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Abstract

Myotonic dystrophy type 1 (DM1) is a rare genetic disorder, characterised by muscular

dystrophy, myotonia, and other symptoms. DM1 is caused by the expansion of a CTG

repeat in the 3’-untranslated region of DMPK. Longer CTG expansions are associated

with greater symptom severity and earlier age at onset. The primary mechanism of

pathogenesis is thought to be mediated by a gain of function of the CUG-containing

RNA, that leads to trans-dysregulation of RNA metabolism of many other genes.

Specifically, the alternative splicing (AS) and alternative polyadenylation (APA) of

many genes is known to be disrupted. In the context of clinical trials of emerging DM1

treatments, it is important to be able to objectively quantify treatment efficacy at the

level of molecular biomarkers. We show how previously described candidate mRNA

biomarkers can be used to model an effective reduction in CTG length, using modern

high-dimensional statistics (machine learning), and a blood and muscle mRNA

microarray dataset. We show how this model could be used to detect treatment effects

in the context of a clinical trial.

Introduction 1

Myotonic dystrophy type 1 2

Myotonic dystrophy type 1 (DM1) is an autosomal dominant trinucleotide repeat 3

disorder, caused by an expanded CTG repeat in the 3’ UTR of the dystrophia 4

myotonica protein kinase (DMPK) gene [1]. Transcription of DMPK in affected 5

individuals produces a toxic, GC-rich mRNA molecule, which results in dysregulation of 6

several RNA binding factors, including proteins MBNL1, MBNL2, MBNL3, CELF1 7

(CUGBP1), HNRNPH1 and STAU1 (Staufen1) [2, 3]. The pathomechanism of the 8

dysregulation of splicing factor MBNL1 is perhaps best understood, with MBNL1 9

sequestration to the toxic DMPK RNA product resulting in alternative splicing defects 10

of pre-mRNAs of multiple genes, including the chloride channel (CLCN1), brain 11

microtubule-associated tau (MAPT) and insulin receptor (INSR) [4]. Such alternative 12

splicing (AS) defects are generally believed to be a major contributing factor of clinical 13

symptoms of DM1, such as myotonia (CLCN1) or abnormal glucose response (INSR), 14
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and have been postulated to play a role in cardiac conduction defects (RYR2, SERCA2, 15

TNNT2) [5]. AS defects may underlie other clinical symptoms of DM1, including muscle 16

wasting, cataracts, hypersomnia, gastrointestinal abnormalities, as well as premature 17

baldness and testicular atrophy in males [2, 6]. The severity of symptoms is positively 18

correlated with CTG repeat length [2]. 19

The toxic DMPK transcript in DM1-affected individuals has been identified as an 20

active target for theraupetic intervation [7], and it is expected that breakdown of the 21

toxic mRNA will result in at least partial reversal of DM1-induced AS changes and 22

other known and unknown DM1-induced biomolecular pathologies. 23

Spliceopathy of DM1 is an active area of research, with novel splicing defects being 24

continuously reported. Nakamori et al. [8] identified a set of 41 genes, which are 25

mis-spliced in DM1, suggesting these genes as potential biomarkers of DM1. Batra et 26

al. [9] identified 80 genes, whose expression indicates disrupted APA, reusing the 27

(human) dataset of Nakamori et al. and using other datasets, including data from 28

mouse models. 29

Predictors in genetics research 30

A widespread paradigm in biological and clinical research is the case-control study, 31

using frequentist statistics tools focusing on hypothesis testing (inference). Examples of 32

such designs include Genome Wide Association Studies (GWAS) [10], placebo and 33

active control clinical trial designs [11], non-inferiority designs [12] or heredity designs 34

based on twin studies. It is reported that designs of as many as 70% of studies 35

published in leading medical journals use at most the following three statistical tests as 36

part of their design: Student’s t-test, Fisher’s exact test, and the Chi-square test [13]. 37

A possible alternative to the focus on hypothesis testing is building predictors or 38

classifiers, which produce a numerical estimate of a given trait (height, size of the DM1 39

trinucleotide expansion) or effect size, predict participant’s category (such as 40

affected/unaffected), or estimate the effect size of the treatment, given a set of 41

independent variables (e.g. genotypes, mRNA profiles, etc.). If necessary, the efficacy of 42

these predictors/classifiers can be evaluated using traditional frequentist tools, such as 43

p-values. 44
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Predictors have been successfully applied in genetics research. For example, Lello et 45

al. [14] report predicting human height from genotype data, obtained using human 46

Single Nucleotide Polymorphism (SNP) microarrays, to within a few centimeters for 47

most participants in their sample. This level of accuracy is achieved due to a very large 48

sample size of nearly half a million individuals. A review by Van Raden et al. [15] 49

reports ability to predict dairy output of certain cattle breeds with R2 of 49%, using 50

non-linear models based on SNP microarrays. The work of Azencott et al. [16] allows 51

one to incorporate prior information about biological networks into the predictive model, 52

increasing prediction accuracy. In one of the direct motivations behind our research 53

here, Lee et al. [17] report being able to predict most of Huntington disease trinucleotide 54

repeat size using mRNA profiling of lymphoblastoid cell lines. Here, we demonstrate a 55

further application of predictors in genetics research, by constructing a predictor, which 56

can produce a numerical estimate of a participant’s DM1 CTG repeat length (measured 57

from blood) from an mRNA profile (obtained from muscle), and demonstrate its 58

usefulness in the context of a hypothetical clinical trial of a DM1 treatment. 59

Prior identification of alternative splicing and alternative 60

polyadenylation events in muscles of DM1-affected individuals 61

Our primary reference is the work of Nakamori et al. [8], who identified 42 genes 62

exhibiting AS defects in DM1. Briefly, the methodology of the study was as follows: 63

muscle tissue (patients: four biceps, two quadriceps, one tibialis anterior, one 64

diaphragm; controls: eight vastus lateralis) were sampled post-mortem from eight DM1 65

affected individuals and eight unaffected controls. Selection of the postmortem DM1 66

samples were based on high integrity of RNA present in the sample and presence of 67

splicing misregulation of INSR and AP2A1, and then compared to quadriceps biopsy 68

samples from eight healthy controls. 69

mRNA was extracted from the samples, purified and hybridized to GeneChip™ 70

Human Exon 1.0 ST microarrays. Putative AS defects were identified using a mixture 71

of existing methods, such as Affymetrix’s PLIER, DABG and Alternative Transcript 72

Analysis Methods for Exon Arrays, and new methods proposed and described by the 73

authors. Identified putative defects were validated using RT-PCR in 50 DM1 subjects, 74
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yielding 42 genes with confirmed AS defects. 75

Nakamori et al. report several technical obstacles with this approach, with the initial 76

version of their pipeline suffering from as many as 80% putative AS defects failing to 77

replicate with Reverse Transcription-PCR. Further analysis suggested that this occurred 78

when “signal intensity for the entire transcript or a particular exon was low”, “overall 79

expression of a transcript was strongly up- or down- regulated in DM1 relative to 80

normal controls”, or “signal intensity of an exon was inappropriately high relative to 81

other exons in the same transcript” [8]. 82

Batra et al. [9] re-used the dataset of Nakamori et al. [8] and used similar techniques 83

to filter down the data, in a search for genes with dysregulated APA. Their selection 84

criteria focused on probesets with over 2-fold change in DM1 or DM2 vs. unaffected 85

controls, excluding genes that were represented by ≤ 5 probesets, retrogenes and 86

non-protein coding genes, which resulted in pre-selection of 438 probesets. The authors 87

performed visual inspection of all pre-selected probesets identifying 123 APA events 88

belonging to 80 genes. 89

Evaluating Potential Biomarkers of DM1 90

We propose that predictors are a suitable statistical tool, which can find applications in 91

DM1 research and clinical practice. As described before, DM1 case/control status [8, 9] 92

leaves a discernible pattern in the mRNA profiles of muscle samples. In this research, 93

rather than to work with the DM1 status as a binary variable, we look at DM1 as a 94

spectrum disease, severity of which is quantified by the length of the DM1 CTG repeat 95

in any individual patient. We propose that it is possible to capture the effect, which the 96

length of this repeat has on mRNA expression in muscle into a simple statistical model, 97

based on linear regression. Using the model we can predict the size of the DM1 CTG 98

repeat from the mRNA profile significantly better than a random predictor. We propose 99

that the model can serve as a valuable tool in evaluating efficacy of any treatment for 100

DM1 as such treatment enters pre-clinical or clinical trials, by enabling investigators to 101

directly quantify the treatment effect as measured by effective reduction of DM1 CTG 102

repeat length. 103

We would like to stress here that “effective reduction” in the case of most candidate 104
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treatments will not be an actual reduction in the repeat length (with notable exception 105

of candidate treatments based on gene editing). Rather, an “effective reduction” is a 106

reduction of “effective repeat length”, i.e. repeat length as judged by the degree of 107

splicing changes. This can be demonstrated with an example of a patient with a certain 108

pre-treatment repeat length, and both physiological and molecular symptoms 109

characteristic for that repeat length. If such patient were to undergo an effective 110

treatment we would expect these symptoms to be partially reversed, and our predictive 111

framework to predict a shorter repeat length than the patient’s actual repeat length. 112

Subject to correctness of our understanding of the molecular pathophysiology of the 113

splicing changes, which we rely on to predict the effective repeat length, we expect that 114

the reversal of the splicing changes would occur immediately after the release of 115

inactivated AS and APA factors, such as MBNL1. This release should in turn happen 116

immediately after a candidate therapeutic were to reach a clinically significant level in 117

the relevant tissue. We expect this to happen on a timescale of days to weeks, unlike 118

the reversal of physiological symptoms, which we would expect to happen on longer 119

timescales. 120

Materials and methods 121

The dataset 122

As part of the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) a dataset 123

was obtained from 35 participants, including 31 DM1 cases and four unaffected controls. 124

All DM1 cases in this research were heterozygous for the abnormally expanded CTG 125

repeat. The mode of the length of the DM1 CTG expansion (Modal Allele Length, 126

MAL) was determined by small-pool PCR of blood DNA for 35/36 patients [18]. For 127

this work we did not attempt to measure the repeat length from muscle, due to a very 128

high degree of repeat instability in muscle cells [3] and associated difficulties in its 129

experimental measurement. One patient refused blood donation. For each of the 35 130

blood-donating patients mRNA expression profiling of blood was performed using 131

Affymetrix GeneChip™ Human Exon 1.0 ST microarray. For 28 of 36 patients a 132

successful quadriceps muscle biopsy was obtained. The muscle tissue was mRNA 133
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profiled using the same type of microarray. In total, a complete set of samples (blood 134

and muscle) was obtained for 27 of 36 patients. mRNA profiling was carried out by the 135

GeneLogic service lab (on a fee-for-service basis) using standard Affymetrix 136

hybridisation protocol. 137

Principal Component Analysis (PCA) was performed on both blood and muscle 138

profiles, and visual inspection was carried out to detect the presence of outliers. Zero 139

outliers in the blood batch and four outliers in the muscle batch were identified and 140

expression profiling was repeated for these patients. For the analysis we used only the 141

repeated profiles. 142

It should be noted that our dataset differs from the dataset collected by Nakamori et 143

al. in the following ways: 144

1. We did not perform confirmatory RT-PCR analyses. 145

2. Our dataset includes both blood and muscle tissue samples. 146

3. The number of mRNA-profiled participants is about twice the size of the discovery 147

dataset of Nakamori et al., however, we did not perform a follow-up validation 148

study. 149

4. Unlike Nakamori et al. we have additional information to participant’s 150

case-control status, specifically, the mode of the CTG repeat length from blood 151

(MAL). We also estimate the repeat length at birth (Progenitor Allele Length, 152

PAL) using a previously developed method [19]. 153

5. We sample from the same muscle group (quadriceps), as opposed to from a wide 154

range of muscle groups (biceps, quadriceps, tibialis anterior, diaphragm, vastus 155

lateralis) for all study participants, which eliminates a potentially important 156

confounding effects. 157

6. All our participants are alive at the time of sample collection, which eliminates 158

another potential confounder, but other potential confounders still remain, see 159

Limitations. 160

The dataset is deposited to Array Express with accession number E-MTAB-7983. 161
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Affymetrix GeneChip™ Human Exon 1.0 ST microarray 162

The microarray chip used was the Affymetrix GeneChip™ Human Exon 1.0 ST 163

microarray, which contains over 5 million probes, i.e. short cDNA sequences, which 164

target transcribed regions with high specificity. Each probe in the HuEx chip contains 165

precisely 25 nucleotides. Consequently, transcribed regions of interest, which are shorter 166

than 25 nucleotides, for example some of the short exons, are not targeted. This is an 167

important limitation in the context of DM1, as some AS events previously described in 168

DM1, such as AS of exon 5 in cardiac troponin T (TNNT2) [20] cannot be detected. 169

Each continuous section of DNA can be targeted by a collection of up to four probes, 170

referred to as probeset. DNA sections targeted by the chip include known and 171

suspected coding exons in known and suspected genes, as well as non-coding genomic 172

features, including 5’ and 3’ UTRs, and various other types of transcribed or 173

hypothetically transcribed DNA (miRNA, rRNA, pseudo-genes, etc.). All probes 174

targeting such a region belong to a single probeset. Probesets are further grouped into 175

transcription clusters, which correspond to the entire genes. 176

Data preparation and analysis 177

We designed and built a pipeline, programmed in Python, which has the following data 178

preparation capabilities: Reading raw Affymetrix CEL v4 files (peer reviewed and 179

merged into Biopython [21,22]); quantile normalisation and log2 transformation of 180

intensity data; strict annotation of Affymetrix probes using GENECODE v26 lift 37 181

through selecting probes corresponding to annotated GENECODE transcripts of type 182

“protein coding”, annotated genes of type “protein coding” and exons of type “CDS” or 183

“UTR”. Appendix S1 Appendix gives full source code, user manual and additional 184

explanation of each step of this pipeline. 185

The pipeline’s final output are two directories: “experiment muscle” and 186

“experiment blood”, each containing 19,826 files, whose filenames correspond to HGNC 187

gene names. The following is a two-line excerpt from one of such files, 188

“experiment blood/TNNI1”. Data for several patients has been removed to enhance 189

clarity: 190

191

gene name p robe s e t i d seq5to3p lus chrom strand 192
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↪→ g en e c od e l e f t g enecode r i gh t x y 193

↪→ pat i ent 111747589 pat i ent 117440822 . . . 194

↪→ pat i ent 896445336 195

TNNI1 2450836 TGGCCTGTGCCTCGCCGTAGACTGC chr1 − 196

↪→ 201390827 201390851 195 793 197

↪→ 6.69115092487 6.44442470429 . . . 6 .86989190909 198
199

In each file, the first row is a header containing tab-separated names of data or 200

metadata types contained in a given column. Below we give a brief description of some 201

of the data or metadata types: 202

• seq5to3 – unlike Affymetrix we always report the sequence in 5’ to 3’ direction, 203

and always with regards to the plus strand, even if the coding sequence is 204

contained on the minus strand. 205

• genecode left, genecode right – these are genomic coordinates as reported by a 206

reference assembly (GRCh37). Following convention, first coordinate is 1-based, 207

and coordinates are left-, right- inclusive. 208

• x, y give the x and the y coordinates of probes on the chip. 209

• patient * – these are quantile normalised and log2-transformed intensities at the 210

given probe for the given study participant. 211

Each subsequent row contains data and metadata for a single probe. 212

We develop a predictive model, which closely follows that of Lee et al. [17]. We work 213

with pre-selected sets of genes that act as candidate biomarkers. For this purpose, we 214

look at the following collections of genes: 215

1. A previously identified selection of genes, listed in S2 Appendix and identified by 216

Nakamori et al. [8] as genes whose AS is disrupted in DM1. We codename these 217

genes “DM1-AS”. 218

2. A previously identified selection of genes, listed in S3 Appendix and identified by 219

Batra et al. [9] as genes whose AP is disrupted in DM1. We codename these genes 220

“DM1-APA”. The overlap of this list of genes with DM1-AS is a list of two genes: 221

LDB3, MBNL2. 222
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3. A single gene (which also belongs to DM1-APA), Troponin I1, slow skeletal type, 223

TNNI1. We codename this single-gene collection “TNNI1”. The gene was chosen 224

post-hoc. 225

4. All human genes, as identified in data preparation step. We codename this 226

collection “ALL”. 227

Then we execute eight separate statistical analyses (four muscle and four blood 228

analyses), based on these groups of genes. Each analysis was carried out as follows: 229

1. We randomly split our data into two sets, the training and the testing set, each 230

containing 70% and 30% of participants respectively. We restricted our analysis 231

only to genes, which belonged to a particular group of genes being studied 232

(DM1-APA, DM1-AS, TNNI1, ALL) 233

2. Following Lee et al., we select (up to) 500 probes whose intensities across all 234

patients in the training set are most correlated with their corresponding MAL. We 235

work at the level of individual probes, which allows us to circumvent issues around 236

GC-correction and probeset aggregation. Probe data are fed directly into the 237

model. 238

3. Again using the training set, we trained a 2-dimensional Partial Least Squares 239

Regression (PLSR) model on selected probes as features and corresponding MAL 240

as the model output, which we later used to predict MAL in the testing set, again 241

following Lee et al.. 242

4. We repeated steps 1 to 3 10,000 times. 243

5. We report coefficient of determination (R2) of the predicted MAL with the 244

measured MAL across all folds obtained in step 4. 245

6. We simulated a distribution of R2 of a random predictor, and obtained a p-value 246

for the prediction of R2 in step 5. 247

To confirm that any observed signal is not a by-product or an artifact of the 248

mathematical model used, or its implementation, we carried out the same kind of 249

analysis using three other mathematical models: 250
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1. lasso 251

2. random forest regression 252

3. linear regression 253

To relate our findings to a potential clinical setting, we present power analysis 254

relating various potential treatment effect sizes to their detectability in future clinical 255

trials. The power analysis was performed as follows: 256

1. We simulated the distribution of MAL prediction error for the best predictor. 257

2. We simulated the distribution of MAL post-treatment, with the assumption that 258

MAL would be reduced by 10%, 20% or 50%, which correspond to, respectively, 259

small, medium and large treatment effect size. 260

3. We established the rejection region for a null hypothesis of “no treatment effect” 261

at α = 0.05. 262

4. We simulated the power, (1 - β), for studies involving 10 to 200 participants, in 263

increments of 10 participants. 264

Results & Discussion 265

Performance of PLSR-based MAL predictors in muscle and 266

blood 267

Using our predictive model based on PLSR and a selection of candidate biomarkers: 268

DM1-AS; DM1-APA; TNNI1 and ALL, we can report the following capabilities to 269

predict MAL from mRNA profiles. 270

In muscle we can detect strong signal for some of the selected candidate biomarker 271

sets, with the two strongest predictors, DM1-AS and TNNI1, giving us R2 and p-values 272

equal to 0.289, 0.320 and 0.00434, 0.00249 respectively. All values of R2 and p-values 273

are given in Table 1. In particular, DM1-AS looks promising as a set of biomarkers, 274

giving weight to the findings of Nakamori et al. [8]. 275

Based purely on numerical analysis of obtained results, one could declare TNNI1 as 276

the best predictor of MAL in muscle, but care must be taken, as we chose this 277
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particular gene post-hoc and its true predictive value might have been influenced by 278

issues related to multiple hypotheses testing. An additional validation study would have 279

to be performed before drawing any conclusions on the performance of TNNI1 as a DM1 280

biomarker. 281

A safer belief can be assigned to the predictive value of “DM1-AS” and “DM1-APA” 282

as both sets of genes have been previously implicated in DM1 [9], and we can detect 283

strong signal from both sets of genes, with models based on these genes capturing 284

respectively 30% and 15% of MAL variance in our study group. 285

One has to note an interesting observation relating to the “curse of dimensionality” 286

and the performance of our PLSR-based model. Although TNNI1 is a subset of 287

DM1-APA, TNNI1 on its own is a much better predictor than DM1-APA, as increasing 288

the number of genes (features) increases the dimensionality of our data and worsens the 289

prediction delivered by the PLSR model. 290

A single run of 10,000 repetitions of a simulation can be visualised by plotting the 291

predicted value of MAL against the actual, adding a small amount of random noise on 292

the x-axis. For DM1-AS in muscle, such visualisation is given in Fig 1. 293

In blood we cannot detect significant signal for most candidate biomarkers, with R2
294

not significantly respectively greater and lower than would be expected by chance, 295

except in one case, DM1-APA, whose R2 and p-value are 0.15 and 0.0564 respectively. 296

Full R2 and (uncorrected) p-values are given in Table 2. Poor performance of blood 297

data acting as a predictor of repeat length is perhaps not unexpected, as all candidate 298

biomarkers evaluated in this study are based on prior analyses of muscle data, and 299

might not be expressed, or only lowly expressed in blood, or that expression profiles 300

might be very different from expression profiles in muscle. Only DM1-APA can 301

potentially carry some predictive value, however, not as strongly as in muscle. 302

Table 1. 10000 repetitions of a simulation predicting MAL from muscle cross-validated with a testing set
separate from the training set.

DM1-AS DM1-APA TNNI1 ALL
R2 0.289 0.150 0.320 0.084
p-value 0.00434 0.0470 0.00249 0.143
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Table 2. 10000 repetitions of a simulation predicting MAL from blood cross-validated with a testing set
separate from the training set.

DM1-AS DM1-APA TNNI1 ALL
R2 0.0465 0.106 0.0479 0.0465
p-value 0.213 0.0564 0.207 0.213

Fig 1. DM1-AS muscle MAL prediction. 10,000 repetitions of cross-validated
MAL prediction from genes labeled DM1-AS from muscle for 18 training samples.

Other models 303

As described in Data preparation and analysis, we have used a model based on feature 304

selection from sets of candidate mRNA biomarkers to predict the MAL of DM1 CTG 305

repeat using PLSR. As reported in Performance of PLSR-based MAL predictors in 306

muscle and blood, the set of genes DM1-AS is the strongest predictor if we limit our 307

consideration to predictors chosen a-priori (i.e. excluding TNNI1). 308

A potential source of criticism could be that the effect observed is a technical effect 309

due to the choice or the implementation of the mathematical model used (PLSR). We 310
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thus re-ran the analysis as described before in Data preparation and analysis using three 311

mathematically distinct models: lasso, random forest regression and linear regression. 312

We report the performance of these models in Table 3: 313

Table 3. 10000 repetitions of a simulation predicting MAL from muscle, using DM1-AS as a predicting set
and a selection of mathematical models

linear regression PLSR lasso random forest
R2 0.291 0.289 0.286 0.149
p-value 0.00418 0.00434 0.00454 0.0478

It should be noted that all models pick up statistically significant signal with both 314

PLSR, lasso and linear regression performing almost equally well, and random forest 315

performing about two times poorer (but still significantly better than a random 316

predictor), which allows us to conclude that the effect observed is unlikely to be a 317

modelling artifact. 318

Applying the model in a clinical setting 319

Let us now consider the potential application of this predictive model in the context of 320

evaluating efficacy of a DM1 treatment. DM1 patients would undergo muscle biopsy 321

before starting the treatment, and another biopsy after the treatment had been started 322

and necessary biological changes to reverse DM1 symptoms had occurred. Both biopsies 323

would be mRNA profiled, and the resulting profiles would be used to perform MAL 324

predictions. We expect that pre-treatment prediction would correspond to the actual 325

MAL of any given participant. We expect that post-treatment prediction of MAL would 326

correspond to an “effective MAL”, which we would expect to be lower than the “actual 327

MAL” in affected participants, as long as the treatment is effective and DM1-induced 328

disruption of AS or APA, as measured by DM1-AS or DM1-APA biomarkers is 329

measurably reversed in obtained mRNA profiles. Pre-treatment and post-treatment 330

predictions could be combined into a statistic that, given enough patients, would allow 331

us to quantify the efficacy of the treatment at the molecular level. We discuss this idea 332

further in the chapter Power Analysis. 333

In some respects, such a study could allow for better performance of the model, 334

conceptually, it should be easier to capture DM1 specific expression changes in a setting 335

where noise due to varied genetic backgrounds of participants can be reduced by looking 336
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at pairs of measurements of a single participant. There are a number of details in such 337

study design, which need to be discussed by the community and decided upon, among 338

others: 339

1. The mathematical basis of the model used. We propose a PLSR-based model, and 340

demonstrate that models based on lasso and linear regression perform similarly, 341

but other models can also be considered, in particular the work of Azencott et 342

al. [16] in the context of L1-penalised regression (lasso) looks promising as it 343

allows to incorporate prior biological knowledge, in the form of protein-protein 344

interaction networks or other types of graph ontology, into the model, through the 345

introduction of additional penalties based on discrete Laplacian, or apply 346

alternative modelling strategies based on network flow, thereby increasing its 347

predictive power. 348

2. The training/testing pre-treatment/post-treatment data split and which genes 349

should be included in the model input. 350

3. The size of the study. Predictions in our study are based on 24 participants for 351

blood and 18 for muscle. How much would the models’ predictive power improve 352

with a larger dataset? 353

4. Establishing the clinically relevant effect size. Pandey et al. [7] report various 354

efficacies of a candidate DM1 treatment ISIS 486718 to lower toxic DMPK 355

concentrations in wild-type and transgenic animal models and a range of tissues, 356

starting with the efficacy of about 50% in cardiac muscle, through about 70% in 357

skeletal muscle, up to about 90% in liver and skeletal muscle. However, measuring 358

DMPK levels may not necessarily directly correspond to the efficacy of treatment 359

to reverse symptoms, as the relationship between the quantity of the toxic 360

transcript, splicing disruption and eventual clinical symptoms may be complex 361

and non-linear. Conservatively, we need to expect the rate of symptom reduction 362

to be lower than the reported 50% to 90%. A difficult open question is what 363

minimum treatment efficacy we are willing to accept as clinically significant? 364
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An informal setting to explore the dataset 365

As this work is the first presentation of the DMBDI dataset, we recognise that further 366

work might build on the dataset in ways which differ from our approach and cannot be 367

predicted at the current stage of our understanding of DM1-related AS/APA changes. 368

To facilitate this, we would like to propose a tool which on one hand allows for informal, 369

interactive and exploratory analysis of the dataset and on the other allows the flexibility 370

of building a custom analysis – just like the one presented here. 371

The tool is available online [23], and is implemented as a jupyter notebook with 372

custom visualisation of filtered and normalised DMBDI data. The flexibility of the tool 373

comes at a cost. In order to support arbitrary bioinformatics analyses we have to 374

support arbitrary code execution, which in turn requires protecting the tool with a 375

password. We will share the password with any bona fide researcher upon request. A 376

walk-through video showcasing the capabilities of the tool is available on youtube [24]. 377

The major capability of the tool is the ability to produce “railway plots”. Railway 378

plots introduce the idea of a Manhattan plot from genomics community into 379

transcriptomics. Each point represents statistical significance of the change of 380

expression signal at a single probe across DM1 spectrum, as supported by experimental 381

data. Points which belong to the same probeset, are identically coloured. See Figure 2 382

for an example railway plot. 383

In a railway plot the y-axis represents negative logs of p-values of a two-tailed tests 384

against a null hypothesis of no expression change at a single probe across the DM1 385

spectrum. Figure 3 visualises one of such linear regressions for a probe belonging to 386

probeset 245089. The logs of p-values are signed in accordance with the direction of the 387

slope of the regression, with negative values indicating splice-out and positive values 388

indicating a splice-in type of event. 389

For each of splice-out and splice-in directions in the plot, we show thresholds of 390

statistical significance. The first pair of thresholds (faded red and blue respectively) 391

correspond to statistical significance threshold of 0.05. The second pair of thresholds 392

correspond to 0.05/n, where n is the total number of probes in the plot (saturated red 393

and blue respectively). This is analogous to the way Manhattan plots are often 394

presented for GWAS. 395
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Fig 2. TNNI1 Railway plot shows an APA event at probeset 245089.

Turning our attention from statistics to biology, we can ask about a likely biological 396

interpretation of an observed splice-out event detected at probeset 2450829. Using 397

Ensembl [25], see figure 4), we can identify transcript TNNI1-203, which is the only 398

GENECODE transcript featuring a probe selection region targeted by the probeset 399

2450829, in form of an alternative 3’ UTR. This allows us to suggest that TNNI1-203 is 400

downregulated in participants with longer DM1 repeats. GENECODE annotation 401

further informs us that TNNI1-203 is an APPRIS P2 transcript (i.e. a candidate 402

principal variant, a designation which comes from high level of support for functionality 403

of the isoform), and is not a CDS incomplete transcript, which allows us to strengthen 404

our belief in the fact that this is a biologically functional/ protein-coding transcript, 405

which can play a role in the DM1-related AS/APA changes. 406

Finally, and returning back to statistics, we can ask whether high significance of the 407

splice-out event is a result of multiplicity effect, given that the gene was chosen post-hoc 408

from a pool of candidate biomarker genes as determined by Batra et al. and Nakamori 409

et al. [8, 9]. A standard approach here would be to combine the data from the discovery 410

dataset with the data from the replication dataset, compute a more powerful test, and 411

apply multiplicity correction. This is not possible in this case as the discovery dataset, 412

underlying both studies is a case-control dataset, whereas our dataset captures DM1 413
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Fig 3. Linear regression of expression intensity at a single probe belonging to probeset
245089 against DM1 repeat length.

Fig 4. Visualisation of genomic coordinates of TNNI1 transcripts using Ensembl.
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status as a continuous variable via DM1 CTG repeat length measurement. An 414

alternative is to combine both p-values using, e.g. Fisher’s method [26], which shows 415

that the combined p-value against the null hypothesis of no change of signal intensity at 416

the probeset 2450829 is 4.19× 10−10. Computing the Bonferroni correction with 417

multiplicity factor of 1.4 million, equal to the total number of HuEx probesets [27], 418

shows that the combined p-value based on the discovery dataset and our dataset is 419

5.88× 10−4. This is a strong confirmation of the significant correlation of DM1 status 420

with TNNI1-203 downregulation. Details of the computation are available in S1 421

Appendix. 422

Power Analysis 423

Our final contribution, which is of critical significance in the context of any future 424

clinical trial is a power analysis of the current model. We report power for a selection of 425

possible treatment effect sizes (10%, 20% and 50% reduction in effective MAL on a 426

per-patient basis) and a selection of study participants. Our power is defined as (1− β), 427

where β is a supremum of the probability of committing a type II error, with the 428

supremum of the probability of committing type I error (α) kept at a constant 0.05. 429

Table 4 reports power, (1− β), to detect treatment effect of a two-tailed test with 430

p-value cut-off of 0.05 (0.025 per tail), with the statistic simulated from MAL 431

predictions of our model, for varying treatment effect and study sizes. We try to keep 432

our cohort sizes realistic for a rare disease, i.e. we allow for patient numbers to range 433

from 10 to 200. 434

Ideally we would like to be able to achieve power of more than 95%, even with small 435

treatment effect sizes and a small number of patients, but our model, trained on 18 436

participants, doesn’t allow for such level of control over type II error for all but medium 437

or large treatment effects (more than 20% and 50% respectively) and large (more than 438

140 participants) or medium-sized (more than 30 participants) clinical trials respectively. 439

However, our results combined with expected improvements of the model 440

performance due to larger training samples, and better gene selections, such levels might 441

be reached for medium treatment effect size (20% reduction in effective MAL) and large 442

clinical sizes. 443

August 7, 2019 19/28

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/728881doi: bioRxiv preprint 

https://doi.org/10.1101/728881
http://creativecommons.org/licenses/by-nd/4.0/


Table 4. Power analysis. Entries in the table report power to detect treatment effect based on the size of a
cohort (from 10 – 200 participants) and the treatment effect of the study to reverse splicing changes (10, 20
and 50%). Entries denoting power greater than 0.95% are presented in boldface.

study size (participants) treatment effect 10% treatment effect 20% treatment effect 50%
10 0.100 0.209 0.635
20 0.131 0.322 0.855
30 0.162 0.423 0.947
40 0.193 0.517 0.981
50 0.226 0.596 0.994
60 0.259 0.671 0.998
70 0.283 0.723 0.999
80 0.311 0.772 0.9998
90 0.339 0.816 0.99998
100 0.370 0.851 0.99998
110 0.396 0.881 0.99999
120 0.418 0.901 1.0
130 0.448 0.924 1.0
140 0.467 0.937 1.0
150 0.500 0.952 1.0
160 0.523 0.962 1.0
170 0.545 0.969 1.0
180 0.568 0.977 1.0
190 0.589 0.981 1.0
200 0.613 0.986 1.0

Limitations 444

A source of potential criticism is that muscles of DM1 patients have physiological 445

differences (atrophy, increased fat content), especially when disease is severe. Quite 446

possibly observed changes in AS/APA are partly attributable to these physiological 447

differences in DM1 as opposed to purely biomolecular differences. The structure of this 448

counter-argument could be as follows: 449

Muscles of DM1 patients have higher fat content than affected controls. Muscle 450

samples collected from DM1 patients have higher ratio of intermuscular adipocytes to 451

myocytes. Adipocytes have different AS/APA profiles than myocytes. Observed 452

AS/APA changes in the DM1 spectrum are mostly derived from differences in 453

adipocyte/myocyte profile. As a result, mRNA study of muscle tissue is no more 454

effective (and possibly less effective) than a blinded study based on pathophysiological 455

inspection of the tissue. 456

This argument can, of course, be extended to other physiological changes than 457

increased fat content, and other molecular events than AS/APA. Bachinski et al. [28], 458
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for example, propose that splicing changes could be a secondary result of muscle 459

regeneration. 460

There are multiple ways to address these concerns: 461

1. Alternative predictive model design based on tissue culture models, where in vivo 462

limitations are reduced, with homogeneity of the cellular composition of the model 463

being a big advantage. 464

2. Investigating methods to correct for potential “physiological” covariates (e.g. fat 465

content), using purely statistical techniques to estimate covariate influence from 466

gathered data and existing prior information (e.g. mRNA profiles of adipocytes), 467

or biological methods, such as a recent effort to collect higher quality muscle 468

samples through MRI-guided biopsy [29]. 469

3. Discovering DM1 biomarkers in blood, as opposed to muscle. Blood, being much 470

more homogeneous tissue than muscle is expected to be less prone to the existence 471

of confounding variables. Additionally, necessity of muscle sampling was 472

highlighted to be a “main drawback” [8]. However, achieving this would require at 473

least two separate, successful studies, one to identify biomarkers and one to 474

evaluate them. Even if blood biomarkers were identified, their clinical utility 475

might be limited, as a reduction of an effective MAL in blood would not be as 476

direct evidence of treatment effectiveness as such reduction in muscle. 477

4. Introduction of positive controls in experimental designs. Biological samples in 478

the positive control group would be composed of tissue collected from individuals 479

with other muscular dystrophies (e.g. Becker muscular dystrophy, Duchenne 480

muscular dystrophy, facioscapulohumeral muscular dystrophy or tibial muscular 481

dystrophy). These diseases feature dystrophy and increased muscle regeneration 482

program as part of their phenotype, but without disruption of RNA-binding 483

splicing factors. Absence of DM1-specific splicing changes in these positive 484

controls would allow to rule out alternative explanations of mis-splicing 485

mechanisms (e.g. muscle regenration) and strengthen our belief in currently 486

accepted models of molecular pathomechanism of DM1. 487

5. Confining the analysis to transcripts which are exclusively or predominantly 488
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expressed in skeletal muscle, not fat. 489

Conclusion 490

In this study we design and build a model based on PLSR, which can explain as much 491

as 28.9% of the variance in DM1 CTG trinucleotide expansion from mRNA splicing 492

data. Such explainability is only obtained when the model is trained on expression data 493

from genes previously identified by Nakamori et al. [8] as having disrupted AS on data 494

obtained from muscle samples. We show how such model could be used in a clinical 495

setting in the context of emerging DM1 treatments, and report power analysis to detect 496

treatment effect depending on size of the treatment effect, type 1 error (α) and 497

potential size of the clinical trial. 498

Supporting information 499

S1 Appendix. Code & how to run it. All of the computer programs written for 500

this study can be found on github. 501

The following instructions should allow one to independently verify results of our 502

simulations (also available in the repository). 503

We advise that all of this code be run on a machine with 64 GB of RAM or more, 504

given that some parts of the pipeline can use up in excess of 32 GB of RAM. We were 505

able to successfully execute the entire analysis using an AWS “m5.4xlarge” EC2 506

instance. We found the default amount of storage, 8 GB, to be insufficient to store both 507

the primary data and intermediate computations. We increased the amount of storage 508

to 100 GB. We remove all networking restrictions on the instance, to allow for remote 509

access of jupyter notebooks, which contain our pipeline. 510

We had to apply the following shell commands to set up the machine: 511

1. sudo apt-get update 512

2. sudo apt-get upgrade 513

3. sudo apt-get install python3-pip 514

4. git clone https://github.com/picrin/clinical applications.git 515
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5. pip3 install jupyter 516

All data and metadata used in this study are available in publicly accessible s3 517

bucket, with the following paths: “dm1-biomarkers/CEL”, 518

“dm1-biomarkers/annotations” respectively. These datasets need to be copied to the root 519

of the “clinical applications” repository as directories “CEL” and “annotations” 520

respectively. 521

All required third-party dependencies can be installed from the provided 522

“requirements.txt” 523

Finally, “jupyter notebook −−ip 0.0.0.0 −−port 8888” can be issued to start the 524

notebook server, which we can access remotely, using a DNS entry allocated for our 525

EC2 instance and provided that communications on our chosen port is configured to be 526

accessible through the AWS firewall. 527

We now run notebooks in the following order: 528

1. “01 parse chip data.ipynb”. This part of the pipeline is responsible for 529

determining probeset ids, sequences of probes and probe coordinates on the chip. 530

It produces an intermediate file with data adhering to the following schema: 531

“probeset, x, y, sequence”. 532

2. “02 parse csv annotations.ipynb”. Here, we determine “genomic” metadata, i.e. 533

chromosomomal coordinates and strandedness. 534

3. “03 unpack CEL files.ipynb”. Here we use our own contribution to Biopython to 535

parse the binary CEL v4 file format, which is what all our microarray data uses. 536

4. “04 quantile normalise.ipynb”. Here we perform quantile normalisation of our 537

microarray data. 538

5. “05 reannotate probeset level.ipynb”. Here we verify Affymetrix’s annotation. We 539

determine that over 1% probes are incorrectly annotated. We discard these 540

probes. We limit our attention to probes, which belong to chromosomes 541

chr1-chr22, X, Y and the mitochondrial DNA (M). 542

6. “06 intervaltrees.ipynb”. Here we carry out an exclusive filtering, choosing probes, 543

which are identified by “gencode.v26lift37.annotation.gtf” as having 544
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“transcript type” equal to “protein coding”, or “gene type” equal to 545

“protein coding”, as well as the exon type equal to “CDS” (Coding sequence) or 546

“UTR” (5’ or 3’ untranslated regions). 547

7. “07 merge annotation experiment.ipynb”. Here we produce a single file per 548

human gene, as identified in GENCODE v26, with data from all participants for 549

all probes for that gene. 550

8. “08 predictions.ipynb”. Here we run our PLSR model to predict MAL from the 551

microarray data. 552

9. “10 power analysis.ipynb”. Here we run power analysis presented in Results & 553

Discussion. 554

10. “13 combine p values.ipynb”. Here we combine p-values for a probeset of interest 555

using a previously published p-value and one obtained in this study. 556

S2 Appendix. DM1-AS 557

ABLIM2, ALPK3, ANK2, ARFGAP2, ATP2A1, ATP2A2, BIN1, CACNA1S, 558

CAMK2B, CAPN3, CAPZB, CLCN1, COPZ2, DMD, DTNA, FHOD1, GFPT1, 559

IMPDH2, INSR, KIF13A, LDB3, MBNL1, MBNL2, MLF1, NFIX, NRAP, OPA1, 560

PDLIM3, PHKA1, RYR1, SOS1, TBC1D15, TTN, TXNL4A, UBE2D3, USP25, 561

VEGFA, VPS39 562

S3 Appendix. DM1-APA 563

ABCA1, AGL, ALG3, AMHR2, AP1G1, ARHGEF7, ASPH, ATP5E, BRSK2, 564

BRWD1, CACNA1G, CACNB1, CDC42, CEBPA, CELF1, CHRNA1, CIRBP, 565

CLDND1, COPS4, DAPK2, DES, DNAJB6, DST, DVL3, EZR, FASTK, GPS1, 566

HDAC11, IDH3A, ILF3, KCNK7, KDELR1, KIF1B, KRBA1, LAMP2, LDB3, LMNA, 567

MBNL2, MDN1, MEF2B, MEF2C, MEF2D, MGP, MORC3, MTCH1, MYH6, 568

NDUFB10, NR2F1, NUP43, OSBPL1A, PCBD2, PCM1, PCMT1, PDLIM2, PDLIM5, 569

PEBP4, PFKFB2, PIK3C2B, PLIN2, RAB24, RIN1, RTN2, SAMD4A, SETD3, 570

SLC25A36, SMIM3, SNX1, SPATS2L, SPEG, SPTB, TBL2, TGFBI, TJP2, 571

TMEM38B, TNNI1, TPM1, TPM2, TPM3, TTYH3, U2SURP 572
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