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ABSTRACT

Cryptococcus species are life-threatening human fungal pathogens that cause cryptococcal
meningoencephalitis in both immunocompromised and healthy hosts. The natural
environmental niches of Cryptococcus include pigeon (Columba livia) guano, soil, and a
variety of tree species such as Eucalyptus camaldulensis, Ceratonia siliqua, Platanus
orientalis, and Pinus spp. Genetic and genomic studies of extensive sample collections have
provided insights into the population distribution and composition of different Cryptococcus
species in geographic regions around the world. However, few such studies examined
Cryptococcus in Turkey. We sampled 388 Olea europaea (olive) and 132 E. camaldulensis
trees from 7 locations in coastal and inland areas of the Aegean region of Anatolian Turkey in
September 2016 to investigate the distribution and genetic diversity present in the natural
Cryptococcus population. We isolated 84 Cryptococcus neoformans strains (83 MATa and 1
MATa) and 3 Cryptococcus deneoformans strains (all MATa) from 87 (22.4% of surveyed) O.
europaea trees; a total of 32 C. neoformans strains were isolated from 32 (24.2%) of the E.
camaldulensis trees, all of which were MATa. A statistically significant difference was
observed in the frequency of C. neoformans isolation between coastal and inland areas (P <
0.05). Thus, O. europaea trees could represent a novel niche for C. neoformans. Interestingly,
the MATa C. neoformans isolate was fertile in laboratory crosses with VNI and VNB MATa
tester strains and produced robust hyphae, basidia, and basidiospores, thus suggesting
potential sexual reproduction in the natural population. Sequencing analyses of the URA5
gene identified at least 5 different genotypes among the isolates. Population genetics and
genomic analyses revealed that most of the isolates in Turkey belong to the VNBII lineage of
C. neoformans, which is predominantly found in southern Africa; these isolates are part of a
distinct minor clade within VNBII that includes several isolates from Zambia and Brazil. Our
study provides insights into the geographic distribution of different C. neoformans lineages in
the Mediterranean region and highlights the need for wider geographic sampling to gain a
better understanding of the natural habitats, migration, epidemiology, and evolution of this

important human fungal pathogen.
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INTRODUCTION

Cryptococcosis is a potentially lethal disease, especially in
immunocompromised hosts, around the world. It is caused by environmental encapsulated
yeasts belonging to the Cryptococcus genus, including the C. neoformans and C. gattii species
complexes (Hagen et al., 2015; Kwon-Chung et al., 2017). C. neoformans has been mainly
recovered from pigeon (Columba livia) droppings, urban environments, and soil (Lin and
Heitman, 2006; May et al., 2016). In addition, it has been isolated from various tree species
(Ellis and Pfeiffer, 1990; Randhawa et al., 2008, 2011; Cogliati et al., 2016a, b). Following
the first report of C. neoformans isolation from trees in Australia (Ellis and Pfeiffer, 1990),
many studies have confirmed the environmental association of Cryptococcus with plants in
different climatic zones (Granados and Castafieda, 2005, 2006; Randhawa et al., 2008, 2011;
Bedi et al., 2012; Chowdhary et al., 2012). Several studies have characterized the properties
of these yeasts that contribute to the colonization of new environmental niches (Granados and
Castafieda, 2006; Randhawa et al., 2008; Ergin and Kaleli, 2010; Ergin et al., 2014; Sengul et
al., 2019). With the exception of iatrogenic (Baddley et al., 2011) and zoonotic (Nosanchuk et
al., 2000; Lagrou et al., 2005; Singh et al. 2018) cases, Cryptococcus infection is caused by
the inhalation of airborne basidiospores or desiccated yeast cells from the environment (Hull
et al., 2005; Lin and Heitman, 2006; Velagapudi et al., 2009; Springer et al., 2013; May et al.,
2016), emphasizing the importance of identifying the natural reservoirs of C. neoformans and
the molecular links between environmental and clinical isolates and their association with
disease (Litvintseva et al., 2005; Noguera et al., 2015; Chen et al., 2015; Kangogo et al.,
2015; Spina-Tensini et al., 2017). In a recent study, MLST analysis revealed that some C.
neoformans genotypes (especially ST63) in Mediterranean countries may be genetically
linked (Cogliati et al., 2019). In the environment, the most prevalent mating type is MATa
(Kwon-Chung and Bennett, 1978).

Most areas colonized by C. neoformans are characterized by the presence of several
trees, including 4 dominant species: Eucalyptus camaldulensis (Mahmoud, 1999; Bernardo et
al., 2001; Campisi et al., 2003; Ergin et al., 2004; Gokcen and Ergin, 2014; Mseddi et al.,
2011; Romeo et al., 2011, 2012; Colom et al., 2012; Cogliati et al., 20164, b; Elhariri et al.,
2016; Ellabib et al., 2016), Ceratonia siliqua (Colom et al., 2012; Romeo et al., 2012;
Cogliati et al., 2016a), Olea europaea (Cogliati et al., 2016a; Ellabib et al., 2016), and Pinus
spp. (Cogliati et al., 20164, b). Further, studies have described numerous woody plants

colonized by C. neoformans in the Mediterranean region (Mahmoud, 1999; Bernardo et al.,
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2001; Campisi et al., 2003; Ergin et al., 2004; Mseddi et al., 2011; Romeo et al., 2011, 2012;
Colom et al., 2012; Gokcen and Ergin, 2014; Cogliati et al., 2016a, b; Elhariri et al., 2016;
Ellabib et al., 2016). C. neoformans tree colonization has been observed in northern
Mediterranean countries such as Spain (Colom et al., 2012; Cogliati et al., 2016a), Portugal
(Bernardo et al., 2001; Ferreira et al., 2014; Cogliati et al., 2016a), France (Cogliati et al.,
20164, b), Italy (Campisi et al., 2003; Romeo et al., 2011, 2012; Cogliati et al., 20164, b),
Greece (Cogliati et al., 20164, b), and Turkey (Ergin et al., 2004; Ergin, 2010; Ergin and
Kaleli, 2010; Gokcen and Ergin, 2014; Cogliati et al., 2016a, b; Sengul et al., 2019), as well
as in the northern parts of Cyprus (Cogliati et al., 2016a), Libya (Cogliati et al., 2016a;
Ellabib et al., 2016), Tunisia (Mseddi et al., 2011), and Egypt (Mahmoud, 1999; Elhariri,
2016). The olive tree is one of the oldest known cultivated trees in the world and is grown in
the entire Mediterranean basin mostly for commercial reasons (Uylaser and Yildiz, 2014).
Although the Olea genus is distributed throughout Europe, Asia, Oceania, and Africa, only O.
europaea is a cultivated species, and recent studies have reported colonization of O. europaea
with C. neoformans in Spain (Cogliati et al., 2016a) and Libya (Ellabib et al., 2016).

In this study, we screened O. europaea and E. camaldulensis trees in southwestern
Anatolia for Cryptococcus spp. The isolates we recovered were genotypically diverse,
including mating types. Additionally, whole genome sequencing and phylogenomic analyses
showed that most of the isolates in Turkey belong to the VNB lineage of C. neoformans and
are closely related to isolates from Zambia and Brazil. Our studies provide insight into the

global distribution, epidemiology, and evolution of this important human fungal pathogen.

MATERIALS and METHODS
Study areas

Samples were taken in September 2016 from 7 areas along the Aegean coastal line of
Anatolia, Turkey to screen O. europaea and E. camaldulensis trees for Cryptococcus spp.
(Figure 1). Geospatial characteristics of each sampling area, including climate and
geographical coordinates, are presented in Table 1, and mean monthly average temperatures
and precipitation levels obtained from both local stations and climatic resources
(https://sites.ualberta.ca/~ahamann/data/climateeu.html) are shown in Figure 2. E.
camaldulensis (tree symbol in Figure 1) is known to be continuously colonized by C.
neoformans (Ergin et al., 2004; Ergin, 2010) and was sampled to evaluate the current yeast

colonization status and mating type distribution.
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Sampling, culture, and conventional identification of C. neoformans

In total, 388 typical old O. europaea and 132 old E. camaldulensis trees from the
Mediterranean part of Western Turkey were screened in the study. Tree trunks were randomly
sampled by rubbing with a sterile cotton-tipped swab, as described by Randhawa et al. (2005).
The swabs were soaked in 3 mL sterile saline containing chloramphenicol (10 mg/L) and
transferred to the laboratory at 26°C within 48 h. After vortexing, swabs were removed, and
samples were left to sediment for 30 min. Then, undiluted sample supernatants (100 uL) were
used to inoculate Staib agar plates containing 0.5% (w/v) biphenyl. The plates were incubated
at 26°C for 10 d, and moist, characteristically brown-pigmented colonies were analyzed for
parameters conventionally used to identify C. neoformans, including urea hydrolysis, nitrate
reduction, phenoloxidase production, growth at 37°C, and negative reaction on L-canavanine-

glycine-bromothymol blue medium (Table S1).

Genomic DNA extraction, polymerase chain reaction (PCR) amplification, and DNA
sequencing

All isolates were collected directly from yeast-peptone-dextrose (YPD; Difco,
Detroit, MI) agar plates after the second passage. Genomic DNA was extracted using the
MasterPure yeast DNA purification kit (Epicentre Biotechnologies, Madison, WI) according
to the manufacturer’s instructions.

The species identity and mating type of C. neoformans isolates were analyzed by
PCR using primers specific for internal transcribed spacer (ITS) and STE20 genes,
respectively (Table S2). PCR assays were conducted in a PTC-200 automated thermal cycler
in a total reaction volume of 25 uL containing 300 ng of template DNA, 10 pM of each
primer, 2 mM of each dNTP, 2.5 uL of 10x Ex Taq buffer, 0.25 uL of ExTaq polymerase
(Takara, Shiga, Japan), and an appropriate volume of distilled water. The following cycling
conditions were used for PCR with ITS1 and ITS4 primers: initial denaturation at 94°C for 5
min, followed by 36 cycles of denaturation at 94°C for 1 min, annealing at 57°C for 1 min,
and extension at 72°C for 1 min, with a final extension at 72°C for 10 min. For PCR with Aa,
Aa, and Da mating-type primers, cycling conditions were as follows: 95°C for 6 min,
followed by 36 cycles at 95°C for 45 s, 60°C for 45 s, and 72°C for 90 s, and a final extension
step at 72°C for 6 min. For amplification using Da mating-type primers, the cycling protocol
was as follows: 95°C for 6 min, followed by 30 cycles at 95°C for 45 s, 50°C for 45 s, and
72°C for 90 s, and a final extension step at 72°C for 6 min. Sterile water was used instead of
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DNA in negative control samples. Congenic C. neoformans strains H99 (VNI-Aa) and
KN99a (Aa), and C. deneoformans strains JEC20 (VNIV-Da) and JEC21 (VNIV-Da) were
used as positive controls in each assay. PCR products were analyzed on 1% agarose gels.

To sequence the ITS region, amplified products were purified using the QIAquick
PCR Purification Kit (Qiagen, Germantown, MD) as recommended by the manufacturer. Both
DNA strands were sequenced using the BigDye Terminator v. 3.1 cycle sequencing ready
reaction mix (Applied Biosystems, Foster City, CA) in an ABI 3130 automated sequencer
(Applied Biosystems). Sequences were assembled using the Sequencher 4.8. software (Gene
Code Corporation, Ann Arbor, MI).

Mating assay

Each of the study strains were tested for the ability to mate and compared to the
reference C. neoformans strains H99 (VNI-Aa) and KN99a (Aa) using mating assays. Mating
abilities for the MATa and MATa strains derived from isolate AD215, AD215-D1 and
AD215-D2, their mating abilities were tested in crosses between themselves, as well as with
the tester strains H99 and Bt3 (VNBI-Aa). For the mating assay, strains were pregrown on
YPD solid medium (Difco) at 30°C for 2 days. Next, a 5-uL suspension of each strain was
grown on Murashige Skoog (MS) medium supplemented with a 5-uL suspension of each
reference strain with known mating behavior. Cultures were incubated at 25°C in the dark for
2 weeks (Idnurm and Heitman, 2005; Li et al., 2012). Hyphae and basidiospore formation

were assessed by light microscopy every other day (Figure 3).

Genome sequencing and phylogenomic analyses

Whole genome sequences were generated for 9 isolates (AD116, AD119, AD129,
AD130, AD131, AD132, AD215-D1, and AD215-D2). Whole genome sequencing libraries
were constructed using the lllumina Nextera XT protocol and sequenced on a HiSegX,
generating 150 base-paired end reads (accessible in the NCBI SRA under BioProject
PRIJNA533587). For SNP calling, reads were downsampled to ~130X sequence depth using
Samtools view. Data from a large population survey of 387 isolates (Desjardins et al., 2017),
from a Zambian collection (Vanhove et al., 2017) and of VNB isolates from Brazil (Rhodes et
al., 2017) were also included. For this set of 446 isolates, reads for each isolate were aligned
to the C. neoformans grubii H99 assembly (GenBank accession GCA_000149245.2) using
BWA-MEM version 0.7.12 (Li, 2013). Variants were then identified using GATK version 3.4
(McKenna et al., 2010). Briefly, indels were locally realigned, haplotypeCaller was invoked
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in GVCF mode with ploidy = 1, and genotypeGVCFs was used to predict variants in each
strain. All VCFs were then combined and sites were filtered using variant filtration with QD <
2.0, FS > 60.0, and MQ < 40.0. Individual genotypes were filtered if the minimum genotype
quality was <50, percent alternate allele was <0.8, or depth was <10.

For phylogenetic analysis, the 1,269,132 sites with an unambiguous SNP in at least
one strain and ambiguity in <10% of strains were concatenated, and insertions or deletions at
these sites were treated as ambiguous to maintain the alignment. Phylogenetic trees were

estimated using FastTreeDP v 2.1.8 with parameters -gtr and -nt.

Statistical analysis
Data were analyzed by Chi-square test using the Epi Info™ Stat Calc software (v.
7.2.1.0; Centers for Disease Control and Prevention, Atlanta, GA). A 2-tailed P value < 0.05

was considered to indicate statistical significance.

RESULTS
Environmental parameters characterizing the sampling regions

In the current study, samples were collected from 7 geographic locations in Anatolia,
including 4 coastal regions (I, 11, VI, and VII in Figure 1) and 3 inland areas (111, IV, and V in
Figure 1). During the sampling period (September 2016), the mean temperature and humidity
were higher in the coastal than in the inland regions (25.3°C vs 23.5°C and 5.5 vs 5.0 mm,
respectively).

All 7 sampling regions are located within the natural propagation area of O. europea
(Uylaser and Y1ldiz, 2014) with the typical "macchia” vegetation within the Mediterranean
climate (Colom et al., 2012).

Both mating types are present in natural C. neoformans isolates from Turkey

In the Aegean region of Anatolia, C. neoformans (n = 84) and C. deneoformans (n =
3) were isolated from 22.4% (87/388) of sampled O. europae trees. Among them, 95.4%
(83/87), 1.1% (1/87), and 3.5% (3/87), were identified as serotypes A MATa, A MATa, and D
MATa, respectively (Figure 4 and Table 2), whereas strains of serotype D MATa were not
identified. This corresponded to a significantly higher frequency of C. neoformans strains
isolated from the beach/coastal regions (75/221) compared to inland areas located >10 km

from the sea (12/167) (P<0.001; Table 3).
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The single MATa type C. neoformans strain (AD215) isolated from area V1l showed
no sign of mating when crossed with a MATa tester strain (KN99a), but did show signs of
robust sexual reproduction when crossed with the MATa tester strain (H99) (Figure 3),
phenotypically confirming that this isolate is a true MATa C. neoformans isolate.

Thirty-two of 132 (24.2%) isolates have been isolated from E. camaldulensis trees, all

of which were identified as MATa C. neoformans.

Natural C. neoformans isolates in Turkey are genetically diverse (URAb)

Because the genotyping of the MAT locus showed that the vast majority of the isolates
in this study are MATa, we further investigated how much genetic diversity is present within
the Turkish Cryptococcus isolates. We randomly picked 41 strains and PCR amplified and
Sanger sequenced the URA5 locus, which in previous studies has been suggested to be more
genetically diverse among natural Cryptococcus strains. Our sequencing analyses identified 5
URAS alleles in the 41 isolates (Figure S1), including 2 major genotypes represented by 14
and 18 isolates, respectively, 1 genotype represent by 7 isolates, and 2 unique genotypes each
represented by 1 isolate. Thus, ample genetic diversity is present among the natural isolates in

Turkey.

Natural C. neoformans isolates in Turkey are closely related to those from Brazil and
Zambia

To investigate how isolates from Turkey compare to other global C. neoformans
isolates, we carried out whole genome sequencing for 7 isolates that represent the 5 URAS
genotypes (Figure S1), as well as the MATa (AD215-D1) and MATa (AD215-D2) strains
derived from isolate AD-215, and then compared their genome sequences with those of the
global C. neoformans sequences that have been recently published (Desjardins et al., 2017,
Vanhove et al., 2017) based on variants identified compared to the H99 reference genome.

URA?S sequences extracted from the variant calls of these isolates are in overall
agreement with the URAS genotyping results described above. Phylogenetic analysis
suggested that 3 of the 7 isolates are VNI (AD119, AD129, and AD130), while the remaining
4 isolates (AD116, AD131, AD132, and AD161) and the 2 strains derived from AD215
(AD215-D1 and AD215-D2) are VNB. The 3 VNI isolates (AD119, AD129, and AD130)
were placed within the VNIb subclade of global isolates (Figure S2), and all VNB isolates
were placed within the VNBII clade, which primarily includes South African isolates (Figure
5). Of the VNBII isolates from Turkey, AD116 belongs to a clade that contains mostly
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isolates from Botswana, South Africa, and Zambia, while the others are more divergent from
most VNBII isolates and are closely related to 2 isolates from Brazil and 3 isolates from
Zambia (Figure 5).

Interestingly, 2 isolates from Turkey (AD132 and AD215-D2) are separated by only
an average of 590 SNPs from 2 isolates from Brazil (an environmental isolate, WM-1408, and
a clinical isolate, V17; Figure 5). This number of SNPs does not suggest a recent
transmission event between these locations, but rather a closer than expected relationship

across continents in a lineage formerly thought to be confined to southern Africa.

DISCUSSION

The present study revealed that olive trees are a major reservoir of environmental C.
neoformans strains in the Aegean part of the Mediterranean region, where cultivation of olive
trees is a tradition (Uylaser and Yildiz, 2014). We sampled only old tree trunks with hollows
that constitute an appropriate yeast habitat, providing stable humidity and temperature and
protection from solar radiation (Lin and Heitman, 2006; Velagapudi et al., 2009; May et al.,
2016). Compared to inland regions, the colonization of olive trees by C. neoformans is more
prominent in the coastal areas, which are less arid, are at a lower altitude, and have milder
winters. Throughout the study period (September 2016), the mean temperatures and
precipitation in the coastal areas were higher than those in the inland areas, and accordingly,
the largest number of C. neoformans isolates was obtained from area I, which had the highest
temperature and precipitation (Tables 1 and 3; P < 0.01).

In the current study, C. deneoformans was obtained from areas Il, 1V, and VII. In

2008, C. deneoformans was isolated mainly from pigeon droppings in the Aegean region
(Karaca Derici and Tiimbay, 2008), which corresponds to area II in the current study.
However, clinical cases of C. deneoformans were documented in the Black Sea coastal area
(Kaya et al., 2012; Birinci et al., 2016), which is distant from the Aegean coast and where the
climate is more humid and the temperature lower. This finding is consistent with reports that
C. deneoformans is more sensitive to heat than C. neoformans (Martinez et al., 2001; Lin and
Heitman, 2006; Bedi et al., 2012). The discrepancy between the environmental presence of C.
neoformans and related clinical cases should be addressed by further studies screening
different areas in Turkey. The northern and southern areas of the Turkish Mediterranean coast
have different climatic conditions and, consequently, distinct tree populations, which may

potentially influence the rate of cryptococcal colonization.
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The first isolation of C. neoformans from E. camaldulensis in Anatolia was reported
in 2004 (Ergin et al., 2004). A previous study investigated the presence of C. neoformans in
the flowers of E. camaldulensis trees from the Akyaka/Gokova (tree symbol, Figure 1)
districts in southeastern Turkey and identified only 1 C. neoformans isolate (0.09%) (Ergin et
al., 2004). In 2010, repeated screening of 17 E. camaldulensis trees with large trunks was
performed in the same region, and a colonization rate of 64% was reported (Ergin, 2010). In
the current study, we sampled a significantly higher number of E. camaldulensis trees (n =
132) and observed a lower colonization rate of 24.2%, which is probably more representative
due to the larger area of analysis.

Trees play an essential role as a reservoir and breeding ground for the propagation of
C. neoformans. A recent study showed that Cryptococcus has the ability to colonize some
plant such as E. camaldulensis, Terminalia catappa, Arabidopsis thaliana, Colophospermum
mopane, Tsuga heterophylla, and Pseudotsuga menziesii, as well as their debris, which
constitutes the ecological niche and reservoirs of infectious propagules of Cryptococcus in the
environment (Springer et al., 2017). Climate conditions, including humidity, temperature,
evaporation, and solar radiation, play significant roles in the environmental distribution of C.
neoformans (Lin and Heitman, 2006; Velagapudi et al., 2009; Springer et al., 2013; May et
al., 2016). Our findings indicate that C. neoformans colonization of olive trees reflects the
Mediterranean ecological model influenced by climate changes and urbanization (Garcia-
Mozo et al., 2016). Several studies reported the presence of environmental C. neoformans in
Mediterranean countries, including Spain (Colom et al., 2012; Cogliati et al., 2016a) and
Libya (Ellabib et al., 2016), based on the association between the climate and yeast
distribution. Warmer temperatures can affect Cryptococcus spp. spread, especially that of C.
gattii, a sibling species of C. neoformans (Granados and Castaneda, 2006; Randhawa et al.,
2011; Bedi et al., 2012; Chowdhary et al., 2012, Uejio et al., 2015; Cogliati et al., 2016Db).
Although it is seen that the olive trees practiced in the Mediterranean “macchia” are more
interrelated with the C. gattii, C. neoformans colonization is not far from the ecosystem
(Cogliati et al., 2017). The duration of the dry season, natural degradation of woods, and drier
habitats account for lower bacterial presence and less competition for nutrients, thus
constituting favorable conditions for C. neoformans colonization, especially of old tree trunks
(Ruiz et al., 1981; Granados and Castafieda, 2006; Cogliati et al., 2017).

Worldwide screening for the presence of C. neoformans in the environment has been
performed since the mid -1990s, and E. camaldulensis was established as the major source of

tree-associated cryptococcosis in the early 2000s (Ellis and Pfeiffer, 1990; Campisi et al.,
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2003; Ergin et al., 2004; Lin and Heitman, 2006; Randhawa et al., 2008; Nougera et al.,
2015). Several studies reported that the majority of C. neoformans environmental isolates
contain MATa mating-type alleles (Litvintseva et al., 2005; Nielsen et al., 2005; Lin and
Heitman, 2006; 2014; Chen et al., 2015; Kangogo et al., 2015), which is consistent with our
findings that Cryptococcus isolates from E. camaldulensis have the MATa phenotype.
However, in O. europaea, we isolated C. neoformans harboring Da and even Aa alleles. To
the best of our knowledge, it is the first MATa-containing serotype A strain isolated from the
environment in Anatolia. A previous study performed by Saracli et al. (2006) in Anatolia
identified C. neoformans with mating types Aa (65.4%), Da (15.4%), and Da (11.5%), but
not Aa, in pigeon droppings. Although MATa predominates in clinical and environmental
populations, 4 C. neoformans MATa VNI isolates (125.91, IUM96-2828, Bt130, and ITUM99-
3617) were previously identified from both clinical and environmental sources (Lengeler et
al., 2000; Viviani et al., 2001, 2003; Keller et al., 2003; Nielsen et al., 2003; Litvintseva et al.,
2007). Whole genome analysis of 3 of these isolates (125.91, IUM96-2828, and Bt130)
suggests introgression of MATa into VNI strains (Desjardins et al., 2017; Rhodes et al., 2017).
In the present study, isolation of a novel serotype A MATa strain from the environment
suggests that a-a sexual reproduction might occur in the serotype A population. However,
whole genome analyses of additional isolates is required to detect recombination signatures in
the Turkish Cryptococcus population.

Cryptococcus isolates in Turkey are genetically diverse. Based on our URAS
genotyping and whole genome sequencing analyses, most isolates from Turkey belong to the
VNI and VNBII groups. Specifically, of the 41 isolates that were genotyped for the URA5
locus, 21 likely belong to the VNI group that includes isolates AD119, AD129, and AD130,
while the other 20 belong to the VNBII group that includes isolates AD116, AD131, AD132,
and AD161. Interestingly, of the VNBII isolates, only 1 (AD116) belongs to the larger
sublineage that contains most VNBI|I isolates from Botswana, South Africa, and Zambia,
while the other 19 have URAS alleles identical to isolates AD131, AD132, and AD161,
which, based on whole genome sequence analyses, belong to within the smaller VNBII
sublineage that includes strains from Botswana and Brazil. Two strains from Brazil (V17 and
WM-1408) may have contributed significant genetic material to the other lineages (VNI,
VNII, and VNB) through recombination, with V17 donating the most genetic material to VNI
isolates in Africa, India, and Thailand (Rhodes et al., 2017). The isolation of Turkish isolates,
including the MATa and MATa fertile strains derived from isolate AD215, that are almost
genetically identical to V17 and WM-1408, suggests that it is possible that the Mediterranean
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region could be a fertile ground for genetically diverse Cryptococcus isolates and could serve
as an important center for the global migration and distribution of Cryptococcus isolates.

In conclusion, our results indicate that compared to C. deneoformans, C. neoformans
is more common on olive trees and E. camaldulensis in the Aegean region of Anatolia. While
the vast majority of the natural isolates in Turkey are mating type a, the presence of a fertile
MATa isolate suggests that sexual reproduction could be ongoing in natural C. neoformans
populations. Our finding that C. neoformans isolates from Turkey belong to VNBII and are
more closely related to strains from Zambia and Brazil provides insights into the global
distribution of C. neoformans and emphasizes the need for more extensive environmental
screening to reveal new reservoirs for C. neoformans, which would promote our
understanding of the natural distribution, epidemiology, and evolution of this important

human fungal pathogen.
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pathogens. In this study, we surveyed a large number of Olea europea (olive) and E.
camaldulensis trees for the presence of Cryptococcus species from 7 locations that represent
the coastal and inland areas of the Aegean Turkey in Turkey. We found that Cryptococcus is

prevalent in Turkey, and the vast majority of the isolates are C. neoformans. There are ample
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genetic diversity existing among the Turkey C. neoformans isolates, with the presence of both
MATa and MATa strains, suggesting ongoing sexual reproduction among the natural isolates.
Interestingly, several of the C. neoformans isolates from Turkey show high genetic similarity
across the genome with strains isolated from Zambia and Brazil. Our study provides insights
into the natural niches and distribution of different C. neoformans lineages in the
Mediterranean region and helps us to gain a better understanding of the ecology,
epidemiology, and evolution of this important human fungal pathogen.
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FIGURE LEGENDS

FIGURE 1. Distribution of trees with Cryptococcus neoformans (orange) and C.
deneoformans (blue) colonization and uncolonized (unshaded) trees in Aegean Anatolia,
Turkey. The tree symbol designates the region where C. neoformans is recurrently isolated
from Eucalyptus camaldulensis.

FIGURE 2. Mean monthly average temperature (a) and precipitation (b) in the sampled
coastal regions (light bars) and inland regions (dark bars). Data were obtained in 2016.
Mean values are shown.

FIGURE 3. Successful mating between natural MATa and MATa isolates of
Cryptococcus neoformans. Top: Images of solo cultures of a MATa colony of strain AD215-
D1 and MATa tester strain Bt63; left: images of solo cultures of a MATa colony from strain
AD215-D2 and MATa tester strain H99. All images of solo cultures were taken with 10x
magnification. Images of pairwise mating between MATa and MATa. strains are shown within
the 2x2 grid: left, 10x magnification; right, 20x magnification. All crosses were carried out
on MS medium.

FIGURE 4. Mating type profiles obtained by PCR using STE20 gene-specific primers.
(A) 1-26: serotype Aa, H99a, KN99a; (B) 1: serotype Aa (strain AD215), KN99a, H99a,; (C)
1-3: serotype Da, JEC20a, JEC21a. Congenic C. neoformans strains H99 (VNI-0A) and
KN99a (aA), and C. deneoformans JEC20 (VNIV-aD) and JEC21 (VNIV-aD) were used as
positive controls. M, molecular weight markers; N, negative control.

FIGURE 5. Phylogenic analyses places isolates from Turkey in the VNBII lineage of C.
neoformans. Isolates from Turkey are part of a divergent subclade that included isolates from
Brazil and Zambia. The phylogeny was estimated from 1,269,132 segregating sites using
FastTree (Price et al., 2009), and the tree was rooted with VVNII as the outgroup.

SUPPORTING INFORMATION

TABLE S1. Primers used in this study.

TABLE S2. Cryptococcus isolates recovered and analyzed in this study.

FIGURE S1. Genotyping of the URA5 locus revealed that the isolates from Turkey are
genetically diverse.

FIGURE S2. Phylogenetic analysis of isolates from Turkey with a diverse set of other
global isolates. The full phylogeny estimated for Figure 5 is shown, including VNI, VNI,
VNBI, and VNBII lineages. The phylogeny was estimated from 1,269,132 segregating sites
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using FastTree (Price et al., 2009), and the tree was rooted with VNII as the outgroup. Isolates

from Turkey were placed with the VNIb sublineage of VNI and in VNBII.
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TABLE 1 Geographical characteristics of sampling regions.

Distance fromsea  Screened sampling

Region Location area® (mean, km) area, km® Temperature® Precipitation®
d
I 39°17'N, 26°38' E 0-5 120 26.9 8
Coastal area
_ d
I 38°42' N, 26°49' E 0-5 150 23.3 6
Coastal area
Il 38°41'N, 27°40' E ~50 200 23.6 7
v 37°51'N, 27°30' E ~20 350 23.0 5
V 37°52'N, 28°12' E ~80 400 23.9 3
Vi 37°10'N, 27°51' B 0-5 350 252 5
Coastal area
VIl 37°02' N, 27°87' E 0-5 160 24.9 3
Coastal area
= 37°01'N, 28°36'E 0-5 10 24.6 3

Coastal area
aCenter of sampling areas (QGIS, Ver 2.18.20, GPL).
bSampled area (QGIS, Ver 2.18.20, GPL).
°Climate data (https://sites.ualberta.ca/~ahamann/data/climateeu.html).
dCoastal area
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TABLE 2 Mating types of Cryptococcus neoformans and C. deneoformans
according to tree species.

Mating type From O. europaea From E. camaldulensis
(n=87) (n=32)
n (%) n (%)
Aa 83 (95.4) 32 (100)
Aa 1(1.1) -
Da 3(3.5) -
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TABLE 3 Geographical distribution of Olea europaea and Eucalyptus camaldulensis
colonized with Cryptococcus neoformans.

Tree species 1 Tree species 2 Total
(O. europaea) (E. camaldulensis)
# of tree # of % # of tree # of % # of tree # of %
Region  Area sampled positive sampled positive sampled positive
Beach/ | 29 16 55.2 - - - 29 16 55.2
Coast
1 65 23 354 - - - 65 23 354
VI 78 26 33.3 - - - 78 26 33.3
VII 49 10 20.4 - - - 49 10 20.4
w5 - - - 132 32 24.4 132 32 24.4
Total 221 75 33.9 132 32 24.4 264 107 405
Inland 1 39 3 7.7 - - - 39 3 7.7
v 53 3 5.7 - - - 53 3 5.7
\Y 75 6 8.0 - - - 75 6 8.0
Total 167 12 7.2 - - - 167 12 7.2
Total 388 87 224 - 431 119 27.6
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Fig 1. Distribution of Cryptococcus neoformans (orange) and C. deneoformans (blue) in Aegean

Anatolia, Turkey. The tree symbol designates the region where C. neoformans is recurrently isolated

from Eucalyptus camaldulensis.
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