficial layers (where gamma is the strongest) receive input across multiple
stages (the physical luminance input, the retina, the LGN and the input layers
of V1). By the term input we refer here to the outcome of this afferent processing
system which reaches the superficial layers in V1.

In the strong PING model simulated in Section 1 (Roberts et al., 2013), the input
was current-based (see Methods). However, in our validated weak-PING
model, we used conductance-based input. This raised the question of how the
nature of input may influence model behaviour. To investigate this, we exposed
a strong and a weak PING model (see Table 3 for full set of parameters) to the
same current input. Conversely, we took the same weak PING model and
compared its behaviour when exposed to current or conductance input. In
contrast to E cells, | cells in both models were not subjected to contrast-
dependent modulations; they received a low-level, constant drive (see Section
4).

To directly compare the properties of the input in the different cases, we
“recorded” the intracellular effective current I;yp(t) resulting from external (to
the model network) input to each cell. For the current-based input case, I;yp(t)
is a tonic current applied to each cell, and for the conductance-based input
case, I;yp(t) is obtained from the convolution of the synaptic model with a
Poisson spike train (see Table 1E for more details). We then extracted two
descriptive characteristics of the external contrast-modulated input to the entire
population. Specifically, the input magnitude mg (C’;:z) was calculated by taking
the average I,y (t) across E cells over the duration of stimulation, followed by
averaging over trials. Input heterogeneity hg ( “Az) was calculated by taking the

cm

standard deviation of I,,p(t) across E cells per trial for the duration of
stimulation, followed by averaging over trials.
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Figure 3: Effects of input properties on E cells. Panels A-D: All results
plotted in as mean + SEM. The first two vertical columns (a and b) show
parametric variation of network oscillation features as a function of input
strength. The (a) column shows gamma peak power of modelled LFP and the
(b) column the average single unit firing rates for E, | and all cells (AVG) as well
as LFP gamma peak frequency (gamma peak) (conventions as in Figure 1).
The last two columns show properties of the input as modulated by contrast,
column (c) shows the magnitude (mg) and column (d) the heterogeneity (hy) of
the intracellular effective input current across E cells. Rows represent
simulation results from different model types. Row A shows strong PING with
current input (used in (Roberts et al., 2013)), which did not satisfy all
constraints as outlined in section 2, although it exhibited the key LFP-based
features such as frequency shift and power decay. Row B shows a weak PING
model with current input (current based, mean input (mg) varies with
contrast). The network failed to exhibit a power decay/saturation at high inputs.
Row C shows results from a weak PING model receiving a Poisson
conductance-based input (both mean (mg) and heterogeneity (hg) of input
are modulated by contrast). Row D shows a weak PING model with current
input, modified such that not only the mean (mg) but also the heterogeneity
(hg) of the input across neurons varied with contrast. This resulted in a valid
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network with similar decoupling mechanism as in the case of Poisson-
conductance-based input (Row C). Results show that to obtain the power
decay/saturation at high contrasts, both the mean (my) and the heterogeneity
(hg) of input across E cells have to be modulated by contrast.

In Figure 3, rows A-D show the model outputs of input manipulations for the
selected valid default weak PING model and for the strong PING model of
Roberts et al. (2013). Column a represents peak power as a function of input.
Column b represent the spike rates of E, | and all (AVG) neurons and the LFP
peak frequency as a function of input. Column ¢ shows the input magnitude mg
to E cells as a function of contrast modulation. Column d represents the input
heterogeneity hy for E cells as a function of contrast modulation.

For the strong PING model with current input (row A), only the input magnitude
(mg) was scaled with input strength (Figure 3Ac), whereas the heterogeneity
(hg) was constant (Figure 3Ad). This model produced plausible LFP spectral
output in the gamma range (Figure 3Aa), but at the cost of unrealistic model
unit spiking rates (Figure 3Ab). Remarkably, as shown in row B, we found that
the current input with the same characteristics (i.e. contrast-modulated input
magnitude and constant heterogeneity) given to the weak PING model led to a
power increase without saturation, thus not matching the empirical data (Figure
3Ba). Hence, network responses to the same kind of input differed strongly
between weak and strong PING models.

We then examined which input properties would restore valid network
behaviour for the weak PING model. To this aim, we first returned to the
conductance-based input that we had used in Section 2. Note that in the
conductance-based model (row C), input strength is implemented as
conductance strength gpx_r to E cells. For this type of input, an increase in
input magnitude will inherently lead to an increase in input heterogeneity
(Figure 3Cc-d). This is due to the convolution of the conductance ggx_g with
the poissonian synaptic input reflected in g(t) in the synapse model (AMPA
from LGN, Table D). The increased input heterogeneity due to the increased
input magnitude in the conductance-based case appeared crucial to achieve a
realistic level of power saturation, as well as realistic spiking behaviour (Figure
3Ca-b). Next, we tested whether contrast-modulated input heterogeneity was
crucial for plausible weak PING network behaviour also for the current-based
input case (Row D). We found that in the current-based input case, the
concurrent modulation of input heterogeneity and input strength indeed
recovered the power decay behaviour (Figure 3Da), while keeping realistic
spiking behaviour (Figure Db).

Thus, an interplay between contrast-modulated input magnitude and input
heterogeneity is required for realistic network behaviour. To achieve a better
understanding of this interplay we systematically varied parameters governing
input magnitude and heterogeneity in weak PING models using either current-
based (Figure 4A) or conductance-based input (Figure 4B). Peak frequencies
tended to increase as a function of input strength irrespective of input
heterogeneity for both current-based input (Figure 4Ab) and conductance-
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based input (Figure 4Bb). However, peak power showed a very different
landscape for current-based input (Figure 4Aa) and conductance-based input
(Figure 4Ba). For the current-based input, the peak power landscape was such
that constant heterogeneity at any level would lead to invalid network
behaviour, namely, to monotonically increasing peak power as a function of
input strength (dashed coloured lines in Figure 4Ac). Only when heterogeneity
co-varied with input strength (arrow in the power landscape in Figure 4Aa) did
the model produce valid behaviour of the peak power as a function of input
strength (black solid line in Figure 4Ac). Whether input heterogeneity co-varied
with input strength or not, the model always produced an increase in gamma
frequency as a function of input strength (Figure 4Ad). Figure 4Ae shows that
the E-drive given to individual model units is perfectly correlated with the
effective average current, measured at the level of E units in the model. Figure
4Af shows the input heterogeneity of the effective average current on E cells
(dashed coloured lines) over input strength, whereby dashed coloured lines
correspond to different but constant levels of input standard deviation o3, (the
parameter governing heterogeneity, see legend). The same figure also shows
the condition in which input strength and heterogeneity co-varied (black line,
see also Figure 3Dd). For the conductance-based input (Figure 4B), there is
an inherent positive linear relationship between conductance-based input
strength, and heterogeneity of activity in model E cells, which reflects different
levels of frequency variability over time in the Poisson spike train (Figure 4Bf).
This led to the specific power landscape in Figure 4Ba. Figure 4Bc shows
plausible peak power variations as a function of input strength at all levels of
input heterogeneity (coloured solid lines), with as the only exceptions the cases
with very high input heterogeneity (dashed orange and red lines). As opposed
to peak power variations, peak frequency variations did not differ between
different input heterogeneities (Figure 4Bd).

Overall, our findings indicate that input strength and input heterogeneity in
activity levels across E cells are two factors with dissociable contributions to the
spectral outputs of the weak PING model. On the one hand, the manipulation
of input strength to E cells alone was sufficient to obtain the experimentally
observed LFP frequency shift (and the initial increase of power with contrast at
low contrasts). On the other hand, plausible spectral power decays/saturations
at high contrasts relied on increasing heterogeneity of the input across E cells
as a function of input strength. This held true irrespective of whether the input
was conductance—based or current-based.
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Figure 4: Interplay of Input Heterogeneity and Input Magnitude. A. Weak
PING with current based Input A(a) LFP peak power landscape plotted as a

function of input strength I,’;"l( — ) and input standard deviation o ( — ) ie,

the parameter that governs the input heterogeneity. Peak power is colour-
coded such that highest power is in red. A(b) Landscape of gamma peak

frequency as a function of input strength IE, ( ) and input standard deviation

Og ( ) Peak frequency is colour coded from high (red) to low (blue). A(c) LFP

peak power obtained as a function of input strength for different constant levels
of input standard deviation a;. Coloured lines indicate peak power from low
ogvalues (blue) to high ogvalues (red). The power spectra correspond to
horizontal cross sections through the power landscape in A(a). A(d) Peak
frequency plotted as a function of input strength, for different conditions in which
a constant level of input standard deviation oy is maintained across levels of
input (colour coded from low ogvalues (blue) to high ozvalues (red)). A (e and
f) Average mean (indicating magnitude - my) (e) and average standard
deviation (indicating heterogeneity hy) (f) of the intracellular effective contrast-
modulated input current across E cells as a function of input strength (I%).
Coloured dashed lines show conditions with different input standard deviations
which were however, maintained constant across the input strength
manipulation. Note that in all cases where input heterogeneity is constant
across input strengths, there is no realistic relation between peak power and
input strength, as indicated by dashed lines in A (c-f). Only when oy increases
linearly with input strength (black line in A(f)) also corresponding to black arrow
in A(a)), does a realistic power saturation/decay occur (for further details, see
text). B. Weak PING with conductance-based Input. B (a). The conventions
are the same as in panel A with the difference that the LFP peak power is

landscape plotted as a function of parameter ggx_g (%) governing input

strength and the frequency variability of the poissonian train F,(Hz), whereby
F;, governs the rate of heterogeneity change with contrast. In Panels B c-f
continuous lines indicate valid, while dashed lines indicate invalid networks.
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4. Input Requirements: To obtain realistic behaviour the input to | cells
should be moderate in magnitude and should not be modulated by
contrast.

We have assumed, as others (Eric Lowet et al., 2015; Mazzoni et al., 2011;
Roberts et al., 2013), that contrast-dependent input from LGN modulates input
to the E-cells but not the I-cells, which instead receive the same level of input
across all contrasts. However, to our knowledge, this assumption has not been
tested, neither in neurophysiological or optogenetics studies, nor in modelling
studies. Here, we used the default validated weak PING model with
conductance input (Figure 4C) to verify the levels of input to E and | cells that
so far were set by convention.

Magnitude of Fixed Input to Inhibitory Cells.
We first investigated the role of the magnitude of input to the | cells, which in
previous sections was set at a fixed level across all contrasts, while the input to
E cells varied with contrast. We repeated the simulations for different scenarios
each corresponding to a different level of input gzx_; to the | cells (fixed across
all contrasts). Figure 5A illustrates two cases, one with weak constant input to
| cells (left, thin arrow), and the other with stronger constant input to | cells (right,
fat arrow). The contrast-modulated input to E cells applied in each case is
indicated by the arrows of varied thickness. The magnitude of the input was
mS

2

varied by modulating the conductance (gEX_,( )see Methods). Note that

cm

because of the nature of conductance-based input, gzx_; increases to | cells
will increase both the magnitude and the heterogeneity of the effective input to
| cells (as discussed previously for the case of E cells). We plotted LFP peak
power (Figure 5B) and peak frequency (Figure 5C) as a function of input
strength for cases of different constant input levels to | cells (colour coded in
Figures 5B-C). Continuous lines represent valid networks based on the criteria
outlined in section 2, while dashed lines correspond to invalid networks. We
only obtained valid networks for intermediate values of conductance to | cells

(ggx—;r = 0.02 —0.03 > ) (shown in continuous lines). Increased conductance

m
cm?2
to | cells ggx_; > 0.03 — shifted the oscillation frequency into a lower range

mS
(<15 Hz) for low contrast values. This also resulted in an overall decrease in
power, rendering the network invalid in these case conditions (dashed yellow
and orange lines, Figure 5B). Conversely, decreased conductance in | cells

(ggx—; < 0.02 % resulted in overall higher power (Figure 5B). In this case, we

observed an unrealistically high power for the lowest contrast (failing criterion
#3b) (blue dashed lines Figure 5B) and an unrealistic average firing rate ratio
of the two populations (failing criterion #1, not shown). Notably, because of the
conductance-based input to E cells, input magnitude to the | cells will increase
concomitantly with variability among the | cells as a function of increasing
contrast within the higher contrast range. In turn, |I—cells can be expected to
increasingly desynchronize at high contrasts, which in turn must have led to E
cells producing gamma oscillations at decreased power. This suggests that |
cells have a key pacemaker role but their synchronising potential weakens at
high input strength.
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Contrast modulated input on both populations.

We further investigated whether varying the input to both E and | cells across
contrasts would result in valid network behaviour (see network diagram in
Figure 5D). An important parameter here is the relative scaling of the input
levels that E and | cells receive. We therefore performed simulations for
different scenarios each corresponding to a different scaling of the contrast-
modulated input to the | cells relative to the input to the E cells, which was

mS

parameterized as: gpy_, = ZXE£ (—) Figure 5E shows peak power and

Scale cm?

Figure 5F shows peak frequency as a function of the input strength to E cells
with concomitant increases in input strength to | cells, for E-to-I ratio’s in input
strength varying between 1 and 20. Throughout the tested conditions, we failed
to obtain a valid network (i.e. at least one out of the five criteria was not fulfilled).
These results show that the pace-making activity of | cells in weak PING is
disrupted by a direct contrast-modulated input in a manner that leads to
unrealistic model output. This confirms the crucial role of the precise levels of |
cell desynchronization at high contrasts afforded by intermediate, fixed levels

of input to the | cells — for generating power saturation or power reduction at
high contrasts.
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Figure 5: Investigation of effects of input to E and | populations: A-C. Role
of strength of fixed input to I cells and contrast modulated input to E cells.
A. Network diagram indicating manipulation of input to | cells, which was fixed
across contrasts. Simulations were performed for different conductance
magnitudes grx_;, which influenced both the magnitude and heterogeneity of
input to the I cells. Note that the conductance was fixed across all contrasts) as
illustrated by the thickness of the arrow of input to the | cell population. As in
previous simulations, the magnitude and heterogeneity of input to E cells varied
with contrast (lines of different thickness). Results of the simulations in this
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scheme are shown in panels B and C. B. Peak power of the LFP as a function
of contrast (input to the E cells). Different colours indicate the magnitude of the
input to the I cells (parametrized by ggx_;). Continuous lines indicate valid and
dashed lines invalid networks. Note that valid networks were only obtained at
intermediate input magnitudes. C. Peak frequency of the LFP as a function of
contrast (input to the E cells). Different colours indicate the magnitude of the
input to the I cells (parametrized by grx_;). D-F. Effect of Contrast-modulated
input on both E and I cells. D. Network diagram indicating manipulation of
input to | cells, which varied across contrasts as indicated by the changing
thickness of the arrows. As in previous simulations, the magnitude and
heterogeneity of input to E cells also varied with contrast (lines of different
thickness). Colour-coded lines correspond to simulations for different scenarios
each corresponding to a different scaling of the contrast-modulated input to the
| cells relative to the input to the E cells, which was parameterized by Scale, so

_ S . . . . H
= JEX-E —:nz). Results of the simulations in this scheme are shown in

that ggx_; = m(

panels D and E. E. Peak power of the LFP as a function of contrast (input to
the E cells)- same conventions as in B. F. Peak frequency of the LFP as a
function of contrast (input to the E cells)- same conventions as in C. Note that
when contrast-modulated input was varied simultaneously in both populations,
a valid network was not be obtained even when the input to the | cells was up-
scaled by a factor of 20 versus the input to the E cells (Scale = 20).

5. Oscillation destabilization at high contrasts is due to E cell mediated
disruption of | cell pacemakers

Section 4 suggested that the state of de-synchronization in the | cell population
controls the saturation or reduction of power at higher contrasts. In addition,
Section 3 suggested that increased heterogeneity in activity of E cells as a
function of input strength is required to produce power saturation or decay.
Likely these two phenomena conspire to produce the power saturation or
decay. It is possible that at high inputs, increased heterogeneity of E cells leads
to a reduction of the | cell pace-making function and thus to network
desynchronization. As a first approach to test this hypothesis, we selected the
default valid, weak PING network and assessed its state of (de)synchronization
as a function of input strength. The selected weak PING network exhibited fast
power decay at high contrasts (Figure 6A) and generated realistic spiking
outputs (Figure 6B). To assess the state of (de)synchronization within separate
cell populations, we used three measures. First, we calculated the average
maximum (across-lags) pairwise cross-correlation (MPC) between spike-trains
of all model neurons. Second, we computed the phase locking value (PLV)
between single unit spike trains and the LFP (Berens, 2009; Lachaux et al.,
1999), see Methods). Third, we calculated the coefficient of variation (CV2)
value (Holt et al., 1996), which quantifies the variability of spike trains (see
Methods).

The PLV (see Figure 6D) showed for E and | cells a similarly steep increase as
a function of input up to intermediate inputs, which was then followed by
saturation and decline. The observed change in PLV was qualitatively similar
to the power variation as a function of input. Note that | cells were locked to the
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LFP more strongly than E cells. Further, we found that for | cells, MPC
increased as a function of input strength before saturating at intermediate inputs
(Figure 6C) while CV2 monotonically decreased (Figure 6E). Hence, | cell
firing became more correlated and less variable as a function of input, whereby
at high inputs a desynchronizing trend was observed (slight decline in MPC and
decrease in PLV). By contrast, for E cells, the MPC, after reaching an initial low
value at low inputs, tended to decline as a function of input strength (Figure
6D), while the CV2 was high and increased even more with input strength
(Figure 6E). So, E cells were generally not well correlated in their firing, and
became more variable with increasing input levels.

The outcome of this analysis raises the question of how to reconcile the on one
hand more regularly firing and better mutually correlated | cells at high input
levels, with the decorrelation and increased variability among E cells on the
other. To understand this, one should take into account that E cells in this
setting experience two opposite forces. On the one hand, increased input to E
cells will initially increase the drive to the | cells, which can then assert a pace-
maker influence over the E cells. On the other hand, increased input also
increases input heterogeneity, which acts against the pacemaker role of the |
cells. Hence, the inherent increase of input heterogeneity with increased input
levels may compromise the pacemaker function of the | cells. We surmised this
is what may happen at high input levels, where the heterogeneity of the input
to the E cells is highest and can no longer be mitigated by the pace-making
(synchronizing) force of the | cells.

For this idea to be correct, it would have to be implemented in a subset of
smaller clusters (or a single subcluster) of the network, in a manner that is
obscured by the average behaviour of the network displayed in Figure 6B. It
has indeed been reported before that in weak PING clustering, especially of E
cells can occur (Kilpatrick and Ermentrout, 2011). It is therefore possible that
increasing input heterogeneity may also split the population into clusters whose
spikes are better coupled to the population LFP (strong cluster) than others
(weak cluster). Thus, the behaviour of these clusters may yield more insight
into the mechanism of power decay than the behaviour of | and E populations
as a whole. A test of the clustering idea (Figure 6F) showed that beyond a
minimum of input strength, a weak and a strong cluster could be distinguished,
and that the membership of cells to the weak cluster increased with increasing
input strength at the expense of membership to the strong cluster. This, in turn,
could be related to the observed spectral power decline.

We then considered how the membership numbers of E and | cells to weak and
strong clusters evolved as a function of input strength. A slight input increase
from zero quickly moved all inhibitory cells from weak to strong clusters, in line
with their pacemaker function in PING models (compare red lines in Figure 6G

and H). The same slight initial input increase (until ~0.15 Z:lnsz) caused a similar
increase of E cell membership to weak and strong clusters (similar initial

increase of blue lines in Figure 6G and H). However, further increases in input
(beyond ~0.15 :jz) led to a fast increase of E cell membership to weak clusters

relative to strong clusters. This confirms that | cells, despite their membership
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in the strong cluster (consistent with weak PING), at least partially lose their
ability to set the pace of E cell spiking. This is in line with the slight decrease in

MPC and PLV in | cells beyond input levels of ~0.2 > (Figures 6Ba and 6Bb).

m
cm?2

To test further the mechanisms by which | cells would partially lose their pace
making ability at higher input strengths, we looked at the balance of excitatory
and inhibitory currents received by E and | cells (Figure 61-J). E cells (Figure
61) were dominated by inhibition throughout all input levels. Nevertheless, there

was E a slight increase of E current with increasing inputs up to ~0.15 CT:;) after

which E currents declined again at higher inputs. In | cells (Figure 6J), the
excitatory/inhibitory balance of inputs showed a monotonic increase as a
function of input strength, during which a dominance of inhibition transitioned

into a dominance of excitation at input levels of ~0.2 % and beyond (black
curve exceeding red dashed line). Hence, while self-inhibition dominated up to
input levels of ~0.2 msz, beyond this input level, noisy excitation dominated.

cm

That the I cells at high input levels became dominated by noisy currents of the
E cells is remarkable, as it is the reverse of the standard situation in which |
cells drive and pace the E cells. These observations are therefore relevant to
understand oscillation destabilization at high input levels,

While the provided analyses do not pinpoint the exact mechanisms of power
decay, they do constitute converging lines of evidence to support our
hypothesis. In short, our analyses indicate that strongly and noisily driven E-
cells partly compromise | cell pace-making function. This in turn results in power
decay at high inputs. We should note that the reduction of | cell pace-making
function was instigated by an increase in weakly coupled E cells (Figure 6C).
Thus, in the validated model investigated here (Figure 6A), it is likely that E
and | populations both contributed to oscillation destabilization.
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Figure 6: Investigation of Weak PING Power Decay. A-B Power and Frequency
Analysis: The peak power (A) and the peak frequency (B) of the gamma
oscillation as a function of contrast (input). In (B) superimposed on gamma
peak frequency is the average firing rate of each cell population and of all the
cells of the weak PING network (AVG). C-E: Spike train analysis. All measures
are plotted as a function of contrast (input). The average maximum pairwise
correlation (MPC) in panel C, phase locking value (PLV) in D and the coefficient
of variation (CV2) in E, within each population and for all cells (AVG). F-H:
Weak PING Clustering Analysis. On the left (F), the cells were classified
separately for each contrast into two clusters based on their PLV value,
indicated in cyan for the weakly coupled and in green for the strongly coupled
clusters. The cells that were excluded from the clustering analysis due to low
spike number are plotted in black. In G (weakly coupled cluster) and H (strongly
coupled cluster), the participation of each cell type to the two clusters is
illustrated with a blue line for E cells and a red line for | cells. I-J: E/I balance
(El,) as a function of input. El, is a proxy of the El balance of the input that on
average is received by each E cell (1) or | cell (J). It considers only the intra-
network excitatory and inhibitory currents that each population receives
(excluding the external stimulus-driven inpuft).

6. GABA Differentially Modulates Gamma Power and Frequency in the
weak PING model

Having a plausible generative model for gamma oscillations can be
instrumental in addressing open questions that so far have been difficult to
address in biological systems. It is well known that gamma oscillations and their
spectral characteristics such as peak frequency and power depend on GABA-
ergic inhibition (Brunel and Wang, 2003). A number of studies have reported
that increased GABA conductance increases the power and decreases the
frequency of spontaneous gamma oscillations (Faulkner et al., 1998; Lozano-
Soldevilla et al., 2014; Oke et al., 2010; Traub et al., 1996; Whittington et al.,
1996, 1995). However, other studies have reported an increase in gamma peak
frequency with increased GABA observables (Kujala et al, 2015;
Muthukumaraswamy et al., 2009). These discrepancies in the literature may be
due to the discrepancies of modulating and quantifying GABA-ergic effects but
may also reflect differential action of gamma generating mechanisms. In this
section, we used the default validated weak PING model described in section
2, to investigate the role of GABA conductance. To that aim, we increased the
conductance of GABAergic synapses in our model by 25, 50 and 100%
(compared to the default weak PING, see Table 3 in Methods) for synapses on
E cells alone, on | cells alone, and on both cell populations (Figure 7).

When GABA conductance was increased above the default value in both
populations, power increased (Figure 7A) and frequency decreased (Figure
7D), although this was not observed for low input strengths. GABAergic
enhancement only to E cells resulted in an effect that was more pronounced
but otherwise similar to the effect of GABAergic conductance enhancement to
the E and | cells combined (Figure 7B, E). However, GABAergic enhancement
only to | cells led to power reduction and a small frequency increase (Figure
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7C, F). Overall, these results show that matching parametric empirical data
against the pattern of model output in the different modelling scenarios can help
in formulating informed hypotheses as to the biological mechanisms of
empirically observed spectral effects of modulations in GABA conductance.
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Figure 7: GABA Modulates Gamma Power and Frequency. Each column
shows the results for increasing GABAergic conductance by 25, 50 and 100 %
(colour-coded) on both E and | cells (A and D), only on E cells (B and E) and
only on I cells (C and F). The results of our default weak PING are also plotted
(black line). Top row shows the LFP power and bottom row the LFP frequency
for the three cases. GABAergic enhancement only on E cells (B and E) resulted
in the same but more pronounced effect as on both populations (A and D)
whereas GABAergic enhancement only on | cells (C and F) reduced the power
of oscillations and had a small increase effect on frequency.

DISCUSSION

We developed a set of five empirical constraints for assessing the validity of
parameter settings in PING models. Empirical constraints were drawn from
monkey V1 LFP and unit recordings obtained in a paradigm involving stimulus
contrast variation (Roberts et al., 2013) supplemented by unpublished findings
from our group, and experiments from (Contreras and Palmer, 2003). The
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empirical observables of recorded spikes and LFPs in response to gratings that
varied in contrast were compared to model spikes and LFP proxy’s in response
to input strengths at varying levels to E model units. This permitted an
assessment of the match of the model's behaviour with the empirical data,
which would in turn indicate whether model parameter settings were valid or
not. The match between model observables and empirical data was maximized
by simultaneously setting a number of parameters so that all empirical
constraints pertaining to both LFP and unit spiking responses were met
simultaneously.

Our work led us to the following conclusions. First, in the paradigm we used,
the gamma generating mechanism in primate (Macaque) V1 is more consistent
with weak than with strong PING. Second, valid model behaviour for both the
LFP and unit spiking requires specific interpopulation connection probabilities.
Within weak PING, only certain subregions in EI/IE connection probability
parameter space yielded valid models. Further, models showing power decay
or power saturation at high input strengths were separable in this parameter
space, thereby reproducing observed individual (Roberts et al., 2013) and
interspecies variability (Hadjipapas et al., 2015; Self et al., 2016). Third, valid
model behaviour poses highly specific requirements with respect to the input to
E and | cells. Contrast modulation of input to the network needs to affect mainly
the E cells, whereby its strength needs to scale with its heterogeneity. Input to
the | cells should be moderate and should not vary with contrast. Fourth, using
a validated weak PING model, we also discovered a possible route to partial
oscillation destabilization, which we suggest underlies the LFP power
saturation/decay at high contrasts. Specifically, an increase in input strength is
accompanied by an increase in the heterogeneity of input to E cells, resulting
in partial desynchronization of E cells. This is thought to disrupt the pace-
making activity of the I—cells leading to partial oscillation destabilization. Finally,
using the validated model, we found that, in order to replicate experimental
results in terms of the frequency and power of gamma oscillations, GABA
conductance input should be varied either for both E and | populations or only
for the E population, but not the | population alone. Taken together, these
findings facilitate the interpretation of existing and future experiments.

Our work is relevant in the context of current literature that aims to establish
whether gamma is generated by ING or PING models, and whether these
models are ‘weak’ or ‘strong’. ING and PING models (both weak (Borgers et
al., 2012, 2005; Eric Lowet et al., 2015) and strong (Borgers and Kopell, 2005;
Roberts et al., 2013) varieties) have been used to describe emerging
oscillations throughout the brain (Buzsaki and Wang, 2012). Some optogenetic
experiments showing that gamma could be induced more easily by stimulating
| cells rather than E cells could be seen as favoring ING in V1 (Cardin et al.,
2009). However, both macaque (Vinck et al., 2013) and cat (Moca et al., 2014)
studies suggest PING rather than ING as the more likely mechanism for gamma
rhythm generation in V1. This is supported by the observed phase-lead by a
few milliseconds of excitatory cells to inhibitory cells which is indicative of PING-
like mechanisms (Csicsvari et al., 2003; Hasenstaub et al., 2005; Tukker et al.,
2007; Vinck et al., 2013). In the context of this research, the fact that constraints
from an expansive neurophysiological dataset in macaque V1 unambiguously
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point to weak PING is a relevant finding. In coming to that conclusion, the
inclusion of LFP as well as unit spiking data was necessary. This confirms the
necessity of considering single unit behavior (micro-scale, spikes) as well as
population behavior (meso-scale, LFP) data and their inter-relationships in
modeling. Doing so avoids special purpose models that capture some aspects
of empirical data but remain unrealistic with respect to other aspects.

It has been proposed that weak PING is associated with attention and arousal,
while strong PING is associated with active coding and formation of cell
assemblies (see (Cannon et al., 2013) and references therein). In a study of
(Borgers et al., 2005) that modelled the effects of attention in terms of PING
circuitry, weak PING provided a background rhythm but stimulus representation
occurred through (location) selective strong PING. We did not investigate
attention here, and therefore cannot exclude that attention-induced stimulus
representation occurs through strong PING. This in fact remains an interesting
prediction that can be tested in a different empirical paradigm. Note that the
neurophysiological dataset that we used to constrain our data was obtained by
using responses to non-attended stimuli. This was true for the
neurophysiological datasets we used from our own group (see Methods), as
well for the study of (Contreras and Palmer, 2003). What can be therefore
clearly inferred from our data is that stimulus processing of non- attended
stimuli is associated with weak PING.

In our empirical data, some monkeys showed power decay and others power
saturation at high contrasts. This individual variation occurred despite
comparable experimental paradigms in the two monkeys. This suggests
possible differences in the gamma generating networks among monkeys. In our
modelling work, we found that only certain combinations of El and |IE connection
probabilities yielded valid behaviour. Further, valid models exhibiting power
saturation or power decay were separable in the parameter space spanned by
these interpopulation connection probabilities. This supports the idea that some
individual variability could be explained by differences in network connectivity.
The inter-individual differences in network connectivity are likely strongly
influenced by genetic factors (van Pelt et al., 2012). In addition, although there
is a remarkable evolutionary preservation of the different oscillatory brain
rhythms (Buzsaki et al., 2013), detailed aspects of gamma generating networks
may differ between species. In contrast to LFP data in the awake monkey
(Roberts et al.,, 2013; Ray and Maunsell, 2010), recent LFP gamma data
recorded from awake human participants (Self et al., 2016) did not show power
saturation with contrast. Thus, one could speculate that this could reflect a
species difference in the specific network architecture generating gamma.
Although significant differences exist in the methodology and scales of
measurement, human MEG studies (Hadjipapas et al., 2015; Hall et al., 2005;
Perry et al., 2014) have also reported a lack of saturation at high contrasts,
consistent with the human LFP data and therefore in contrast to the monkey
LFP data.

In our data, gamma power showed a non-monotonic behaviour with contrast.
At low contrasts, power increased and was maximal at middle contrasts. At high
contrasts, power decayed or saturated. This suggests variation of
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synchronization with contrast and some degree of desynchronization (instability
of the oscillation) at high contrasts. We investigated this idea in a single
instantiation of a validated model. The hypothesized changes in
synchronization were indeed visible in the model. In this model, the route of
oscillation destabilization involved desynchronization of initially the E cells due
to heterogeneous direct input. In turn this led to less synchronous recruitment
of | cells partially breaking down the rhythmic synchronization. This mechanism
of oscillation destabilization at strong input levels is different from other
mechanisms described in a previous study (Borgers and Kopell, 2005). In that
study, mechanisms by which PING rhythms were lost due to modulation of
external input were investigated in a strong PING framework. Gamma rhythm
became unstable for too strong input to I-cells (or too weak input to E cells) due
to either “phase walkthrough” of I cells or “suppression of E cells”. In “phase
walkthrough”, | cells synchronize but get ahead of the E cells (i.e., | cells fire
without being prompted by E cells). In “suppression of E cells”, | cells fail to
synchronise and fire asynchronously whereby their activity ultimately
diminishes or ceases the E cells spiking activity (Borgers and Kopell, 2005). In
our weak PING model, the second mechanism (“suppression of E cells”) was
clearly not the case, as the activity of E cells was not suppressed when power
decayed for higher inputs (see E cell average firing rate in Figure 3Ba). Hence,
the mechanism which drove the synchronous rhythm by stimulating | cells was
not abolished. The “phase walkthrough” entails | cells firing synchronously, but
getting ahead of the E cells, i.e. spiking without being prompted by the E cells.
This was also not the case in our weak PING model, as the | cells did not over-
respond but rather failed to generate a coherent population response. Borgers
and colleagues recently examined the effects of heterogeneity in synaptic
strengths and in external drives to E and | cells in PING networks (Borgers et
al., 2012). They found that, while the effects of heterogeneous input to | cells
could be easily mitigated with strengthening of excitatory synapses, the effects
of heterogeneous input to E cells remained pronounced even when inhibitory
synaptic input to E cell was very strong. This is consistent with what was
observed in our validated model, where synchronization broke down when
heterogeneity in external input to E cells was too high. Borgers et al (Borgers
et al., 2012) also predicted that breakdown of synchrony in a heterogeneous
network can be predicted by the latency by which synchrony sets in, in a
homogeneous network. A further prediction by Borgers et al. was that in a
heterogeneous network a PING rhythm is established rapidly or not at all. In
our setting it is difficult to test these predictions, as in weak PING
synchronization is partial (noisy) both in terms of cell participation but also in
time. Thus, synchronization varies over time, making an estimation of latency
difficult. However, what is clear from our models is that weak PING can be
obtained even in the setting of substantial heterogeneities in synaptic
connection probabilities and direct inputs.

We have developed a model which is simplified enough to allow controlled
manipulation of key parameters, such as the inhibitory and excitatory activity
within the network, yet, detailed enough to reproduce our experimental findings
and generate informed predictions on the underlying functional network
circuitry. Despite the simplifications in our models, we kept a degree of realism
by using conductance based rather than integrate-and-fire model neurons. It
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has been argued that biophysical detail in synaptic models is crucial for
correctly simulating gamma dynamics (Cavallari et al., 2014), and using
conductance-based models at least partially allays this concern. Nevertheless,
there are limitations to our work. When modelling networks in visual cortex there
are a number of important factors to consider such as using an appropriately
large number of neurons (van Albada et al., 2015), correctly modelling laminar
structure and connectivity (Potjans and Diesmann, 2014) and taking into
account different neuronal types and their morphology and thus appropriately
constructing the LFP forward model ( see (Einevoll et al., 2013) and references
therein). Here we chose to validate a much-reduced point-neuron model in
order to limit the number of parameters as much as possible to those that could
be informed by the data. In addition, the model does not consider complex
interactions with other brain processes, such as saccades (Martinez-Conde et
al., 2013, 2004) or microsaccades (E Lowet et al., 2015), which influence
gamma in-vivo. Moreover, our PING models were constrained by data collected
across all cortical layers of V1. In the future, it will be interesting to subdivide
the empirical data according to layers, to generate distinct PING networks for
different layers. The work presented here shows how the model can be
adjusted to match empirical data from two monkeys showing different power
saturation characteristics. Likewise, different empirical constraints emerging
from analysis of different layers should allow us to generate layer specific
models.

The increased validation of these local network models offered by our study
can help advance the empirical validation of other models and can complement
and inform hypothesis-driven experimental data analysis. Furthermore, our
approach demonstrates the importance of systematic model parameter
exploration to determine parameter regions in multidimensional parameter
space that simultaneously satisfy constraints at micro-level (cells) and
meso/macro levels (population level). This approach might be particularly
useful in optogenetics studies designed to test model predictions. For example,
the different factors that in our model are hypothesized to lead to power decay
at high contrasts can be experimentally manipulated using optogenetics. In
turn, optogenetics could identify separate roles of different classes of
interneurons (see (Veit et al., 2017)), which could then be incorporated in the
model.

In conclusion, we suggest that insights from simplified models as used in the
present study can form a basis for further constraints in more detailed and
larger-scale biophysical models that consider neuronal morphology, laminar
and horizontal structure and are set at an appropriate scale. In addition, the
empirical validation approach presented here can be reiterated when upscaling
such models. This is the subject of future work. Finally, we believe that the more
general approach adopted here and elsewhere (see (Sherman et al., 2016) for
tightly empirically- validated models of somatosensory beta rhythm), where
experiment and theory go hand in hand and mutually reinforce each other is
one that is much needed in systems neuroscience.
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METHODS
Experimental Data Acquisition and Analysis

Acquisition and Analysis

We used existing datasets from two monkeys, the first (monkey S) being a
dataset previously presented in Roberts et al., 2013 and the second (monkey
O) being a similar dataset that has not previously presented. We choose to use
this second dataset since, in the second monkey of Roberts et al., 2013, peak
gamma frequency was hard to estimate for low contrasts, where gamma
overlapped with a pronounced beta band. However, note that our findings
reported here were fully compatible with that data, and with additional data from
monkey S recorded on the opposite hemisphere.

The monkeys were head-fixed and placed in a Faraday-isolated darkened box
at a distance of 57cm from a computer screen. Stimuli were presented on a
Samsung TFT screen (SyncMaster 940bf, 38°x30° 60Hz). The screen was
calibrated to linearize luminance as function of RGB values. During stimulation
and pre-stimulus time the monkey maintained eye position (measured by infra-
red camera, Arrington 60Hz sampling rate) within a square window of 2x2°. This
window was relatively large to allow for noise associated with the camera. In
Monkey S the task was simply to maintain eye position within the window, in
Monkey O the task was to maintain fixation until a colour change occurred at
the fixation spot and reward was given for reporting the colour change by
making an eye movement towards a target presented at the top of the screen.
Stimuli were circular patches of square-wave grating with a spatial frequency
of 2 cycles/degree. Contrast values in Monkey S were: 2.5 3.7 6.1 9.7 16.3 35.9
50.3 72% and 3 5 8 14 24 40 67 100% in Monkey O. Contrast values were
chosen to keep the gratings, as much as possible, isoluminant with the
background for all contrasts, with equal contrast between the background and
both the black and white stripes. In Monkey S stimulus diameter was 5°, but
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varied in some sessions between 1° and 9°. In Monkey O stimulus diameter
was 5° in all sessions. Eccentricity was between 5° and 6° in both monkeys.
Monkeys were implanted with recording chambers above early visual cortex,
one positioned over V1/V2 and a second over V4. For the experiment reported
here we used data from the V1/V2 chamber only. A head post was implanted
to head-fix the monkey during the experiment. All the procedures were in
accordance with the European council directive 2010/63/EU, the Dutch
‘experiments on animal acts’ (1997) and approved by the Radboud University
ethical committee on experiments with animals (Dier Experimenten Commissie,
DEC). Recordings were made with Plexon U-probes (Plexon Inc.) consisting of
16 contacts (10pm diameter, 0.5-1mW impedance, and 150um inter-contact
spacing). The probes were then advanced by a microdrive (Nan Instruments
LTD.). The probes were connected to headstages of high input impedance, and
data were acquired via the Plexon ‘Multichannel Acquisition system’ (MAP,
Plexon Inc.). The measured extracellular signal was filtered online between
150Hz and 8kHz to extract spiking activity and filtered between 0.7Hz and
300Hz to obtain the LFP. The signal was amplified and digitized with 1kHz for
the LFP and 40kHz for the spike signal. The data was converted from Plexon
to Matlab file format and cut into trials from fixation onset to stimulus offset using
the fieldtrip toolbox (Oostenveld et al., 2011). Line noise was removed from LFP
using the fieldtrip dft filter, which fits a sine and a cosine at 50, 100 and 150Hz
and subtracts these components from the data. Data was then further cut into
non-overlapping 500 ms snippets excluding the first 500ms after fixation onset
and the first 250ms after stimulus onset. LFP spectra were computed using a
multi-taper method with discrete prolate spheroid sequences (DPSS) for
frequencies 6 to 80Hz (smoothing + 3Hz). Power spectra recorded in the
stimulation period (S) were Z sored with respect to power spectra recording
during the pre-stimulus baseline (B) computed over the 500ms prior to stimulus
onset [Psi=(S-B)/standard deviation(B)]. The 1/frequency drop-off of power
spectra was thus removed from the data.

Single unit spike sorting

Spikes were detected online by threshold crossings, where the threshold was
set automatically and adjusted manually. Spike timing and shapes around the
threshold crossing were recorded at 40Khz. To isolate single units, spike
amplitudes were first normalized by their standard deviation and the shape was
then decomposed into Haar wavelet features. The distribution of wavelet
features was tested for normality and spike sorting was based on the non-
normalised spike amplitude and the 10 wavelet features with the highest
deviation from a normal distribution. We used Gaussian mixture models to
perform final clustering. Starting with four initial clusters we reduced the starting
value until the clustering converged. Following clustering we examined the
spiking behaviour of each cluster. Clusters representing single units were
identified as having a low probability (<5%) of inter-spike intervals less than
2ms paired with an average firing rate (over the course of the entire recording)
of more than 5Hz. Additionally, we excluded units which were not responsive
to the visual stimulus, which we identified as those which did not increase their
response with increased contrast.

Feature Selection
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We extracted features from the single unit and LFP activity in order to validate
our PING model. Results from single unit and the LFP activity were combined
across all depths and we focused our analysis on the sustained period (300 ms
post-stimulus onset). We also excluded from the analysis contrast values for
which the highest frequency oscillations observed were less than 15 Hz
(outside the gamma range of interest and overlapping with the beta band which
was present for all contrast conditions). We took the same approach with the
model for which we also ignore non-gamma frequencies. We observed that the
model also starts from beta-like oscillations for low input values. Thus, the
model and data suggest that gamma band activity may operate over a wide
continuum of frequencies bands as a result of contrast modulation. Activity in
vivo within low frequency ranges during low contrast stimulation reflects some
combination of gamma band generators and beta band generators.

Network Model

We modelled the response of V1 LFP and single unit activity during contrast
modulation (during passive viewing of stimulus) 300 ms post-stimulus
presentation. We built a spiking network model in order to validate our model’s
different modalities (LFP, spiking activity) and used the validated model to gain
to insight to the underlying mechanism of the gamma oscillation in V1 as
modulated by contrast.

A summary of the model description according to the scheme proposed by
(Nordlie et al., 2009) is given in Table 1. The spatially-unstructured model was
comprised of two kinds of Hodgkin-Huxley type single compartment neuron
models for the excitatory and inhibitory populations as in (Buia and Tiesinga,
2006). The | cells were modelled with the Wang-Buzsaki model (Wang and
Buzsaki, 1996) developed for fast-spiking hippocampal basket cells. The E cells
were modelled with the Golomb-Amitai model (Golomb and Amitai, 1997)
model for regular spiking E cells. Note that the E cell model had a lower intrinsic
frequency of the response to input (f-1 curve) than that of the | cell model. The
cells from the two classes were connected randomly (no spatial structure) in a
sparse way with excitatory (AMPA) and inhibitory (GABA) voltage dependent
synapses and 1ms delay (for detailed description see Table 1 and Table 2 and
for illustration the network diagram in Figure 2A).

The contrast-modulated input from the LGN was described with a
phenomenological model. Both classes received input in the form of Poisson
spike train with fixed rate (yet different for each cell). When contrast was varied
the input to the E cells was modulated (as per conductance magnitude — ggx_g)
representing the LGN contrast-dependent input. Thus, we considered the
frequency of the input as fixed and increased the conductance as the sum of
many simultaneous spikes that make postsynaptic firing more likely due to the
larger amplitude post-synaptic potential. A degree of heterogeneity was
introduced to the network by means of its input frequency, which was drawn
from a normal distribution (200 £ 25 Hz). Also, the cells were given an initial
membrane potential drawn from a uniform distribution between [-90,50] mV for
E cells and [-85, -45] mV for | cells (i.e. reversal potential for leak current £20
mV).
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To mimic the experimental procedure of averaging across trials, we initialized
the network with a new random seed (which determined the within network
connectivity and initialisation and the input variability) and ran it for all contrasts.
We repeated this process for 10 trials and averaged across trials both for LFP
and spike measures. In all Figures we report mean and 1 SEM values.

In order to extract the LFP signal we regarded the average of the inverse
somatic membrane potential of the E cells as a mean field signal (see Table
1F). An alternative was to use the sum of absolute values of AMPA and GABA
currents, as in (Mazzoni et al., 2008). We implemented both measures and
generated similar results for LFP power and frequency (not shown here). A
recent study (Mazzoni et al., 2015) showed that in integrate and fire network
models, the membrane potential LFP was not the optimal measure therefore
other measures of weighted combinations of synaptic currents were proposed.
However, the spectral peak and frequency characteristics were retained across
measures (see figure 5 in (Mazzoni et al., 2015). In our conductance-based
network we opted to use the membrane potential LFP proxy rather than the
synaptic current proxy in order to compare directly with other models which
used a current-based rather than a synaptic-based contrast input (e.g. the
strong PING from (Roberts et al., 2013).

Simulation Protocols

Section 2: For Figure 2 the weak PING model parameters are listed in Table
1 and Table 3. Connection probabilities for El and |E were varied in the range
of [0.1,0.9]. The excitatory input to the network (i.e. contrast) was encoded
through the variation of the synaptic conductance in the range ggpx_p =

[0.04,0.4] msz. For Figure 2C-E the El and IE connection probabilities were 2C:

cm

(0.1, 01), 2D: (0.6, 0.7), 2E: (0.7, 0.3). The weak PING parameters with the El
and IE connection probabilities fixed to 0.6 and 0.7 respectively is defined as
the default weak PING which is used throughout the rest of the sections.

Section 4: For Figure 3A the strong PING network model parameters and
current-based input are described in Table 3 and Table 4 respectively. The
default weak PING in terms of connectivity as defined in section 2 is used in
Figure 3B-D. The conductance-based input for Figure 3B was the same as in
Section 2 (see Table 4 - second column). The current-based input to weak
PING in Figure 3C and 3D are also described in Table 4 — third and fourth
column respectively. In Figure 4A different experimental scenarios are ran for

input standard deviation JE(”A) in the 0.01-3 range. Here the contrast is

cm?

encoded as a function of input strength I,EL(“A) in the [0.43,8.0] range. In

cm?2
Figure 4B different experimental scenarios were ran for input with frequency
variability of the poissonian train F; in the range [0,250] Hz. Here the contrast
was encoded by the increase the synaptic conductance in the range ggx_g =

[0.04,0.4] 2>

cm?

Section 5: In Figure 5 the network is the default weak PING model with
conductance-based input as in section 2. In Figure 5A-C the contrast-
modulated input to | cells is fixed yet has a different magnitude per simulation
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scenario. This is parameterized by the synaptic conductance of the input to |
cells ggx_; which takes values in the range [0,0.05] :nsz In Figure 5D-F the
contrast-modulated input to | cells is the same as for E cells with a scaling
applied in each simulation scenario parameterized as: ggx_; = %% with
Scale taking values in the range [1,20].

Section 6: For Figure 6 and S3 the network is the default weak PING model
with conductance-based input as in Section 2.

Section 7: For Figure 7 the network is the default weak PING model as in

Section 2. The GABA conductance in modified for each simulation scenario on
either E cells (g;z C’:’ns'z) orl cells (g;; :nsz) or both populations. The conductance

in each case is increased by 25%, 50% and 100%.

Supplementary:

For Figure S1 and S3 the default weak PING model was used. For Figure S2
the network was similar to the default weak PING model with conductance-
based input, as in Section 2, with the network was upscaled by a factor of 10
from N=100 to N=1000 and the probabilities of connection divided by the same
factor.

Network Model Validation

From our experimental data set based on average responses (across 45
sessions in Monkey S and 53 sessions in monkey O) in two monkeys. From the
literature we established criteria robustly describing the gamma response over
a range of contrasts (the empirical constraints). For a network to be considered
valid it had to fulfil all these criteria simultaneously. The criteria are listed in
Table 5 and illustrated in Figure S1. We varied crucial parameters, i.e. the
probabilities of connection between E and | populations systematically to
produce model outputs (model LFP and spikes) for each parameter setting. The
model outputs then needed to satisfy all the empirical constrains derived by the
experimental LFP and spike data. Following the validation process, valid
networks were labelled as “decay” or “saturation” networks by testing whether
the contrast-modulated peak power decayed rapidly (decay) or slowly
(saturation) using as a threshold for the decay slope the value 0.03 (unitless).

Model Data Analysis

For all measures described in this section, the mean and SEM per population
(E and | cells) was evaluated across the N=10 trials.

Variability: As a measure of spike-train variability we use the coefficient of
variation (CV2) as proposed by (Holt et al., 1996). To obtain CV2 for a spike
from a spiketrain with spike times ¢;(0 <i < N) we calculate the standard

deviation of two adjacent interspike intervals (where At; = t; — t;_;), divide by
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their mean and multiply by v2, so that CV2 will have a mean of 1 for a Poisson
process,

2|Ati41-4t;

. | 1 .
CV2(i) = 2 rar,  CV2 = ~— X OV2(D) (1)

The average of CV2 over i gives the measure of variability of a spike train. Thus,
compared to standard coefficient of variation (CV), CV2 provides a more
reliable measure of intrinsic variability of spiking processes independent of slow
gradual changes in firing rate. A Poisson process has a CV2 value of 1.

Correlation: We estimate the overall correlation of the network by considering
the maximum pairwise correlation coefficient (MPC). That is the maximum
absolute cross correlation across lags which was computed for each pair and
then averaged across all pairs for each population. The MPC was computed for
spike trains after subtracting the mean firing rate in MATLAB with xcorr function
(maxlag=60 msec, option 'coeff'). Note that we only considered cells that spiked
more than 20 spikes during a trial.

Spectral Analysis: We estimated the Power Spectral Density (PSD) via the
Thomson multitaper method in MATLAB (pmtm, with default settings) of the
LFP (with the mean subtracted) per trial and then average across trials. The
maximum peak power and respective peak frequency (frequency of peak
power) per contrast were then extracted from the average spectral response.

Phase Locking: We computed the PLV (Lachaux et al., 1999) per each neuron
using the CircStat MATLAB Toolbox described in (Berens, 2009). We collected
the phases at which a neuron fired and from that phase distribution, we
estimated the PLV. As in the MPC calculation, we only considered cells that
spiked more than 20 spikes within a trial. To compute the PLV we filtered the
LFP by the peak frequency per contrast +t8Hz after subtracting the mean. The
PLV was computed from the whole trial for each cell and then averaged across
all (1) I cells, (2) E cells and (3) across the whole population. Note that in
averaging we included the cells for which a 0 value was assigned.

E/I Balance: The excitatory and inhibitory currents from all afferent synapses
within the network were recorded from each cell and averaged across all cells.
We denote as lig(t) and [eg(t) as the total inhibitory and excitatory currents
respectively for the E cell population and as li(t) and Igi(t) the total inhibitory and
excitatory currents respectively for the | cell population. For a given cell (E and
) the E/I balance B (t) and B,(t) was estimated by calculating

Bx(t) = |gx(O)] — [ix(®OD) / px(®)] + [1x(t)]) where X € {E, I}, (2)

and then this was averaged across all E and | cells respectively and across time
and trials yielding the average quantities E1,, for each cell population.

Clustering: The clustering was performed using custom Matlab, K-means
algorithm with a pre-set number of clusters equal to 2, defining the group with
the highest PLV values as the locked cluster and the group with the lowest PLV
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values as the unlocked cluster. Note that a value of PLV=0 was assigned to
cells below the 20 spikes threshold to facilitate the clustering analysis detailed
below yet their PLV values were not taken into account for the population PLV
average. As a clustering feature we used the PLV value per cell and per trial
(estimated for the trial duration) and the clustering algorithm was ran for each
trial separately. The mean and SEM value of E and | cells per of their PLV
values per cluster was evaluated across trials. To evaluate the validity of the
clusters we calculate the mean and SEM silhouette value plotted in Figure S3
for the points of each cluster across trials. The silhouette value is a measure of
similarity for each point to points of its own cluster when compared to points in
other clusters. It ranges from -1 to +1 and a high silhouette value indicates that
a point is well-matched to its own cluster, and poorly-matched to neighbouring
clusters.

Network Scaling

The network was upscaled by a factor of 10 from N=100 to N=1000 (Figure S2)
by dividing the probabilities of connection by the same factor. Note that the
conductances were normalised in all cases by the number of afferent
connections, cyy * Ny, i.e. the product of probability of connection from X to Y
population and the number of cells of the afferent population X.

Simulation and Analysis

The simulation of the network was done in BRIAN 1.4.1
(http://briansimulator.org/) (Goodman and Brette, 2008). The equations were
solved with Runge-Kutta solver with simulation timestep dt = 0.05ms. The
results were analysed in MATLAB (MATLAB_R2014a -
http://www.mathworks.com/)). The code is available upon request and will also
be made freely available through the Human Brain Project repository.

TABLES
Table 1: Model Summa
A Model Summa |

Populations Two: excitatory and inhibitory cell populations in V1

Topology ---

Connectivity Random sparse convergent connections with different
probability of connection and conductance for each pre-
to post- population. Delays: 1 ms

Neuron model Conductance-based single compartment models

Channel models | Inhibitory Cell: Fast sodium I,,, delayed-rectifier
potassium I,,., and leak I,

Excitatory Cell: Fast sodium Iy,, persistent sodium I,p,
delayed-rectifier potassium I, A-type potassium I ,
slow potassium I _¢;,,, and leak I,
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Synapse model | Intra-network: Voltage-dependent synapses (AMPA,
GABAA)

External Inputs (conductance-based case): Current
synapse with double exponential function shaped
postsynaptic currents (AMPA)

Plasticity ---

Thalamic Input | Conductance-Based Case: Independent Poisson spike
trains to both populations activating conductance-based
synapses.

Current-Based Case: A tonic depolarising current to both
populations.

Measurements | Spike activity, simulated LFP and synaptic input current.

B Populations

Name Elements Size
E Golomb-Amitai neuron N =4+ N, =80
I Wang-Buzsaki neuron N, =20
EX External Input - Poisson N + N, = 100
generator
Name Source | Target | Pattern Synaptic
Random with Conductance
Connection ( ’”52)
Probability cyy cm
(from XtoY)
EE E E 0.1 0.2
(Ng * cgg)
IE E I varies [0.1-0.9] 0.08
(N, * 1)
El I E varies [0.1-0.9] 0.96/( Ng * cg)
Il I I 0.2 0.6
(N * ¢p)
EX-E Ex E One to one Varies [0.04, 0.4]
EX- Ex I One to one 0.02

D Neuron and Synapse Model

Inhibitory A single-compartment Wang-Buzsaki (Wang and Buzsaki,
Neuron 1996) neuron model
dv ;
Cm d_t = —1I, —Ing — Ixar — lampa — lgapa=lex + Iapp
Excitatory A single-compartment Golomb-Amitai (Golomb and Amitai,
Neuron 1997) neuron model
dv
Cm E = _IL - INa - IKdr - INaP - IK—Slow - IAMPA - IGABA_ Iex
+ Igpp
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Synapse All synapses in the network are modelled with conductance-
(AMPA/GAB | based voltage-dependent synapses
A) Ii(t) = s(©)(V(t) — Ey), X € {EI,IE,EE, II}
ds
d_t =a *f(Vpre) * (1 - S)_ﬁ * Sf(Vpre)
1
f(Vore) =

oo ()

where V... is the membrane potential of the presynaptic cell.

Synapse Thalamic synapses are modelled as conductance-based
(AMPA from | double exponential synapses
LGN) Iex(t) = gg(@©OV(E) — Eg)
dg
- P69
ds

d—tz—a*s+az5(t—Tm_td)
m

where 9 = 9ex-k for the input to E cells and 9 = 9Ex-1 for the
input to the | cells.

Type Description

Conductance Based | Alpha synapses receive spikes from a Poisson
Generator for each neuron with frequency drawn
from a normal distribution (F,, + F;, Hz) with default
values E,, = 200, F;, = 25. The resulting input current
from the convolution of synapse and the Poisson
spike train is I, (t) = gg()(V(t) — E,) as defined in
the Table D. The conductance for the external input
to the | cells is fixed to g = ggx—; = 0.02 Crfnsz

whereas for the E cells it was varied based on
different contrast values in the range ofg = gpx-g =

[0.04 — 0.4] 22

cm?’

Current Based The current input to E cells is given by
18y =15 +1IE

where the tonic current I£, (

mS

2) was varied based
cm

on different contrast values and the I was drawn
from a Gaussian distribution with mean 0 and

standard deviation oy (;ZLSZ) and was constant in
time but different for each E cell.

The current input on | cells is given by

Lipp = Ih + I
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where the tonic current I.)) was fixed across
contrasts and the I was drawn from a Gaussian
distribution with mean 0 and standard deviation

oy (ms) and was constant in time but different for

cm?

each | cell.

For specific values in each simulation scenario see

Table 4.
' F Measurements |
LFP:
& Ve (0)
LFP(t) = —Z ‘IEV
i=1 E
Synaptic Current:
Ng
IE, (¢t
Isyn(t) = _Z EX}( )
i-1

Intracellular Effective Current (current case):

< e (0 < Lher (O
Ifyp(t) = — AIX; Ainp() = —Z%
-1k -1 !
Intracellular Effective Current (conductance case):
< I () Q lx (©
Ifyp(t) = — EI)\(I Ainp(t) = — %
. E : 1
i=1 i=1
Table 2: Synaptic Parameters
| AMPA GABA-A Thalamic AMPA |
a(ms™1) 1.25 0.1 1.0
p(ms™1) 2 5 5.2
a(mV) 2 2 -
o(mV) -20 0 -
Esyn(mV) 0 -80 0
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Table 3: Strong vs Weak Peak with current based input — Main
parameters that differ

PARAMETER Weak PING Strong PING

gks — slow 1
potassium 0
conductance (:nsz)
CEE 0.1 0.1
CIE 0.7 0.6
CEl 0.6 0.3
Ci 0.2 0.2
Qe (mS) 0.08 0.01 0.048 — 0.006
o (Ng * cgg) . (Ng * cgg) .
gie (=) _06 043 2 _0.025
o (N; * ¢1g) . (N; * ¢1g) .
ms 0.96 0.12
ge (3 — = 0.02 — X = 0.005
( ) (Ng * cgp) (Ng * cgp)
o (25) 02 _ o 024 _ .
o (N, * ¢pp) . (N, * ¢pp) .
EGABA (mV) -80 -75
Table 4: Input Parameters
Strong PING | Weak PING Weak PING | Weak PING
Current Conductance | Current Current -
#a ms #a varying o
(cmz) (sz) (cmz) ry( ugl )E
INPUT to E | IE spaced Jex—g Spaced | IE spaced IE spaced
logarithmicall | logarithmically | logarithmicall | logarithmicall
yin[0.5,2.3] |in [0.04,0.4] yin [0.3,4.0] |yin[0.3,4.0]
o spaced
op = 0.1 o = 0.01 logarithmicall
y in [0.01,3.0]
o, =0.1 o; = 0.01 o; = 0.01
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Table 5: Empirically-obtained Validation Criteria (empirical constraints)
for models

Criteria Description

#1: | cells fire more
frequently than E cells.

We fit the firing rates linearly across contrasts (Inp)
of the E and | cell populations (FE and FI) with
FEfiy = sg xInp + ag

Flgyy = spxInp +a;

and consider the following conditions:

a. The intercept of the FE;;;must be less
than the intercept of the fit to Fi;,

(ag < ap).

b. The slope of Fl;; must be bigger than
the slope of FEf;(s; > sg)

c. The average of the | cells (actual) firing
rate must be at least 2.5 times higher
than the average E cell firing rate
((FI) = 2.5 = (FE)).

All conditions a-c must apply for criterion #1 to be
deemed valid.

#2: LFP oscillation
frequency is higher
than the population
firing rate

The average LFP oscillation frequency (FO) must be
at least 2.3 times higher and less than 6.3 lower than
the average firing rate of the whole population (FP),
2.3 x(FP) < (F0) < 6.3 * (FP).

#3: LFP first and peak
power

(a) The peak power must be larger or equal to 1.0.
(b) The power at the lowest contrast must be less
than 0.5.

#4: LFP oscillations in
gamma range.

The LFP oscillations must be in the gamma range
(15-80 Hz).

#5: LFP peak power
rise is faster than its
decay.

We linearly fit the slope for the power rise (POR)
and the decay (POD) of the power with
PORfit = Sp * FOR + ag,

PODfit = Sp * FOD + ap.
We then checked that the rise slope was steeper
than the decay slope s > sp.
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SUPPLEMENTARY FIGURES
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Figure S1: Network Feature Selection based on population firing rates and
LFP spectra. A: The extraction of the slopes of the average firing rate of the |-
and E- cell populations mean firing rate across all contrasts for each population.
B: The extraction of the slopes of the average firing rate of the whole population
and of the peak frequency of oscillations as well the overall average population
firing rate and oscillation frequency. C: The extraction of features from the LFP
spectra such as the first and the maximum power (FP and MP), the frequency
range, the slope of the power rise and the slope of the power decay. For a
detailed description see Table 5.
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Figure S2: Weak PING with N=1000. An upscaled version of the default weak
PING Network (see Figure 6) exhibiting similar results across both the spectral
LFP and the single cell spiking behaviour. The conventions are the same as
Figure 6A-E. The peak power per each contrast (first column) and the peak
frequency of the gamma oscillation (second column) superimposed with the
average firing rate of each cell population and of all the cells of the weak PING
network. The average maximum pairwise correlation (MPC) on the third
column, phase locking value (PLV) in the fourth column and the coefficient of
variation (CV2) on the fifth column, within each population and for all cells.
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Figure S3: Cell Clustering based on PLV. Mean silhouette value of the
clustering analysis based on PLV values. The silhouette value is a measure of
how well clusters are separated. The measure ranges from -1 to 1, where 1 is
maximal separation (for more information see Methods).
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