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17 Abstract

18 In patients with drug resistant focal epilepsy, targeted weak stimulation of the affected brain regions 
19 has been proposed as an alternative to surgery. However, the effectiveness of stimulation as a 
20 treatment presents great variation from patient to patient. In this study, brain activity is simulated for 
21 a period of one day using a network of Wilson-Cowan oscillators coupled according to diffusion 
22 imaging based structural connectivity. We use this computational model to examine the potential long-
23 term effects of stimulation on brain connectivity. Our findings indicate that the overall simulated effect 
24 of stimulation is heavily dependent on the excitability of the stimulated regions. Additionally, 
25 stimulation seems to lead to long-term effects in the connectivity of secondary (non-stimulated) 
26 regions in epileptic patients. These effects are correlated with a worse surgery outcome in some 
27 patients, which suggests that long-term simulations could be used as a tool to determine suitability for 
28 surgery/stimulation.

29

30 Introduction

31 Pharmaceutical drugs that can pass through the blood-brain-barrier lead to changes in the whole 
32 brain, which can result in severe side effects. Moreover, for many patients these traditional 
33 approaches do not work well in treating the symptoms of brain network disorders. Instead, targeted 
34 approaches that only directly affect a small number of brain regions have been proposed. These 
35 techniques range from localised opening of the blood-brain-barrier through focused ultrasound, to 
36 invasive and non-invasive brain stimulation, and, when no alternative options are suitable, to surgical 
37 removal of brain tissue. The problem then is to choose the right set of target regions for individual 
38 patients to maximize treatment effects and to minimize side effects. 

39 Parkinson’s disease and epilepsy are diseases where targeted approaches are already routinely used, 
40 when drug treatment is insufficient. For focal epilepsy, where medication is ineffective, resective 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 7, 2019. ; https://doi.org/10.1101/728576doi: bioRxiv preprint 

https://doi.org/10.1101/728576
http://creativecommons.org/licenses/by/4.0/


2

41 surgery of the affected regions is often used as a treatment. However post-operative seizure remission 
42 is around 50-70% (1, 2). The reoccurrence of seizures after surgery could be due to incomplete removal 
43 of the required target regions (3) or due to surgery causing remaining brain regions to become new 
44 starting points for seizures. For the latter option, it will be crucial to develop computer models of long-
45 term effects of interventions. 

46 The same challenge occurs for brain stimulation in epilepsy patients where no tissue is resected but 
47 where the stimulation of a target region, with reduction of epileptogenic activity in that region, could 
48 potentially cause other non-stimulated regions to become starting points for seizures. Targeted brain 
49 stimulation in epilepsy could include deep brain stimulation (DBS), optogenetic stimulation (4) 
50 (www.cando.ac.uk), and non-invasive techniques (transcranial current stimulation, TCS; transcranial 
51 magnetic stimulation, TMS). The effectiveness of those methods varies (5)  and when it comes to  TCS–
52 one of the non-invasive methods–there are of contradictory  results concerning its efficacy for treating 
53 epilepsy (6-11). Across several studies of TCS, 67% of studies show a decrease in seizures after 
54 stimulation (6). Some of these studies covered in that article examined the effects of stimulation only 
55 for a short period after the end of the stimulation session (hours) without a subsequent follow up. 
56 Thus, it is possible that the long-term efficacy of TCS is not as high as 67%. 

57 One of the main concerns with TCS is whether the effects of stimulation would remain after the 
58 stimulation has ended (12). Some studies have shown that the positive physiological effects of 
59 stimulation can outlast the stimulation session for a long period while others have shown diminishing 
60 effects after the stimulation session has ended. Specifically (13-15) have observed positive post-
61 stimulation effects lasting for a period of 2, and more than 4 months respectively. On the other hand 
62 (16) observed anti-seizure effects for a period of 48 hours after stimulation but also a clinically 
63 significant reduction of those effects during a subsequent period of 4 weeks. To use computational 
64 models to assess the effect of brain stimulation, it is therefore necessary to observe long-term 
65 changes.

66 At the moment, computational studies have only examined the short-term effects of TCS, i.e. during 
67 stimulation (17-21).  Two computational studies have used neural mass models (22, 23) to examine 
68 the immediate effects of stimulation on the activity of the stimulated areas. Notably, one study used 
69 modified Wilson-Cowan model to study effects a few minutes after anodal or cathodal stimulation 
70 (23). The aforementioned studies did not account for plasticity in their models, and so did not 
71 investigate the effects of stimulation on brain connectivity. The only computational study to our 
72 knowledge that does examine the effects of neurostimulation on brain connectivity (24) focuses on 
73 DBS instead of TCS and examines Parkinson’s disease instead of epilepsy with the aim of identifying 
74 optimal stimulation locations.

75 In this study, we will observe long-term changes after initial stimulation in terms of both structural 
76 connectivity changes and changes in local and global network dynamics. We focus on connectivity 
77 changes as only such changes at the structural level can explain the behaviour of networks a long time 
78 after the initial stimulation and thus could explain the final outcomes of treatment (25). We find that 
79 (1) simulated effects of brain stimulation differ between epilepsy patients and healthy subjects, (2) 
80 stimulation leads to distinct long-term connectivity changes in non-stimulated regions, and that (3) 
81 these indirect effects after stimulation are more informative for outcome predictions (using surgery 
82 outcome as a basis for prediction) than direct effects that are observed during the stimulation.  

83
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84 Results

85 For the purposes of this study, we can group our simulation subjects in three categories, according 
86 to the global connectivity data and model used:

87 1. Healthy subjects: The global connectivity data were derived from healthy individuals and the 
88 simulation was performed using a model where no epileptogenic (particularly excitable) 
89 regions are present.
90
91 2. Epileptic subjects: The global connectivity data were derived from individuals suffering from 
92 left temporal lobe epilepsy and the simulation was performed using a model where the 
93 stimulated regions were modelled as epileptogenic (highly excitable)
94
95 3. Control subjects: The global connectivity data were derived from individuals suffering from 

96 left temporal lobe epilepsy but the simulation was performed using the “healthy” model, 

97 where the stimulated regions are not distinct in terms of excitability from the other regions.

98

99 Our results are organized in two sections. Firstly, we simulate the effect of stimulation on the overall 
100 connectivity of the brain for each group of subjects. Secondly, we simulate the changes stimulation 
101 seems to induce in each brain region with emphasis at the stimulated regions which are most often 
102 associated with seizure generation (amygdala, hippocampus and parahippocampal gyrus). 

103 Statistical results will be presented for the rest of the paper as: X  Y, where X is the mean and Y is ±
104 the standard deviation of the referenced dataset. All the p-values were calculated using a two-tailed 
105 t-test.

106 Patients show a larger global connectivity change at the end of the stimulation

107 The effect of stimulation on the connections between nodes in our model follows a similar pattern in 
108 all subjects. Specifically, during the period of stimulation, the global effect measure  increases 𝐷(𝑡)
109 steadily (Figure 1), reaching a local maximum at the end of stimulation ( . A first difference 𝑡 = 2000 𝑠)
110 between the three groups can be observed at this point since the value of  at the end of 𝐷(𝑡)
111 stimulation is on average significantly (p-value < 0.0001)  greater for the epileptic subjects (
112 ) than the healthy subjects  .and the control subjects 2.9730 % ± 0.7301 (1.9671% ±  0.3261)
113  The similarity of the healthy and control groups in contrast to the epileptic (1.7609% ±  0.5290).
114 group suggests that the increased excitability of the stimulated regions and not the global connectivity 
115 is the main driver of the changes of the global effect measure. Indeed the global connectivity on its 
116 own seems to make the healthy subjects more excitable, since the values of  were slightly higher 𝐷(𝑡)
117 for the healthy than the control group (although the difference was not statistically significant).

118 After the end of stimulation, the global effect keeps fluctuating for the remainder of the 𝐷(𝑡) 
119 simulation with a clear increasing trend in the majority of subjects. The rate of this increase varies 
120 greatly from subjects to subject and it was calculated as the rate , where     𝑟 = 𝐷(𝑡0) 𝐷(𝑡1) 𝑡0 = 2000𝑠
121 is the end of the stimulation session and  the end of the simulation. For all subjects the value 𝑡1 = 24ℎ 
122  varies greatly ( and we can also observe a small difference (statistically 𝑑 0.5846% ± 0.2751) 
123 insignificant) between the values of healthy subjects (  , the similar values of 0.5358% ± 0.2128)
124 control subjects (  and the slightly greater values of epileptic subjects (0.63280.5372% ± 0.1609)
125  0.2533) which is not statistically significant. Thus, the differences between the groups are % ±  
126 attributable to different effect of stimulation and not the post-stimulation change in connectivity. 
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127 Finally, the correlation between the development of the global effect measure of the control subjects  
128 and the equivalent epileptic subjects (using the same global connectivity data), is significantly (p-value 
129 = 0.0476) higher (  than the correlation between random pairs of control and 0.7747 ± 0.1102)
130 epileptic subjects ( . This, suggests that although the scale of change is mainly 0.6199 ± 0.3213)
131 determined by the excitability of the stimulated regions, the exact global connectivity does (at least 
132 partially) determine the development of the global effect measure.

133 Patients show a larger change in local connectivity of stimulated regions during but not after 
134 stimulation

135 In the regions that received direct stimulation (amygdala, hippocampus and parahippocampal gyrus), 
136 the effect on the connectivity was most prominent during the period of stimulation, resulting in a 
137 constant increase of the local effect measure  in all three regions.  Thus, the local measure dk(𝑡)
138 invariably reaches a global maximum at the end of the stimulation session ( . As with the 𝑡 = 2000 𝑠)
139 global connectivity, the effect on the epileptic subjects is greater than the effect on the other two 
140 groups (p-value < 0.0001 for all three regions). Specifically, the average effect for all three regions on 
141 a healthy subject is 0.4746 % ± 0.0509, in a control subject is 0.3853 % ± 0.0427 and on an epileptic 
142 subject is 1.0794% ± 0.0264.

143 A difference from global connectivity is that in this case the difference between healthy and control 
144 subjects is clearly significant (p-value < 0.0001). This suggests that the brain connectivity of epileptic 
145 patients conditions the epileptogenic regions to be less excitable than in healthy individuals. Of course, 
146 the internal connectivity that makes these regions highly excitable mask this effect as we observed 
147 from the metrics of the epileptic group. Still, this finding seems to suggest that the inter-regional 
148 connectivity of epileptic patients tends to limit the excitability of epileptogenic regions.

149 After the end of the stimulation session, the local measure changes similarly in the 𝑑𝑘(𝑡)  
150 healthy/control groups but very differently in the epileptic group.

151 In the healthy/control subjects, the end of the stimulation session is followed by a slow decrease in 
152 the value of the local effect . Around 8 hours after the end of the stimulation session, the  𝑑𝑘(𝑡)
153 difference measure stabilizes at 0.1 %, for all three regions (Figure 1), for a representative  𝑑𝑘(𝑡) ≈  
154 subject. The local effect measure   of a region is considered to be stabilized at time if the 𝑑𝑘(𝑡) 𝑡 
155 Coefficient of variation of the values of  for the 5 minutes prior to is less than 0.3. After that  𝑑𝑘(𝑡) 𝑡 
156 point, there may be some small oscillation in the value of  but the change is minimal.  𝑑𝑘(𝑡)

157

158 Figure 1 - The effect of stimulation (difference from the non-stimulated version) on the global 
159 connectivity (A) and the connectivity of the stimulated regions (B) of a healthy subject. The orange 
160 line on the x-axis notes the duration of the stimulation session.

161

162 There is much greater variation in the epileptic subjects, both between the regions of the same subject 
163 as well as between equivalent regions of different subjects (Figure 2).  Immediately after the end of 
164 the stimulation session and for a period lasting 5-6 hours, the local effect  is sharply (more than 𝑑𝑘(𝑡)
165 in the healthy/control subjects) decreasing for all 3 regions. With the exception of two subjects where 
166 there is a short increasing period in the values of the amygdala and the hippocampus,   is strictly 𝑑𝑘(𝑡)
167 decreasing during this period for all three regions of every subject. It should be noted that in almost 
168 all the epileptic subjects (91%), the connectivity of the parahippocampal gyrus is behaving differently 
169 than the connectivity of the other two regions. The local effect (measured by ) on the  𝑑𝑘(𝑡)
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170 parahippocampal gyrus is diminishing faster than the equivalent measures of the other two regions, 
171 reaching values close to zero at the end of this first period. 

172

173 Figure 2 – A - D: The local effect on the connectivity of all the left hemisphere regions of a healthy 
174 (A, C) and an epileptic subject (B, D). The greater effect of stimulation on the epileptic subject can 
175 be observed as well as the influence on secondary (non-stimulated) areas in both subjects. Also, the 
176 difference between the effects on the Parahippocampal Gyrus and the other regions can also be 
177 seen on the epileptic subject. L-R: The brain network of the epileptic patient. The red nodes indicate 
178 the stimulated regions and the green nodes indicate the secondary affected regions. The colour of 
179 the edges indicates the strength of the connection.

180

181 For the remainder of the stimulation, each subject presents different behaviour and the various 
182 stimulated regions also present differences in each subject.  In 50 % of the subjects the local effect on 
183 the parahippocampal gyrus remains at the low levels it reached in the end of the decrease period (1 – 
184 5/6 hours) with some minimal increases. In the remaining 50 % the local effect on the 
185 parahippocampal gyrus starts increasing at some point between 8-12 hours after the end of 
186 stimulation and continues to increase for the remainder of the simulation reaching values comparable 
187 with those of the other two regions. The other two regions (amygdala and hippocampus) behave 
188 almost identically in each subject. After the end of the first period of decrease the local effect 
189 measures of these areas stabilize in 50 % of the subjects and decrease very slowly in 33.5% of the 
190 subjects for the remainder of the stimulation. In the remaining 16.5 % of the subjects, the local effect 
191 measure increases for a period of 1.5 -2 hours until it reaches values much higher than those of the 
192 other subjects ( , after that point the effect on those areas begins to slowly decrease.𝑑𝑘(𝑡) ≈ 0.55)

193 At the end of the simulation, we can observe that the final values of   for the epileptic subjects dk(t)
194 (0.1412% ± 0.0882) are slightly greater than those of the healthy subjects (0.1165% ± 0.0275) which 
195 in turn are slightly greater than those of the control subjects (0.1037% ± 0.0400) in the regions that 
196 received stimulation. Still that differences are not statistically significant. This implies that the initial 
197 difference between healthy/control and epileptic subject does not lead to a long-term difference in 
198 the stimulation effects.

199 Some non-stimulated regions show local connectivity changes after the end of the stimulation

200 The effects of stimulation can be seen not only on the internal connectivity of the regions that are 
201 stimulated directly but also on the connectivity of other brain regions that receive no direct brain 
202 stimulation (Figure 2).

203 Specifically, in all groups, the local effect   of several regions starts increasing and reaches a peak 𝑑𝑘(𝑡)
204 shortly after the end of the stimulation session. It should be noted that the change in those regions 
205 does not absolutely coincide with the stimulation session, rather it happens shortly afterwards, 
206 possibly due to the time delays. Moreover, unlike the stimulated regions where a difference can be 
207 observed between healthy/control and epileptic subjects, no such difference can be observed in the 
208 values of those secondary regions.

209 After this initial increase, the local effect on all secondary regions usually decreases and seems to 
210 stabilize after a period of about 8 hours. For the majority of subjects (75%) the values that the 
211 difference measures have at this point will be very close to the values they will have at the end of the 
212 stimulation.  In most cases, the final value of the effect measures for those regions are very close to 
213 the values of the other non-stimulated regions that were not affected by the stimulation, but in some 
214 cases the final values for some of those secondary regions (especially the entorhinal cortex) are much 
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215 closer to – and in some cases higher than - the values of the stimulated regions. Interestingly, in some 
216 epileptic subjects (25 %) the local effect measure of some secondary regions began to suddenly 
217 increase hours after the stimulation session when they were apparently stabilised for some time. This 
218 may be evidence for long-term effects that cannot be predicted from the initial response to 
219 stimulation.

220 Table 1: The non-stimulated regions that were most commonly affected in all subjects. The table 
221 shows the frequency of those effects, the local effect measure at the end of the simulation, the 
222 number of regions they are connected with and how many of these neighbouring regions are 
223 stimulated, the average effect of these stimulated regions (this was represented as the sum of the 
224 weights of the connections with stimulated regions divided with the sum of all weights) and their 
225 average Euclidian distance from the stimulated regions

Region name Frequency of 
excitation (% 
of subjects)

 Mean and 
standard 
deviation of 
the final value 
of 𝑑𝑘(𝑡)

Connections 
with other 
regions / 
connections 
with 
stimulated 
regions

 Average effect 
of stimulated 
regions 

Average 
distance 
from the 
stimulated 
regions

Entorhinal 
cortex

88 0.0766 ± 
0.0360

6/3 0.5233 ± 
0.0866

20.399

Fusiform gyrus 72 0.0470 ± 
0.0223

9/2 0.2240 ± 
0.0412

26.185

Lingual gyrus 44 0.0354 ± 
0.0223

9/1 0.1283 ± 
0.0302

49.521

Temporal pole 12 0.0425 ± 
0.0244

8/1 0.1128 ± 
0.0761

35.461

Thalamus  <10 0.0714 ± 
0.0529

12/2 0.2081 ± 
0.0479

26.4036

Putamen < 10 0.0286 ± 
0.0141

13/1 0.0357 ± 
0.0101

26.1245

226

227 It should be noted that as with the stimulated regions, all of the secondary regions refer to the left 
228 hemisphere of the brain. 

229 Several factors could explain why those regions in particular were affected. Specifically, those regions 
230 were characterized by increased connectivity with the stimulated regions as well as small Euclidian 
231 distance from the stimulated regions. Additionally, the effect the connections with the stimulated 
232 regions seemed to be greater than average (increased connection weights). Finally, the Jaccard index 
233 (common neighbours) of the affected regions and the stimulated regions was higher than in regions 
234 that were not affected.  Moreover, the frequency of excitation among the six regions that were excited 
235 is correlated with the aforementioned metrics. For example, the entorhinal cortex that was affected 
236 in 88% of the subjects scores higher in all the metrics (connectivity, Jaccard index, etc) than the 
237 putamen which was excited in less than 10% of the subjects. A ranking of all the regions according to 
238 those metrics as well as the corresponding absolute values are presented in the supplementary 
239 information (Table S1).

240 Long-term changes, long after stimulation, are more informative of treatment outcomes

241 The epileptic patients from our dataset had received respective surgery of the seizure causing brain 
242 regions and the outcome of these surgeries was known for a number of them (17 subjects). The 
243 surgery carried out involved an amygdalohippocampectomy, resecting areas from the three regions 
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244 that we have stimulated in our model. The observed outcome in terms of being seizure-free after 
245 surgery might of course be different from an outcome after stimulation. Nonetheless, we wondered 
246 whether our framework, might show some link with the outcomes after surgery, potentially providing 
247 us with a tool for predicting surgical success. In particular, we explored which timeframe within our 
248 simulation would be most informative in terms of predicting outcomes.

249 We found that an increased effect in the secondary regions that was observed in the epileptic group 
250 was correlated with a worse outcome of resective surgery:  Epileptic subjects who presented a long-
251 lasting effect on secondary regions after stimulation within our model, i.e. higher values of the local 
252 effect measures compared with other non-stimulated regions at the end of the simulation, were on 
253 average less likely (3.225 ± 1.220 on the ILAE classification scale) than those who did not present such 
254 effects (2.011 ± 1.110) to benefit from surgery (p-value = 0.0484, Cohen’s d = 1.042).  

255 We next tested the outcome predictions depending on the time within the simulation (Figure 3). For 
256 this, we observe the local effect of stimulation on directly affected areas (the three targets) and 
257 indirectly affected areas. First, effects for secondary regions are more informative in terms of outcome 
258 than for the primary targeted regions. This holds throughout the observed simulation time from 1 to 
259 10 hours. Second,  

260 The effect of stimulation on the secondary regions seems to have a significantly higher correlation 
261 with the outcome of the surgery than the effect on the stimulated regions as can be seen in figure 3. 
262 Moreover, in figure 3 we can see that the effect in secondary regions is meaningful if observed hours 
263 after the initial simulation session. A greater role of secondary regions in seizure onset in the patients 
264 that show increased secondary excitation could potentially explain this correlation.   Second, later 
265 time points, more than two hours away from stimulation for secondary non-stimulated regions and 
266 more than six hours away for primary stimulated regions were more informative than earlier 
267 timepoints. This could highlight that measurements several hours after the stimulation might be more 
268 useful in clinical settings to assess the likely benefit of an intervention.

269

270

271 Figure 3 - Correlation between surgery outcome and the local effect of simulation at the stimulated 
272 (red) regions and non-stimulated (blue) regions.

273

274

275 The increased effect of stimulation on secondary regions could be used as a standard to determine 
276 how likely a patient is to benefit from implanted electrodes or surgery. Specifically, if our standard 
277 was to be applied as a biomarker test of suitability for surgery, it would be characterized by accuracy 
278 = 0.7059, specificity = 0.7778 and sensitivity = 0.6250, if we considered as good any surgery outcome 
279 with ILAE scores 1 and 2 and as bad any surgery outcome with an ILAE score of 3 or above (see suppl. 
280 Figure. S2).

281

282

283 Discussion

284 We investigated the effects of simulated cathodal TCS on the brain connectivity of healthy and 
285 epileptic subjects using a network of coupled Wilson-Cowan oscillators. Our results show that 
286 stimulation affects the simulated brain connectivity—a finding that has been confirmed by 
287 experimental studies (26) —as well as a significant difference between the effect stimulation has on 
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288 different groups of subjects. Moreover, the differences in the effects observed suggest that the brain 
289 anatomy of each patient may affect the long-term outcome of a stimulation session. Finally, we have 
290 observed that the effects of stimulation are not limited to the stimulated brain areas. In some patients 
291 the internal connectivity of a number of non-stimulated areas is affected by the stimulation of 
292 neighbouring areas and this seems to be correlated with a worse surgery outcome, a fact that may 
293 have some clinical significance.

294 Our main observation is the different behaviour of our model under the different initialisations 
295 (healthy, epileptic and control groups). In all the cases we examined, the effect of stimulation both on 
296 the internal connectivity of the stimulated regions as well as on the overall connectivity of the brain 
297 was greater on the epileptic than the healthy and control subjects which behaved similarly. This 
298 difference, combined with the observation that the effect on the non-stimulated regions (secondary 
299 regions) was similar in all groups of subjects, suggests that the increased excitability of the 
300 epileptogenic regions is responsible for the greater short-term effect of stimulation on the epileptic 
301 subjects. 

302 Moreover, the significantly higher local effect of stimulation that was initially observed in the healthy 
303 subjects compared with the control subjects, suggests that there are indeed differences in the global 
304 connectivity of healthy and epileptic individuals and additionally indicats that the global connectivity 
305 of epileptic subjects tends to counter the epileptogenic effects of local connectivity. Finally, the long-
306 term effects of stimulation on the internal connectivity were similar in all groups despite the initial 
307 differences, suggesting that the stimulation effect diminishes with different rates in each group.

308 Another finding is the great variation in the observed responses to stimulation among subjects of the 
309 same group. The extent to which the inter-regional connections change, the long-term preservation 
310 of the changes on the internal connections and the excitation of secondary regions, differed a lot from 
311 subject to subject despite the fact that the initial connectivity matrix was the only factor differentiating 
312 the model used for each subject. This fact suggests that the great variability in the effectiveness of 
313 stimulation may ultimately be caused by the differences in brain anatomy among patients. Especially 
314 given that the internal connectivity within brain areas will also differ among subjects, a fact excluded 
315 from our model as information on this was unavailable, it seems likely that the individual connectivity 
316 will be a decisive factor in determining the long-term effects of stimulation. 

317 Moreover, the effects on the secondary regions that seem to appear without any prior indication, long 
318 after the end of the stimulation session, may indicate that effects of stimulation could appear long 
319 after the end of a session in brain regions where no stimulation was applied. In our study, we observed 
320 this phenomenon in almost 25% of the epilepsy subjects within a period of 24 hours. Still, given the 
321 lack of prior indicators for this behaviour it is possible that these sudden changes in the local effect 
322 measures could appear in more subjects or in more regions if the simulations run for a longer period 
323 of time. We examined the possibility that these sudden changes in connectivity are due to 
324 computational errors in the simulation, but the fact that the regions that present this sudden 
325 secondary excitation are almost always regions that were affected immediately after stimulation 
326 (Table 1) as well as the clinical significance of long term secondary excitation, suggest that this 
327 phenomenon is more likely attributable to the dynamics of the system and the underlying biological 
328 reality rather that to computational errors. Moreover, this phenomenon may be able to explain some 
329 of the unexpected long-term effects of TCS that appear in parts of the brain that were not stimulated. 
330 An example of this phenomenon is presented in (27), where seizures reoccur starting from a different 
331 brain region a month after an initially successful application of TCS.

332 Finally, concerning the clinical significance of our findings, we have established a correlation between 
333 long-lasting effects of stimulation on the internal connectivity of some secondary regions and a worse 
334 surgery outcome. Specifically, we have shown that observing the long-term effect, lasting at least for 
335 several hours, of stimulation on secondary regions is more informative concerning the potential 
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336 surgery outcome than observing the effects on the stimulated regions. The reason for this could be 
337 that in patients with more excitable secondary regions, these regions might still cause seizures after 
338 the primary epileptogenic regions have been removed.  This correlation is not as effective as a method 
339 of predicting surgery outcome as other similar techniques (15, 28, 29) but it could be used as a 
340 secondary test to determine suitability for surgery and/or implanted electrodes. Moreover, the fact 
341 that this correlation was observed by only taking into account the intra-regional connectivity of the 
342 patients and given that the individual anatomy of each region almost certainly plays a role, it is 
343 possible that more detailed individualized simulations of this kind could predict the potential effects 
344 of surgery/stimulation in epileptic patients. 

345 Limitations

346 Our study is far from conclusive for two main reasons. Firstly, the models we used are very rough 
347 approximations of the underlying biological reality and thus, the clinical significance of our findings is 
348 far from certain. Special attention should be paid on the use of an unconventional learning rule as well 
349 as the fact that many of our constants were chosen to facilitate the simulation and thus, they may not 
350 represent the reality of biological systems. Also, local connectivity was initialised based on a previous 
351 model whereas measurements of fMRI allow for model parameters derived from subject-specific 
352 activity across brain regions (30).

353 Secondly, due to time limitations only one stimulation session was modelled with a subsequent resting 
354 period of 24 hours. Although our results do capture an abnormal behaviour (changes in secondary 
355 regions), it is clear that given that in many of the studies discussed in the introduction the follow up 
356 period was ranging from several days to a little less than a year, our results may not represent the 
357 behaviour of biological systems for such long periods of time. 

358 In addition to those two main issues, it should be noted that our dataset was quite small (19 patients 
359 and 20 controls) and thus the clinical significance of our findings needs to be verified through larger 
360 datasets and experimental stimulation data. In particular, patient cohorts with brain stimulation data 
361 and simulation experiments of longer   duration will be crucial to validate the predictive power of this 
362 model, since our current observations are based on surgery outcome which may differe from 
363 stimulation outcome.

364 Conclusion

365 This study uses computational methods to examine the long-term effects of TCS on the connectivity 
366 of the brain. Our findings indicate that even small differences in the internal connectivity—and thus 
367 the excitability—of the stimulated regions can radically change the way stimulation affects the brain. 
368 Moreover, the initial connectivity between brain regions also greatly affected the way each subject 
369 behaved post-stimulation. In addition, the effect stimulation has on non-stimulated brain regions 
370 seems to be a potential biomarker of long-term treatment outcome. Finally, sudden and seemingly 
371 unprovoked changes in the connectivity hours after the effects of stimulation could explain the 
372 unexpected effects of TCS that have been observed in the past.

373

374
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375 Methods

376 Patient data

377 We examined 39 subjects, 19 of whom are suffering from left temporal lobe epilepsy. The subjects 
378 were selected from the dataset presented in (31, 32). Written informed consent was obtained, signed 
379 by all participants, and conformed to local ethics requirements. The ethical review board of the 
380 medical faculty of Bonn gave IRB approval (032/08) and all experiments were performed in accordance 
381 with relevant guidelines and regulations. T1 weighted MRI scans and diffusion tensor imaging (DTI) 
382 data were obtained using a 3 Tesla scanner, a Siemens MAGNETOM TrioTim syngo (Erlangen, 
383 Germany). The T1 images were obtained using 1mm isovoxel, TR = 2500ms and TE = 3.5ms. The DTI 
384 data used 2mm isovoxel, TR = 10,000ms, TE = 91ms and 64 diffusion directions, b-factor 1000s mm−2 
385 and 12 b0 images. In both cases FoV was 256mm.

386 To create the structural connectomes,  FreeSurfer was used to obtain surface meshes of grey and 
387 white matter boundaries from the MRI data and to parcellate the brain into regions of interest (ROI) 
388 based on the Desikan atlas (33, 34). This process identified 82 ROIs which spanned cortical and 
389 subcortical regions (Nucleus accumbens, Amygdala, Caudate, Hippocampus, Pallidum, Putamen and 
390 Thalamus). Streamline tractography was obtained from DTI images using the Fiber Assignment by 
391 Continuous Tracking (FACT) algorithm (35)  through the Diffusion toolkit along with TrackVis  (36). 
392 First, we performed eddy-correction of the image by applying an affine transform of each diffusion 
393 volume to the b0 volume and rotating b-vectors using FSL toolbox (FSL, 
394 http://www.fmrib.ox.ac.uk/fsl/). After the diffusion tensor and its eigenvector was estimated for 
395 every voxel, we applied a deterministic tractography algorithm (35)  initiating a single streamline from 
396 the centre of each voxel. Tracking was stopped when the angle change was too large (35 degree of 
397 angle threshold) or when tracking reached a voxel with a fractional anisotropy value of less than 0.2 
398 (37).

399 The centre coordinates of each voxel were the start of a single streamline, the total number of 
400 streamlines never exceeded the number of seed voxels. The number of connecting streamlines were 
401 used to determine the connectivity matrix (S), as the streamline count has recently been confirmed to 
402 provide a realistic estimate of white matter pathway projection strength (38). Distance matrices were 
403 also constructed using the mean fibre length of the streamlines connecting each pair of ROIs (Figure 
404 4). The surface area of each ROI was found using FreeSurfer for cortical regions and for subcortical 
405 areas by computing the interface area to the white matter in T1 space (39).

406

407

408 Figure 4 - The connectivity matrix (A) obtained by the process described in the section Patient data 
409 for a healthy subject and (B) the network of nodes representing the brain of that subject. The weight 
410 of each connection (derived from the number of streamline counts between regions) is indicated by 
411 its colour.

412

413 Modified Wilson-Cowan Model:  

414 Our model consists of a network of 82 coupled modified Wilson-Cowan oscillators, each representing 
415 a single brain region. In order to include divisive inhibition into our model, each W-C node consists of 
416 one excitatory and two inhibitory populations (Figure 5). The first inhibitory population represents 
417 interneurons firing at the dendrites of the postsynaptic neurons (subtractive inhibition) and the 
418 second inhibitory population represents interneurons firing directly at the soma of the postsynaptic 
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419 neurons, delivering divisive inhibition. For the implementation of the model we followed the 
420 methodology and notation of (40). All the notations that we use for the description of the model is 
421 summarised in table 1.

422

423

424

425 Figure 5- A diagram of a Wilson-Cowan node used in the model. The blue arrows indicate an 
426 excitatory connection while the red and green arrows indicate subtractive and divisive inhibitory 
427 connections respectively. The weights of each connection are indicated above every arrow. The 
428 numbers in the orange parentheses are the weight values that differ for the stimulated 
429 (epileptogenic) regions in the epileptic patients.

430

431

432 Of course, the model described in (40) has been designed to simulate the connectivity of a cortical 
433 microcircuit and not the connectivity of sub-cortical regions. Still, a number of studies (41-43) have 
434 shown the presence of shunting inhibition (in addition to regular subtractive inhibition) in many of the 
435 subcortical areas we used in our study. Thus, we felt that the inclusion of both inhibitory populations 
436 in the nodes representing subcortical regions was justified.

437 According to this model, the activity of each region is modelled by the following delayed differential 
438 equations (DDE’S):

439   (1)  𝜏
𝑑𝐸𝑖(𝑡)

𝑑𝑡   =  ‒ 𝐸𝑖 (𝑡) + (𝑘𝑒 ‒ 𝐸𝑖(𝑡)) ⋅ 𝐹𝑒( 𝑤(𝑖)
1 ⋅ 𝐸𝑖(𝑡) + ∑82

𝑗 = 1,𝑗 ≠ 𝑖𝑊𝑗𝑖 ⋅ 𝐸𝑗(𝑡 ‒ 𝑑𝑒𝑙𝑖𝑗) + 𝑃𝑒, 𝑤(𝑖)
2 ⋅ 𝐼𝑠 𝑖(𝑡),   𝑤(𝑖)

3 ⋅ 𝐼𝑑𝑖(𝑡))

440                                                   (2)  𝜏
𝑑𝐼𝑠𝑖(𝑡)

𝑑𝑡  =‒ 𝐼𝑠𝑖(𝑡) +   (𝑘𝑖 ‒  𝐼𝑠𝑖(𝑡)) ⋅ 𝐹𝑖( 𝑤(𝑖)
4 ⋅ 𝐸𝑖(𝑡) + 𝑃𝑠, 0, 0)

441   (3) 𝜏
𝑑𝐼𝑑𝑖(𝑡)

𝑑𝑡 =  ‒ 𝐼𝑑𝑖(𝑡) +   (𝑘𝑖 ‒ 𝐼𝑑𝑖(𝑡)) ⋅ 𝐹𝑖(𝑤(𝑖)
5 ⋅ 𝐸𝑖(𝑡) +  𝑃𝑑,𝑤(𝑖)

6 ⋅  𝐼𝑠𝑖(𝑡) + 𝑤(𝑖)
7 ⋅ 𝐼𝑑𝑖(𝑡),   0) 

442 In order to account for the divisive inhibition a modified input-output function is required:

443                 (4)                                                        𝐹𝑗(𝑥,𝜃,𝑎) =
1

1 + exp [ ‒   
𝑎𝑗

1 + 𝑎(𝑥 ‒ (𝜃𝑗 + 𝜃))]
‒

1

1 + exp [ 𝑎𝑗𝜃𝑗
1 + 𝑎]

444 For, where stands for excitatory and  stands for inhibitory. The inhibitory populations 𝑗 ∈  {𝑒,  𝑖} 𝑒 𝑖 
445 have the same input-output function and the same constants since they are assumed to respond to 
446 inputs in a similar way. However, the difference in the type of inhibition those neurons deliver to the 
447 excitatory population is due to their different targeting onto the postsynaptic neurons, that is, somatic 
448 vs dendritic.

449
450 The constant   is given by:𝑘𝑗 , 𝑗 ∈ {𝑒,𝑖}

451                   (5)                                                             kj = lim
𝑥→∞

𝐹𝑗(𝑥,𝜃,𝑎) =
exp [ 𝑎𝑗𝜃𝑗

1 + 𝑎]
1 + exp [ 𝑎𝑗𝜃𝑗

1 + 𝑎]
,    𝑗 ∈ {𝑒,𝑖}

452 As is the case with the sigmoid function the constant  is the same for both inhibitory populations𝑘𝑗
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453 In our study, the constants of the sigmoid were set at  , following 𝜃𝑒 = 4,  𝜃𝑖 =  3.7,  𝑎𝑒 =  1.3,  𝑎𝑖 =  2
454 the values used at (40). Moreover, the external inputs of the inhibitory populations were set to 𝑃𝑠 =
455 while the input of the excitatory population was set to .  Other values were considered 𝑃𝑑 = 1 𝑃𝑒 = 2
456 for  ranging from 1.1 to 4 (the range where the system produces oscillations) with results similar to 𝑃𝑒
457 the ones presented here. Providing no input to the inhibitory populations ( ) results in a 𝑃𝑠 =  𝑃𝑑 = 0
458 lack of long term stable oscillations and therefore we restricted the parameter value to . A  𝑃 >  0
459 detailed description of all notation used is given in table 2.

460 Table 2 – Notation used in the text and interpretation

Notation Interpretation
𝐸𝑖 (𝑡) Activity of the excitatory population of region i at time t
𝐼𝑠𝑖(𝑡) Activity of the subtractive inhibitory population of region i at time t
𝐼𝑑𝑖(𝑡) Activity of the divisive inhibitory population of region i at time t
𝑤(𝑖)

𝑘 Weight of the k-th connection of region i
𝑊𝑖𝑗 Weight of the connection between regions i and j 

𝑑𝑒𝑙𝑖𝑗 Time delay between regions i and j
𝑃𝑒 External input of the excitatory population
𝑃𝑠 External input of the subtractive inhibitory population
𝑃𝑑 External input of the divisive inhibitory population

𝐹𝑒(𝑥,𝜃,𝑎) Sigmoid function for the excitatory population
𝐹𝑖(𝑥,𝜃,𝑎) Sigmoid function for the Inhibitory populations

𝜃 Variable of the sigmoid representing subtractive modulation
𝑎 Variable of the sigmoid representing divisive modulation
𝜃𝑒 Minimum displacement in case no subtractive inhibition is delivered to the excitatory 

population
𝑎𝑒 Maximum slope in case no divisive inhibition is delivered to the excitatory population
𝜃𝑖 Minimum displacement in case no subtractive inhibition is delivered to the inhibitory 

populations
𝑎𝑖 Maximum slope in case no divisive inhibition is delivered to the inhibitory populations
𝑘𝑒 Constant for the excitatory population
𝑘𝑖 Constant for the inhibitory populations

461

462 Connectivity and Plasticity

463 The weights between brain regions were initialized according to the brain anatomy of each patient 𝑊𝑖𝑗 
464 using the data described in the section ‘’Patient data’’.  Specifically, given the matrix  of the 𝑆
465 streamline counts for an individual subject we followed the original study (31) and initialised the 
466 connectivity matrix  as:𝑀

467                                    (6)                                                               𝑀𝑖𝑗 = {0.1 ⋅ log (𝑆𝑖𝑗), 𝑆𝑖𝑗 > 0
0,   𝑆𝑖𝑗 = 0

468 During the simulation, the weights were updated every 10 milliseconds by the following learning rule:

469         (7)                                                             ∆𝑤𝑖𝑗 = 𝑐 ⋅ 𝐸𝑖(𝑡 ‒ 𝑑𝑒𝑙𝑖𝑗) ⋅ ( 𝐸𝑗(𝑡) ‒ 𝐸𝑗(𝑡 ‒ 1))    

470  We chose this simple rule in order to represent the effects of spike timing dependent plasticity (44) 
471 in neuron populations. The learning rate was set at c = 0.1. Other values were considered, and similar 
472 results were obtained with the only difference being the speed of weight change. Still, the pattern of 
473 activity remained the same for all the values we examined as can be seen in figure 6.
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474

475 Figure 6 - The global connectivity difference measures two epileptic (A,B) and two healthy (C,D) 
476 subjects for different learning rates: c = 0.05 (blue), c = 0.1 (red) and c = 0.2 (yellow). The effect of 
477 stimulation on the global connectivity is different depending on the learning rate but the overall 
478 pattern remains similar. The green line at the x-axis indicates the period of stimulation.

479

480  The weight matrix was normalised after each update (45, 46) by the following rule:

481                                     (8)                                                                                           𝑊𝑖𝑗 ← 
𝑊𝑖𝑗

∑82
𝑖 = 1𝑊𝑖𝑗

482 For the internal weights  of each region we used two different sets of initial values. The 𝑤(𝑖)
1 , …, 𝑤(𝑖)

7
483 first set of values was chosen to represent the connectivity of a healthy brain region while the second 
484 set was chosen to represent an epileptogenic region. The values of the healthy region were decided 
485 after an extensive parameter search, starting at the values used by (40) and examining values  
486 between 8 and 21 (the range at which the system produces oscillations).  The values we selected lead 
487 to high amplitude oscillations in all three populations during the first hours of the simulation. The 
488 amplitude of the oscillations gradually decreases and stabilizes after some hours. It must be noted 
489 that the final values were chosen to facilitate the dynamics of the system and may not correspond to 
490 the connectivity of a real biological system. Still, using different parameters usually resulted in 
491 oscillations of different amplitude and consequently slower stabilization periods, but as a general rule 
492 did not lead to radically different behaviour in the system.

493  After the values of the healthy region were established, the values of the epileptogenic regions were 
494 derived by increasing the weights of excitatory connections and reducing the weights of the inhibitory 
495 connections. Those changes aimed at increasing the excitability of those regions (increased excitatory 
496 and decreased inhibitory input) in order to simulate the dynamics associated with epilepsy. The 
497 difference in behaviour of the epileptogenic regions was small but observable (oscillations of 
498 increased amplitude and occasional seizure-like activity when the input to their excitatory regions was 
499 increased), as with the original connection eights, choosing different values led to slightly different 
500 results (the more excitable the regions, the greater the effect of stimulation), but the main 
501 observations remained the same.  The values chosen are presented in Figure 5

502 The weights were updated every 10 milliseconds according to a modified version 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤6 
503 of the rule we used for the external connections with subsequent normalization after every update.

504             (9)                                                          ∆𝑤(𝑖)
𝑘 =  𝑐 ⋅ 𝑃𝑟𝑒(𝑡) ⋅ ( 𝑃𝑜𝑠𝑡(𝑡 ) ‒ 𝑃𝑜𝑠𝑡 (𝑡 ‒ 1 ))

505 Where    are the activities of the presynaptic and the postsynaptic populations, 𝑃𝑟𝑒(𝑡), 𝑃𝑜𝑠𝑡(𝑡)
506 respectively. Several proposed mechanism of internal plasticity were considered, but due to the lack 
507 of a consensus about a general mechanism of inhibitory plasticity (44, 47)—especially in neural mass 
508 models—we chose to use this simple intuitive rule, similar to the rule we used for the external 
509 connections. The most commonly used learning rule for inhibitory plasticity, introduced in (48) could 
510 not be used in this model due to long term instability in the networks dynamics.

511 For the normalization, we employed the same rule used for the global connectivity:

512                                               (10)                                                                                    𝑤(𝑖)
𝑘  ← 

𝑤(𝑖)
𝑘

∑7
𝑘 = 1𝑤(𝑖)

𝑘

513 Since there has been little research on how inhibitory to inhibitory plasticity could be implemented in 
514 a neural mass model, the weights  and  were kept stable. The learning rate was set at c = 0.05. 𝑤5 𝑤7
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515 Finally, the delays were initialized for each patient, as the length of the fibres connecting two regions 
516 divided by the speed of spike propagation. For the calculation of the delays we considered all axons 
517 to be myelinated and thus the spike propagation speed was set at 7 m/s (49, 50).  To calculate the 
518 distance between regions, we selected the fibre trajectory length—which we calculated using 
519 deterministic tracking of diffusion tensor imaging data—instead of the Euclidian distance in order for 
520 the delays to be more biologically realistic. 

521

522 Stimulation

523 Each session of stimulation was modelled as a decrease of 50% (the stimulation is cathodal, due to 
524 better reported experimental results (10)) in the external input of the three regions (amygdala, 
525 hippocampus and parahippocampal gyrus) most commonly responsible for seizures in these patients, 
526 for a period of 30 minutes.  Despite two of these regions being sub-cortical, the ability of transcranial 
527 stimulation to affect them has been demonstrated in past studies (51-53). Stimulation in all cases 
528 started at t =200s after the beginning of the simulation. This initial period was allowed for the 
529 oscillations of the system to stabilize before stimulation begins.

530  The choice of stimulation parameters was made  in order for the model to correspond to a working 
531 protocol of TCS (54). Due to the computational constraints of such large simulations (55), we modelled 
532 only one session and an additional resting period of 24 hours.

533 Model Implementation:

534 The model was initialized with the data of each patient as described in the previous sections and two 
535 simulations–with and without stimulation- run in parallel for a period of 24 hours with snapshots of 
536 the weight matrices taken every 50 seconds. The large system of DDE’s (246 equations) was solved by 
537 using Matlab’s dde23 delayed differential equation solver.

538  The effect of the stimulation on the connectivity at every time step was measured in the following 
539 ways:

540 1. The global effect of the stimulation on the connectivity of the brain was measured as the 
541 difference (%) of the connectivity matrices :𝑀 = (𝑊𝑖𝑗)

542                                 (11)                                                                                                                                                                                                𝐷(𝑡) = 100 ⋅  
∑82

𝑖,𝑗 = 1|𝑊'𝑖𝑗 (𝑡) ‒ 𝑊𝑖𝑗 (𝑡)|

∑82
𝑖,𝑗 = 1|𝑊𝑖𝑗 (𝑡)|

543 where   is the weight between regions i and j at time t after stimulation and   is the weight 𝑊'𝑖𝑗 𝑊𝑖𝑗 (𝑡)
544 between regions i and j at time t without stimulation. This measure represents the effect stimulation 
545 has on the inter-region connections of the brain.

546 2. The effect of the stimulation on the internal connectivity of each region (local effect) was 
547 measured as the difference (%) of the internal weights in the stimulated and the non-
548 stimulated versions:

549                              (12)                                                                                                                                                                                                     di(𝑡) =  100 ⋅
∑7

𝑖 = 1|𝑤(𝑖)'
𝑘 (𝑡) ‒ 𝑤(𝑖)

𝑘 (𝑡)|
∑7

𝑖 = 1|𝑤(𝑖)
𝑘 (𝑡)|      

550 where i =1,…,82 the brain region,  is the k-th weight of the i-th region at time t in the stimulated 𝑤(𝑖)'
𝑘 (𝑡)

551 version and   is the i-th weight of the k-th region at time t in the non- stimulated version. These 𝑤(𝑖)
𝑘 (𝑡)

552 measures represent the effect of stimulation on the internal connectivity of each region.      

553 Connectivity measure
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554 In order to study the effect of stimulation on the regions that received no direct stimulation, we 
555 examined several connectivity metrics that could explain such an effect. One of those metrics is the 
556 Jaccard index. The Jaccard index of two regions measures the similarity in connectivity (the common 
557 neighbours) and is defined as:

558                                           (13)                                                                                       𝐽(𝑖,𝑗) =  
|𝛤(𝑖) ∩ 𝛤(𝑗)| 
|𝛤(𝑖) ∪ 𝛤(𝑗)| 

559 Where   is the set of nodes connected to node  and   is the number of elements of the set 𝛤(𝑖) 𝑖 |𝐴| 𝐴.

560 In our study, we defined the Jaccard index of a secondary region  to be:𝑖

561                       (14)                                                                        𝐽(𝑖) =  
1
3 ⋅ (𝐽(𝑝,𝑖) + 𝐽 (𝑎,𝑖) + 𝐽(ℎ,𝑖))

562 Where   are the stimulated regions.  𝑝,𝑎,ℎ

563 Clinical Significance

564 In the end of our study we present a hypothetical test that aims to the outcome of surgery. In order 
565 to assess the effectiveness of a clinical test the following measures are used (56):

566 1. Accuracy =     , which measures the ability of the test to differentiate the 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
567 patient and healthy cases correctly.
568

569 2. Sensitivity = ,  which measure the ability of the test to determine the patient cases 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
570 correctly
571

572 3. Specificity =  , which measures the ability of the test to determine the healthy cases 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
573 correctly
574
575 Where TP means true positive, TN means true negative, FP means false positive and FN means false 
576 negative.
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