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Abstract

Significant evidence supports the view that dopamine shapes reward-learning by
encoding prediction errors. However, it is unknown whether dopamine decision-signals are
tailored to the functional specialization of target regions. Here, we report a novel set of wave-like
spatiotemporal activity-patterns in dopamine axons across the dorsal striatum. These waves
switch between different activational motifs and organize dopamine transients into localized
clusters within functionally related striatal subregions. These specific motifs are associated with
distinct task contexts: At reward delivery, dopamine signals rapidly resynchronize into
propagating waves with opponent directions depending on instrumental task contingencies.
Moreover, dopamine dynamics during reward pursuit signal the extent to which mice have
instrumental control and interact with reward waves to predict future behavioral adjustments.
Our results are consistent with a computational architecture in which striatal dopamine signals
are sculpted by inference about instrumental controllability and provide evidence for a
spatiotemporally “vectorized” role of dopamine in credit assignment.
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Main text

Dopamine supports reward learning and motivational activation, but details about what
decision variables are encoded, and how they are delivered to postsynaptic targets, continue to
be refined(Berridge, 2007; Schultz, 2016; Berke, 2018) The dopamine-reward prediction error (RPE)
hypothesis emphasizes that dopamine conveys deviations from reward expectation in
reinforcement learning (RL) theory(Schultzetal., 1997) This formulation generally treats dopamine as
a “global” spatio-temporally uniform signal, a view based on two key findings. First, extensively
divergent dopamine axons(Matsuda etal., 2009; Prensa and Parent, 2001) provide an architecture for
broadcast-like communication. Second, dopamine cell spikes measured in the midbrain are
highly synchronized(Hyland etal., 2002 Lietal., 2011)  putatively implementing a redundant population
codeJoshua et al., 2009; Kim et al., 2012; Mohebi et al., 2019) for RPEs(Eshel et al., 2016). These observations form the
basis for an influential view(Glimcher, 2011; Schultz, 1998) of what dopamine communicates and how it is
delivered: scalar RPEs that are uniformly delivered to all recipient subregions. The notion of
uniform encoding also extends to alternative accounts for dopamine’s role in motivation(Berridge,
2007) by relaying scalar value signals(Hamid etal., 2016) |

A key limitation of this global view is that scalar (or, spatio-temporally uniform) decision
variables are neither computationally advantageous, nor reflected in forebrain dopamine
dynamics. Postsynaptic striatal subregions are functionally specialized(Graybiel, 2008; Haber, 2003),
receiving distinct cortical and thalamic afferents(Hintiryan et al., 2016; Hunnicutt et al., 2016) and express
unique compliments of biomarkers(Riedel etal., 2002) Accordingly, rewards(Brown etal., 2011) " their
motivated pursuit(Hamid et al., 2016; Shnitko and Robinson, 2015) gnd predictive stimuli(Menegas et al., 2017) produce
vastly different dopamine time courses across the dorsal-ventral and medial-lateral axes of the
striatum. While these observations indicate regional heterogeneity, the extent to which
dopamine inputs reflect the computational requirements of postsynaptic areas remains elusive.
For example, there is some theoretical motivation(Doya et al., 2002; Frank and Badre, 2011) gnd empirical
support(Badre and Frank, 2011; Gershman et al., 2009) for delivery of vector-valued RPEs that depend on a
target region’s computational specialty. Nonetheless, we currently lack a clear understanding of
organizing principles for striatal dopamine activity, and what normative computational functions
may be served by such heterogeneity.

Related striatal subregions get correlated dopamine input

We set out to characterize the spatio-temporal organizational rules of dopamine activity
across the dorsal striatum. Standard methods for dopamine measurement typically survey small
territories (10s — 100s of micrometers) and are ill-suited to probing large-scale organization. To
overcome these limitations, we injected cre-dependent GCAMPG6f into the midbrain of DAT-cre
mice, and imaged dopamine axons through a 7mm2 chronic imaging window over the dorsal
striatum (DS)(Howe and Dombeck, 2016) (Fig. 1a). This approach provided optical access to 60-80% of
the dorsal surface of the mouse striatum, with a view of dorsomedial (DMS), dorsolateral (DLS)
and partial access to the posterior-tail (TS) region of the striatum (Fig. 1b). We imaged the
activity of dopamine axons at multiple levels of resolution with one or two photon microscopy.

Using a head-fixed preparation, we began by focusing on spontaneous activation of
dopamine axons in mice resting on a wheel in a dark chamber without external stimuli. To first
test if dopamine axons were globally activated, we compared fluorescence signals in DS
regions-of-interest (ROIs) (Fig. 1¢). While ROlIs were sometimes globally synchronized(Howe and


https://doi.org/10.1101/729640
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/729640; this version posted August 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Dombeck, 2016) we observed decorrelated patterns across striatal subregions that evolved across
time (Fig. 1c,d,e). These patterns of activation were observed across multiple anatomical
scales (see Supplementary Fig. 1 for micron-scale organization), indicating that dopamine
afferents can become recruited asynchronously.

To examine how activity is spatially coordinated, we computed the Pearson’s correlation
between pixels’ fluorescence as a function of anatomical distance. Dopamine axons showed
strong local correlations that gradually decreased with distance (Fig. 1f,g), comparable to the
organization of striatal spiny-neuron activity(Klaus etal., 2017) Strikingly however, this distance-
dependent falloff was selective to the medio-lateral axis, and was not present on the anterio-
posterior axis (Fig. 1g), suggesting an organization rule that promoted selective mediolateral
decorrelation.

To further examine the topographical organization of dopamine signals, we leveraged
standard cluster analyses (Fig. 1h). In every dataset (n = 31 sessions, 8 mice), the highest
cluster threshold identified two contiguous subregions outlining well-established(Balleine et al., 2007; Yin
and Knowlton, 2006) DS subregions; medial (DMS) and lateral (DLS) striatum (Fig. 1i top). Further
increasing cluster limits progressively (Supplementary Fig. 2) revealed smaller subdomains of
DS (Fig. 1i bottom), resembling striatal sub-clusters previously identified based on
glutamatergic input patterns(Hunnicuttetal., 2016) These areas had similar clustering patterns across
days and animals (Supplementary Fig. 3), with 25-30 optimal clusters identified in our field of
view (Supplementary Fig. 4). Shuffling the pixelwise temporal or spatial indices produced
random clusters (Supplementary Fig. 4), indicating a critical dependence on the underlying
spatio-temporal activity pattern. Together, these results provide evidence for regional
coordination of dopamine transmission and provided an initial basis for evaluating whether
these signals are modulated by the underlying subregion’s computational specialty.
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Figure 1: Dorsal striatal dopamine activity is spatiotemporally asynchronous and
clusters into contiguous territories.

a, Schematic of methods for imaging dopamine axons over dorsal striatum. GCaMP6 was
injected into midbrain of DAT-cre mice. Cortex overlying dorsal striatum was aspirated, together
with insertion of 3 mm diameter imaging cannula, and activity was imaged in head-restrained
mice. b, Top-down field of view. ¢, Average delta f/F from two regions (top) that exhibit
decorrelated activity (bottom). d, Activity of several ROIs from the same session as ¢, time
series are sorted such that medial areas are top ROls, and lateral regions are represented at
the bottom. e, Correlation matrix across ROIs for different 5sec epochs (highlighted in bottom of
d), showing patterns of correlations that evolve in time. For example, middle shows global
correlation, whereas left and right panels show instances of antagonistic activity patterns in top
and bottom set of ROIs. f, Results from spatial correlation from seed pixels, evaluating the
Pearson’s correlation of with all other regions. Top panel shows medial seed pixels that are
highly correlated with nearby regions and show graded decrease in correlation for distant
regions. Same analysis was repeated for a set of pixels in central striatum (middle) and lateral
seed pixels (bottom). g, Quantification of sessions-wide correlation between each pair of pixels
as a function of distance, separated by medio-lateral (orange) and anterio-posterior distances.
(n= 8 mice, p<0.001 wilcoxon signed-rank test for difference of ML vs AP slopes). h, Paiwise
correlation matrix using hierarchical clustering summarizes similarity of dopamine activity. i, Top,
anatomical projection of pixels that share similarity at the highest cluster limit of two outlining
medial and lateral subregions of the dorsal striatum. Increasing the cluster threshold to 20
(bottom) revealed smaller, but anatomically contiguous regions of the striatum.

Wave-like patterns coordinate dopamine activity
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What spatiotemporal patterns produce systematically decorrelated dopamine signals?
We noticed that full-field fluorescence exhibited complex but spatially and temporally continuous
trajectories throughout the striatum, similar to travelling waves described in other cortical and
subcortical brain regions(Grinvald et al., 1994; Lubenov and Siapas, 2009; Mohajerani et al., 2013; Muller et al., 2018) (Fig_
2a,b, Supplementary Video 1). To quantify these complex trajectories, we used optic flow
algorithms(Afrashteh et al., 2017) to compute frame-by-frame flow fields (see methods for details;
Supplementary Video 2).

The onset of activity in GCaMP fluorescence originated from clustered “source”
locations, and rapidly migrated to other regions (Fig. 2c,d, left). By contrast, activity terminated
as a result of flow toward “sink” locations (Fig. 2¢,d, right). A repeated configuration of pixels
had a high probability of serving as sinks and sources (Fig. 2e, Supplementary Fig. 5),
indicating that local rules may dictate the initiation and termination of dopamine activity.

Dopamine waves entered the dorsal striatum with exponentially decaying inter-wave-
intervals (Fig. 2g) and propagate with a range of velocities (median = 3.8 mm/s, interquartile
range = 2.5, Fig. 2f). The overall direction of flow is bimodally distributed, with a biased medial-
lateral propagation axis (Fig. 2h, all p < 0.001, Omnibus test for angular uniformity).

We next sought to determine if the collection of complex trajectories were made up of
simpler, repeated sequences that may influence the time course of dopamine arriving at
different parts of the striatum. Indeed, the combination of initiation loci and flow direction gave
rise to motif waves that were scaled by propagation velocity and extent of striatum covered. We
focused our attention on three motifs that produced most of the dopamine transients
(Supplementary Fig. 5).

First, source pixels clustered at the juncture of DMS and DLS (Fig. 2i) initiated
dopamine activity that rapidly spread bilaterally outward (Type-1, “Center-Out” or CO wave, Fig.
2i, left). These waves radiate across the striatum with the fastest velocities, arriving at all
subregions with almost zero lag (Fig. 2i, right). Second, source pixels in lateral DLS initiated a
wave that propagates medially (Type-2, “latero-medial” or LM wave). LM waves advanced
across the striatum relatively slowly and delivered dopamine transients to DMS that were
delayed relative to DLS in proportion to propagation speed (Fig. 2j right). Third, a medially
sourced wave propagated laterally (Type-3, “medio-lateral” or ML wave, Fig. 2k, left),
terminating in DLS. ML waves activate dopamine axons in the medial striatum first and recruit
lateral regions with substantial delay (Fig. 2k, right). Together, these results demonstrate that
wave-like patterns are a fundamental organizational principle of dopamine axonal activity,
prescribing how activity initiates, propagates and terminates across DS.
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Figure 2: Wave-like spatiotemporally continuous sequences of dopamine-axon activation
switch between motifs.

a, Top row shows individual frames for different epochs of a transient as dopamine axon activity
emerges and extinguishes in DS. Bottom row displays the corresponding flow vector fields
computed for each pixel. Notice the divergence of vector fields during the rise phase of
fluorescence, and convergent vectors during fall phase. b, Average fluorescence (green) across
the entire field of view lasting ~300ms sampled at 40Hz, and corresponding, flow magnitude in
the fluorescence signal (red). ¢, Flow trajectory of fluorescence for 5 frames during the onset
(feft, red lines), or offset (left, blue lines) phase of the wave from b. Each line shows the pattern
of flow from individually seeded pixels. d, Heatmap quantifying how divergent the vector fields
are at each pixel during onset or offset of activity (left and right respectively). A positive value
indicates that diverging pattern of flow at each pixel indicating that fluorescence is entering the
striatum from those locations. Conversely, negative values are sink regions with converging flow
vectors. e, Peak-normalized projection of the flow vector divergence for the onset (fop) or offset
(bottom) of all transients in one session (n=1516 events). Note that a repeated configuration of
pixels serve as sinks and sources. f, Distribution of propagation velocity (n=8 mice, 1625 +/- 213
events per mouse). Error bar denotes SEM.g, Distribution of interwave intervals for the same
data f. h, Top, quiver plot summarizing the direction and magnitude of waves in a single
session, and distribution of angle of wave propagation for each animal, bottom (n=8 mice, all p <
0.001, Omnibus test for angular uniformity). i, Left, vector fields (yellow) superimposed onto
source pixels (white) for waves that are sourced at the midline and propagate bidirectionally
outward. Right, corresponding fluorescence time course in ROIs on a medio-lateral gradient of
the striatum (inset). j, Same format as i, for lateral source and medial flow or, k, medial source
and laterally flowing wave.
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Rewards evoke directional dopamine waves

What is the functional role of dopamine waves in adaptive behavior? We set out to
determine the computational significance of wave-like trajectories in the context of the well-
studied role of striatal dopamine in instrumental behavior. The dorsal striatum exhibits graded
behavioral specialty, with the DMS orchestrating goal-directed behaviors involving action-
outcome contingencies, and the DLS implicated in stimulus-response behaviors(Balleine et al., 2007;
Corbit and Janak, 2010; Yin and Knowlton, 2006)_ |[ngctivation or manipulation of dopamine in DMS degrades

goal-directed planning and action due to an inability to learn whether rewards are under
instrumental Contro|(BaIIeine and O'doherty, 2010; Wunderlich et al., 2012)_

We thus designed two operant tasks intended to manipulate action-outcome
contingencies, and asked whether dopamine dynamics carry information about the degree of
instrumental controllability (Fig. 3a,b,c). First, in an ‘instrumental’ task, rewards were contingent
on mice running on a wheel to traverse linearized distance, with the progress to reward
indicated by an auditory tone that escalated in frequency (Fig. 3b,d). On each trial, the distance
that was needed to run for tone transitions (and ultimately, reward) was randomly selected from
a uniform distribution (50-150 cm, Fig. 3c, left). Thus, while the mouse was in control of tone
transitions, the specific contingencies varied across trials. A second ‘pavlovian’ task was
administered in separate sessions. The task structure was identical except tone-transitions
occurred after fixed durations within a trial (randomly drawn, 4-8 sec, Fig. 3c right), and
progress to reward was unrelated to running. Trained mice exhibited anticipatory lick trajectories
that increased with ascending tone frequency in both tasks (Fig. 3e,f), indicating that mice used
these tones to update their online judgment of progress to reward. Analysis of run bouts
(Supplementary Fig. 6) revealed that mice invested goal-directed effort to receive rewards
selectively in the instrumental task.

As in spontaneous conditions reported above, dopamine waves were ubiquitous during
task-performance. Notably, reward delivery immediately resynchronized irregular patterns into
smooth waves (Fig. 3g,h) that had opponent directions depending on task conditions.
Specifically, completion of a trial in the instrumental task triggered ML waves (Fig. 3i,k bottom,
Supplementary video 3), whereas rewards in the pavlovian task promoted LM waves (Fig. 3j,k
top, Supplementary video 4, p<0.001 Watson-Wilson test for equality of mean directions in
two tasks, n=6 mice for instrumental task, n=8 mice for pavlovian task).

These patterns evolved dynamically with learning: Reward-waves were initially irregular
in naive animals but became progressively smooth and directional with experience in task (Fig.
31, Supplementary video 5). The dynamic sculpting of the spatiotemporal patterns by training
and task demands ruled out explanations related to the intrinsic anatomy or biophysics of
dopamine axons that would constrain the array of observed activation patterns. Thus, we
conclude that dopamine waves carry behaviorally relevant decision signals and set out to
formalize their precise contribution. In particular, the continuous propagation of dopamine
across the striatum both in space and time motivated a revision of standard “temporal-
difference” models wherein a single reward-value influences learning about earlier events that
are predictive of rewards. We reasoned that these views could be expanded to include
“spatiotemporal differences” in which waves carry additional, graded information about structural
sub-circuits that are most likely to be responsible for rewards.
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Figure 3: Reward delivery promotes directional waves that depend on instrumental
requirement of task.

a, Schematic of test chamber. b, Changes in tone frequency for short, medium and long trials
tiling fraction of trial complete. ¢, In the instrumental task (/eft), tone transitions that escalate in
frequency are linked to rotation of the wheel. The total distance to travel on each trial is drawn
from a uniform distribution of 50-150 centimeters. In pavlovian task (right), the passage of time
escalated tones, and the duration to wait was also drawn form a uniform distribution of 4-8
seconds. d, Example ftrials in the instrumental task. When the mouse traverses linearized
distance rapidly, the tones escalate quickly, but if the mouse pauses running, tones do not
escalate but still signal the fraction of distance completed. e, Example licking behavior in
pavlovian session, sorted by delay to reward. Mice increase lickrate in anticipation of reward. f,
These anticipatory licks were not influenced by distance to run, or duration to wait, but
increased in proportion to progress to reward signaled by tones (two-way ANOVA effect of tones
F(8,683) = 3.32), p = 0.001 and effect of 4 duration bins F(3,683)=0.48, p = 0.7 in pavlovian
sessions. For instrumental sessions, effect of tones F(8,359) = 8.41, p<0.001 and influence of
four distance bins F(3,359) = 0.13, p=0.9). g, Alignment of trial-by-trial reward wave velocity
across the striatum. Rewards consistently resynchronized dopamine axons into waves in both
the instrumental task (n=123 trials), and the pavlovian task h (111 trials). i, Top, example flow
vectors (blue arrows) and source locations (contour plot representing source regions) across
pixels for a single rewarded trial. Botfom, peak-normalized fluorescence time course across
trials produced by mediolateral waves on the medio-lateral gradient of the striatum. j, Same
format as i for pavlovian session. k, Flow vectors for reward epoch (0-1s post reward across all
pixels) for each trial in pavlovian and instrumental sessions shown in g and h. Each arrow
shows the mean flow direction across striatum averaged across pixels for a single trial; vectors
initiate at the origin to illustrate the distribution of direction and magnitude. I, Flow trajectory of
fluorescence in response to reward as mice gained experience with the task. Top, Naive mice
had irregular responses in the first two days of reward exposure, and at bottom, the same mice
exhibit smooth waves after 3 weeks of learning reward contingency. See supplementary video 5
for responses plotted.
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Dopamine waves implement spatio-temporal credit assignment

Our functional interpretation of dopamine dynamics is that the opponent wave
trajectories at reward are relevant for spatiotemporal credit assignment. The key inference the
animal must make is whether it is in control of the reward-predictive tone transitions, and
moreover, which specific contingency applies in the current trial (i.e., distance to run to advance
tones). Thus, for mice to preferentially run in the instrumental task (and persist running for long-
distance trials), the extent of instrumental controllability should guide reward-evoked dopamine
to favor the DMS (i.e. strengthen action-outcome learning). Trial by-trial controllability is partly
ambiguous in the task because contingencies were stochastic (drawn from uniform
distributions), and mice natively run to varying levels. Nonetheless, we reasoned that task
contingencies could still be inferred within trials based on the extent that tone transitions are
congruent with locomotion, and dopamine signals can be informed by such congruency.

To formalize this notion, we constructed a multi-agent mixture of experts (MoE) model,
extending earlier hierarchically nested corticostriatal circuit models of learning and decision
making (Poya etal., 2002; Frank and Badre, 2011) (Fig. 4a, Supplementary Fig. 7, see Methods for details).
At the highest layer (level 1) is an expert, putatively corresponding to DMS, that computes the
online evidence for action-outcome contingencies and thus task controllability (Fig. 4a). Sub-
experts within that area (level 2) represent specific contingencies (e.g., distance needed to run
is short, medium or long) based on previous exposure to the tone transition distributions,
learned as a semi-markov decision process via temporal difference learning(Daw etal., 2006) Sub-
expert prediction errors (PEs; level 3) occur at tone transitions and are used to compute
evidence for (or against) the accuracy of each sub-expert’s prediction. This formulation allows
an agent to flexibly adapt behavior based on task contingencies (Supplementary Fig. 7) (Doyaet
al., 2002; Frank and Badre, 2011) gnd expands the RL account of dopamine to allow both RPE and value

signals to be informed by their inferred causal contributions(Chang etal., 2004; Gershman et al., 2015; O'Reilly
and Frank, 2006; Russell and Zimdars, 2003)

This architecture makes novel predictions at multiple levels which can potentially tie
together the separable roles of dopamine during reward pursuit (performance) and learning.
First, when reward waves initiate in the DMS (i.e. ML waves in the instrumental task), that
region will receive the most credit, and hence mice will be faster to initiate running on the next
trial and will persist in doing so until rewards are obtained. Second, the reward wave dynamics
should be informed by a trace of which circuit (“expert”) was most responsible for the reward
(i.e., which circuit’s predictions were most valuable). We posited that DA dynamics during the
tone transitions (anticipatory epoch) could provide such a responsibility signal; that is, the sub-
circuit that best predicts the action-outcome contingencies will exhibit increases in dopamine.
These levels of dopamine can facilitate mice’s motoric output to be guided most-strongly by that
subexpert, while also signaling the degree to which it is responsible for future rewards. We thus
hypothesized that DA dynamics during anticipation would impact how reward-waves circulate
among striatal subregions and the behavioral expression of running in future trials. Finally, at the
most fine-grained level, our model predicts that RPEs should occur at tone transitions to inform
the extent of instrumental controllability. In the remaining sections we unpack and test each of
these predictions.

The first prediction is that dopamine waves experienced at reward outcome reflects a
measure of credit assignment across the striatal experts. ML waves deliver dopamine first to
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medial subregions (Fig. 2i,j, 3i,j), and these DMS-biased signals would selectively strengthen
corticostriatal representations for action-outcome contingencies that compete for instrumental
control in future trials. As such, we predicted that stronger ML waves at reward would enhance
instrumental learning that will drive future running. Indeed, we found a significant correlation
between the trial-by-trial magnitude of reward wave and latency to start running on the next trial
(n=6 mice, mean r =-0.32, p = 0.0019 two-sided t-test on correlation coefficients). Furthermore,
these wave magnitudes predicted the velocity even late in the next trial, 10.2 +1.4 seconds after
the reward response (Fig. 4c). The influence of these waves in future-trial behavioral
adjustments indicated that they are used for learning functions. Further, these effects were
selective to instrumental sessions, indicating that DMS sourced ML waves promote learning
about instrumental contingency that is employed for future reward pursuit.

Anticipatory dopamine ramps provide eligibility for credit assignment

If reward-waves reflect credit assignment, what determines which subregion should
receive the credit? Canonical accounts in RL invoke dopamine RPEs that have graded effects
on learning depending on “eligibility” signaled by recent MSN activity(Shindou et al., 2019; Yagishita et al.,
2014). As noted above, we considered the possibility that local dopamine dynamics during the
anticipation epoch themselves signal a coarser measure of eligibility in terms of which subregion
was responsible. This trace would be in proportion to the value of the underlying subregion’s
predictions, providing a tag for a subregion’s credit.

We thus focused on the activity of dopamine axons during the anticipatory period as
mice drew closer to reward. In the instrumental task, we observed a buildup of activity in the
DMS (Fig. 4d,f), ramping in proportion to the progress to reward(Hamid etal., 2016; Howe et al., 2013),
Strikingly, the opposite profile was observed in the pavlovian condition (Fig. 4e,f), with
decreasing ramps even as the mouse continued to increase licking in anticipation of rewards.
These findings are not explained by extant models of DA ramps in accumbens or midbrain,
where they have been linked to value functions or RPEs(Gershman, 2014; Hamid et al., 2016; Lloyd and Dayan,
2015; Morita and Kato, 2014) none of which predict opposite profiles across the two tasks.

Instead, we posited that anticipatory dopamine dynamics in the DMS reflects the
evidence of agency or controllability, and that subregions within might differentially represent
distinct controllable transition functions (which vary from trial to trial). Escalating tones in our
tasks provide information about online action-outcome contingency. For example, if tone
transitions consistently follow locomotion (as in Fig. 3d), they signal evidence for control. The
opposite inference can be made in the pavlovian task when tone transitions diverge from
locomotion. Respectively increasing or decreasing ramps in the instrumental and pavlovian
tasks accumulate in MoE ‘distance’ expert-weights as controllability is confirmed (or
contradicted) with each tone transition (Fig. 4a, right, Supplementary Fig. 7).

Thus, according to our model, DA ramps do not reflect a monolithic value function, but
rather the value of the underlying sub-region’s agentic predictions for reward pursuit, as a
marker of that region’s responsibility. Consequently, we argue here that the computational
function of dopamine waves at reward-outcome is to assign spatio-temporal credit by delivering
dopamine to striatal subregions with different latencies as a function of their graded
responsibility signals. This proposal is also motivated by theory and observations that
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dopamine-mediated plasticity at striatal synapses is strongly attenuated with delayed dopamine
re|ease(Shindou et al., 2019; Yagishita et al., 2014)_

This credit assignment interpretation makes additional testable predictions at both
physiological and behavioral levels. If dopamine ramps during reward anticipation hold
persistent information about a sub-region’s prediction accuracy, they should modify the impact
of dopamine bursts at reward to focus preferentially on the sub-region with the highest accuracy.
As such, striatal areas that ramp with the steepest slopes during anticipation (highest eligibility)
should receive a reward response soonest (largest credit, Fig. 4g). Indeed, anticipatory ramp
slopes across pixels were significantly correlated with the fastest latency to peak fluorescence
following reward for both tasks (Fig. 4h,i).

Second, if DMS ramps signal responsibility for learning about instrumental control, then
trial-by-trial DMS ramp slopes should also modulate the impact of reward waves on next-trial
velocity. Indeed, we found that the impact of ML waves on future velocity in the instrumental
task (Fig. 4c) were dependent on the level of DMS ramps in the previous trial. When DMS
ramps were steep, reward waves strongly predicted speeded velocity in subsequent trials; this
effect was absent when ramps were weak (Fig. 4k, p = 0.016 Wilcoxon signed-rank test, n=6
mice). Together these results suggest that anticipatory dopamine ramps provide a tag for how
midbrain driven reward-credit circulate across the striatum to deliver a reinforcement signal for
future performance.

Thus far, we have focused on the coarsest division of labor related to the highest level in
our model (controllability, level 1), but the agent’s ability to infer control depends on underlying
sub-experts that learn distinct action-outcome contingencies (level 2, Fig. 4a,b). Such a
hierarchical scheme implies that striatal subregions should also differentially ramp for different
distance contingencies (Fig. 4a). Overall, we observed that DS dopamine ramps are expressed
in a gradient across both tasks, with the strongest ramps in the most medial portions (Fig. 4l,m).
These results are in line with previous work on progressive instrumental specialization of DS on
the mediolateral axis(Thometal., 2010)  Moreover, contiguous territories within the DS exhibit varying
ramp profiles for different distance conditions (Fig. 4n, Supplementary Fig. 8), with each area
expressing the steepest dopamine ramps in preferred set of trials with related distance
requirements (Fig. 40). On a trial-by-trial basis, we further observed a significant rank
correlation between each pixel’s ramp slope and latency to peak response during reward (mean
r =-0.13, spearman’s correlation p<0.001 for all instrumental sessions). These results indicate
that the heterogeneously expressed anticipatory ramp gradients across the striatum modulate
the spread of reward waves, further strengthening the relationship between eligibility and credit
assignment. These findings further support our interpretation that is motivated by MoE account
by demonstrating that DMS consists of smaller sub-regions that learn, and express predictions
for a variety of potential instrumental contingencies.

11


https://doi.org/10.1101/729640
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/729640; this version posted August 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Mixture of experts (MoE) model

Motor
response

2
instrumental task

Run? How fast? pavlovian task
evidence for controllability

11

Level 1
evidence is compared
against other experts

1

Distance expert responsivilty

Distance
expert

Level 2: \
accumulated evidence T : ‘ \
for (or against) sub-expert /25,,0"2 ) \ / LR
< ahna 3emitone ,
A @ 4s/tone\:7’) . b samtone
@' T g €
N | 5cmitone |
Level 3 . 4

prediction error signals
in each subexpert
Az 12z 200z

aHz  12KHZ  20KHZ

P
C d instrumental task f
Late velocity (next trial)
04|
=
2
3
aaz) w02
3 =
<3 ®
c = . <]
7] 20
8 { oms 20 y ows o
o ! 0
> 10 |
15 w [ u i
= = | / = A |
o i
W ¥ RS 021
0. v m«‘ |
4 0

time from reward (trial n) mﬁe to reward,. sec

h i

3 4
time to reward, sec

(@]

latency to peak 5 -~
o op 14 meanr =-0.3
? vvyv o
- P instrumental 5
! H o ! 2 B 1
| 2 pavlovian 3
w i ~ 1 @
= i 3 0 o
- correlation
Ea Ramp slope d o
2 | é‘ 06 T = B
2 2 mean r =-0.48
T 04 S
= g,
02 %
¢ o 1 05 0 05
time to reward - 05 0 05 1 5 KE
anticipation ramp slope correlation
I I l 1
)

021 instrumental task
pavlovian task

instrumental f/F

_ramp slope

pavlovian f/F
o
>

1
0 Medial

time to reward, sec medio-lateral position

b MoE in the brain?

DMS timecourse

instrumental task
pavlovian task

20 40 60 80 100
% trial complete

k ) p=0016

regression coefficient
°

e
low high
ramp

ramp

Figure 4: Anticipatory epoch dopamine dynamics reflect inferred controllability and
modulate impact of reward on future running in line with a mixture of striatal experts.

a, Schematic of hierarchical mixture of experts model as a framework for interpreting functional
relevance of dopamine dynamics. At the lowest level (level-3), individual states (representing
auditory tones) induce reward prediction errors if they misalign with learned contingencies for

each “sub-expert”. Prediction errors are accumulated within trials leading to ramps in

sub-

experts that best describe the current task-contingencies (e.g., short, medium or long
distances). At the highest level (level-1), instrumental or Pavlovian “experts” compute the overall
(weighted across sub-experts) evidence for instrumental task requirements. These distance-
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expert responsibility weights accumulate within and across trials to infer controllability of the
value function, and are used to adjust model velocities (see Supplementary Fig. 7). b,
Proposed reflection of MoE signals in striatal dopamine activity, whereby DMS represents
overall evidence for controllability (level-1), and is enriched with subregions that represent
different instrumental contingencies (level-2). Individual dopamine axon segments signal PEs
(level-3) used to accumulate evidence for control. ¢, Multiple regression predicting future
running speed of mice in the late phase of the next trial as a function of trial-by-trial wave
velocity (in 1 second bins) surrounding the reward from the previous trial. Larger reward-
induced waves were predictive of faster mouse running speeds in subsequent trials within
instrumental (blue) but not Pavlovian (pink) sessions. Regression coefficients significantly
different from zero (blue, asterix p=0.005, two-tailed t-test). Error bars are S.E.M. d, Anticipatory
and reward response in the medial and lateral DS in a representative instrumental session.
White points indicate start of trial. e, same format as d for pavlovian session. f, Aggregate
ramping profile during anticipatory epoch for the DMS. Mean activity for each session was z-
scored and averaged across mice. Activity in DMS but not DLS showed task-dependent
ramping profiles in line with inferred controllability in MoE level 1. Shaded regions represent
S.E.M. g, Schematic for testing whether anticipatory epochs ramp slope is related to the latency
to peak dopamine (peak-normalized within 2sec window following reward) in the outcome
epoch. h, Results of the relationship from two representative sessions, each from instrumental
and pavlovian condition. For both tasks, ramp slope was inversely related to subsequent latency
to peak reward response. i, j summarize the distribution of correlation coefficients across
sessions. k, Multiple regression (as in ¢) reveals that impact of reward waves on subsequent
trial running speed is stronger when previous trial exhibits large vs small DMS ramps (by
median split), in line with credit assignment. I, Anticipatory epoch ramps in sample instrumental
(top) and pavlovian (bottom) sessions broken down by ROls along the medio-lateral axis (inset).
m, Quantification of ramp slope across sessions. Error bars represent S.E.M. n, Local
subregions within the dorsal striatum respond preferentially to distinct distance contingencies,
reminiscent of sub-expert dynamics (level 2). Contingency specialization map in an example
session; color indicates mean distance associated with steepest ramp slopes for each pixel. o,
Time course of anticipatory ramps in two example subregions for their respective preferred (high
ramp trials), and non-preferred (low ramp trials). See Supplementary Fig. 7c for similar pattern
of activation in model simulations.
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These findings led us to ask whether waves organized the response of dopamine axons
on the micron scale, and functionally, how evidence for instrumental controllability accumulated
in single axon segments. The ramp-like responses we observed at the coarser scale using
widefield, one-photon imaging may emerge from trial-by-trial ramps within individual axons, or
from a weighted distribution of sharply tuned activation patterns. To directly address these
questions, we used 2-photon imaging in two mice to examine the behavior of individual axons in
the DMS (Fig. 5a).

Similar to our observations at the macro scale, reward delivery recruited dopamine
axons in a spatial sequence that was directional (Fig. 5b,c), demonstrating that wave-like
activation patterns also organize individual axon lattices on the micron scale.

The activity in individual dopamine axons were also modulated during the anticipation
epoch. Strikingly, segments of axons transiently responded to auditory tone transition, tiling the
full sequence of escalating tones (Fig. 5d). The timing of these responses was not affected by
distance travelled (Fig. 5e), but reliably responded to changes in tone frequency across a
variety of distance contingencies (Fig. 5f). The systematic tuning of these axons to tone-
transitions are consistent with PEs at the lowest level of our model (Fig. 4a, Supplementary
Fig. 7) that are used to update the online evidence of predictions within each sub-expert. Each
tone is represented as a unique state within a sub-expert’'s semi-markov process, and PEs arise
at tone transitions when they misalign with the predicted distance (or dwell time) until state
change. Furthermore, the model predicts larger PEs for state transitions indicative of rewards
that will arrive when the distance to run is shorter, due to temporal discounting (Supplementary
Fig. 7). Supporting this prediction, we observed that tone responses were largest in trials that
had shorter distance contingencies, and progressively decreased in amplitude for longer trials
(Fig.5e,f, mean r = -0.33, and -0.14 n=2 mice; see Supplementary Fig. 9). These PE-like
responses were distributed throughout the 2-photon field of view, with equivalent fractions of
pixels selectively tuned to each tone transition (Supplementary Fig. 9).

We also noted that contiguous segments of axon lattices had single trial ramps that were
either upward (Fig. 5h,i) or downward (Fig. 5j,k) as mice get closer to reward. Instead of tuning
to tone-transitions reported above, these dopamine ramps were selectively expressed for
different contingencies, ramping to varying extents depending on the required distance in
separate trials. Together these results provide evidence for two, simultaneous classes of nearby
dopamine axon segments (Supplementary Fig. 9) used for sub-expert computations: transient
PE signals that respond to state transitions, and ramping segments that accumulate evidence
for controllability as predicted by a sub-expert.
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Figure 5: Single dopamine axons show wave-like reward dynamics, tone-specific
transients, and distance-dependent ramping during instrumental anticipation.

a, Schematic of imaged region (top), and example field of view of dopamine axons in DMS. b,
Sequence of frames showing how individual dopamine axons respond to reward. Time relative
to solenoid click is shown below each frame. Note the activation of leftmost fibers first, then
progressive activation of more lateral axons. ¢, Average time course of reward response from
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rectangular ROls equally distributed along the ML axis. d, Activity of dopamine segments that
respond to tone transitions during anticipation. The activity in each trial is shown as percent trial
complete instead of alignment in time. Top, heatmap shows the trial-by-trial responses (106 total
trials) of groups of pixels in the 2-photon field of view that respond transiently at specific fraction
of trial completed. The responses of nine different types are concatenated. Bottom, average
delta f/F for each type. E, Transient response-peaks are not tuned to time or distance run within
trial. Each time series is aligned to trial-start and binned into 3 distances: short (50-80cm, dark
blue), medium (80-120cm), and long (120-150cm, light blue). Note that the peak location of
response arrives at different distances in each trial. By contrast, when aligned to % trial
complete, in f, the peak response arrives with fixed delay from tone transitions (illustrated at the
top for both panels) for all distance contingencies. The transient responses for each tone had
larger amplitudes for shorter trials (ie when rewards are predicted to occur sooner, in line with
state-dependent reward prediction errors within the lowest level of MoE). g, Individual axon
segments highlighted to demonstrate example ramp-like trajectories. h, Some axon segments
ramped downward when aligned to distance travelled or fraction of trial completed as in i, as
expected at the sub-expert (more localized) level (see Fig 4a and Supp Fig7). J An axon
segment that progressively ramps upward only in short distance trials (see Supp Fig 9 for other
examples). k, same alignment as i. |, pixelwise map of ramp slope during anticipation.
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Discussion

Our report of dopamine waves provides the earliest evidence for a foundational
organizational principle of dopamine axons that correlate activity within functionally related
striatal boundaries. In the cortex, travelling waves have been described to facilitate (or
constrain) computations that are topographically organized(Bringuier etal., 1999; Muller et al., 2014; Nauhaus et
al. 2009) Similarly, we interpret the computational significance of dopamine waves as
orchestrating dopamine release to striatal subregions that exhibit a graded functional
specialization on the medio-lateral axis(Barbera etal., 2016; Klaus et al., 2017; Thorn et al,, 2010), Thus, waves are
a natural candidate for solving the spatiotemporal credit assignment problem when multiple,
topographically organized striatal actors/sub-experts compete to guide action selection across
multlple levels of abstraction(Collins and Frank, 2013; Doya et al., 2002; Frank and Badre, 2011) \A\/e used a very
simple task to manipulate reward and sensory statistics, requiring mice to resolve ambiguity
about instrumental contingency by comparing predicted and actual tone transitions. Consistent
with the MoE account, wave directions during reward were sensitive to controllability of task
structure, and -- only in the controllable task -- dopamine waves were related to future
behavioral adjustment on a trial-by-trial basis.

We also describe anticipatory epoch ramping dynamics that appear to signal the value of
a subregion’s prediction about reward contingency. These dynamics may serve a dual purpose.
First, they could promote online behavioral flexibility (e.g., optimize reward-rate and minimize
energetic costs) according to the predictions of the most accurate subregions during reward
pursuit. Second, these activity patterns would also signal which subregion was most responsible
for behavioral output and hence provide a low dimensional tag for responsibility (akin to an
eligibility trace in RL(Singh and Sutton, 1996)) “ which would then allow for reward-driven RPEs to
preferentially credit the appropriate subregion and the eligible MSNs within it. While the two
functions are not mutually exclusive, our data provide strong support for the second
interpretation: On a trial-by-trial basis, the degree of ramping across regions was related to the
latency to reward peak elicited by the wave, and the combination of ramp slope and wave
magnitude was predictive of subsequent-trial behavioral adjustments. These findings accord
with views that dopamine signals can have different functions during reward pursuit and
outcome, which can be gated by local microcircuit elements that regulate plasticity windows
(Berke, 2018; Bradfield et al., 2013; Franklin and Frank, 2015; Morris et al., 2004; Threlfell and Cragg, 2011). MOI’GOVGI’, we also
interpret transient and localized RPEs during reward pursuit as facilitating inference about the
current task state (i.e., determining credit), whereas RPEs during reward itself facilitates
reinforcement learning; a dual operation that can also be gated(Frankiin and Frank, 2015; Gershman et al.,
2015; Redish et al., 2007; Schoenbaum et al., 2013) Pyt together, the synthesis of our data and computational
simulations imply that dopamine signals are spatio-temporally vectorized during both epochs,
tailored to underlying region’s computational specialty.

Although DMS dopamine support the computations of the ‘Distance’ expert in the MoE,
one limitation of our study is that we did not identify or assess the dopamine dynamics with
properties of the ‘Time’ expert. Many studies investigating RPEs involve classical conditioning in
which temporal representations are evident in the midbrain(Hollerman and Schultz, 1998; Pan et al., 2005; Soares
etal, 2016) and ramping signals related to timing may be present in other regions upstream of the
DA System(Brown etal., 1999; Hazy et al., 2010; Mello et al., 2015) Nonethe|eSS, even without t|m|ng expertS,
the DMS expert in our model could behave similarly across the two tasks if it simply evaluates
evidence for agency relative to some prior expectation about control.
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Another limitation of our study is that we did not deduce the origin of dopamine waves,
which may be inherited from sequential firing of midbrain dopamine cells that have a
topographical projection pattern(temeretal, 2015) To date, such dynamics have not been reported in
the literature, potentially because limited studies investigated the activity of a large population
dopamine neurons simultaneously(Engelhard etal., 2019) Another likely mechanism may involve local
sculpting of dopamine release within the striatum. Wave-like patterns have been reported in
neocortex(Kasanetz et al., 2008; Mohajerani et al., 2013) gnd striatal ChO“ﬂGI’giC interneurons(Rehani et al., 2019),
both of which can potently regulate dopamine axon activity(Cachope etal., 2012; Krebs et al., 1991; Threlfell et al.,
2012), Moreover, dopamine waves at reward outcome may also be a consequence of the
interaction between primed excitability of dopamine axons during the anticipatory epoch and
midbrain-sourced synchronous reward bursts. The combination of these two patterns may

produce sequential activation that propagates across the striatum in proportion to expressed
ramp during anticipation.
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Methods

Animals and Surgery. All procedures were conducted in accordance with the guidelines of the
NIH and approved by Brown University Institutional Animal Care and Use Committee. We used
17 DAT-cre mice (9 females, 8 males; Jax Labs # 020080) that were maintained on reversed
12hr cycle and all behavioral training and testing was performed during the dark phase. To
achieve selective expression of GCaMP6f in dopamine cells, we followed standard surgical
procedures for stereotaxic injection of cre-dependent virus. Briefly, mice were anesthetized with
isoflurane (2% induction and maintained at 0.75-1.25% in 1 liter/min oxygen). To attain
widespread infection of dopamine cells throughout the midbrain, we drilled two burr holes above
the midbrain (-3.2mm AP, 0.4mm and 1.0mm ML relative to bregma) and injected 0.1-0.2uL of
AAV-syn-Flex-GCaMP6f at two depths per burr hole (3.8 and 4.2 mm relative to brain surface).
We next secured a metal head post to the skull and implanted an imaging cannula over the
ipsilateral dorsal striatum. The cannula is a custom fabricated stainless-steel cylinder
(Microgroup; 3mm diameter and 2.5-3mm height) with a 3mm coverslip (CS-3R, Warner
Instruments) glued at the bottom with optical adhesive (Norad Optical #71). To insert the
cannula into the brain, a 3mm diameter craniotomy was first drilled over the striatum (at bregma,
centered on 2.0mm ML), and then gently removed the dura and slowly aspirated the overlying
cortex until white colossal fibers were clearly visible (~0.8-1.2mm from brain surface). These
fibers were also gently aspirated layer by layer until the underlying dorsal striatal tissue was
uniformly exposed. A sterile imaging cannula was progressively lowered until the coverslip
contacted striatal tissue uniformly. Dental cement was applied to secure implant to the skull and
mice received a single dose of slow-release buprenorphine and allowed to recover for 1-2
weeks with post-operative care.

Behavioral Training. After full recovery from surgery, mice underwent 2-3 days of habituation in
operant chambers outfitted with a 3D printed wheel (15 cm diameter), audio speakers and a
solenoid-gated liquid reward dispenser. Following acclamation, mice were water-restricted,
receiving 1ml/day in addition to water earned during task performance. We used custom
LabVIEW scripts to control operant boxes during training and testing in behavioral tasks. In the
first stage of training, mice received non-contingent rewards that were delivered randomly (3-15
second apart, uniform distribution) for 3 consecutive days. Next, training in a “pavlovian” task
began, wherein rewards were delivered after a variable delay from trial start. The start of each
trial is signaled by the onset of a 4.3kHz tone that continued to escalate in frequency in
proportion to fraction of trial completed. We used nine different frequencies that were selected to
minimize harmonic overlap; 4.3kHz, 6.2kHz, 8.3kHz, 10kHz, 12.4kHz, 14.1kHz, 16kHz ,8.4kHz,
20kHz. Across trials, the duration to wait for reward is randomly drawn from a uniform
distribution (4-8 seconds). At the end of a trial, the auditory sound is turned off, and the solenoid
delivered 3pL of water reward to a spout in front of the mouse. Licking behavior is detected
using capacitive touch sensors (AT42QT1010, Sparkfun). In some catch trials, the initial 4.3kHz
tone turned off after 0.5s and the mouse did not have continuous information of progress to
reward. For clarity, we only focused on escalating-tone trials. The next trial started after a
variable inter-trial-interval of 3-8 seconds. After 2-3 weeks of the pavlovian task, activity of
dopamine axons in the striatum was imaged in a test chamber with a widefield and 2-photon
imaging system. The same animals were then further trained on a distance-variant of the same
task, where reward delivery is now contingent on mice running on the wheel. Mice were
exposed to the “instrumental” task in training chambers requiring them to run on the wheel to
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traverse linearized distances, also randomly selected from a uniform distribution (50-150cm).
Progress to reward was indicated by the same tone frequencies, and the angular position of the
wheel recorded using a miniature rotary encoder (MA3A10250N, US Digital). All behavioral data
is digitized and stored to disc at 50Hz.

Widefield and two-photon imaging. All imaging was performed using a multi-photon
microscope with modular laser-scanning and light-microscopy designed by Bruker/Prairie
Technologies. For widefield imaging, we used a full-spectrum LED illumination with FITC filter
cassette for illumination at 470nm and detection centered at 530nm. Images were acquired
using a CoolSnap ES2 CCD camera (global shutter, Photometrics) and synchronized with
behavioral events through TTL triggers. All widefield images during behavioral tasks were
acquired with a 4X objective (Olympus), 100ms exposure (10Hz) and 8X on-camera binning to
achieve a sample resolution of 40pm/pixel (unless indicated otherwise). Two-photon microscopy
was performed using a 20X air objective (Olympus) on the same imaging platform with a
femtosecond pulsed TiSapphire laser source (MaiTai DeepSee, 980nm power measured at
objective was 20-50mW) that was scanned across the sample using a resonant (x-axis) and
non-resonant (y-axis) galvanometer scanning mirrors. Returning photons were collected through
an imaging path onto milti-alkali PMTs (R3896, Hamamatsu), and recorded frames were online-
averaged to achieve a sampling rate of 10-15Hz.

Data Analysis and statistics. All images were processed with custom routines in MATLAB.
Each session is preprocessed for image registration, and alignment to behavioral events based
on triggers. Movement artifacts and image drift in the XY plane were corrected using rigid-body
registration using a DFT-based method(Guizar-Sicairos et al,, 2008) T cluster the activity of dopamine
axons, we used the K-means algorithm in MATLAB. To compute robustness of clustering
results, we used the adjusted rand-Index measure which computes the similarity of two clusters
based on the probability of member overlap (corrected for chance; 0=random clusters, 1=exact
same membership). To examine how robust the clustering results were, we re-clustered the
same dataset 100 times in K-means using random initialization and varied cluster limits. We
compared the extent that pixels were re-clustered into the same group using the adjusted rand-
index as an indicator of robustness of underlying structure of the data that produced clusters
(see Supplementary Fig. 4). To additionally test the extent spatial relationship between the
pixels, or their temporal relationship influenced the identified clusters, we repeated the same
analysis but shuffled the spatial or temporal relationships between the pixels. To estimate the
optimal number of clusters within each dataset, we computed the Bayesian information criterion
(BIC) on the K-means algorithm.

We characterized flow patterns in dopamine waves by adapting standard optical flow
algorithms in machine vision that are adapted for imaging of fluorescence signals(Afrashteh et al., 2017;
Mohajerani et al., 2013; Townsend and Gong, 2018)_ Briefly, flow trajectories were computed for any two
successive frames as a displacement of intensity across the pixels in time. This method allows
us to evaluate a pixel-by-pixel velocity vector fields that summarizes the direction and strength
of flow at each pixel. While there are multiple methods to achieve this calculation(Afrashteh etal., 2017;
Townsend and Gong, 2018) e adapted a combined Global-Local (CGL) a|gorithm(Bruhn et al., 2002; Liu, 2009)
that combines the Lucas-Kanade and Horn-Schunck methods. The frame-by-frame vector fields
calculated using the CGL method was further processed to extract sink and source locations
and also flow trajectories across multiple frames (Fig. 2a, bottom). The frame-by-frame flow
magnitude for each frame (or flow-velocity, with units of mm/second) is computed by averaging
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the length of vectors at each pixel (e.g. Fig. 2b, red). The locations of sinks or sources were
estimated based on local vector orientations: i.e sinks are points of inward flow, whereas
sources are points of outward flow. We estimated the pixel-wise likelihood of sinks and sources
by simply computing the divergence of the vector field in each frame (“divergence” function in
MATLAB, Supplementary Video 2). The flow trajectory across frames were calculated from
vector fields using the “stream3” function in MATLAB from seeded pixels (e.g. Fig3l).

For alignment of fluorescence time series, DMS and DLS masks were defined using one
of three methods: i) manual drawing, ii) boundaries using cluster results (as in Fig. 1i, top) and
iii) uniformly spaced ROls on the mediolateral axis (as in Fig. 41, inset). Each animal performed
multiple behavioral sessions, and we used one session per animal (n=6 mice in instrumental
task, and n=8 mice in pavlovian task) that had the largest Af/F deviations to avoid
results from being dominated by a few animals.

To determine the influence of reward-wave on behavioral performance on the next trial,
we performed a multiple regression predicting the running velocity of mice late (i.e. 75-100% of
trial complete) in the next trial based on reward-aligned wave magnitude (1-sec bins, Fig. 4c).
To determine whether DMS ramp slopes influenced how last-trial wave outcome, on the next
trial, we conditioned this analysis on the ramping profile in the DMS, median-split into low and
high ramp conditions (Fig 4k). We evaluated the correlation between the ramp slope and
latency to peak by first peak-normalizing the reward response in 2-sec window and finding the
time index (after reward) for which the fluorescence signal reached peak levels. To examine
whether anticipatory dopamine ramps had a preference for different distance conditions (Fig.
4n, also see Supplementary Fig. 7), we sorted the trials based on the expressed ramps in
each pixel and averaged the distance contingency in trials with top 90% ramping.

TIFF stacks of 2-photon images of dopamine axon segments were also pre-processed
for registration and alignment with behavioral data. To draw ROls of these segments for
assessing organization of responses (Supplementary Fig. 1), we followed the Howe and
Dombeck (Howe and Dombeck, 2016). Otherwise, we generally used pixel-wise analyses.

Computational model. We modeled mouse behavior using a mixture of experts / multi-agent
RL architecture(Frank and Badre, 2011) extended here to accommodate the sequential tone structure
with semi-markov dynamics(Daw etal., 2006) \We modeled the two task structures as separate
“‘experts” that learned a value function V as a function of either elapsed time as in classical
temporal difference learning applied to Pavlovian condition, or as a function of distance
travelled. Because mice were trained on both time and distance tasks, multiple sub-experts
(representing clusters in mediolateral coordinates of striatum) were pre-trained for 2000 trials to
span a range of contingencies (e.g., 400ms, 600ms, or 800ms per tone transition; or 5, 10 or
15cm). For simplicity, we modeled the task with discrete sub-experts that specialized on (had
been preferentially exposed to) particular times/distances. However, one can easily generalize
the framework to the continuous case (e.g., using basis functions(Ludvig etal., 2008)) and the discrete
space can be modeled with arbitrary resolution by simply increasing the number of sub-experts.
Moreover, various models have shown that prediction errors can be used to segregate learning
of different latent task states(Collins and Frank, 2013; Gershman et al., 2015)_

Subexpert and expert learning. The value function for each time sub-expert s estimates

the discounted future reward Vs(Xi:) = r(t) + yVs(X¢+1) and was trained via temporal

differences(Sutton and Barto, 1998) hased on reward prediction errors 6(Xiz) = r(t) + yV(Xit+1) - V(Xiy).
Each auditory tone was modeled as a distinct state Xj:or Xiq with semi-markov dynamics. That
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is, the onset of each tone i would advance the state vector to the corresponding position even if
the tone occurred earlier or later in absolute time/distance. Thus the value function learned for
each sub-expert was tied to the current state (tone) and the (discretized) dwell time () or
distance (d) since it has been entered, and not to the absolute time or distance that passed from
the onset of the first state. This semi-markov process was based on the assumption that the
tone stimuli induce a neural state representation upon which TD is computed(Daw et al., 2006; Ludvig et
al, 2008) gand evidence that rodents are endowed with such a rich state representation (Gardneretal.,
2018). The value function was learned by adjusting weights in response to the X state vector, with

V(Xit)= wt Xit and wt <— wt + a 6(t), where o is a learning rate. The distance experts were trained
analogously, but with the X vector advancing with each (discretized) distance step rather than
passive time. Thus if the agent stopped moving, the Xjqvector remained constant until it moved
again, and if it moved faster than usual, the Xjqvector would advance to later states accordingly.

We fixed @=0.25 and y=.95 for all experts but verified that the patterns were robust to other
settings.

Performance and inference. After learning, the on-line evidence (responsibilities, fig 4B
and supplemental fig7, modeling the ramps) for each sub-expert was computed as an
approximation to the likelihood of the trial-wise tone transitions for that sub-expert. We adopted
a hybrid Bayesian-RL formulation(Frank and Badre, 2011) From a Bayesian perspective, the attentional
weights for each expert can be evaluated by computing the posterior probability that each

expert encompasses the best account of the observed data x: P(s|x) = P(x|s) P(s) / 2P(x|si)
P(si). Thus the evidence for each expert is computed by considering its prior evidence P(s) and
the likelihood that the observed tone transitions or rewards would have been observed under
the expert's model P(x|s), relative to all other experts. For example, if there was a low probability
for a tone transition at a particular moment under a given expert, then the likelihood of that
observation given the expert's model is low. Once the posterior evidence for each expert is
computed, one can then apply Bayesian model averaging to allocate attentional weights to each
expert in proportion to their log evidence.

Rather than a fully Bayesian realization, we instead implemented an RL approximation
that may more directly relate to corticostriatal DA mechanisms(Frank and Badre, 2011)  [nstead of
computing the likelihood directly, expert responsibility weights were assigned such that experts
with the smallest Bellman errors &saccumulated the most weight. In particular, the responsibility

weight for each subexpert @’'s was decremented when the corresponding sub-expert

experienced a reward prediction error: @'s «— @'s — s, where s is the positive reward
prediction error according to the corresponding sub-expert’s value function given state vector X.
(Similar results hold if using |ds| instead of only positive RPEs to decrement expert weights).
Intuitively, experts with more prediction errors are less likely to have been responsible for the
outcome (tone transition or reward). These responsibility weights were then normalized relative

to all sub-experts as an approximation to the log evidence for a given subexpert: @wsi =

exp(Pwsi)/Xjexp(fwsj), where fis an inverse temperature parameter. Thus, in contrast to
standard RL in which RPEs reinforce actions that yield rewards, during inference, more frequent
Bellman errors for a given subexpert are indicative that it is less responsible for observations
compared to subexperts that have minimal error. Such a scheme is compatible with extant
models that use reward prediction errors for state creation and inference separate from
reinforcement per se (Collins and Frank, 2013; Frank and Badre, 2011; Gershman et al., 2015; Redish et al., 2007)  \\/e

posited that these RPEs correspond to the phasic events observed at tone transitions in the 2p
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imaging data. The accumulation of these responsibility weights were posited to relate to the 1p
imaging data in discrete sub-regions of DMS.

Finally, a second-level task selection process was implemented to arbitrate responsibility
between the overall distance expert and overall time expert (each of which constituted a
weighted combination of their subordinate experts). This inference process was identical to that
for the sub-experts, with responsibility updated based on their experienced prediction errors: @
‘o «— w’p— Op, where w p is the accumulated responsibility of the distance expert based on its

reward prediction errors, 6p= r(t) + yVp(t+1) - Vp(t). The value function for the distance and time
experts Vp and Vrt are in turn weighted averages according to the inferred responsibilities of the

subordinate experts within each structure: Vp(t)= XwspVsp(t) and Vr = ZwstVsr(t). Similarly, the
value function of the agent as a whole is the weighted average value function across the two

experts V(t) =wp Vp (1)+ w71 V1(t). These responsibility weights for each task structure were

again normalized across tasks, wp = efwD / ef wD+ gbw'T,

For each distance or time, 100 test trials were run with 10 tones each and an inter trial
interval was randomly drawn from 5-15s. The agent as a whole selects actions in terms of
speeds to run for a period of time at each tone transition or after it has completed it's previous
running. Speeds were selected in proportion to the inferred responsibility of the DMS expert,
together with some stochasticity: speed(t) = 5*p (t)-0.5)) + €, where € was drawn from a uniform
distribution with a mean of 3. Stochasticity facilitates the agent ability to disambiguate distance
from time tasks within a trial (a constant speed would equate the prediction errors for the two
tasks given appropriate sub-experts). Increasing speed with inferred DMS expert responsibility
wp allows the model to capture the increased running with instrumental task structure
(Supplementary Fig 7). More detailed investigation of how speeds may be optimized according
to reward/effort/delay tradeoffs will be examined in future work.
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Supplementary Fig. 1: Individual dopamine axons also exhibit decorrelated activity
patterns.

a, Example frames illustrating that different portions of axon laticies are activated
asynchronously. b, Representative timeseries of fluorescence from two axon segments outlined
in blue and red at a. ¢, Additional examples of activity in dopamine axon segments. Data is
organized such that rearby axons are plotted closer. d, Quantification of correlation between the
session wide timesereries of axons based anatomical distances. Note that nearby axons are
highly correlated, but they exhibit a distance dependent falloff as reported in Fig. 1g, although a
different anatomical scale.
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Supplementary Figqure 2
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Supplementary Fig. 2: Dopamine axon activity clusters into hierarchical domains.

Data from one session, mean projection of fluorescence is displayed at the top left

Progressively increasing cluster limits identifies contiguous striatal subregions that decompose
into sub-clusters.
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Supplementary Fig. 3: Clustering patterns in all 8 mice.

49

¢ @

We provide the K-means cluster of each of the animals examined. Plotting format follows panels
in Fig 1.

27


https://doi.org/10.1101/729640
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/729640; this version posted August 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 4
\\ IR D

8
7
| y 40
i 6 1
\0\. 5
@4
,.\‘ - \
4
5]
.
-0 0000 0 000000000 ©
0 0 v . .

2 4 6 10 20 4 6 10 200300 0 20 40 60 0 10 20 30 40 50 01 02 03 04 05
Cluser size Number of clusters optimal # of clusters Area, mm?

(on
(@)
o

a

o
)
S

o
>
/
sessions
clusters

)
N

adjusted Rand Index
2
BIC, normalized
®
P =5 = —@—+—0—

o

Supplementary Fig. 4: Cluster patterns are robust.

a, Adjusted rand-index score of cluster patterns determined using the K-means for re-clustering
(black) or shuffling the temporal (red) or spatial(blue) indices of pixels. Results are shown for
100 reclustering iteration with or without shuffling. Note that randomizing the temporal or spatial
relationships of fluorescence activity results in random clusters. b, BIC score for K-means
results all sessions examined (n=31 sessions, 8 mice; gray), and average (purple). c,
Distribution of optimal number of clusters identified using the BIC metric. d, Distribution of areas
of identified clusters across all mice.
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Supplementary Fig. 5: Local sources and sinks initiate and terminate dopamine activity,
delivering temporally delayed dopamine to striatal subregions.

a, Flow pattern (top) amd divergence map (bottom) for sinks that are clustered in medial, lateral
or central striatal regions. b, same format as a, for source locations. ¢, Time Course of activity
across the mediolateral gradient for a one minute recording epoch. Blue boxes focus on
transient events that were produced by ML, LM, or CO waves that deliver dopamine to different
parts of the dorsal striatum with relative lags.
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Supplementary Fig. 6: The running behavior of mice is more structured and goal-directed
in the instrumental task.

a, Example velocity profile for an instrumental session. Top shows the trial by trial velocity
aligned to the end of trial (reward receipt) White dots indicate the start of the trial. Bottom
illustrates mean velocity trajectory for different distance contingencies. b, Same format as a but
for pavlovian session. Note that the running behavior of the mouse is disorganized relative to
task events (quantified in later sessions). ¢, Example session showing variability the latency to
start running on the next trial. d, We quantified this latency for training sessions across all mice
and observed a significantly shorter latency to initiate next trial running. X-axis is displayed in
log scale. e, Single trial trajectories of position from trial start during instrumental sessions, and
pavlovian sessions in f. Circles denote mouse position at the end of a trial. g, Overall, mice ran
less distance that the requirement in instrumental sessions (i.e. 50-150cm) , and h, mice chose
not to run at all in a significant fraction of trials during the pavlovian task (note that running is
required for rewards in instrumental sessions).
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Supplementary Fig. 7: Within-trial dynamics of model variables at all three levels under
different task conditions.

a,b Positive and negative accumulation of distance expert (level-1, equivalent to DMS) weights
under (a) instrumental and (b) Pavlovian task condition, for short, medium and long trial types.
Each trace is the average dynamics on the very first trial, averaged for 10 simulation sessions.
Similar dynamics accumulate across trials within a session when the task is repeated (not
shown). Note that the ramp shape is convex in the first trial but concave for later trials. ¢, Within
the distance expert, sub-experts (level-2) specialize on distinct contingencies and the weights
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ramp accordingly depending on task conditions. d, RPEs within a sub-expert in which tone
transitions occur at unexpected times/distances (RPEs are zero for sub-experts that perfectly
predict the current contingency; not shown). Note the larger magnitude RPEs for short
compared to longer trials, as seen empirically (Fig. 5). Escalation of RPEs across the trial is due
to temporal discounting. Similar to the empirical data, the impact of larger RPEs on short
distances is more evident later in the trial. e, Example evolution of DMS (distance) expert
weights across a session. Weights accumulate across trials to provide evidence the agent is in
control. f, Model velocities (averaged across simulations) recapitulate increase in running in
instrumental compared to pavlovian sessions. The model selects speeds in proportion to
inferred responsibility of the distance expert.
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Supplementary Fig. 8: Additional example session of striatal subregions that have
preferred distance contingency.

The trial-by-trial ramp slope during anticipation epoch was distinctly modulated for different
striatal subregions. Color maps are in same format as Fig. 4n.
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Supplementary Fig. 9: Discrete and ramp-like responses in dopamine axon segments.

a, Discrete, tone responses in two mice. Format is as in Fig 5. b, Example ramping patterns in
the two animals. ¢, Examination of the anatomical distribution of pixels that exhibit tone-
transition tuning. Top row summarizes data from mouse-1, and bottom is for the second mouse.
Leftmost panels show the mean projection of field of view, and the next three panels show the
individual pixels that display discrete responses early (first transition), mid-trial (5th transition)
and late-trial (last-tone transition) responses. Moreover, the anatomical organization of these
pixels are intermingled. Fifth panel shows the anatomical position of all phasically responding
pixels color coded for which transition they respond to. Finally, Last panel on the right shows the
anatomical distribution and trial-averaged ramp slopes of pixels within the 2-photon field of view
that exhibit sustained upward or downward activity during the anticipatory epoch. Same format
for mouse-2 at bottom d, Quantification of how peak response at tone-transition is affected by
distance to needed to run on current trial. Our simulations predict (see Supplementary Fig. 7)
that shorter trials will elicit larger PEs. We found a significantly negative correlation overall in
both mice (p<0.001, left), but the influence of distance was more prominent for later tones
(middle, filled bar are have p<0.05) as in the model (Supplementary fig 7). Right panel shows
that similar fraction of pixels that were responsive to each tone transition.
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Supplementary Video 1: Example recording session demonstrating the activity pattern of
dopamine axons in the dorsal striatum. Video playback is 1X.

Supplementary Video 2: Video illustrating extraction of flow trajectories on a frame by frame
basis. Video playback is slowed down 0.25X.

Supplementary Video 3: Reward response in Instrumental task. Clock at top left displays time
relative to reward. Video playback is 1X.

Supplementary Video 4: Reward response in Pavlovian task. Clock at top left displays time
relative to reward. Video playback is 1X.

Supplementary Video 5: Progressively organized and continuous reward response to
unpredicted reward deliver in naive mice (fop), or animals that have received training in
pavlovian sessions for 3 weeks. Clock at top left displays time relative to reward. Video
playback is slowed down 0.5X.
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