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Abstract

Myotonic dystrophy type 1 (DM1) is a rare genetic disorder, characterised by muscular
dystrophy, myotonia, and other symptoms. DM1 is caused by the expansion of a CTG
repeat in the 3’-untranslated region of DMPK. Longer CTG expansions are associated
with greater symptom severity and earlier age at onset. The primary mechanism of
pathogenesis is thought to be mediated by a gain of function of the CUG-containing
RNA, that leads to trans-dysregulation of RNA metabolism of many other genes.
Specifically, the alternative splicing (AS) and alternative polyadenylation (APA) of
many genes is known to be disrupted. In the context of clinical trials of emerging DM1
treatments, it is important to be able to objectively quantify treatment efficacy at the
level of molecular biomarkers. We show how previously described candidate mRNA
biomarkers can be used to model an effective reduction in CTG length, using modern
high-dimensional statistics (machine learning), and a blood and muscle mRNA
microarray dataset. We show how this model could be used to detect treatment effects

in the context of a clinical trial.

Introduction

Myotonic dystrophy type 1

Myotonic dystrophy type 1 (DM1) is an autosomal dominant trinucleotide repeat
disorder, caused by an expanded CTG repeat in the 3’ UTR of the dystrophia
myotonica protein kinase (DMPK) gene [1]. Transcription of DMPK in affected
individuals produces a toxic, GC-rich mRNA molecule, which results in dysregulation of
several RNA binding factors, including proteins MBNL1, MBNL2, MBNL3, CELF1
(CUGBP1), HNRNPH1 and STAU1 (Staufenl) [2,3]. The pathomechanism of the
dysregulation of splicing factor MBNL1 is perhaps best understood, with MBNL1
sequestration to the toxic DMPK RNA product resulting in alternative splicing defects
of pre-mRNAs of multiple genes, including the chloride channel (CLCNI), brain
microtubule-associated tau (MAPT) and insulin receptor (INSR) [4]. Such alternative
splicing (AS) defects are generally believed to be a major contributing factor of clinical

symptoms of DM1, such as myotonia (CLCN1I) or abnormal glucose response (INSR),
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and have been postulated to play a role in cardiac conduction defects (RYR2, SERCA2,
TNNT?2) [5]. AS defects may underlie other clinical symptoms of DM1, including muscle
wasting, cataracts, hypersomnia, gastrointestinal abnormalities, as well as premature
baldness and testicular atrophy in males [2,6]. The severity of symptoms is positively
correlated with CTG repeat length [2].

The toxic DMPK transcript in DM1-affected individuals has been identified as an
active target for theraupetic intervation [7], and it is expected that breakdown of the
toxic mRNA will result in at least partial reversal of DM1-induced AS changes and
other known and unknown DM1-induced biomolecular pathologies.

Spliceopathy of DM1 is an active area of research, with novel splicing defects being
continuously reported. Nakamori et al. [3] identified a set of 41 genes, which are
mis-spliced in DM1, suggesting these genes as potential biomarkers of DM1. Batra et
al. [9] identified 80 genes, whose expression indicates disrupted APA, reusing the
(human) dataset of Nakamori et al. and using other datasets, including data from

mouse models.

Predictors in genetics research

A widespread paradigm in biological and clinical research is the case-control study,
using frequentist statistics tools focusing on hypothesis testing (inference). Examples of
such designs include Genome Wide Association Studies (GWAS) [10], placebo and
active control clinical trial designs [11], non-inferiority designs [12] or heredity designs
based on twin studies. It is reported that designs of as many as 70% of studies
published in leading medical journals use at most the following three statistical tests as
part of their design: Student’s t-test, Fisher’s exact test, and the Chi-square test [13].
A possible alternative to the focus on hypothesis testing is building predictors or
classifiers, which produce a numerical estimate of a given trait (height, size of the DM1
trinucleotide expansion) or effect size, predict participant’s category (such as
affected /unaffected), or estimate the effect size of the treatment, given a set of
independent variables (e.g. genotypes, mRNA profiles, etc.). If necessary, the efficacy of
these predictors/classifiers can be evaluated using traditional frequentist tools, such as

p-values.
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Predictors have been successfully applied in genetics research. For example, Lello et
al. [14] report predicting human height from genotype data, obtained using human
Single Nucleotide Polymorphism (SNP) microarrays, to within a few centimeters for
most participants in their sample. This level of accuracy is achieved due to a very large
sample size of nearly half a million individuals. A review by Van Raden et al. [15]
reports ability to predict dairy output of certain cattle breeds with R? of 49%, using
non-linear models based on SNP microarrays. The work of Azencott et al. [16] allows
one to incorporate prior information about biological networks into the predictive model,
increasing prediction accuracy. In one of the direct motivations behind our research
here, Lee et al. [17] report being able to predict most of Huntington disease trinucleotide
repeat size using mRNA profiling of lymphoblastoid cell lines. Here, we demonstrate a
further application of predictors in genetics research, by constructing a predictor, which
can produce a numerical estimate of a participant’s DM1 CTG repeat length (measured
from blood) from an mRNA profile (obtained from muscle), and demonstrate its

usefulness in the context of a hypothetical clinical trial of a DM1 treatment.

Prior identification of alternative splicing and alternative

polyadenylation events in muscles of DM1-affected individuals

Our primary reference is the work of Nakamori et al. [8], who identified 42 genes
exhibiting AS defects in DM1. Briefly, the methodology of the study was as follows:
muscle tissue (patients: four biceps, two quadriceps, one tibialis anterior, one
diaphragm; controls: eight vastus lateralis) were sampled post-mortem from eight DM1
affected individuals and eight unaffected controls. Selection of the postmortem DM1
samples were based on high integrity of RNA present in the sample and presence of
splicing misregulation of INSR and AP2A1, and then compared to quadriceps biopsy
samples from eight healthy controls.

mRNA was extracted from the samples, purified and hybridized to GeneChip™
Human Exon 1.0 ST microarrays. Putative AS defects were identified using a mixture
of existing methods, such as Affymetrix’s PLIER, DABG and Alternative Transcript
Analysis Methods for Exon Arrays, and new methods proposed and described by the

authors. Identified putative defects were validated using RT-PCR in 50 DM1 subjects,
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yielding 42 genes with confirmed AS defects.

Nakamori et al. report several technical obstacles with this approach, with the initial
version of their pipeline suffering from as many as 80% putative AS defects failing to
replicate with Reverse Transcription-PCR. Further analysis suggested that this occurred
when “signal intensity for the entire transcript or a particular exon was low”, “overall
expression of a transcript was strongly up- or down- regulated in DM1 relative to
normal controls”, or “signal intensity of an exon was inappropriately high relative to
other exons in the same transcript” [8].

Batra et al. [9] re-used the dataset of Nakamori et al. [3] and used similar techniques
to filter down the data, in a search for genes with dysregulated APA. Their selection
criteria focused on probesets with over 2-fold change in DM1 or DM2 vs. unaffected
controls, excluding genes that were represented by < 5 probesets, retrogenes and
non-protein coding genes, which resulted in pre-selection of 438 probesets. The authors
performed visual inspection of all pre-selected probesets identifying 123 APA events

belonging to 80 genes.

Evaluating Potential Biomarkers of DM1

We propose that predictors are a suitable statistical tool, which can find applications in
DMI1 research and clinical practice. As described before, DM1 case/control status [3,9]
leaves a discernible pattern in the mRNA profiles of muscle samples. In this research,
rather than to work with the DM1 status as a binary variable, we look at DM1 as a
spectrum disease, severity of which is quantified by the length of the DM1 CTG repeat
in any individual patient. We propose that it is possible to capture the effect, which the
length of this repeat has on mRNA expression in muscle into a simple statistical model,
based on linear regression. Using the model we can predict the size of the DM1 CTG
repeat from the mRNA profile significantly better than a random predictor. We propose
that the model can serve as a valuable tool in evaluating efficacy of any treatment for
DM1 as such treatment enters pre-clinical or clinical trials, by enabling investigators to
directly quantify the treatment effect as measured by effective reduction of DM1 CTG
repeat length.

We would like to stress here that “effective reduction” in the case of most candidate
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treatments will not be an actual reduction in the repeat length (with notable exception
of candidate treatments based on gene editing). Rather, an “effective reduction” is a
reduction of “effective repeat length”, i.e. repeat length as judged by the degree of
splicing changes. This can be demonstrated with an example of a patient with a certain
pre-treatment repeat length, and both physiological and molecular symptoms
characteristic for that repeat length. If such patient were to undergo an effective
treatment we would expect these symptoms to be partially reversed, and our predictive
framework to predict a shorter repeat length than the patient’s actual repeat length.
Subject to correctness of our understanding of the molecular pathophysiology of the
splicing changes, which we rely on to predict the effective repeat length, we expect that
the reversal of the splicing changes would occur immediately after the release of
inactivated AS and APA factors, such as MBNL1. This release should in turn happen
immediately after a candidate therapeutic were to reach a clinically significant level in
the relevant tissue. We expect this to happen on a timescale of days to weeks, unlike
the reversal of physiological symptoms, which we would expect to happen on longer

timescales.

Materials and methods

The dataset

As part of the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) a dataset

was obtained from 35 participants, including 31 DM1 cases and four unaffected controls.

All DM1 cases in this research were heterozygous for the abnormally expanded CTG
repeat. The mode of the length of the DM1 CTG expansion (Modal Allele Length,
MAL) was determined by small-pool PCR of blood DNA for 35/36 patients [18]. For
this work we did not attempt to measure the repeat length from muscle, due to a very
high degree of repeat instability in muscle cells [3] and associated difficulties in its
experimental measurement. One patient refused blood donation. For each of the 35
blood-donating patients mRNA expression profiling of blood was performed using
Affymetrix GeneChip™ Human Exon 1.0 ST microarray. For 28 of 36 patients a

successful quadriceps muscle biopsy was obtained. The muscle tissue was mRNA
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profiled using the same type of microarray. In total, a complete set of samples (blood 1

and muscle) was obtained for 27 of 36 patients. mRNA profiling was carried out by the 1

GeneLogic service lab (on a fee-for-service basis) using standard Affymetrix 136
hybridisation protocol. 137
Principal Component Analysis (PCA) was performed on both blood and muscle 138

profiles, and visual inspection was carried out to detect the presence of outliers. Zero 139
outliers in the blood batch and four outliers in the muscle batch were identified and 140
expression profiling was repeated for these patients. For the analysis we used only the 1a
repeated profiles. 142

It should be noted that our dataset differs from the dataset collected by Nakamori et 13

al. in the following ways: 144
1. We did not perform confirmatory RT-PCR analyses. 145
2. Our dataset includes both blood and muscle tissue samples. 146

3. The number of mRNA-profiled participants is about twice the size of the discovery 1

dataset of Nakamori et al., however, we did not perform a follow-up validation 148
study. 149
4. Unlike Nakamori et al. we have additional information to participant’s 150

case-control status, specifically, the mode of the CTG repeat length from blood 151
(MAL). We also estimate the repeat length at birth (Progenitor Allele Length, 152

PAL) using a previously developed method [19]. 153

5. We sample from the same muscle group (quadriceps), as opposed to from a wide 15

range of muscle groups (biceps, quadriceps, tibialis anterior, diaphragm, vastus 155
lateralis) for all study participants, which eliminates a potentially important 156
confounding effects. 157
6. All our participants are alive at the time of sample collection, which eliminates 158
another potential confounder, but other potential confounders still remain, see 150
Limitations. 160

The dataset is deposited to Array Express with accession number E-MTAB-7983. 161
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Affymetrix GeneChip™ Human Exon 1.0 ST microarray

The microarray chip used was the Affymetrix GeneChip™ Human Exon 1.0 ST
microarray, which contains over 5 million probes, i.e. short cDNA sequences, which
target transcribed regions with high specificity. Each probe in the HuEx chip contains
precisely 25 nucleotides. Consequently, transcribed regions of interest, which are shorter
than 25 nucleotides, for example some of the short exons, are not targeted. This is an
important limitation in the context of DM1, as some AS events previously described in
DMI, such as AS of exon 5 in cardiac troponin T (TNNT?2) [20] cannot be detected.
Each continuous section of DNA can be targeted by a collection of up to four probes,
referred to as probeset. DNA sections targeted by the chip include known and
suspected coding exons in known and suspected genes, as well as non-coding genomic
features, including 5’ and 3’ UTRs, and various other types of transcribed or
hypothetically transcribed DNA (miRNA, rRNA, pseudo-genes, etc.). All probes
targeting such a region belong to a single probeset. Probesets are further grouped into

transcription clusters, which correspond to the entire genes.

Data preparation and analysis

We designed and built a pipeline, programmed in Python, which has the following data
preparation capabilities: Reading raw Affymetrix CEL v4 files (peer reviewed and
merged into Biopython [21,22]); quantile normalisation and log2 transformation of
intensity data; strict annotation of Affymetrix probes using GENECODE v26 lift 37
through selecting probes corresponding to annotated GENECODE transcripts of type
“protein_coding”, annotated genes of type “protein_coding” and exons of type “CDS” or
“UTR”. Appendix S1 Appendix gives full source code, user manual and additional
explanation of each step of this pipeline.

The pipeline’s final output are two directories: “experiment_muscle” and
“experiment_blood”, each containing 19,826 files, whose filenames correspond to HGNC
gene names. The following is a two-line excerpt from one of such files,
“experiment_blood/TNNI1”. Data for several patients has been removed to enhance

clarity:

gene_name probeset_id seqbto3dplus chrom strand
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— genecode_left genecode_right x y
— patient 111747589 patient_117440822

— patient_896445336

TNNI1 2450836 TGGOCIGTGOCTOGOOGTAGACTGC chrl -
— 201390827 201390851 195 793
— 6.69115092487 6.44442470429 6.86989190909

In each file, the first row is a header containing tab-separated names of data or
metadata types contained in a given column. Below we give a brief description of some

of the data or metadata types:

e seqbto3 — unlike Affymetrix we always report the sequence in 5’ to 3’ direction,
and always with regards to the plus strand, even if the coding sequence is

contained on the minus strand.

e genecode_left, genecode_right — these are genomic coordinates as reported by a
reference assembly (GRCh37). Following convention, first coordinate is 1-based,

and coordinates are left-, right- inclusive.
e X, y give the x and the y coordinates of probes on the chip.

e patient_* — these are quantile normalised and log2-transformed intensities at the

given probe for the given study participant.

Each subsequent row contains data and metadata for a single probe.
We develop a predictive model, which closely follows that of Lee et al. [17]. We work
with pre-selected sets of genes that act as candidate biomarkers. For this purpose, we

look at the following collections of genes:

1. A previously identified selection of genes, listed in S2 Appendix and identified by
Nakamori et al. [8] as genes whose AS is disrupted in DM1. We codename these
genes “DM1-AS”.

2. A previously identified selection of genes, listed in S3 Appendix and identified by
Batra et al. [9] as genes whose AP is disrupted in DM1. We codename these genes
“DM1-APA”. The overlap of this list of genes with DM1-AS is a list of two genes:
LDB3, MBNL2.
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3. A single gene (which also belongs to DM1-APA), Troponin 11, slow skeletal type,
TNNI1. We codename this single-gene collection “TNNI1”. The gene was chosen

post-hoc.

4. All human genes, as identified in data preparation step. We codename this

collection “ALL”.

Then we execute eight separate statistical analyses (four muscle and four blood

analyses), based on these groups of genes. Each analysis was carried out as follows:

1. We randomly split our data into two sets, the training and the testing set, each
containing 70% and 30% of participants respectively. We restricted our analysis
only to genes, which belonged to a particular group of genes being studied

(DM1-APA, DM1-AS, TNNI1, ALL)

2. Following Lee et al., we select (up to) 500 probes whose intensities across all
patients in the training set are most correlated with their corresponding MAL. We
work at the level of individual probes, which allows us to circumvent issues around
GC-correction and probeset aggregation. Probe data are fed directly into the

model.

3. Again using the training set, we trained a 2-dimensional Partial Least Squares
Regression (PLSR) model on selected probes as features and corresponding MAL
as the model output, which we later used to predict MAL in the testing set, again

following Lee et al..
4. We repeated steps 1 to 3 10,000 times.

5. We report coefficient of determination (R?) of the predicted MAL with the

measured MAL across all folds obtained in step 4.

6. We simulated a distribution of R? of a random predictor, and obtained a p-value

for the prediction of R? in step 5.

To confirm that any observed signal is not a by-product or an artifact of the
mathematical model used, or its implementation, we carried out the same kind of

analysis using three other mathematical models:
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1. lasso
2. random forest regression
3. linear regression

To relate our findings to a potential clinical setting, we present power analysis
relating various potential treatment effect sizes to their detectability in future clinical

trials. The power analysis was performed as follows:
1. We simulated the distribution of MAL prediction error for the best predictor.

2. We simulated the distribution of MAL post-treatment, with the assumption that
MAL would be reduced by 10%, 20% or 50%, which correspond to, respectively,

small, medium and large treatment effect size.

3. We established the rejection region for a null hypothesis of “no treatment effect”

at o = 0.05.

4. We simulated the power, (1 - ), for studies involving 10 to 200 participants, in

increments of 10 participants.

Results & Discussion

Performance of PLSR-based M AL predictors in muscle and
blood

Using our predictive model based on PLSR and a selection of candidate biomarkers:
DM1-AS; DM1-APA; TNNI1 and ALL, we can report the following capabilities to
predict MAL from mRNA profiles.

In muscle we can detect strong signal for some of the selected candidate biomarker
sets, with the two strongest predictors, DM1-AS and TNNI1, giving us R? and p-values
equal to 0.289, 0.320 and 0.00434, 0.00249 respectively. All values of R? and p-values
are given in Table 1. In particular, DM1-AS looks promising as a set of biomarkers,
giving weight to the findings of Nakamori et al. [3].

Based purely on numerical analysis of obtained results, one could declare TNNI1 as

the best predictor of MAL in muscle, but care must be taken, as we chose this
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particular gene post-hoc and its true predictive value might have been influenced by
issues related to multiple hypotheses testing. An additional validation study would have
to be performed before drawing any conclusions on the performance of TNNI1 as a DM1
biomarker.

A safer belief can be assigned to the predictive value of “DM1-AS” and “DM1-APA”
as both sets of genes have been previously implicated in DM1 [9], and we can detect
strong signal from both sets of genes, with models based on these genes capturing
respectively 30% and 15% of MAL variance in our study group.

One has to note an interesting observation relating to the “curse of dimensionality”
and the performance of our PLSR-based model. Although TNNI1 is a subset of
DM1-APA, TNNI1 on its own is a much better predictor than DM1-APA| as increasing
the number of genes (features) increases the dimensionality of our data and worsens the
prediction delivered by the PLSR model.

A single run of 10,000 repetitions of a simulation can be visualised by plotting the
predicted value of MAL against the actual, adding a small amount of random noise on
the x-axis. For DM1-AS in muscle, such visualisation is given in Fig 1.

In blood we cannot detect significant signal for most candidate biomarkers, with R?
not significantly respectively greater and lower than would be expected by chance,
except in one case, DM1-APA, whose R? and p-value are 0.15 and 0.0564 respectively.
Full R? and (uncorrected) p-values are given in Table 2. Poor performance of blood
data acting as a predictor of repeat length is perhaps not unexpected, as all candidate
biomarkers evaluated in this study are based on prior analyses of muscle data, and
might not be expressed, or only lowly expressed in blood, or that expression profiles
might be very different from expression profiles in muscle. Only DM1-APA can

potentially carry some predictive value, however, not as strongly as in muscle.

Table 1. 10000 repetitions of a simulation predicting MAL from muscle cross-validated with a testing set

separate from the training set.

DM1-AS | DM1-APA | TNNI1 | ALL
R2 0.289 0.150 0.320 0.084
p-value | 0.00434 | 0.0470 0.00249 | 0.143
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Table 2. 10000 repetitions of a simulation predicting MAL from blood cross-validated with a testing set

separate from the training set.

DM1-AS | DM1-APA | TNNI1 | ALL
R? 0.0465 0.106 0.0479 | 0.0465
p-value | 0.213 0.0564 0.207 0.213
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200
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0 250 500 750 1000 1250
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Fig 1. DM1-AS muscle MAL prediction. 10,000 repetitions of cross-validated
MAL prediction from genes labeled DM1-AS from muscle for 18 training samples.

Other models

As described in Data preparation and analysis, we have used a model based on feature
selection from sets of candidate mRNA biomarkers to predict the MAL of DM1 CTG
repeat using PLSR. As reported in Performance of PLSR-based MAL predictors in
muscle and blood, the set of genes DM1-AS is the strongest predictor if we limit our
consideration to predictors chosen a-priori (i.e. excluding TNNI1).

A potential source of criticism could be that the effect observed is a technical effect

due to the choice or the implementation of the mathematical model used (PLSR). We
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thus re-ran the analysis as described before in Data preparation and analysis using three
mathematically distinct models: lasso, random forest regression and linear regression.

We report the performance of these models in Table 3:

Table 3. 10000 repetitions of a simulation predicting MAL from muscle, using DM1-AS as a predicting set
and a selection of mathematical models

linear regression | PLSR lasso random forest
R? 0.291 0.289 0.286 0.149
p-value | 0.00418 0.00434 | 0.00454 | 0.0478

It should be noted that all models pick up statistically significant signal with both
PLSR, lasso and linear regression performing almost equally well, and random forest
performing about two times poorer (but still significantly better than a random
predictor), which allows us to conclude that the effect observed is unlikely to be a

modelling artifact.

Applying the model in a clinical setting

Let us now consider the potential application of this predictive model in the context of
evaluating efficacy of a DM1 treatment. DM1 patients would undergo muscle biopsy
before starting the treatment, and another biopsy after the treatment had been started
and necessary biological changes to reverse DM1 symptoms had occurred. Both biopsies
would be mRNA profiled, and the resulting profiles would be used to perform MAL
predictions. We expect that pre-treatment prediction would correspond to the actual
MAL of any given participant. We expect that post-treatment prediction of MAL would
correspond to an “effective MAL”, which we would expect to be lower than the “actual
MAL” in affected participants, as long as the treatment is effective and DM1-induced
disruption of AS or APA, as measured by DM1-AS or DM1-APA biomarkers is
measurably reversed in obtained mRNA profiles. Pre-treatment and post-treatment
predictions could be combined into a statistic that, given enough patients, would allow
us to quantify the efficacy of the treatment at the molecular level. We discuss this idea
further in the chapter Power Analysis.

In some respects, such a study could allow for better performance of the model,
conceptually, it should be easier to capture DM1 specific expression changes in a setting

where noise due to varied genetic backgrounds of participants can be reduced by looking
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at pairs of measurements of a single participant. There are a number of details in such
study design, which need to be discussed by the community and decided upon, among

others:

1. The mathematical basis of the model used. We propose a PLSR-based model, and

demonstrate that models based on lasso and linear regression perform similarly,
but other models can also be considered, in particular the work of Azencott et
al. [16] in the context of Li-penalised regression (lasso) looks promising as it
allows to incorporate prior biological knowledge, in the form of protein-protein
interaction networks or other types of graph ontology, into the model, through the
introduction of additional penalties based on discrete Laplacian, or apply
alternative modelling strategies based on network flow, thereby increasing its

predictive power.

. The training/testing pre-treatment/post-treatment data split and which genes

should be included in the model input.

. The size of the study. Predictions in our study are based on 24 participants for
blood and 18 for muscle. How much would the models’ predictive power improve

with a larger dataset?

. Establishing the clinically relevant effect size. Pandey et al. [7] report various
efficacies of a candidate DM1 treatment ISIS 486718 to lower toxic DMPK
concentrations in wild-type and transgenic animal models and a range of tissues,
starting with the efficacy of about 50% in cardiac muscle, through about 70% in
skeletal muscle, up to about 90% in liver and skeletal muscle. However, measuring
DMPK levels may not necessarily directly correspond to the efficacy of treatment
to reverse symptoms, as the relationship between the quantity of the toxic
transcript, splicing disruption and eventual clinical symptoms may be complex
and non-linear. Conservatively, we need to expect the rate of symptom reduction
to be lower than the reported 50% to 90%. A difficult open question is what

minimum treatment efficacy we are willing to accept as clinically significant?
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An informal setting to explore the dataset

As this work is the first presentation of the DMBDI dataset, we recognise that further
work might build on the dataset in ways which differ from our approach and cannot be
predicted at the current stage of our understanding of DM1-related AS/APA changes.
To facilitate this, we would like to propose a tool which on one hand allows for informal,
interactive and exploratory analysis of the dataset and on the other allows the flexibility
of building a custom analysis — just like the one presented here.

The tool is available online [23], and is implemented as a jupyter notebook with
custom visualisation of filtered and normalised DMBDI data. The flexibility of the tool
comes at a cost. In order to support arbitrary bioinformatics analyses we have to
support arbitrary code execution, which in turn requires protecting the tool with a
password. We will share the password with any bona fide researcher upon request. A
walk-through video showcasing the capabilities of the tool is available on youtube [24].

The major capability of the tool is the ability to produce “railway plots”. Railway
plots introduce the idea of a Manhattan plot from genomics community into
transcriptomics. Each point represents statistical significance of the change of
expression signal at a single probe across DM1 spectrum, as supported by experimental
data. Points which belong to the same probeset, are identically coloured. See Figure 2
for an example railway plot.

In a railway plot the y-axis represents negative logs of p-values of a two-tailed tests
against a null hypothesis of no expression change at a single probe across the DM1
spectrum. Figure 3 visualises one of such linear regressions for a probe belonging to
probeset 245089. The logs of p-values are signed in accordance with the direction of the
slope of the regression, with negative values indicating splice-out and positive values
indicating a splice-in type of event.

For each of splice-out and splice-in directions in the plot, we show thresholds of
statistical significance. The first pair of thresholds (faded red and blue respectively)
correspond to statistical significance threshold of 0.05. The second pair of thresholds
correspond to 0.05/n, where n is the total number of probes in the plot (saturated red
and blue respectively). This is analogous to the way Manhattan plots are often

presented for GWAS.
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Fig 2. TNNI1 Railway plot shows an APA event at probeset 245089.

Turning our attention from statistics to biology, we can ask about a likely biological
interpretation of an observed splice-out event detected at probeset 2450829. Using
Ensembl [25], see figure 4), we can identify transcript TNNI1-203, which is the only
GENECODE transcript featuring a probe selection region targeted by the probeset
2450829, in form of an alternative 3’ UTR. This allows us to suggest that TNNI1-203 is
downregulated in participants with longer DM1 repeats. GENECODE annotation
further informs us that TNNI1-203 is an APPRIS P2 transcript (i.e. a candidate
principal variant, a designation which comes from high level of support for functionality
of the isoform), and is not a CDS incomplete transcript, which allows us to strengthen
our belief in the fact that this is a biologically functional/ protein-coding transcript,
which can play a role in the DM1-related AS/APA changes.

Finally, and returning back to statistics, we can ask whether high significance of the
splice-out event is a result of multiplicity effect, given that the gene was chosen post-hoc
from a pool of candidate biomarker genes as determined by Batra et al. and Nakamori
et al. [3,9]. A standard approach here would be to combine the data from the discovery
dataset with the data from the replication dataset, compute a more powerful test, and
apply multiplicity correction. This is not possible in this case as the discovery dataset,

underlying both studies is a case-control dataset, whereas our dataset captures DM1
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Fig 3. Linear regression of expression intensity at a single probe belonging to probeset
245089 against DM1 repeat length.
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Fig 4. Visualisation of genomic coordinates of TNNI1 transcripts using Ensembl.
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status as a continuous variable via DM1 CTG repeat length measurement. An
alternative is to combine both p-values using, e.g. Fisher’s method [26], which shows
that the combined p-value against the null hypothesis of no change of signal intensity at
the probeset 2450829 is 4.19 x 10~!°. Computing the Bonferroni correction with
multiplicity factor of 1.4 million, equal to the total number of HuEx probesets [27],
shows that the combined p-value based on the discovery dataset and our dataset is
5.88 x 10~%. This is a strong confirmation of the significant correlation of DM1 status
with TNNI1-203 downregulation. Details of the computation are available in S1

Appendix.

Power Analysis

Our final contribution, which is of critical significance in the context of any future
clinical trial is a power analysis of the current model. We report power for a selection of
possible treatment effect sizes (10%, 20% and 50% reduction in effective MAL on a
per-patient basis) and a selection of study participants. Our power is defined as (1 — 3),
where  is a supremum of the probability of committing a type II error, with the
supremum of the probability of committing type I error (o) kept at a constant 0.05.
Table 4 reports power, (1 — 3), to detect treatment effect of a two-tailed test with
p-value cut-off of 0.05 (0.025 per tail), with the statistic simulated from MAL
predictions of our model, for varying treatment effect and study sizes. We try to keep
our cohort sizes realistic for a rare disease, i.e. we allow for patient numbers to range
from 10 to 200.

Ideally we would like to be able to achieve power of more than 95%, even with small
treatment effect sizes and a small number of patients, but our model, trained on 18
participants, doesn’t allow for such level of control over type II error for all but medium

or large treatment effects (more than 20% and 50% respectively) and large (more than

140 participants) or medium-sized (more than 30 participants) clinical trials respectively.

However, our results combined with expected improvements of the model
performance due to larger training samples, and better gene selections, such levels might
be reached for medium treatment effect size (20% reduction in effective MAL) and large

clinical sizes.
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Table 4. Power analysis. Entries in the table report power to detect treatment effect based on the size of a
cohort (from 10 — 200 participants) and the treatment effect of the study to reverse splicing changes (10, 20
and 50%). Entries denoting power greater than 0.95% are presented in boldface.

study size (participants) | treatment effect 10% | treatment effect 20% | treatment effect 50%

10 0.100 0.209 0.635

20 0.131 0.322 0.855

30 0.162 0.423 0.947

40 0.193 0.517 0.981

50 0.226 0.596 0.994

60 0.259 0.671 0.998

70 0.283 0.723 0.999

80 0.311 0.772 0.9998

90 0.339 0.816 0.99998

100 0.370 0.851 0.99998

110 0.396 0.881 0.99999

120 0.418 0.901 1.0

130 0.448 0.924 1.0

140 0.467 0.937 1.0

150 0.500 0.952 1.0

160 0.523 0.962 1.0

170 0.545 0.969 1.0

180 0.568 0.977 1.0

190 0.589 0.981 1.0

200 0.613 0.986 1.0
Limitations

A source of potential criticism is that muscles of DM1 patients have physiological
differences (atrophy, increased fat content), especially when disease is severe. Quite
possibly observed changes in AS/APA are partly attributable to these physiological
differences in DM1 as opposed to purely biomolecular differences. The structure of this
counter-argument could be as follows:

Muscles of DM1 patients have higher fat content than affected controls. Muscle
samples collected from DM1 patients have higher ratio of intermuscular adipocytes to
myocytes. Adipocytes have different AS/APA profiles than myocytes. Observed
AS/APA changes in the DM1 spectrum are mostly derived from differences in
adipocyte/myocyte profile. As a result, mRNA study of muscle tissue is no more
effective (and possibly less effective) than a blinded study based on pathophysiological
inspection of the tissue.

This argument can, of course, be extended to other physiological changes than

increased fat content, and other molecular events than AS/APA. Bachinski et al. [28],
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for example, propose that splicing changes could be a secondary result of muscle
regeneration.

There are multiple ways to address these concerns:

1. Alternative predictive model design based on tissue culture models, where in vivo

limitations are reduced, with homogeneity of the cellular composition of the model

being a big advantage.

. Investigating methods to correct for potential “physiological” covariates (e.g. fat

content), using purely statistical techniques to estimate covariate influence from
gathered data and existing prior information (e.g. mRNA profiles of adipocytes),
or biological methods, such as a recent effort to collect higher quality muscle

samples through MRI-guided biopsy [29].

. Discovering DM1 biomarkers in blood, as opposed to muscle. Blood, being much

more homogeneous tissue than muscle is expected to be less prone to the existence
of confounding variables. Additionally, necessity of muscle sampling was
highlighted to be a “main drawback” [8]. However, achieving this would require at
least two separate, successful studies, one to identify biomarkers and one to
evaluate them. Even if blood biomarkers were identified, their clinical utility
might be limited, as a reduction of an effective MAL in blood would not be as

direct evidence of treatment effectiveness as such reduction in muscle.

. Introduction of positive controls in experimental designs. Biological samples in

the positive control group would be composed of tissue collected from individuals
with other muscular dystrophies (e.g. Becker muscular dystrophy, Duchenne
muscular dystrophy, facioscapulohumeral muscular dystrophy or tibial muscular
dystrophy). These diseases feature dystrophy and increased muscle regeneration
program as part of their phenotype, but without disruption of RNA-binding
splicing factors. Absence of DM1-specific splicing changes in these positive
controls would allow to rule out alternative explanations of mis-splicing
mechanisms (e.g. muscle regenration) and strengthen our belief in currently

accepted models of molecular pathomechanism of DM1.

5. Confining the analysis to transcripts which are exclusively or predominantly
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expressed in skeletal muscle, not fat.

Conclusion

In this study we design and build a model based on PLSR, which can explain as much
as 28.9% of the variance in DM1 CTG trinucleotide expansion from mRNA splicing
data. Such explainability is only obtained when the model is trained on expression data
from genes previously identified by Nakamori et al. [3] as having disrupted AS on data
obtained from muscle samples. We show how such model could be used in a clinical
setting in the context of emerging DM1 treatments, and report power analysis to detect
treatment effect depending on size of the treatment effect, type 1 error («) and

potential size of the clinical trial.

Supporting information

S1 Appendix. Code & how to run it. All of the computer programs written for
this study can be found on github.

The following instructions should allow one to independently verify results of our
simulations (also available in the repository).

We advise that all of this code be run on a machine with 64 GB of RAM or more,
given that some parts of the pipeline can use up in excess of 32 GB of RAM. We were
able to successfully execute the entire analysis using an AWS “mb.4xlarge” EC2
instance. We found the default amount of storage, 8 GB, to be insufficient to store both
the primary data and intermediate computations. We increased the amount of storage
to 100 GB. We remove all networking restrictions on the instance, to allow for remote
access of jupyter notebooks, which contain our pipeline.

We had to apply the following shell commands to set up the machine:
1. sudo apt-get update
2. sudo apt-get upgrade

3. sudo apt-get install python3-pip

=~

. git clone https://github.com/picrin/clinical applications.git
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pip3 install jupyter

All data and metadata used in this study are available in publicly accessible s3

bucket, with the following paths: “dml-biomarkers/CEL”,

“dm1-biomarkers/annotations” respectively. These datasets need to be copied to the root

of the “clinical_applications” repository as directories “CEL” and “annotations”

respectively.

All required third-party dependencies can be installed from the provided

“requirements.txt”

Finally, “jupyter notebook ——ip 0.0.0.0 ——port 8888” can be issued to start the

notebook server, which we can access remotely, using a DNS entry allocated for our

EC2 instance and provided that communications on our chosen port is configured to be

accessible through the AWS firewall.

We now run notebooks in the following order:

1.

“01_parse_chip_data.ipynb”. This part of the pipeline is responsible for
determining probeset ids, sequences of probes and probe coordinates on the chip.
It produces an intermediate file with data adhering to the following schema:

“probeset, x, y, sequence”.

. “02_parse_csv_annotations.ipynb”. Here, we determine “genomic” metadata, i.e.

chromosomomal coordinates and strandedness.

. “03_unpack_CEL-files.ipynb”. Here we use our own contribution to Biopython to

parse the binary CEL v4 file format, which is what all our microarray data uses.

. “04_quantile_normalise.ipynb”. Here we perform quantile normalisation of our

microarray data.

. “Ob_reannotate_probeset_level.ipynb”. Here we verify Affymetrix’s annotation. We

determine that over 1% probes are incorrectly annotated. We discard these
probes. We limit our attention to probes, which belong to chromosomes

chrl-chr22, X, Y and the mitochondrial DNA (M).

. “O6_intervaltrees.ipynb”. Here we carry out an exclusive filtering, choosing probes,

which are identified by “gencode.v26lift37.annotation.gtf” as having
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“transcript_type” equal to “protein_coding”, or “gene_type” equal to
“protein_coding”, as well as the exon type equal to “CDS” (Coding sequence) or

“UTR” (5 or 3’ untranslated regions).

7. “07_merge_annotation_experiment.ipynb”. Here we produce a single file per
human gene, as identified in GENCODE v26, with data from all participants for

all probes for that gene.

8. “08_predictions.ipynb”. Here we run our PLSR model to predict MAL from the

microarray data.

9. “l0_power_analysis.ipynb”. Here we run power analysis presented in Results &

Discussion.

10. “13_combine_p_values.ipynb”. Here we combine p-values for a probeset of interest

using a previously published p-value and one obtained in this study.

S2 Appendix. DMI1-AS

ABLIM2, ALPK3, ANK2, ARFGAP2, ATP2A1, ATP2A2, BIN1, CACNA1S,
CAMK2B, CAPN3, CAPZB, CLCN1, COPZ2, DMD, DTNA, FHOD1, GFPT1,
IMPDH2, INSR, KIF13A, LDB3, MBNL1, MBNL2, MLF1, NFIX, NRAP, OPA1,
PDLIM3, PHKA1, RYR1, SOS1, TBC1D15, TTN, TXNL4A, UBE2D3, USP25,
VEGFA, VPS39

S3 Appendix. DMI1-APA

ABCA1, AGL, ALG3, AMHR2, AP1G1, ARHGEF7, ASPH, ATP5E, BRSK2,
BRWD1, CACNA1G, CACNB1, CDC42, CEBPA, CELF1, CHRNA1, CIRBP,
CLDND1, COPS4, DAPK2, DES, DNAJB6, DST, DVL3, EZR, FASTK, GPS1,
HDACI11, IDH3A, ILF3, KCNK7, KDELRI, KIF1B, KRBA1, LAMP2, LDB3, LMNA,
MBNL2, MDN1, MEF2B, MEF2C, MEF2D, MGP, MORC3, MTCH1, MYHS,
NDUFBI10, NR2F1, NUP43, OSBPL1A, PCBD2, PCM1, PCMT1, PDLIM2, PDLIMS5,
PEBP4, PFKFB2, PIK3C2B, PLIN2, RAB24, RIN1, RTN2, SAMD4A, SETD3,
SLC25A36, SMIM3, SNX1, SPATS2L, SPEG, SPTB, TBL2, TGFBI, TJP2,
TMEM38B, TNNI1, TPM1, TPM2, TPM3, TTYH3, U2SURP
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